Self-interacting dark matter as a solution to the problems in small-scale structures

Camilo Garcia Cely, ULB

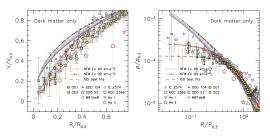
52nd Rencontres de Moriond

ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES

La Thuile, Italy

18-25 March, 2017

In collaboration with Xiaoyong Chu and Thomas Hambye. Based on JHEP 1611 (2016) 048.


Challenges to the ACDM model at small scales

Challenges to the ACDM model at small scales

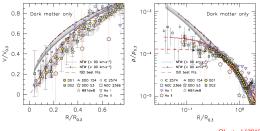
Core vs. cusp problem

dwarf galaxies exhibit a core while N-body simulations predict a cusp at their center

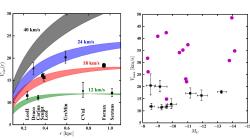
```
Moore (1994)
Flores et al. (1994)
Naray et al. (2011)
```


Challenges to the ACDM model at small scales

Core vs. cusp problem


dwarf galaxies exhibit a core while N-body simulations predict a cusp at their center

```
Moore (1994)
Flores et al. (1994)
Narav et al. (2011)
```


Too big to fail problem

simulations of the Milky Way predict subhalos too massive and too dense to host the brightest observed satellites

```
Boylan-Kolchin et al.(2011)
Ferrero et al. (2014)
```


Oh et al.(2010)

Boylan-Kolchin et al.(2011)

Astrophysical possible solutions:

- Including baryons on the simulations
- Supernova feedback
- Tidal effects
- Low star-formation rates

Astrophysical possible solutions:

- Including baryons on the simulations
- Supernova feedback
- Tidal effects
- Low star-formation rates

Particle physics solution:

 postulate dark matter interactions that become relevant at small scales, without modifying the physics at large scales.

Astrophysical possible solutions:

- Including baryons on the simulations
- Supernova feedback
- Tidal effects
- Low star-formation rates

Particle physics solution:

 postulate dark matter interactions that become relevant at small scales, without modifying the physics at large scales.

[&]quot;..To be more specific, we suggest that the dark matter particles should have a mean free path between 1 kpc to 1 Mpc at the solar radius in a typical galaxy."

Spergel, Steinhardt (1999)

Astrophysical possible solutions:

- Including baryons on the simulations
- Supernova feedback
- Tidal effects
- Low star-formation rates

Particle physics solution:

 postulate dark matter interactions that become relevant at small scales, without modifying the physics at large scales.

"..To be more specific, we suggest that the dark matter particles should have a mean free path between 1 kpc to 1 Mpc at the solar radius in a typical galaxy."

Spergel. Steinhardt (1999)

Mean Free Path
$$\sim \left(rac{
ho}{m_{
m DM}} \, \sigma_{
m scattering}
ight)^{-1}$$

 $rac{\sigma_{
m scattering}}{m_{
m DM}}\sim 1{
m cm}^2/g$ at the scale of galaxies (v ~ 10 - 100 km/s)

Astrophysical possible solutions:

- Including baryons on the simulations
- Supernova feedback
- Tidal effects
- Low star-formation rates

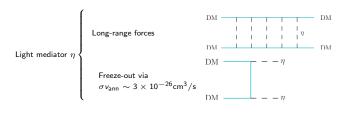
Particle physics solution:

 postulate dark matter interactions that become relevant at small scales, without modifying the physics at large scales.

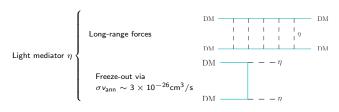
"..To be more specific, we suggest that the dark matter particles should have a mean free path between 1 kpc to 1 Mpc at the solar radius in a typical galaxy."

Spergel. Steinhardt (1999)

Mean Free Path
$$\sim \left(\frac{\rho}{m_{\mathrm{DM}}}\sigma_{\mathrm{scattering}}\right)^{-1}$$


$${\sigma_{
m scattering} \over m_{
m DM}} \sim 1 {
m cm}^2/g$$
 at the scale of galaxies (v \sim 10 - 100 km/s)

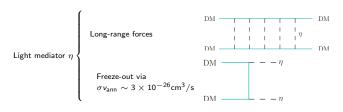
Wandelt, et.al (2000), Vogelsberger et.al (2012)


Simulations show that this is indeed a solution

Peter et.al (2012), Rocha et.al (2013), Zavala et.al (2012) Elbert et.al (2014), Kaplinghat (2015), Vogelsberger et.al (2015) Francis-Yan Cvr-Racine (2015)

How can we obtain this cross section?

How can we obtain this cross section?


