
“RecPack”,
a general reconstruction toolkit

A. Cervera-Villanuevaa, J.J. Gómez-Cadenasb, J.A. Hernandoc

Abstract—We present a general solution for the problem of
reconstructing trajectories and vertexes. This solution has been
realized in a C++ toolkit that could incorporate easily different
methods for fitting, propagation, pattern recognition and simula-
tion. The RecPack functionality is independent of the experimental
setup, what allows to apply this toolkit to any dynamic system.
Index Terms—reconstruction, kalman, track fitting.

I. INTRODUCTION

In high energy physics (HEP), as in other fields, one fre-
quently faces the problem of reconstructing (modeling) the
evolution of a dynamic system from a set of experimental
measurements. Most of reconstruction programs have common
methods, which are however reimplemented for each specific
case. For example, the Kalman Filter equations1 , which are in
general quite difficult to debug, are rewritten again and again.
Other examples are the equations for propagation, random
noise estimation, model conversion, etc. Similarly, the data
structure (measurements, trajectories, vertexes, etc), which can
be generalized as well, is not reused in most of the cases.

RecPack tries to avoid that by providing a general data struc-
ture and a set of common tools, which can be applied to any
dynamic system. The package follows an “interface” strategy,
that is, all the classes that could have a different implementation
have their own interface, in such a way that the rest of the
classes do not depend on such a specific implementation. This
modular structure allows a great flexibility and generality.

This paper is structured as follows. The architectural design
of the package is presented in section II. The geometry defini-
tion in section III. In section IV the model related methods are
described. Sections V, VI, VII and VIII are devoted respectively
to the fitting, navigation, matching and simulation capabilities
of the package. Finally the RecPack versions and clients are
presented in section IX.

II. STRUCTURE OF THE PACKAGE

RecPack distinguish between data classes (passive) and ma-
chines (active). The tree of data classes is shown in Fig. 1.
EVector and EMatrix are just a typedef of CLHEP’s HepVector
and HepMatrix respectively2. This establish the only RecPack

a. Université the Genève, CH
b. Universitat de Valencia, Spain
c. CERN, Geneva, CH, and Universidade de Santiago de Compostela, Spain
1The Kalman Filter fitting method [1]-[2] is used in most of HEP experiments

because its incremental strategy allows simultaneous pattern recognition and
fitting, detection of outliers and an easy incorporation of random noise
processes.

2These are vectors and matrices of double’s with variable dimension.

external dependence. However, the user can replace the CLHEP
classes by its favorite vector and matrix classes.

A structure that appears in several levels of the data model
is the pair formed by a vector of parameters (EVector) and its
covariance matrix (EMatrix). Thus, a new class call HyperVec-
tor has being introduced to hold this repeated structure. For
example, experimental measurements (IMeasurement) can be
always reduced to a HyperVector, and the same is true for the
fitting parameters (IState).

IVolume

Setup

ISurface

World

HyperVector

IMeasurement

IPoint

IState

ITrajectory

IVertex

EMatrix EVector

Fig. 1. Architectural design of the data classes.

A raw ITrajectory (before the fit) contains essentially a
collection of IMeasurement’s, while fitting results are stored
in IState’s. In the most general case the fitting parameters are
local and therefore each IMeasurement must have an IState
associated to it. Thus, an intermediate object, IPoint, has being
introduced in order to accommodate the IMeasurement, the
IState, and the quantities that relate both objects (the residual
HyperVector and the local χ2 of the fit.). Consequently, an
ITrajectory can be seen as a collection of IPoint’s, plus a set
of global quantities as the total χ2 of the fit, the number of
degrees of freedom, etc. Finally, an IVertex is a collection of
ITrajectory’s.

The classes ISurface, IVolume, World and Setup, which are
related with the definition of the experimental setup are treated
in section III.

The data classes are not completely passive, they are allowed
to perform internal operations. For example an IVolume has the
function bool is inside(EVector&), which given a space point

returns true if the point is inside the volume and false otherwise.

