Kalman filter algorithms for neutrino experiments

ICATPP 2011 Villa Olmo, 5/10/2011

NSTITUT DE FIS

Anselmo Cervera Villanueva IFIC-Valencia

Why General Reconstruction Packages ?

- In general, every HEP experiment implements its own reconstruction software
- This was the case in the past for:
 - Simulation software
 - Analysis tools
 - Data bases
 - ***** ...
- But we have learned that this is not optimal
- Instead code reuse and general packages are preferred solutions

RecPack

RecPack is a general reconstruction tool-kit

- Track and vertex fitting
- Propagation through complicate setups with multiple scattering, energy loss and inhomogeneous fields
- Matching functionality
- Written in C++
- It separates data classes and algorithms

It's modular structure allows extensions

Code can be downloaded from SVN repository

svn://neutrinos1.ific.uv.es:/usr/local/svn/recpack/alpha/trunk/recpack

A web site exists (but it's a bit obsolete)

http://ific.uv.es/recpack (new web site under construction)

4 Reconstruction in HEP

Generic Event Model (GEM)

Measurement and Trajectory

- A Measurement represents a basic (i.e. hit) or a complex (i.e cluster) experimental measurement
 - The evolution of the system (i.e. particle) through the Setup produces Measurements
- Trajectory is the collection of those Measurements
- The relevant information for the spatial evolution of the particle is stored in the main measurement vector

$$ec{\mathbf{m}} = (\mathrm{x},\mathrm{y})$$
 + cov matrix

Additional info (i.e. energy deposited) is stored in secondary measurement vectors

$$ec{\mathbf{m_E}} = (\mathrm{E_{dep}})$$
 + cov matrix

State

Information about the local state of a Trajectory

- Main state vector + its covariance matrix
- Additional state vectors (+ covariances)
- The same State can be expressed in different representations

Fitting: Kalman Filter

- Used for track and vertex fitting by most of HEP experiments
- Easy to include random noise processes (multiple scatt.) and systematic effects (eloss)
- It is a local and incremental fit

Propagation

RecPack sub-tools

ModelEquation

ModelCorrection

Propagator

- 1. Computes distance to surface
- 2. Propagates state vector to that distance
- 3. Applies model corrections (energy loss, etc)
- 4. Propagates the covariance matrix
- 5. Adds random noise (multiple scattering, eloss) Noiser fluctuations, etc)

Projection into measurement

 Consider a detector with several subdetectors, each providing a different measurement type

7

- A Projector projects the state vector into the measurement space
- There is a Projector for each measurement type

Geometry (I)

- Reconstruction processes can use a simplified geometry
- because measurement errors hide geometrical details:
 - * screws, ...

- The important objects are:
 - Simplified volumes delimiting regions of different propagation properties:
 - Radiation length, interaction length, dE/dx
 - Magnetic or electric field
 - Measurement surfaces
- This allows fast reconstruction using analytical extrapolations whenever is possible (homogeneous properties) and dynamic stepping otherwise

Geometry (II)

ROOT geometry interface

- The user selects by name which volumes from the complete ROOT geometry should be used for reconstruction
- Selected volumes and their properties are added automatically

Navigation

1. Intersect all active surfaces:

- 1.Border surfaces of the current volume and its subvolumes
- 2. Propagate vector and covariance matrix to the closest surface
- 3. Repeat step 1 until target surface is reached

Matching

- Check whether two objects are originated by the same particle
- Propagate both objects to the same surface
- Compute the matching X² in that surface:

$$\chi^2_{match} = (\vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2)(\mathbf{C}_1 + \mathbf{C}_2)^{-1}(\vec{\mathbf{v}}_1 - \vec{\mathbf{v}}_2)^T$$

- Available functions
 - Trajectory-Trajectory
 - Trajectory-Measurement
 - State-Trajectory
 - State-Measurement

T2K-ND280 example

TPCs are special case: meas vector = state vector
 Projection matrix H is identity matrix

RecPack services

	service name	Description		
RecPack MANAGER	Model	mathematical equations for: propagation, projection, intersection with surfaces random noise (ms), model corrections (eloss), model conversions, etc		
	Fitting	 track fitting (Kalman Filter and least squares) vertex fitting cluster fitting 		
	Geometry	 volumes and surfaces to build complicated setups volume and surface properties 		
	Navigation	 propagate to any surface or length taking into account the volume hierarchy navigation logics 		
	Matching	 matching functions between trajectories, measurements, states, vertices etc pattern recognition methods 		
	Simulation	Simulate trajectories and measurements for debugging purposes		

Extensions

Example for Model service

Models	surface intersectors	Model corrections	Noise estimators	projectors
 straight line in any dimension helix in variable B field 	 plane cylinder numerical	• energy loss	 multiple scattering 	 1D: X,Y,Z,U 2D: XY,YZ,XZ,UV, rφ 3D: XYZ
parabola	earth surface	wind	wind fluctuations	earth surface

Clients

Hadron production experiments HARP (CERN), where RecPack was born MIPP (FNAL)

Neutrino oscillation experiments
 T2K (Japan) and NOvA (US, not yet official)
 Design of future neutrino experiments:
 MIND and TASD for Neutrino Factory

Other:

- MuScatt (FNAL)
- MICE (RAL, UK)
- * NEMO and Super-NEMO (France)

- ✤ Extension of vertex concept → singularity
 - Vertex, kink, decay
- - Collection of trajectories connected through singularities
- Common pattern recognition logics:
 - * 3D tracking: TPC, ...
 - * 2D tracking: planar, cylindrical, spherical, ...
 - Clustering: 2D uncorrelated, 2D correlated, 3D, ...
- Common PID algorithms
- ✤ GUI: (HEP and non-HEP)
 - Detector design and geometry maker
 - Event display
 - Visual debugger: interactive reconstruction (probably via Python)

Conclusions

- RecPack is a c++ reconstruction toolkit
- ✤ It provides the common tools of any reconstruction program → avoids reinventing the wheel !!!
- Its modular structure allows extensions in any direction

- It is setup independent
- It is being successfully used by several HEP experiments
- Interested people (users or developers) may contact:

Anselmo.Cervera@cern.ch Juan.Jose.Gomez.Cadenas@cern.ch Jose.Angel.Hernando@cern.ch

Coming soon: • Detailed documentation • updated WWW site

<u>21</u>