Implementing the freeze-out is challenging because thermal equilibrium between the SM and DM is needed, which leads to problems Bernal, Chu, CGC, Hambye, Zaldivar (2015)

- In the early universe the mediator is produced in large amounts affecting the CMB and BBN.
- Large direct detection rates, Kaplinghat, Sean Tulin, Yu (2013)
- Large annihilation signals due to the Sommerfeld effect. Brignmann, Kahlhoefer, Schmidt-Hoberg, Walia (2016)
 Cirelli, Panci, Petraki, Sala, Taoso (2016)

3/8

How can we obtain this cross section?

Implementing the freeze-out is challenging because thermal equilibrium between the SM and DM is needed, which leads to problems Bernal, Chu, CGC, Hambye, Zaldivar (2015)

- In the early universe the mediator is produced in large amounts affecting the CMB and BBN.
- Large direct detection rates. Kaplinghat, Sean Tulin, Yu (2013)
- Large annihilation signals due to the Sommerfeld effect. Brignmann, Kahlhoefer, Schmidt-Hoberg, Walia (2016)
 Cirelli, Panci, Petraki, Sala, Taoso (2016)

Can we still consider the standard freeze-out?

Basic requirements:

Chu, CGC, Hambye (2016)

Basic requirements:

Chu, CGC, Hambye (2016)

Part of the trouble is the fact that the mediator is light. Consider heavy ones.

Basic requirements:

Chu, CGC, Hambye (2016)

- Part of the trouble is the fact that the mediator is light. Consider heavy ones.
- Dimensional analysis on $\sigma_{\rm scattering} \sim \frac{\lambda^2}{m_{\rm DM}^2} \sim (1~{\rm cm}^2/{\rm g})~m_{\rm DM}.$

DM must be at the MeV scale and be a singlet.

Basic requirements:

Chu, CGC, Hambye (2016)

- Part of the trouble is the fact that the mediator is light. Consider heavy ones.
- Dimensional analysis on $\sigma_{\rm scattering} \sim \frac{\lambda^2}{m_{\rm DM}^2} \sim$ (1 cm 2 /g) $m_{\rm DM}$.

DM must be at the MeV scale and be a singlet.

We need two different interactions

DM annihilations (freeze-out)

DM self-interactions (small structures)

Portals to the SM

SM

Scalar Vector Neutrino

Interactions within the dark sector Heavy mediator Contact interaction

Basic requirements:

Chu. CGC. Hambve (2016)

- Part of the trouble is the fact that the mediator is light. Consider heavy ones.
- Dimensional analysis on $\sigma_{\rm scattering} \sim \frac{\lambda^2}{m_{\rm max}^2} \sim (1~{\rm cm^2/g})~m_{\rm DM}$.

DM must be at the MeV scale and be a singlet.

We need two different interactions

p-wave DM annihilations (freeze-out)

DM self-interactions (small structures)

Portals to the SM

Interactions within the dark sector Heavy mediator

Contact interaction

CMB observations rule out s-wave annihilations at the MeV scale. Slatver (2015)

Basic requirements:

Chu, CGC, Hambye (2016)

- Part of the trouble is the fact that the mediator is light. Consider heavy ones.
- Dimensional analysis on $\sigma_{\rm scattering} \sim \frac{\lambda^2}{m_{\rm DM}^2} \sim$ (1 cm²/g) $m_{\rm DM}$.

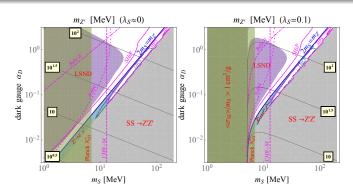
DM must be at the MeV scale and be a singlet.

We need two different interactions

p-wave DM annihilations (freeze-out)

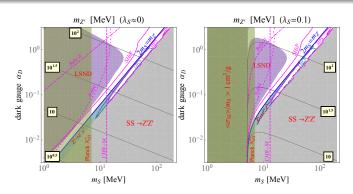
DM self-interactions (small structures)

Portals to the SM


Scalar Vector ← Neutrino

Interactions within the dark sector Heavy mediator

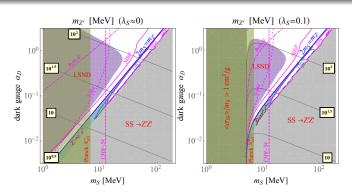
Contact interaction


CMB observations rule out s-wave annihilations at the MeV scale.

Freeze-out: Scalar DM coupled to a heavier Z'

- Five parameters: λ_S , the kinetic mixing ϵ , $M_{Z'}$, M_S and α_D . The freeze-out via $SS \to Z' \to f_{SM} \overline{f_{SM}}$ and the self-interaction hypothesis constrain two of them.
- Annihilations into fermions are p-wave suppressed. No annihilation into photons.
- lacktriangle DM Self-interactions are mediated by the exchange of the Z' and/or the quartic coupling λ_S .

