Sommerfeld Enhancement in the Inert Doublet Model

Camilo A. Garcia Cely

Feb 19, 2014

MALT Workshop, Munich

Outline

- Introduction
- Dark Matter as an Inert Scalar
- Gamma-ray spectral features: Annihilation into two photons
- Issues with Unitarity and the Sommerfeld enhancement
- Gamma-ray fluxes and H.E.S.S.
- Conclusions

SM doublet

Additional doublet

$$\Phi = \begin{pmatrix} G^+ \\ \frac{v_h + h + iG^0}{\sqrt{2}} \end{pmatrix}$$

$$\Psi = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} \left(H^0 + iA^0 \right) \end{pmatrix}$$

Dark Matter Stability It is possible to postulate invariance under

$$\Psi \rightarrow -\Psi \quad \Phi \rightarrow \Phi$$

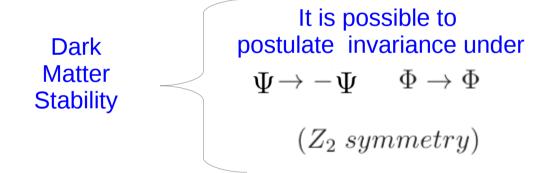
 $(Z_2 \ symmetry)$

SM doublet

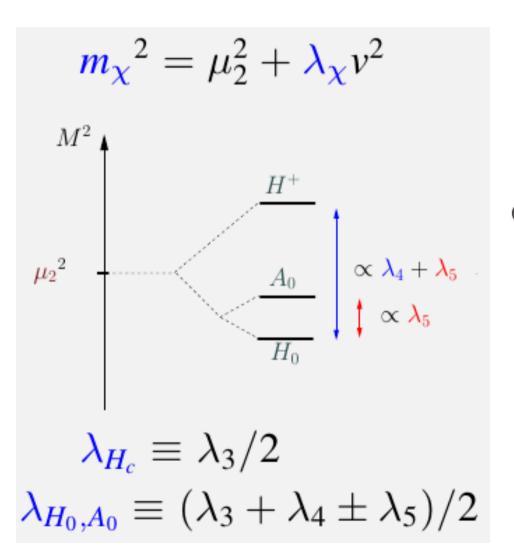
Additional doublet

$$\Phi = \begin{pmatrix} G^+ \\ \frac{v_h + h + iG^0}{\sqrt{2}} \end{pmatrix}$$

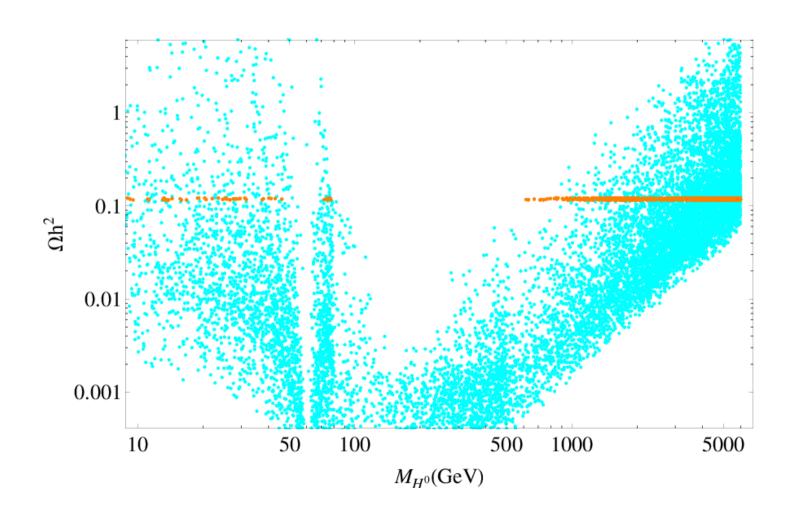
$$\Psi = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} \left(H^0 + iA^0 \right) \end{pmatrix}$$



$$\mathcal{L}_{\Phi,\Psi} = \mathcal{L}_{\text{Yukawa}} + (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) + (D_{\mu}\Psi)^{\dagger}(D^{\mu}\Psi) - m_{1}^{2}\Phi^{\dagger}\Phi - m_{2}^{2}\Psi^{\dagger}\Psi$$
$$-\lambda_{1}(\Phi^{\dagger}\Phi)^{2} - \lambda_{2}(\Psi^{\dagger}\Psi)^{2} - \lambda_{3}(\Phi^{\dagger}\Phi)(\Psi^{\dagger}\Psi) - \lambda_{4}(\Phi^{\dagger}\Psi)(\Psi^{\dagger}\Phi) - \frac{1}{2}\left(\lambda_{5}(\Phi^{\dagger}\Psi)(\Phi^{\dagger}\Psi) + \text{h.c.}\right)$$



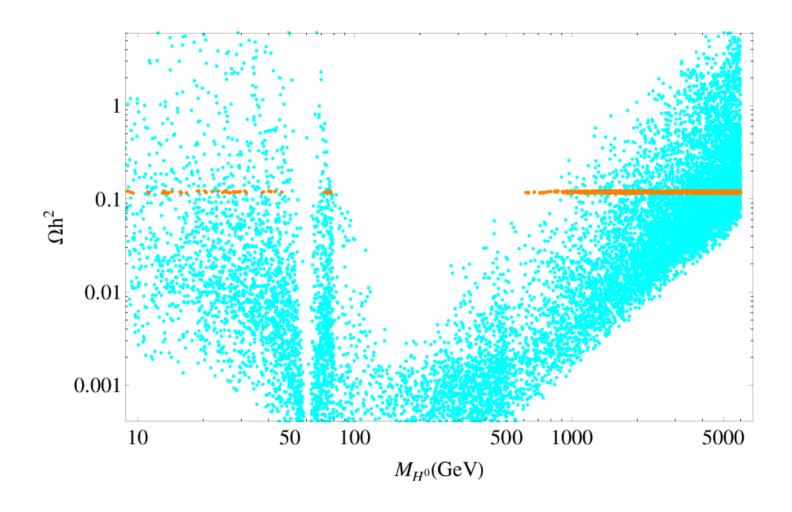
For a heavy dark matter candidate $(M_{H^0} \gg M_W)$ the splitting is relatively small and we expect the particles belonging to the extra doublet to have nearly degenerate masses .



$$m_{H_0} \lesssim m_W$$
: GeV range

$$H_0H_0 \to h^* \to \bar{f}f$$
 and $H_0A_0 \to Z^* \to \bar{f}f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...