IEquation

IPropagator

<IProjector>

<INoiser>

<ISurfaceIntersector>

model_svc <IModel>
<IModelRep>

<IRepConverter>

<IModelConverter>

matching_svc

simulation_svc

navigation_svc

fitting_svc

geometry_svc

Re
cP

ac
kM

an
ag

er

<IFitter>

<IVertexFitter>

<ISimulator>

<INavigator>

<IInspector>

<IVertexFinder>

<ITrajectoryFinder>

<INoiseSimulator>

Fig. 2. Architectural design of the active classes (machines).

The active classes, also called machines (see Fig. 2), manip-
ulate the data. All of them are pure interfaces (hence the I),
which allow them to have different implementations. Machines
are stored in services (svc in Fig. 2), which not only actuate as
containers for the machines, but also as managers. Indeed, the
user interacts only with the RecPackManager, via its services,
which provide user friendly methods. For example, fitting a
trajectory by the least squares method to a straight line model
would look like:

manager().fitting svc().fit(“Lsq”, “straight line”, traj);

Some of the machines contain sub-machines (ISimulator,
IModel, IModelRep, etc). If a machine has several sub-
machines of the same type (i.e. IModel has several IModelRep),
these are stored in associative containers (< ... > in the graph),
which permits the access by key:

IModelRep& helix ray =
manager().model svc().model(“helix”).representation(“ray”);

In the following sections each of the services is treated indi-
vidually.

III. GEOMETRY

The RecPack geometry service provides the methods for
the definition of the experimental setup (Setup), which is
built through the addition of volumes (IVolume) and surfaces
(ISurface). One can distinguish between basic surfaces, which
have no borders, and finite surfaces, with a well defined size.
On the other hand, volumes have by definition a concrete size.
RecPack provides a set of predefined volume and surface types,
but adding new types is straight forward. The available basic
surfaces are plane, cylinder and sphere. Finite surfaces are
derived from the basic ones:

• Plane: rectangle, ring.
• Cylinder: cylinder, cylinder sector.
• Sphere: sphere, sphere sector.

Three volume types are provided: box, tube 3 and sphere. Vol-
umes may have properties, which can influence the evolution
of the system (propagation). This is for example the case of a
magnetic field, or the radiation length, for a charged particle.

Volumes and surfaces have a well defined position and axes
inside the setup.

The definition of the experimental setup is quite straight
forward from the user point of view. As an example, the
following code defines a box called “tracker”:

add volume(“tracker”, “box”, pos, axis1, axis2, size);

where pos, axis1, axis2 and size are EVector’s. Similarly:

add surface(“wall”, “rectangle”, pos, axis1, axis2, size);
add volume to volume(“tracker”, “my tube”, “tube”, ...);
add surface to volume(“tracker”, “my ring”, “ring”, ...);

In this way, complicated setups as the one of Fig. 3 can be
build.

drift chambers

PS 214

time-of-flight
scintillators

beam-muon
identifier

electron
identifier

threshold Cherenkov
dipole magnet

T9 beam

TPC + RPCs in
solenoid magnet

HARP

cosmics
trigger wall

FTP + RPCs

Fig. 3. Example of experimental setup corresponding to the HARP detector
at CERN-PS [3].

An advanced feature of the geometry service is the possibility
of having several worlds (see App. I). For this reason volumes
and surfaces do not belong directly to the Setup. Instead, an
intermediate object called World has being introduced (see Fig.
1).

IV. MODEL

The model service is the container and manager for model
related equations: propagation, intersection with surfaces, pro-
jection, noise, model conversion, etc.

As shown in Fig. 2, an IModel contains a collection of
model representations (IModelRep) and the corresponding con-
verters between them (IRepConverter). A model representation

3A tube is defined by two concentric cylinders.

is determined by the definition of the state vector, "v, that
is, the set of independent parameters that describe the state
of the system. For example, a 3D straight line may have
several representations: "v1 = (x, y, z, dx/dz, dy/dz), "v2 =
(r, θ, φ, dr/dz, dθ/dz), etc. Each representation contains two
major machines: IPropagator and IProjector.

