
December 15, 2011 22:11 WSPC - Proceedings Trim Size: 9in x 6in recpack˙icatpp

1

RecPack, a general reconstruction toolkit

A. Cervera-Villanueva∗ and J.J. Gómez-Cadenas

IFIC, CSIC and University of Valencia,

Valencia, Spain
∗E-mail: acervera@ific.uv.es

J. A. Hernando

University of Santiago de Compostela,

Santiago de Compostela, Spain

A general solution for the problem of reconstructing the evolution of a dynamic
system from a set of experimental measurements is presented. This solution

has been realised in a C++ toolkit that can incorporate different methods for
fitting, propagation, pattern recognition and simulation. The RecPack func-
tionality is independent of the experimental setup, what allows one to apply
this toolkit to any dynamic system.

Keywords: reconstruction, kalman filter, propagation, fitting

1. Introduction

In high energy physics (HEP), as in other fields, one frequently faces the

problem of reconstructing the evolution of a dynamic system from a set

of experimental measurements. Most of reconstruction programs use simi-

lar methods. However, in general they are reimplemented for each specific

experimental setup. Some examples are fitting algorithms (i.e. Kalman Fil-

ter1), equations for propagation, random noise estimation (i.e. multiple

scattering), model corrections (i.e. energy loss, inhomogeneous magnetic

field, etc.), etc. Similarly, the data structure (measurements, tracks, ver-

tices, etc.), which can be generalised as well, is not reused in most of the

cases.

RecPack tries to avoid that by providing a setup–independent data

structure and algorithms, which can be applied to any dynamic system.

The package follows an “interface” strategy, that is, all the classes that

could have a different implementation have their own interface, in such a

December 15, 2011 22:11 WSPC - Proceedings Trim Size: 9in x 6in recpack˙icatpp

2

way that the rest of the classes do not depend on such a specific implemen-

tation. This modular structure allows a great flexibility and generality.

RecPack was born in the HARP experiment at CERN-PS2 and is cur-

rently being developed mainly for T2K.3 Other experiments using it are

MICE, MuScat, MIPP, NEMO and SuperNemo.

2. Structure of the package

RecPack distinguishes between data classes (passive) and tools (active).

The tree of data classes is shown in Fig. 1. EVector and EMatrix are just

a typedef of CLHEP’s HepVector and HepMatrix respectively (these are

vectors and matrices of double’s with variable dimension). This establish

the only RecPack external dependence. However, the user can replace the

CLHEP classes by its favorite vector and matrix classes.

A structure that appears in several levels of the data model is the

pair formed by a vector of parameters (EVector) and its covariance ma-

trix (EMatrix). Thus, a new class called HyperVector has being introduced

to hold this repeated structure. For example, experimental measurements

(Measurement) can be always reduced to a HyperVector, and the same is

true for the fitting or propagation parameters (State). Before the track fit-

HyperVector

EMatrix EVector

Measurement

Trajectory

State

Node

Singularity

Volume

Setup

Surface

IPropagator

<IProjector>
<IModelCorrection>

<ISurfaceIntersector><Model>

<INoiser>

IEquation

<IModelConverter>

matching_svc

simulation_svc

navigation_svc

fitting_svc

geometry_svc

R
ec

Pa
ck

M
an

ag
er

<ISimulator> <INoiseSimulator>

model_svc

<IFitter>

<INavigationLogic>

<IInspector>

<IPropagator>

<ITrajectoryFinder>

<IVertexFinder>

<IClusterFinder>

Fig. 1. Architectural design of the data classes (left) amd tools.

ting occurs, a Trajectory is essentially defined as a collection of uncorrelated

Measurement’s. Track fitting results are stored in State’s. In the most gen-

eral case, the fitting parameters are local and therefore each Measurement

must have a State associated to it. An intermediate object, called Node,

December 15, 2011 22:11 WSPC - Proceedings Trim Size: 9in x 6in recpack˙icatpp

3

has being introduced to accommodate the Measurement, the State and the

quantities that relate both objects (the residual HyperVector, the local χ2

of the fit,etc). Consequently, a Trajectory can be seen as a collection of

Node’s, plus a set of global quantities as the total χ2 of the fit, the num-

ber of degrees of freedom, etc. The classes Surface, Volume and Setup are

treated in Sec. 3.

The tools (see Fig. 1-right) manipulate the data. Most of them are pure

interfaces (hence the I), allowing them to have different implementations.