$$m_{H_0} \lesssim m_W$$
: GeV range

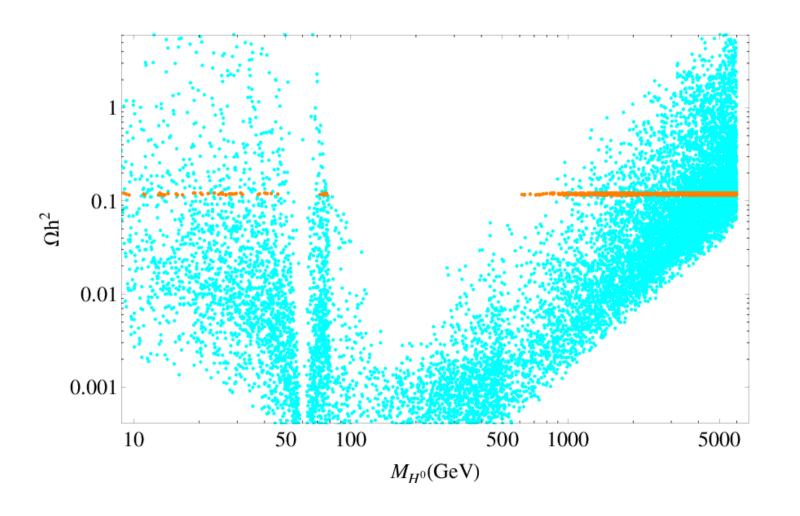
$$H_0H_0 \rightarrow h^* \rightarrow \bar{f}f$$
 and $H_0A_0 \rightarrow Z^* \rightarrow \bar{f}f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...

$$m_{H_0} \gg m_W$$
: TeV range

$$H_0H_0 \rightarrow ZZ, WW, hh$$

Cirelli NPB06, Hambye JHEP09



 $m_{H_0} \lesssim m_W$: GeV range

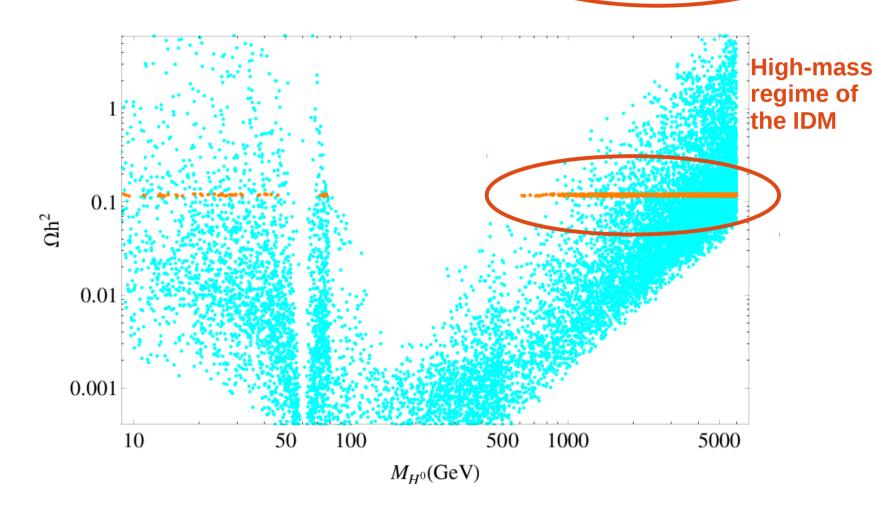
$$H_0H_0 \to h^* \to \bar{f}f$$
 and $H_0A_0 \to Z^* \to \bar{f}f$

Barbieri PRD06, LLH JCAP06, Gustafsson PRL07, Cao PRD07, Andreas JCAP08,...

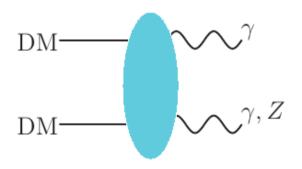
 $m_{H_0} \gg m_W$: TeV range

 $H_0H_0 \rightarrow ZZ, WW, hh$

Cirelli NPB06, Hambye JHEP09

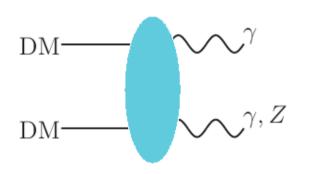


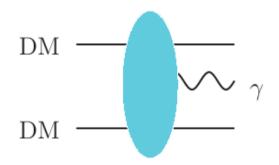
Smoking gun signature for dark matter: no astrophysical process is known to produce a sharp feature in the gamma-ray spectrum



Annihilation into Photons

Smoking gun signature for dark matter : no astrophysical process is known to produce a sharp feature in the gamma-ray spectrum

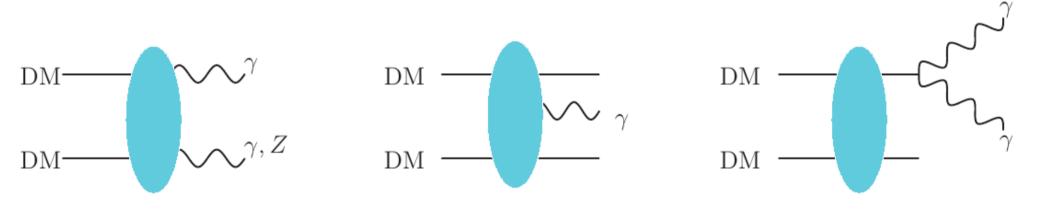




Annihilation into Photons

Virtual Internal Bremsstrahlung

Smoking gun signature for dark matter : no astrophysical process is known to produce a sharp feature in the gamma-ray spectrum

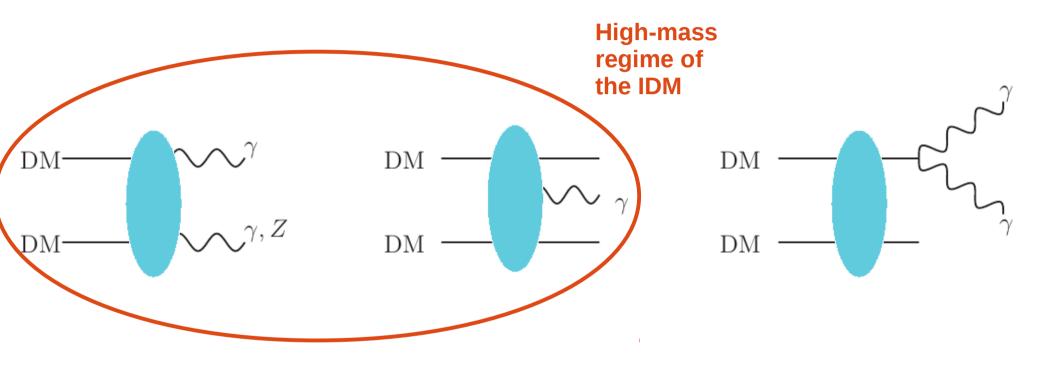


Annihilation into Photons

Virtual Internal Bremsstrahlung

Box-shaped spectra

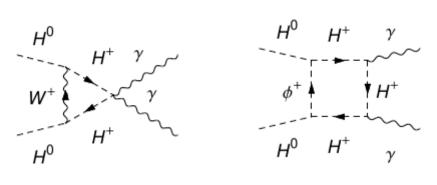
Smoking gun signature for dark matter : no astrophysical process is known to produce a sharp feature in the gamma-ray spectrum