A. IPropagator

The IPropagator propagates a state (which have a well
defined position inside the Setup) to a given surface or final
length. To do so, it delegates the intermediate calculations to
smaller machines, which perform very concrete actions:

• <ISurfaceIntersector>: it is a collection of ISurfaceInter-
sector’s, each of which corresponds to a different basic
surface type (plane, cylinder, sphere). Its job is to calculate
the path length from the actual position to the given
surface.

• IEquation: it computes the position and direction of the
state at a given length. This length can be provided by an
ISurfaceIntersector, in the case of propagation to a surface,
and externally, in the case of propagation to a length.

• <INoiser>: it is a collection of INoiser’s. An INoiser
computes the random noise covariance matrix for the given
length and for a specific type of noise. Typical examples
in HEP are multiple scattering and energy loss 4.

B. IProjector

An IProjector projects a state into a given measurement type
according to the following equation:

"mpred = "h("v), Cpred
m = HCvHT , (1)

where H = ∂"h/∂"v is the projection matrix, "mpred and "v are
the predicted-measurement vector and state vector respectively,
and Cpred

m and Cv their corresponding covariance matrices.
Several measurement types could coexist with a single model
representation. In a HEP particle detector, this is the case when
several subdetectors that provide different type of measure-
ments (“xy”, “xyz”,” rφ”, etc.), must be reconstructed with the
same model representation (i.e. straight line with local parame-
ters x, y, z, dx/dz, dy/dz). Therefore, each model representation
must contain an extensible collection of IProjector’s.

As we will see in forthcoming sections, this kind of projec-
tion is used by IFitter’s (see Sec. V) and matching functions
(see Sec. VII) to compute the residual HyperVector ("m− "mpred,
Cm+Cpred

m), and also by ISimulator’s (see Sec. VIII) to create
ideal measurements from states.

4Here we refer to energy loss fluctuations. Notice that energy loss it self
introduces a systematic effect over the trajectory, which must be taken into
account in the IEquation.

V. FITTING

Fitting algorithms are called fitters. There are two kind of fit-
ters: trajectory fitters (IFitter) and vertex fitters (IVertexFitter).
The fitting service has an extensible collection of IFitter’s and
IVertexFitter’s. The user can either use one of the existing fitters
or provide his own. Two IFitter’s (least squares and kalman)
and one IVertexFitter (kalman) are available.

An IFitter takes a raw trajectory (which contains measure-
ments and empty states) and transforms it in a fitted trajectory,
in which the states have meaningful contents. Similarly, the
IVertexFitter takes a raw vertex (in this case the measurements
are the fitted trajectories while the state associated to each
trajectory is empty before the fit). In the case of a Kalman Filter
fit (for trajectories or vertexes) a seed state must be provided.

The fitting functions provided by the fitting service have a
user friendly interface. Let us consider the following example:
we have a collection of 2D measurements produced by a
charged particle in a magnetic field. These measurements have
been already introduced in a raw ITrajectory (track) and now
we want to fit it, first by least squares, and then use the result
of this fit (track.first state()) as a seed for a kalman filter fit.
The necessary c++ code would be:

fitting svc().fit(“Lsq”, “Helix”, track);
fitting svc().fit(“Kalman”, “Helix”, track, track.first state());

In HEP the Kalman Filter fit [1]-[2] is frequently used for
track and vertex fitting. It has the advantage of being local (the
fitting parameters variate along the trajectory) and incremental
(measurements are treated sequentially), what allows simulta-
neous pattern recognition and fitting, and detection of outliers.
In addition, it solves the problem of inverting large covariance
matrices. Indeed, the largest covariance matrix to be inverted
has the dimensions of the state vector (5 for a Helix model).
However, in a least squares fit, the dimension is N×N , being N
the number of measurements. Finally, random noise processes,
as multiple scattering, can be easily incorporated through a
single covariance matrix.

