RecPack

a general reconstruction toolkit

CHEP06 Mumbai, 15/02/06

Anselmo Cervera Villanueva Université de Genève

with:

Juan José Gómez Cadenas José Ángel Hernando Morata

Why General Reconstruction Packages ?

 In general, every HEP experiment implements its own reconstruction software

- This was the case in the past for:
 - Simulation software
 - Analysis tools
 - Data bases
 - ۰...

- But we have learned that this is not optimal
- Instead code reuse and general packages are preferred solutions

Reconstruction in HEP

RecPack data classes

Setup

quality(key)

surface()

ini_vertex()

RecPack services

service name	Description				
Model	mathematical equations for: propagation, projection, intersection with surfaces, random noise (ms), model corrections (eloss), model conversions, etc				
Fitting	craftrack fitting ■ «Ivertex fitting ■ «Ivertex fitting ■ «Ivertex fitting				
Geometry	purely geometrical volumes and surfaces				
Navigation	propagate to any surface or length taking into account the volume hierarchy				
Property	Volume/surface properties (needed for navigation)				
Matching	matching functions between trajectories, measurements, states, vertices etc. pattern recognition methods				
Simulation	Simulate trajectories and measurements for debugging purposes				

R

9

C P

6

C k

Μ

A N

A

G

Ε

R

RecPack tools

- Services contain and manage the tools
- Tools operate over the data classes

7

В

U R O

C R A

C Y

M A T H

E M A T

I C S

S E T

Ū

D

 \bullet They are pure interfaces \implies extendible

Propagator and Projector

The propagator:	Sub-tools	
 Computes distance to surface 	SurfaceIntersector	
Propagates state vector to that distance	ModelEquation	
 Applies model corrections (energy loss, etc) 	ModelCorrection	
 Propagates the covariance matrix 	Propagator	
 Adds random noise (multiple scattering, eloss fluctuations, etc) 	Noiser	
The projector:		
 Converts the propagated state into a virtual 	State Vector	
$y \leftarrow u \leftarrow \theta$ $(u) = (\cos \theta)$	$\begin{array}{c} Projector\\ \sin\theta & 0 & 0 & 0 \end{array} \begin{pmatrix} x\\ y\\ x'\\ y\\ y'\\ q \end{pmatrix}$	

X

11 11 $\frac{q}{p}$

Fitting: Kalman Filter

- Used for track and vertex fitting by most of HEP experiments
- Easy to include random noise processes (*multiple scatt.*) and systematic effects (*eloss*)
- It is a local and incremental fit =

Any other fitting algorithm can be plugged in

simultaneous pattern recognition
 and fitting
 detection of outliers

IPropagator

Model tools

Models	Noise estimators	Model corrections	surface intersectors	projectors
straight line in any dimension	multiple scattering	energy loss	plane	2D
helix in variable B field	energy loss		cylinder	3D
			sphere	rφ

All these pieces live in independent containers

implement the corresponding interface

&

parabola	wind fluctuations	wind	earth surface	green	2D
----------	----------------------	------	---------------	-------	----

Geometry (I)

- Reconstruction processes can use a simplified geometry
- because measurement errors hide geometrical details:
 - screws, …
- The important objects are:
 - Measurement surfaces
 - Simplified volumes delimiting regions of different propagation properties:
 - Radiation length, interaction length, density
 - Magnetic or electric field
- This allows fast reconstruction using analytical extrapolations whenever is possible (homogeneous properties) and dynamic stepping otherwise

Properties

- Volumes and surfaces are purely geometrical:
 - Position, direction and size

- Information about the volume hierarchy
- Properties are associated indirectly via the Setup class

Navigation

* A **Navigator** propagates states in a Setup via steps

navigation().propagate(state, length)

navigation().propagate(state, surface)

Before and after each step a list of **Inspectors** is called:

- Change volume properties
- Model conversion
- Sum up intermediate path lengths
- Set length of the next step
- Counters
- **ب**
- Inspectors can be associated to any volume or surface
- User can:
 - Add its own inspector
 - Define analytic intersection for a given model and a surface type
 Most relevant are provided by default
 - ◆ Establish a sequence of volumes and surfaces to intersect to speed up the propagation → *Navigation logic*

Navigation Logic

- In the most general case all possible surfaces seen by the current volume are intersected. Then the closest one is selected
- This is not efficient when the number of surfaces is large
- Instead navigation logics and trees

All experiments will update to RecPack0 in few months

- ♦ Extension of vertex concept → singularity
 - Vertex, kink, decay

- And trajectory dynamic system
 - Collection of trajectories connected through singularities
- Common pattern recognition logics:
 - * 3D tracking: TPC, ...
 - 2D tracking: planar, cylindrical, spherical, ...
 - Clustering: 2D uncorrelated, 2D correlated, 3D, ...
- Common PID algorithms
- ✤ GUI: (HEP and non-HEP)
 - Detector design and geometry maker
 - Event display
 - Visual debugger: interactive reconstruction (probably via Python)

Conclusions

- RecPack is a c++ reconstruction toolkit
- ✤ It provides the common tools of any reconstruction program → avoids reinventing the wheel !!!
- Its modular structure allows extensions in any direction

data types → volumes, surfaces, measurements, ... tools → models, navigators, simulators, fitters, ...

- It is setup independent
- It is being successfully used by several HEP experiments
- Interested people (users or developers) may contact:

Anselmo.Cervera@cern.ch Juan.Jose.Gomez.Cadenas@cern.ch Jose.Angel.Hernando@cern.ch

New collaborators:

- Malcolm Ellis
- Federico Sánchez
- Javier Muñoz

Coming soon:

- Detailed documentation
- WWW page