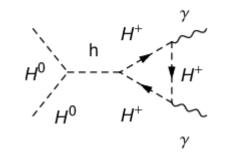


Annihilation into Photons

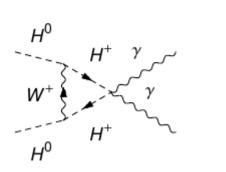
Virtual Internal Bremsstrahlung

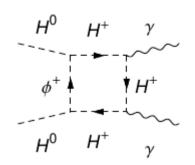
Box-shaped spectra

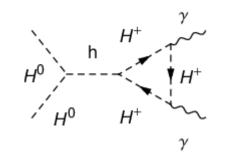




.....and many more

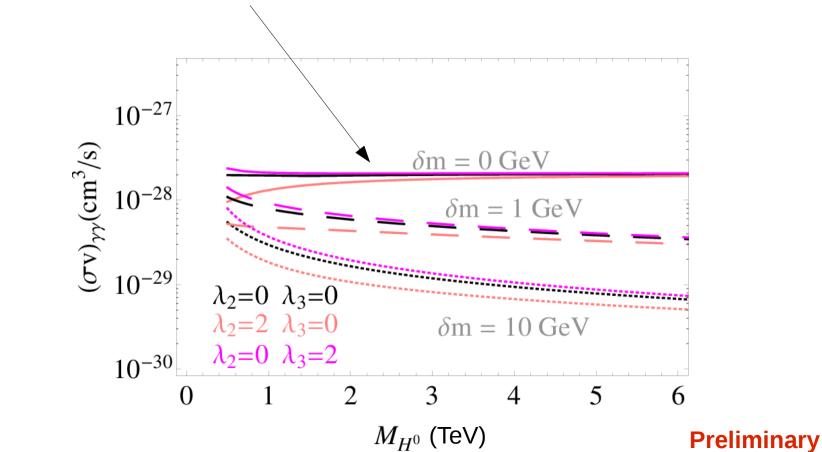


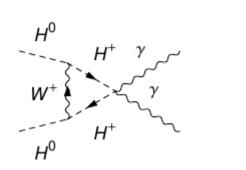


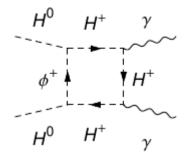


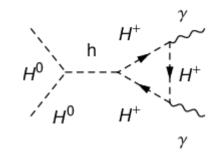
.....and many more

Something is wrong because the cross-section must be bounded from above by the unitarity limit



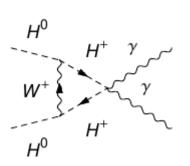


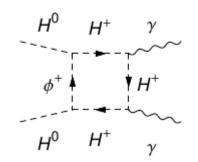


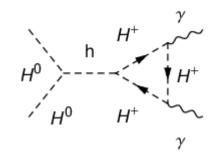


.....and many more

$$\mathcal{M}\left(H^0H^0 \to \gamma\gamma\right)\Big|_{s-wave} = A\left(g^{\mu\nu} - \frac{p^{\mu}_{\gamma_2}p^{\nu}_{\gamma_1}}{2M^2_{H^0}}\right)\epsilon_{\mu}(p_{\gamma_1})\epsilon_{\nu}(p_{\gamma_2})$$



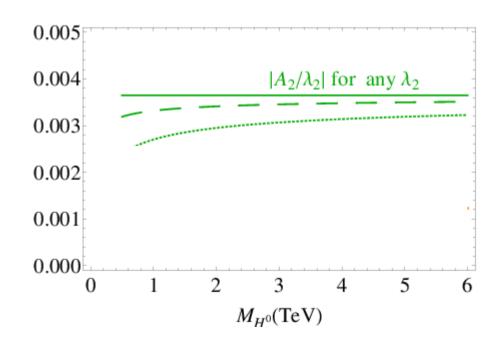


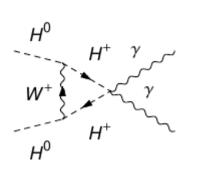


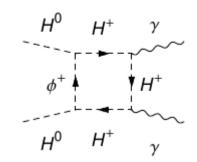
.....and many more

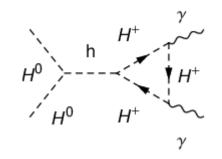
$$+ A_2(M_{H^0}, M_{H^+}, \lambda_2)$$

$$\mathcal{M}(H^0 H^0 \to \gamma \gamma) \Big|_{s-wave} = A \left(g^{\mu\nu} - \frac{p^{\mu}_{\gamma_2} p^{\nu}_{\gamma_1}}{2M^2_{H^0}} \right) \epsilon_{\mu}(p_{\gamma_1}) \epsilon_{\nu}(p_{\gamma_2})$$





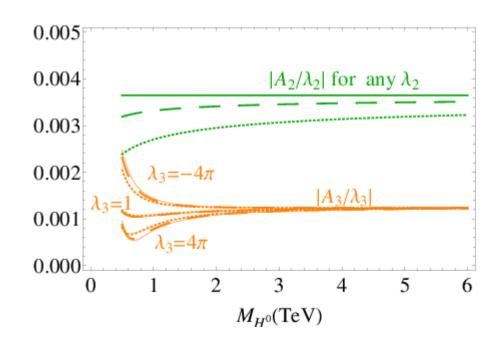


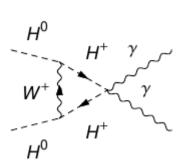


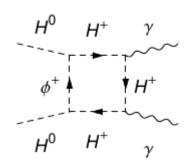
.....and many more

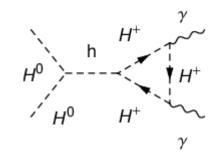
$$+ A_{2}(M_{H^{0}}, M_{H^{+}}, \lambda_{2}) + A_{3}(M_{H^{0}}, M_{H^{+}}, \lambda_{3})$$

$$\mathcal{M}(H^{0}H^{0} \to \gamma\gamma) \Big|_{s-wave} = A\left(g^{\mu\nu} - \frac{p^{\mu}_{\gamma_{2}}p^{\nu}_{\gamma_{1}}}{2M^{2}_{H^{0}}}\right) \epsilon_{\mu}(p_{\gamma_{1}})\epsilon_{\nu}(p_{\gamma_{2}})$$