VI. NAVIGATION

The navigation service contains a collection of INavigator’s.
The user can use one of the existing INavigator’s or provide a
new one. The tasks of an INavigator are:

• Propagating to any surface within the setup.
• Propagating to a given length.
• Computing path lengths.
These tasks seem to be the same as the ones of an IPropagator

(see Sec. IV). However, a clear distinction is made: the INaviga-
tor does the propagation in several steps while the IPropagator
performs a unique step. In this sense, the INavigator needs
one or several IPropagator’s. Steps are needed when different
volumes are traversed in a single propagation, when the volume
properties are inhomogeneous, etc.

RecPack provides its own INavigator (“RecPackNavigator”).
It distinguish between two types of propagation steps depending

on the properties of the actual volume: to a surface and to
a length. If any of the volume properties is inhomogeneous
the propagation occurs through dynamic stepping 5. If all
the properties are homogeneous there is no reason for small
steps. In that case “RecPackNavigator” propagates to the next
intersected surface.

After each step a list of IInspector’s is called. IInspector’s
can be associated to volumes (called after step) or surfaces
(called after intersection). An IInspector is a machine that
produce a concrete action: set the properties of the entering
volume, sum up intermediate path lengths, model conversion,
set the length of the next step (dynamic stepping), etc. User
defined IInspector’s can be added to any surface or volume.
For example, a CounterInspector could be added to a given
surface in order to count the number of times this surface is
traversed.

An important feature of the the “RecPackNavigator” is that
the intersection with surfaces is done analitycally when it is
possible (and numerically otherwise), what reduces consider-
ably the computing time. The problem of intersecting volumes
is allways reduced to the intersection with its outer walls.

VII. MATCHING

This generic name refers to the methods that are related with
pattern recognition (PR) problems. In general, the purpose of
PR algorithms is to distribute the existing measurements into
trajectories, and these into vertexes. This is a common problem
in HEP, but it can be generalized to any other field.

On can distinguish two types of PR algorithms: matching
functions, which serve to estimate the probability of two
objects of being related to each other (trajectory-trajectory,
measurement-trajectory, trajectory-vertex, etc), and pattern
recognition logics, which define the logical sequence in which
such a relations are established. The first are always general,
while the second may have a strong setup dependence. PR log-
ics are introduced via two types of machines: ITrajectoryFinder
and IVertexFinder, which build trajectories and vertexes respec-
tively using the available matching functions and following a
specific strategy.

Currently, the RecPack matching service provides the fol-
lowing functionality:

1) trajectory-measurement, trajectory-trajectory and
trajectory-vertex matching functions.

2) Measurement, trajectory and vertex selec-
tion functions. For example, the function
best matching measurement(...), computes the best
matching measurement in a given volume or surface, for
the specified trajectory.

For the moment, PR logics are not implemented. In the
future, one could try to identify common PR logics and
include them in this service. For example, PR in a series of
parallel planes which produce 2D measurements occurs always

5Several steps of variable length according to the derivative of the inhomo-
geneous property.

in a similar way. The same is true for a volume with 3D
measurements (i.e. TPC), etc.

VIII. SIMULATION

Some times reconstruction programs must operate over simu-
lated measurements. However, in general one has to provide the
classes and methods that allow the interface between simulation
and reconstruction, which is not an easy task. The RecPack
simulation service is able to generate simulated measurements
with the data format required by the rest of the services, which
can be very useful for obvious reasons.

As usual, this service has an extendible collection of ISim-
ulator’s. RecPack provides its own ISimulator (“RecPackSim-
ulator”). The user must declare the active volumes and sur-
faces (the ones that produce measurements). and specify the
measurement type in each of them. Active surfaces produce a
measurement when they are intersected, while active volumes
produced measurements through dynamic stepping (see Sec.
VI)

The “RecPackSimulator” uses the propagation equations of
the model service via the INavigator, which for a given simu-
lation seed defines the ideal trajectory inside the setup. Then, a
special IIspector (“CreateMeasurementInspector”) creates ideal
measurements in the active volumes or surfaces by calling
the IProjector corresponding to the measurement type in that
volume or surface. Ideal measurements are created according to
equation 1. Finally, propagation noise and experimental errors
are introduced by the INoiseGenerator’s (multiple scattering,
resolution, etc).