Some of the tools contain sub-tools (ISimulator, Model, IPropagator, etc.).

If a tool has several sub-tools of the same type (i.e. Model has several

IProjector’s), these are stored in associative containers (<...> in the graph),

which permits the access by key.

Tools are stored in services (svc in Fig. 1), which not only actuate as

containers for the tools, but also as managers. The user interacts with the

RecpackManager class via its services. In the following sections each of the

services is treated individually.

3. Geometry

The RecPack geometry service provides the methods for the definition of

the experimental setup (Setup), which is built through the addition of vol-

umes (Volume) and surfaces (Surface) with well defined position and axes

inside the setup. One can distinguish between base surfaces, which have

no boundaries, and finite surfaces, which extend the base class by incorpo-

rating a well defined size. RecPack provides some predefined volume (Box

and Tube –two concentric cylinders–) and surface types (Plane: Rectangle

and Ring; and Cylinder), but adding new types is straight forward. As an

example, the following code defines a box called “tracker” placed inside the

“mother” volume, and a surface called “wall” inside the tracker:

setup.add volume(“mother”, “tracker”, “box”, pos, ax1, ax2, s1,s2,s3);

setup.add surface(“tracker”, “wall”, “rectangle”, pos, ax1, ax2, s1,s2);

where pos, ax1 and ax2 are 3D EVector’s, and s1,s2 and s3 are doubles

defining the size. In this way, complicated setups as the ones of Fig. 2 can

be build.

Geometrical objects may have properties, which are indirectly associ-

ated to them in the Setup class. Typical volume properties are the ones

that influence the evolution of the system (magnetic field, radiation length,

energy loss rate, etc.). The following c++ code sets x0 (a double) as the

December 15, 2011 22:11 WSPC - Proceedings Trim Size: 9in x 6in recpack˙icatpp

4

drift chambers

PS 214

time-of-flight

scintillators

beam-muon

identifier

electron

identifier

threshold Cherenkov
dipole magnet

T9 beam

TPC + RPCs in

solenoid magnet

cosmics

trigger wall

FTP + RPCs

Fig. 2. Example of experimental setups corresponding to the HARP2 detector at
CERN-PS (left) and the T2K-ND2803 detector at JPARC (right).

radiation length of the “tracker”:

setup.set volume property(“tracker”, RP::X0, x0);

where x0 must be a data member or global variable since it is saved by

reference.

4. Model

The model service is the container and manager for model related equations:

intersection with surfaces, propagation and projection of states, random

noise computation, etc. It contains an extensible collection of Model’s. Each

model performs two major operations, propagation and projection:

4.1. Propagation

A State can be propagated to a given surface or length by the interface

class IPropagator. Intermediate calculations are delegated to smaller tools:

• <ISurfaceIntersector>: it is a collection of ISurfaceIntersector’s,

each of which calculates the path length to a different base surface

type (Plane or Cylinder).

• IEquation: it computes the state vector at a given length (either

provided externally or by a ISurfaceIntersector).

• <IModelCorrection>: applies a small correction to the propagation

done by the IEquation (i.e. energy loss).

• <INoiser>: each of them computes the random noise covariance

December 15, 2011 22:11 WSPC - Proceedings Trim Size: 9in x 6in recpack˙icatpp

5

matrix for the given length and for a specific type of noise (i.e.

multiple scattering, energy loss fluctuations).

4.2. Projection

The projection operation transforms a State into a virtual measurement

(predicted–measurement), which can be then compared with an experi-

mental measurement to compute a residual. This is crucial for fitting and

matching algorithms. The state HyperVector (~v, Cv) is projected according

to the following equations:

~mpred = ~h(~v), Cpred
m = HCvH

T , (1)

where ~h is the projection function, which depends on the measurement type,

H = ∂~h/∂~v is the projection matrix, ~mpred is the predicted–measurement,

and Cpred
m its covariance matrix.

Several measurement types (“xy”, “uv”, “xyz”,” rφ”, etc.) may coexist

in a single trajectory, which can be fitted to an unique model. To do so,

each Model must contain an extensible collection of IProjector’s, each of

which corresponds to a different measurement type.

5. Fitting

The fitting service is in charge of fitting clusters, trajectories and vertices

via its fitters (IFitter). The user can either use one of the existing fitters

or provide his own. Two fitters for trajectories ,least squares and Kalman

filter,1 are available. In the case of a Kalman Filter fit a seed state must be

provided.