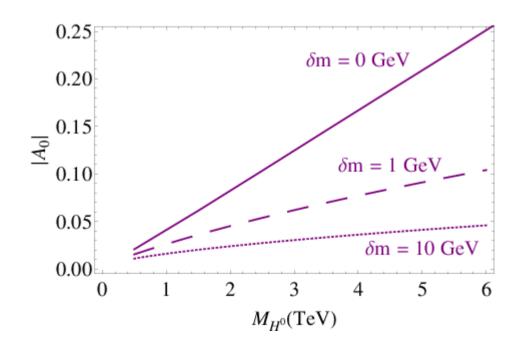


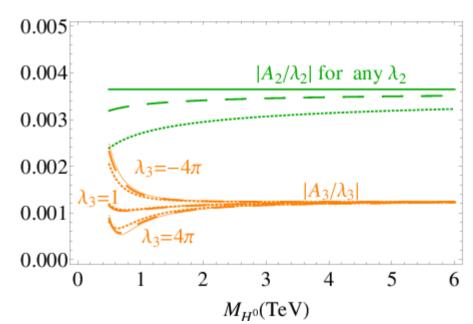


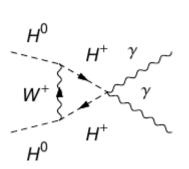
.....and many more

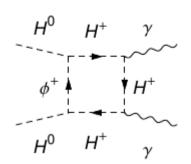
$$A_{0}(M_{H^{0}}, M_{H^{+}}) + A_{2}(M_{H^{0}}, M_{H^{+}}, \lambda_{2}) + A_{3}(M_{H^{0}}, M_{H^{+}}, \lambda_{3})$$

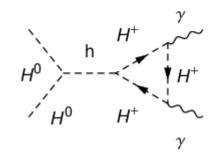
$$\mathcal{M}(H^{0}H^{0} \to \gamma\gamma) \Big|_{s-wave} = A\left(g^{\mu\nu} - \frac{p_{\gamma_{2}}^{\mu}p_{\gamma_{1}}^{\nu}}{2M_{H^{0}}^{2}}\right) \epsilon_{\mu}(p_{\gamma_{1}})\epsilon_{\nu}(p_{\gamma_{2}})$$



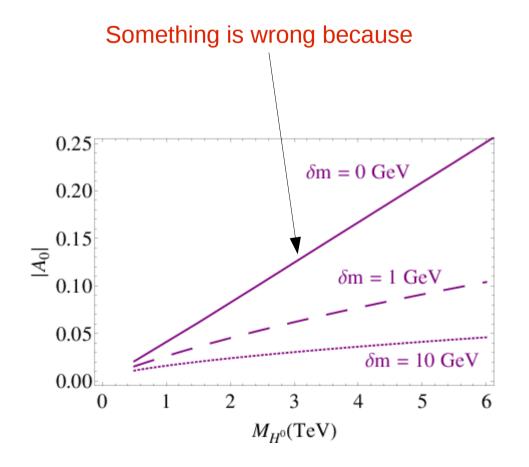




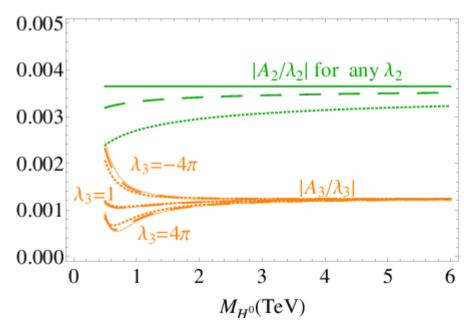


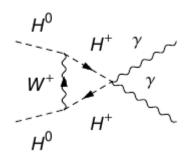


.....and many more

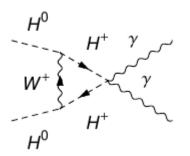


$$\sigma v \left(H^0 H^0 \to \gamma \gamma \right) \Big|_{s-wave} = \frac{|A|^2}{32\pi M_{H^0}^2}$$



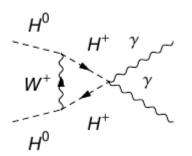


$$A_0 \supset -\frac{4\alpha\alpha_2 M_{H^0}}{M_W} \int_0^1 dx \frac{1}{\sqrt{1-x}} \arctan\left(\frac{M_{H^0}}{M_W} \frac{x}{\sqrt{1-x}}\right).$$



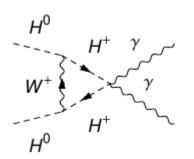
$$A_0 \supset -\frac{4\alpha \alpha_2 M_{H^0}}{M_W} \int_0^1 dx \frac{1}{\sqrt{1-x}} \arctan\left(\frac{M_{H^0}}{M_W} \frac{x}{\sqrt{1-x}}\right).$$

• For each W boson that is exchanged in the initial state one gets a factor that goes like $\alpha_2 M_{H^0}/M_W$.



$$A_0 \supset -\frac{4c\alpha_2 M_{H^0}}{M_W} \int_0^1 dx \frac{1}{\sqrt{1-x}} \arctan\left(\frac{M_{H^0}}{M_W} \frac{x}{\sqrt{1-x}}\right).$$

- For each W boson that is exchanged in the initial state one gets a factor that goes like $\alpha_2 M_{H^0}/M_W$.
- If $M_{H^0} \gtrsim M_W/\alpha_2 \approx 2 \,\text{TeV}$, the perturbative calculation breaks down because higher-order loop diagrams become more and more important.



$$A_0 \supset -\frac{4c\alpha_2 M_{H^0}}{M_W} \int_0^1 dx \frac{1}{\sqrt{1-x}} \arctan\left(\frac{M_{H^0}}{M_W} \frac{x}{\sqrt{1-x}}\right).$$

- For each W boson that is exchanged in the initial state one gets a factor that goes like $\alpha_2 M_{H^0}/M_W$.
- If $M_{H^0} \gtrsim M_W/\alpha_2 \approx 2 \,\text{TeV}$, the perturbative calculation breaks down because higher-order loop diagrams become more and more important.
- For these masses and in general in the high-mass regime of the IDM, the one-loop calculation is not reliable until these effects are taken into account.