This simple simulator does not attempt to be a full simu-
lator (i.e. Geant4). Instead, its main purpose is to serve as a
debugging tool. For example, it is very useful to validate new
IModel’s, IFitter’s, volume types, INoiser’s, etc. It can be also
used for analysis as a fast simulator.

Existing simulation toolkits, as Geant4, could be integrated
into RecPack by implementing the ISimulator interface and the
IInspector’s that generate measurements in the different subde-
tectors. Such a inspectors should be able to access the Geant4
information and then use it to create specific measurements.

The measurements produced by an ISimulator are stored
in a std::vector, which can be directly passed to the relevant
RecPack services for pattern recognition, fitting, etc.

IX. RECPACK VERSIONS AND CLIENTS

RecPack was born in the HARP experiment at CERN-PS [3]
(see Fig. 4). The initial version (RecPack-1) is being also used
to study the MICE performance [4]. A reorganization of the
code (RecPack0) has been done recently in order to gain in
flexibility and generality. The new version is being used by the
SciBar detector, which is part of the K2K experiment [5], for
LHCb trigger studies [6] and for the design of a new experiment
called HERO [7].

X. CONCLUSIONS

In summary, RecPack is a modular and extensible recon-
struction toolkit, which provides the basic data structure and
most of the common methods needed by any reconstruction
program: matching, fitting and navigation. It also has the tools
to perform a quick interface with simulation packages. The
different RecPack services provide user friendly interface to
control the the package functionality.

APPENDIX I
ADVANCE GEOMETRY FEATURES

The elements of a setup can be distributed in several parallel
worlds (World), which may have different dimensions. For
example, a HEP particle detector needs a 3D world to study the
trajectory of particles in our 3D space (Fig. 3). Is in this world
where the various subdetectors are defined. However, one could
define a bidimensional parallel world to study the energy loss
by a charged particle as a function of the path length traveled.
A non-HEP example of 2D world could be the evolution of the
temperature in a given place as a function of the time (Fig. 4).

Worlds may also overlap each other. A typical case in which
one could be interested in using this feature is when a magnetic
field exceeds the borders of a volume. In this case, instead
of defining the field as a property of the physical volume is
preferable to define it in a overlapped world.

In the case of several worlds, each world has a mother
volume, which defines the world’s borders. A N-dimensional
world will contain volumes and surfaces of dimension N and N-
1 respectively. In the temperature example, a volume could be
a well defined period and temperature ranges, while a surface
could be a concrete day (1D).

10

30

0
J F M A M J A NO DSJ

te
m

pe
ra

tu
re

 (
C)o

time (month)

20

V

S

Fig. 4. Example of 2D world. V is a 2D volume while S is a 1D surface.

ACKNOWLEDGMENT

We would like to thank Gersende Prior for her help with the
Kalman Filter vertex fit. The contribution of Malcolm Ellis, as
the main RecPack user, has being essential for reporting a non
negligible amount of bugs.

REFERENCES

[1] R.E. Kalman, J. Basic Eng. 82 (1960) 35
R.E. Kalman, R.S. Bucy, J. Basic Eng. 83 (1961) 95

[2] R. Fruhwirth, M. Regler, Nuc. Ins. and Meth. A 241 (1985) 115.

[3] The HARP Collaboration. http : //harp.web.cern.ch/harp/
[4] The MICE Collaboration. http : //hep04.phys.iit.edu/cooldemo/
[5] S.H. Ahn. et all. The K2K Collaboration. Phys. Lett. B511 (2001) 178-184
[6] The LHCb Collaboration. http : //lhcb.web.cern.ch/lhcb/
[7] No references available yet.