Fitting algorithms, called fitters, need the two setup–dependent oper-

ations described above: the prediction of the trajectory at the next mea-

surement surface (propagaton) and the comparison betweed this prediction

and the actual experimental measurement, which requires the “projection”

of the predicted state to form a residual. Fitting equations can be kept

independent of the model and measurement type(s) if these two operations

are external to the fitter. As described above, propagation and projection

are performed by each Model.

6. Navigation

In Setup’s with more than one Volume the propagation functionality is

provided by special IPropagator’s, called Navigator’s, which are able to

December 15, 2011 22:11 WSPC - Proceedings Trim Size: 9in x 6in recpack˙icatpp

6

handle the volume hierarchy. A default Navigator is provided, but others

can be added easily (i.e. Geant44). The default Navigator propagates a State

in several steps. Propagation in each step is performed by the IPropagator

associated to the Model of the State. Before and after each step a list of

IInspector’s (associated to volumes and surfaces) is called. An IInspector is

a tool that performs a concrete action: set the properties of the entering

volume, sum up intermediate path lengths, set the length of the next step

(dynamic stepping), etc. User defined IInspector’s can be added to any

surface or volume.

Two important features of the default navigator are: i) the intersection

with surfaces a is done analytically whenever is possible (and numerically

otherwise) and ii) user defined INavigationLogic’s allow one to establish the

sequence in which volumes and surfaces must be traversed.

7. Matching

This generic name refers to the methods that are related with pattern

recognition (PR) problems. In general, the purpose of PR algorithms is to

distribute the existing measurements into clusters, these into trajectories

and these into vertices. Two types of PR algorithms are provided by Rec-

Pack: matching functions, which serve to estimate the probability of two

objects of being related to each other (trajectory–trajectory, trajectory–

measurement), and PR logics, which define the sequence in which such a

relations are established. The first are always general, while the second may

have a strong setup dependence. PR logics for Trajectory’s are introduced

via the ITrajectoryFinder interface class. Currently, the RecPack matching

service provides a CellularAutomatom trajectory finder.

8. Simulation

Some times reconstruction programs must operate over simulated measure-

ments. However, in general the user must provide the classes and methods

that allow the interface between simulation and reconstruction, which is not

always an easy task. The RecPack simulation service solves this problem

by generating simulated measurements with the data format required by

the rest of the services.

The user must declare the active Volume’s and Surface’s (the ones

that produce measurements), and specify the measurement type in each of

aThe problem of intersecting a volume is always reduced to the intersection with its
outer walls.

December 15, 2011 22:11 WSPC - Proceedings Trim Size: 9in x 6in recpack˙icatpp

7

them. Active surfaces produce a measurement when they are intersected,

while active volumes produced measurements through dynamic stepping

(see Sec. 6).

Given a simulation seed (State), the simulation service uses the naviga-

tion service to produce an ideal trajectory inside the setup. Then, a spe-

cial IInspector (“MeasSimulator”) creates ideal measurements (according

to Eq. 1) in the active volumes or surfaces by calling the IProjector corre-

sponding to the measurement type in that volume or surface, and adds the

propagation noise (i.e. multiple scattering) and experimental errors.

This simple simulator does not attempt to be a full simulator (i.e.

Geant4). Instead, its main purpose is to serve as a debugging tool or as

a fast simulator. Existing simulation toolkits, as Geant4, could be easily

integrated into RecPack by implementing the IInspector’s that generate

measurements in the different subdetectors. Such an inspectors should be

able to access the Geant4 information and then use it to create specific

measurements.

9. Conclusions

In summary, RecPack is a modular and extensible reconstruction toolkit,

which provides the basic data structure and most of the common methods

needed by any reconstruction program: matching, fitting and navigation. It

also has functionality to perform a quick interface with simulation packages.

10. References

References

1. R.E. Kalman, J. Basic Eng. 82 (1960) 35
R.E. Kalman, R.S. Bucy, J. Basic Eng. 83 (1961) 95
R. Fruhwirth, M. Regler, Nuc. Inst. Meth. A241 (1985) 115.
R. Fruhwirth. Nucl. Inst. Meth. A262 (1987) 444

2. http://harp.web.cern.ch/harp/
3. arXiv:1106.1238v2. Accepted for publication in Nucl. Inst. Meth. A
4. A. Dell’Acqua et al., GEANT4 Collaboration, Nucl. Inst. Meth. A506 (2003)

250.