Sommerfeld Enhancement!

The exchange of W bosons - and in general of any boson- leads to a long range interaction that distorts the wave function of the annihilating particles

The exchange of W bosons - and in general of any boson- leads to a long range interaction that distorts the wave function of the annihilating particles

$$g''(r) + M_{H^0} \left(\frac{1}{4} M_{H^0} v^2 \mathbb{1} - V(r) \right) g(r) = 0$$

The exchange of W bosons - and in general of any boson- leads to a long range interaction that distorts the wave function of the annihilating particles

Schrödinger equation accounting for that
$$g''(r) + M_{H^0} \left(\frac{1}{4} M_{H^0} v^2 \mathbb{1} - V(r) \right) g(r) = 0$$

The exchange of W bosons - and in general of any boson- leads to a <u>long range</u> interaction that distorts the wave function of the annihilating particles

Schrödinger equation accounting for that

$$g''(r) + M_{H^0} \left(\frac{1}{4} M_{H^0} v^2 \mathbb{1} - V(r) \right) g(r) = 0$$

$$2 \, \delta m + V_{\text{Gauge}}(r) + V_{\text{Scalar}}(r)$$

Yukawa Potentials

The exchange of W bosons - and in general of any boson- leads to a long range interaction that distorts the wave function of the annihilating particles

Schrödinger equation accounting for that
$$g''(r) + M_{H^0} \left(\frac{1}{4} M_{H^0} v^2 \mathbb{1} - V(r)\right) g(r) = 0$$

$$2 \, \delta m + V_{\text{Gauge}}(r) + V_{\text{Scalar}}(r)$$

Yukawa Potentials

The exchange of W bosons - and in general of any boson- leads to a long range interaction that distorts the wave function of the annihilating particles

Schrödinger equation accounting for that
$$g''(r) + M_{H^0} \left(\frac{1}{4} M_{H^0} v^2 \mathbb{1} - V(r)\right) g(r) = 0$$

$$2 \, \delta m + V_{\text{Gauge}}(r) + V_{\text{Scalar}}(r)$$

Yukawa Potentials

The exchange of W bosons - and in general of any boson- leads to a long range interaction that distorts the wave function of the annihilating particles

Schrödinger equation accounting for that
$$g''(r) + M_{H^0} \left(\frac{1}{4} M_{H^0} v^2 \mathbb{1} - V(r)\right) g(r) = 0$$

Final State
$$\sigma v \left(H^0 H^0 \to f \right) \Big|_{s-wave} = \frac{1}{4M_{H^0}^2} \int \left(\prod_{a \in f} \frac{d^3 q_a}{(2\pi)^3 2E_a} \right) (2\pi)^4 \delta^4 \left(p_{H^0} + p'_{H^0} - \sum_{a \in f} q_a \right) \cdot \left| \mathcal{M} \left(H^0 H^0 \to f \right) \right|^2$$

The exchange of W bosons - and in general of any boson- leads to a long range interaction that distorts the wave function of the annihilating particles

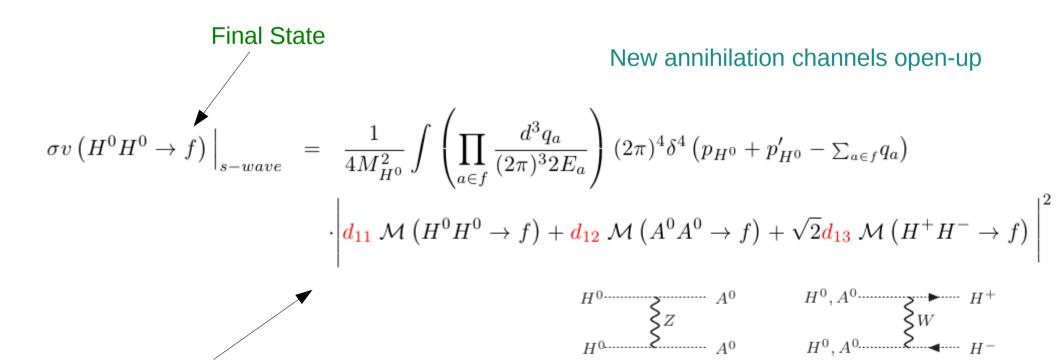
Schrödinger equation accounting for that
$$g''(r) + M_{H^0} \left(\frac{1}{4} M_{H^0} v^2 \mathbb{1} - V(r)\right) g(r) = 0$$

Final State
$$\sigma v \left(H^0 H^0 \to f\right) \Big|_{s-wave} = \frac{1}{4M_{H^0}^2} \int \left(\prod_{a \in f} \frac{d^3 q_a}{(2\pi)^3 2E_a}\right) (2\pi)^4 \delta^4 \left(p_{H^0} + p'_{H^0} - \sum_{a \in f} q_a\right) \cdot \frac{d_{11} \mathcal{M} \left(H^0 H^0 \to f\right) + d_{12} \mathcal{M} \left(H^0 H^0 \to f\right) + d_{13} \mathcal{M} \left(H^0 H^0 \to f\right) + d_{14} \mathcal{M} \left(H^0 H^0 \to f\right) + d_{15} \mathcal{M} \left(H^0 H^0 \to f\right)$$

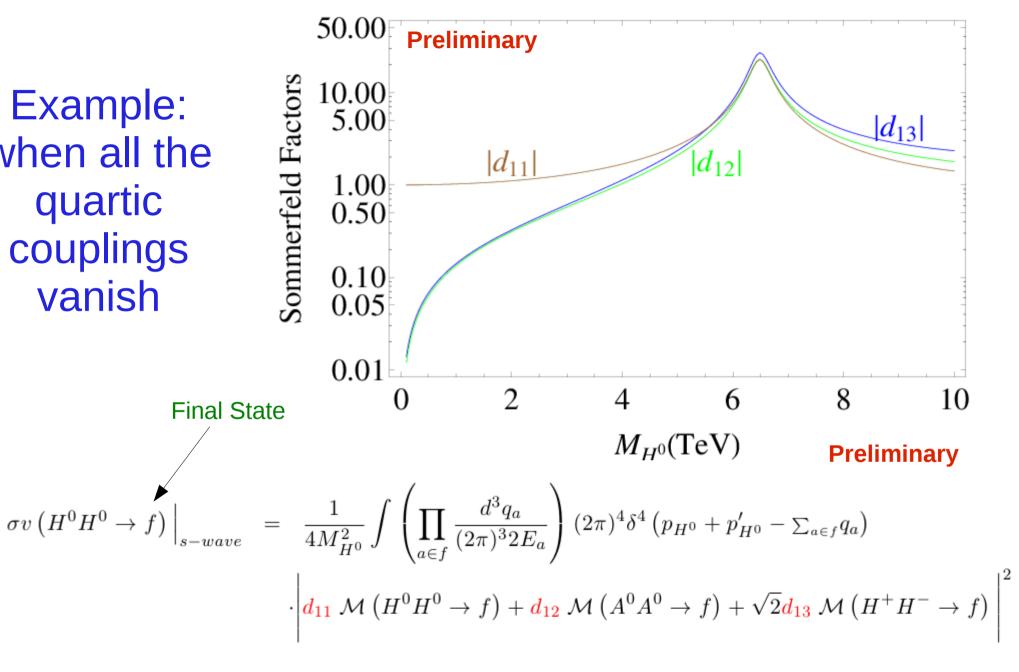
The exchange of W bosons - and in general of any boson- leads to a long range interaction that distorts the wave function of the annihilating particles