Freeze-out: Scalar DM coupled to a heavier Z'

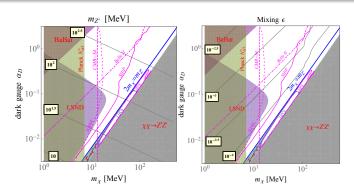


- Five parameters: λ_S , the kinetic mixing ϵ , M_{Z^I} , M_S and α_D . The freeze-out via $SS \to Z' \to f_{SM} \overline{f_{SM}}$ and the self-interaction hypothesis constrain two of them.
- Annihilations into fermions are p-wave suppressed. No annihilation into photons.
- lacktriangle DM Self-interactions are mediated by the exchange of the Z' and/or the quartic coupling λ_S .

Prospects for this scenario

Highly testable via dark photon searches and CMB observations.

Freeze-out: Scalar DM coupled to a heavier Z'


- Five parameters: λ_S , the kinetic mixing ϵ , M_{Z^I} , M_S and α_D . The freeze-out via $SS \to Z' \to f_{SM} \overline{f_{SM}}$ and the self-interaction hypothesis constrain two of them.
- Annihilations into fermions are p-wave suppressed. No annihilation into photons.
- lacktriangle DM Self-interactions are mediated by the exchange of the Z' and/or the quartic coupling λ_S .

Prospects for this scenario

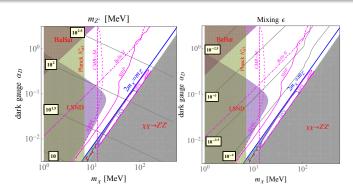
- Highly testable via dark photon searches and CMB observations.
- DM Scattering off electrons in semiconductors might exclude it completely.

Essig, Fernandez-Serra, Soto, Volansky, T.-T. Yu (2016)

Freeze-out: Majorana DM coupled to a heavier Z'

- Four parameters: the kinetic mixing ϵ , $M_{Z'}$, M_{χ} and α_D . The freeze-out via $\chi\chi\to Z'\to f_{SM}\overline{f_{SM}}$ and the self-interactions constrain two of them.
- Annihilations into fermions are p-wave suppressed. No annihilation into photons.
- lacksquare DM Self-interactions are mediated by the exchange of the Z^\prime .

Freeze-out: Majorana DM coupled to a heavier Z'

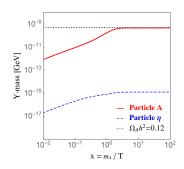


- Four parameters: the kinetic mixing ϵ , $M_{Z'}$, M_{χ} and α_D . The freeze-out via $\chi\chi\to Z'\to f_{SM}\overline{f_{SM}}$ and the self-interactions constrain two of them.
- Annihilations into fermions are p-wave suppressed. No annihilation into photons.
- lacktriangle DM Self-interactions are mediated by the exchange of the Z'.

Prospects for this scenario

Highly testable via dark photon searches and CMB observations.

Freeze-out: Majorana DM coupled to a heavier Z'

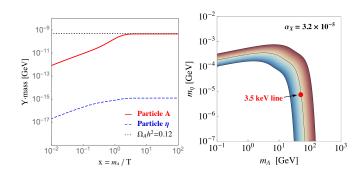


- Four parameters: the kinetic mixing ϵ , $M_{Z'}$, M_{χ} and α_D . The freeze-out via $\chi\chi\to Z'\to f_{SM}\overline{f_{SM}}$ and the self-interactions constrain two of them.
- Annihilations into fermions are p-wave suppressed. No annihilation into photons.
- lacktriangle DM Self-interactions are mediated by the exchange of the Z'.

Prospects for this scenario

- Highly testable via dark photon searches and CMB observations.
- lacktriangle Model building is required because there must be a dark scalar close in mass to the Z'.

Freeze-in



Bernal, Chu, CGC, Hambye, Zaldivar (2015)

- Very small interactions between the DM sector and SM.
 There is never thermal equilibrium.
- Hard to probe by construction.

Freeze-in

- Very small interactions between the DM sector and SM.
 There is never thermal equilibrium.
- Hard to probe by construction.

Bernal, Chu, CGC, Hambye, Zaldivar (2015)

Conclusions

- Self-interacting dark matter is a well-motivated solution to the problems encountered at small scales.
- Multiple observations severely constrain the production of self-interacting DM via the freeze-out mechanism.
- The freeze-out mechanism can still work if no light mediator is present. Concretely, when scalar or Majorona DM interact via a heavier Z' boson. This is a highly testable scenario.
- A viable scenario is freeze-in. It provides a candidate for the 3.5 keV line.

Conclusions

- Self-interacting dark matter is a well-motivated solution to the problems encountered at small scales.
- Multiple observations severely constrain the production of self-interacting DM via the freeze-out mechanism.
- The freeze-out mechanism can still work if no light mediator is present. Concretely, when scalar or Majorona DM interact via a heavier Z' boson. This is a highly testable scenario.
- A viable scenario is freeze-in. It provides a candidate for the 3.5 keV line.

Thanks for your attention!