Enhancement factors

Schrödinger equation accounting for that
$$g''(r) + M_{H^0} \left(\frac{1}{4} M_{H^0} v^2 \mathbb{1} - V(r)\right) g(r) = 0$$



Example: when all the quartic couplings vanish



Including this effect solves the problem with unitarity!!!

Hisano, Matsumoto, Nojiri, Saito PRD05

Including this effect solves the problem with unitarity!!!

Hisano, Matsumoto, Nojiri, Saito PRD05

$$\sigma v \left(H^{0} H^{0} \rightarrow \gamma \gamma \right) \Big|_{s-wave} = \frac{1}{4M_{H^{0}}^{2}} \int \left(\prod_{a \in f} \frac{d^{3}q_{a}}{(2\pi)^{3} 2E_{a}} \right) (2\pi)^{4} \delta^{4} \left(p_{H^{0}} + p'_{H^{0}} - \sum_{a \in f} q_{a} \right)$$

$$\cdot \left| \frac{d_{11}}{d_{11}} \mathcal{M} \left(H^{0} H^{0} \rightarrow \gamma \gamma \right) + \frac{d_{12}}{d_{12}} \mathcal{M} \left(A^{0} A^{0} \rightarrow \gamma \gamma \right) + \sqrt{2} \frac{d_{13}}{d_{13}} \mathcal{M} \left(H^{+} H^{-} \rightarrow \gamma \gamma \right) \right|^{2}$$

Including this effect solves the problem with unitarity!!!

Hisano, Matsumoto, Nojiri, Saito PRD05

$$\sigma v \left(H^{0} H^{0} \rightarrow \gamma \gamma \right) \Big|_{s-wave} = \frac{1}{4M_{H^{0}}^{2}} \int \left(\prod_{a \in f} \frac{d^{3}q_{a}}{(2\pi)^{3} 2E_{a}} \right) (2\pi)^{4} \delta^{4} \left(p_{H^{0}} + p'_{H^{0}} - \sum_{a \in f} q_{a} \right)$$

$$\cdot \left| \frac{d_{11}}{d_{11}} \mathcal{M} \left(H^{0} H^{0} \rightarrow \gamma \gamma \right) + \frac{d_{12}}{d_{12}} \mathcal{M} \left(A^{0} A^{0} \rightarrow \gamma \gamma \right) + \sqrt{2} \frac{d_{13}}{d_{13}} \mathcal{M} \left(H^{+} H^{-} \rightarrow \gamma \gamma \right) \right|^{2}$$

$$0$$

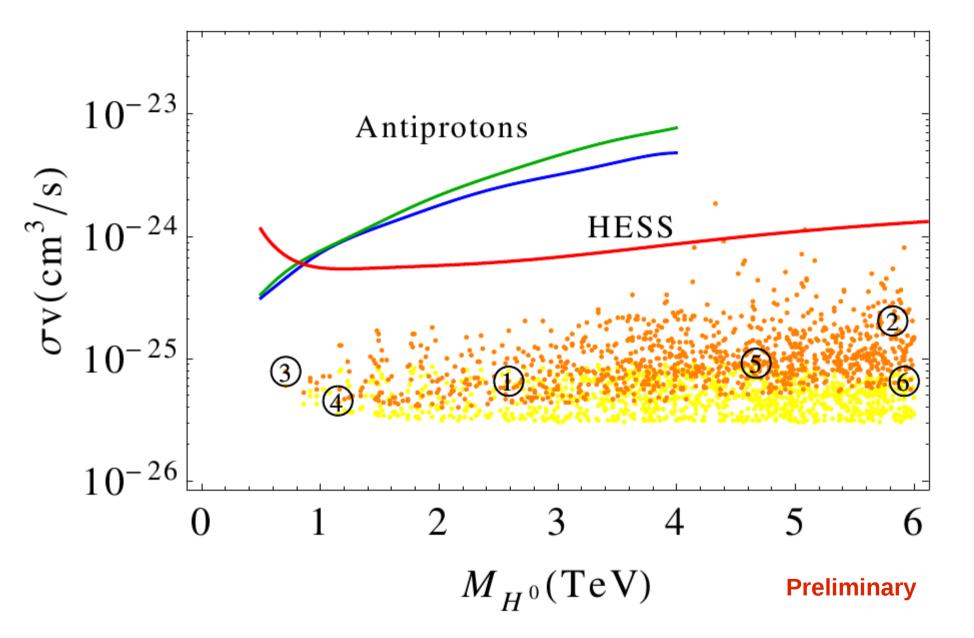
Including this effect solves the problem with unitarity!!!

Hisano, Matsumoto, Nojiri, Saito PRD05

Including this effect solves the problem with unitarity!!!

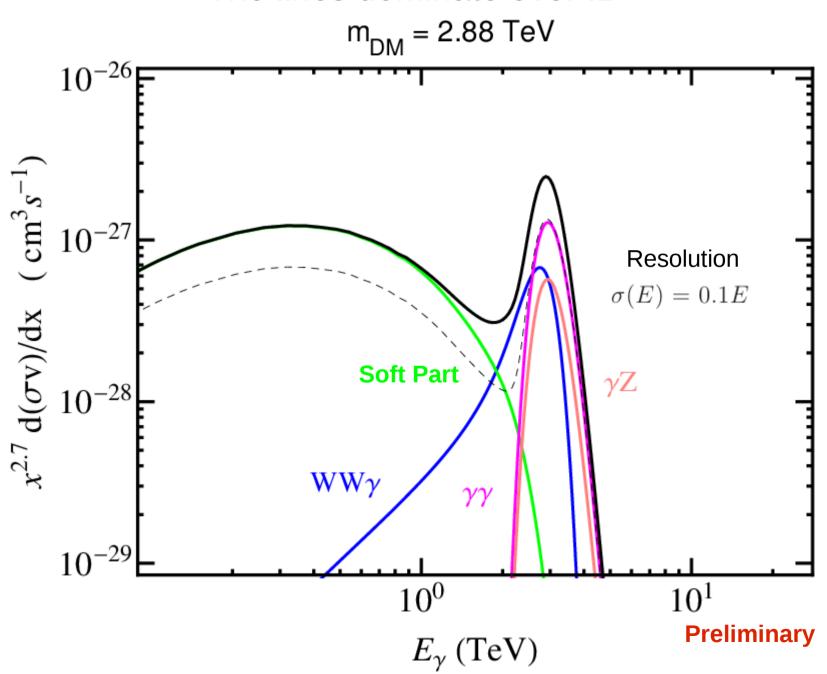
Hisano, Matsumoto, Nojiri, Saito PRD05

$$\sigma v \left(H^0 H^0 \to \gamma \gamma \right) = \frac{4\pi \alpha^2 |d_{13}|^2}{M_{H^0}^2}$$



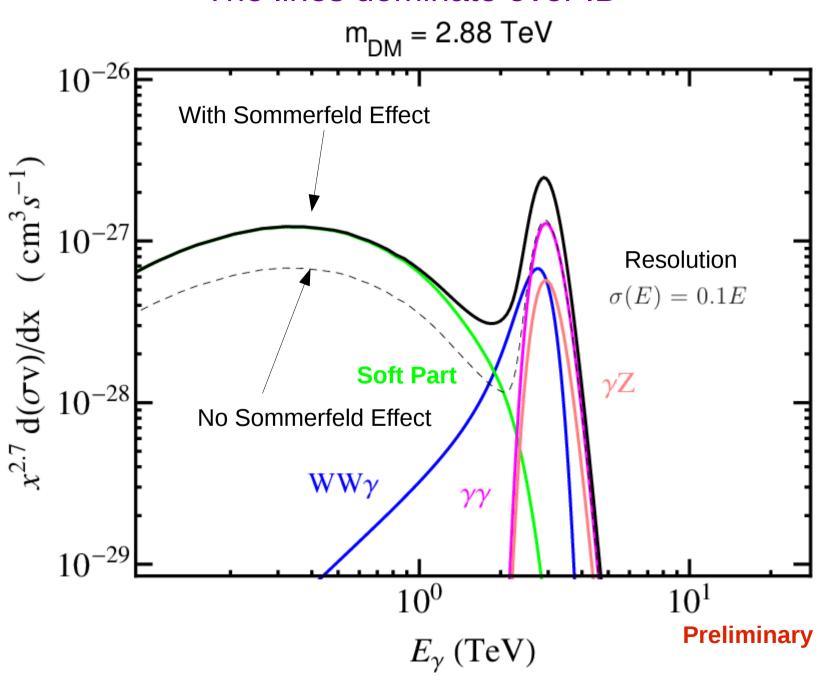
One Benchmark

The lines dominate over IB



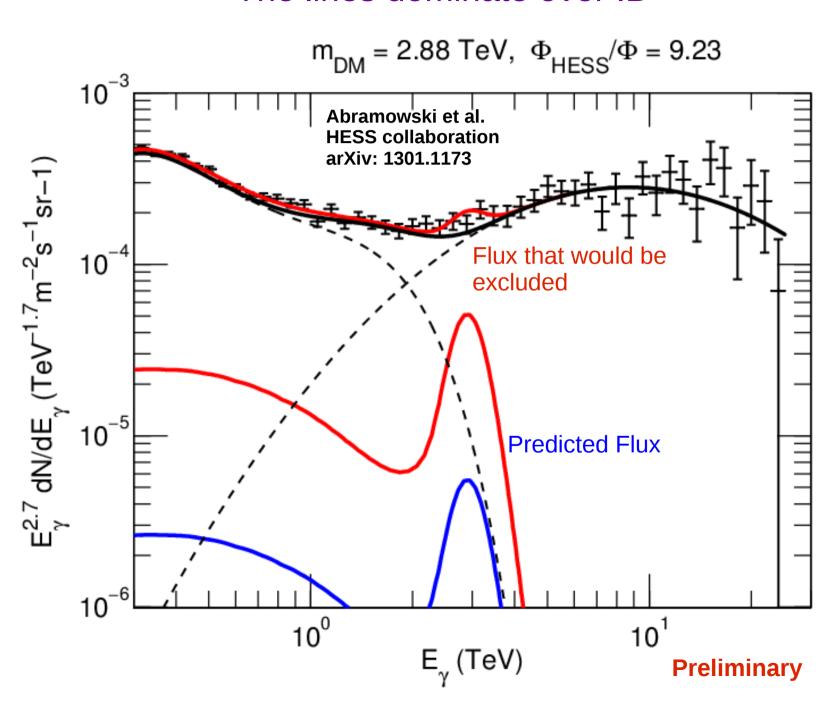
One Benchmark

The lines dominate over IB



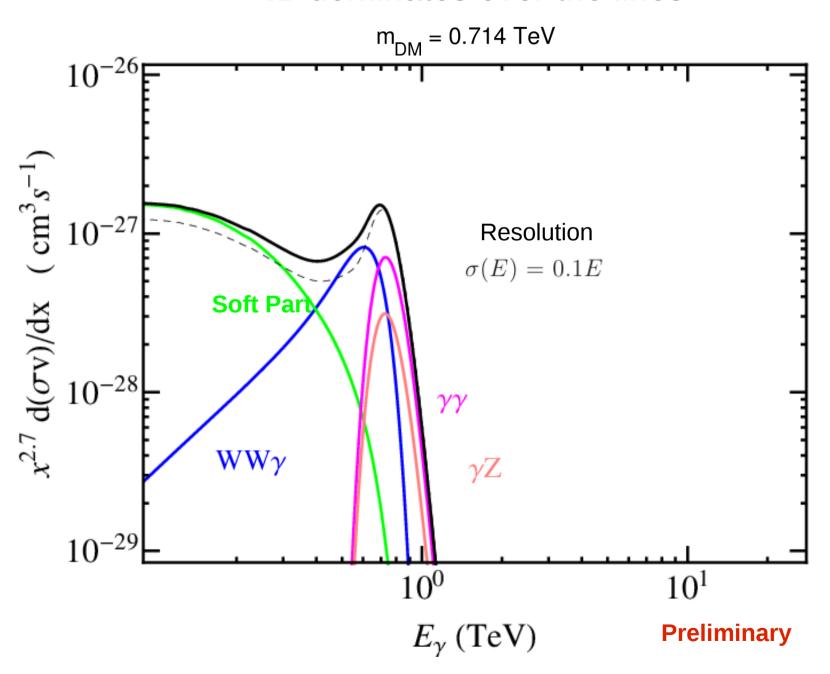
One Benchmark

The lines dominate over IB



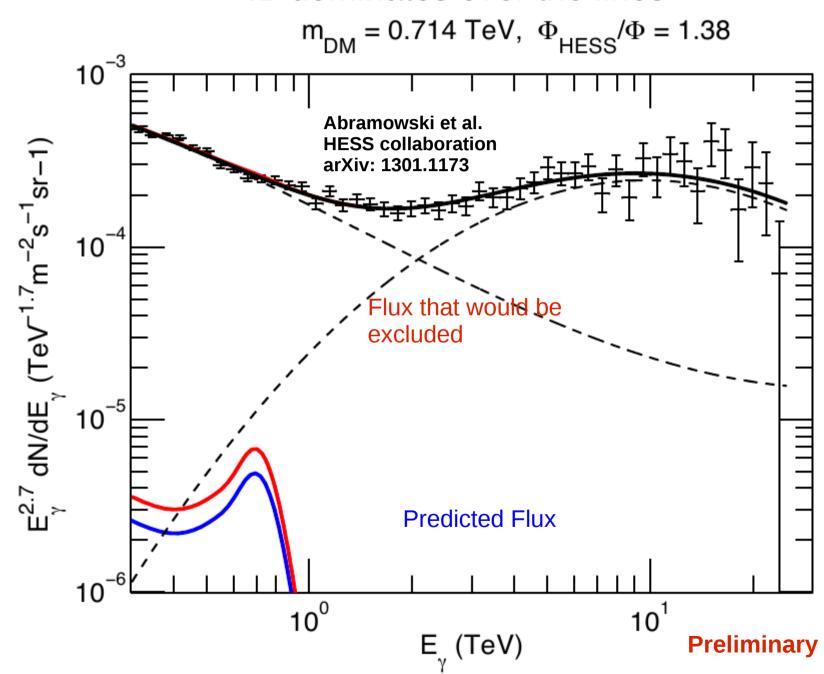
Another Benchmark

IB dominates over the lines

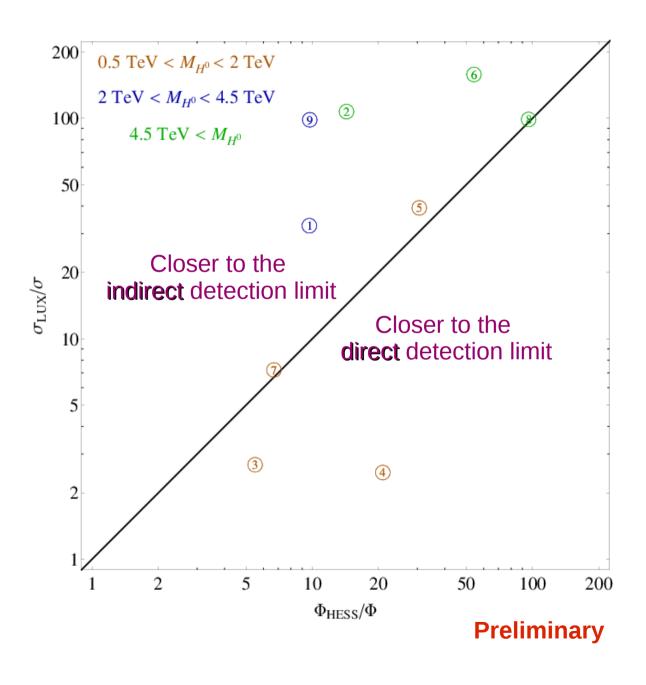


Another Benchmark

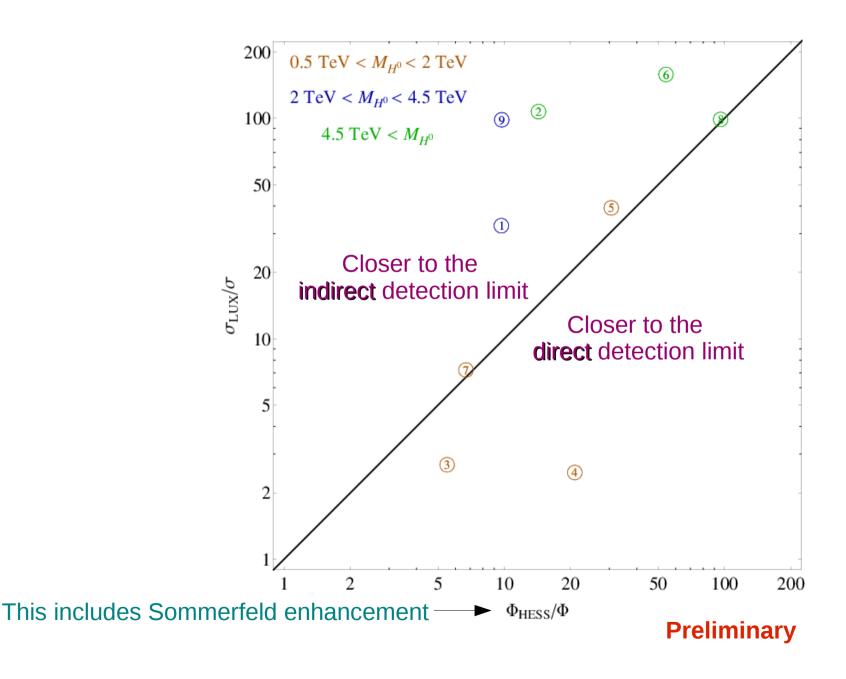
IB dominates over the lines



Direct Detection vs. Indirect Detection



Direct Detection vs. Indirect Detection



Conclusions

- In the high mass regime of the inert doublet model, the internal bremsstrahlung process and annihilation into photons generate sharp gamma-ray spectral features.
- The Sommerfeld enhancement has to be taken into account in order to account for perturbative unitarity.
- These spectral features can be searched for with gamma-ray telescopes, and eventally found or excluded in the near future.