
RecPack, a general reconstruction toolkit

A. Cervera-Villanueva∗, J.J. Gómez-Cadenas† , J.A. Hernando‡

Abstract

A general solution for the problem of reconstructing the
evolution of a dynamic system from a set of experimen-
tal measurements is presented. This solution has been re-
alised in a C++ toolkit that can incorporate different meth-
ods for fitting, propagation, pattern recognition and sim-
ulation. The RecPack functionality is independent of the
experimental setup, what allows to apply this toolkit to any
dynamic system.

INTRODUCTION

In high energy physics (HEP), as in other fields, one fre-
quently faces the problem of reconstructing the evolution
of a dynamic system from a set of experimental measure-
ments. Most of reconstruction programs use similar meth-
ods. However, in general they are reimplemented for each
specific experimental setup. Some examples are fitting al-
gorithms (i.e. Kalman Filter [1]-[2]), equations for propa-
gation, random noise estimation (i.e. multiple scattering),
model corrections (i.e. energy loss, inhomogeneous mag-
netic field, etc.), model conversion, etc. Similarly, the data
structure (measurements, tracks, vertices, etc.), which can
be generalised as well, is not reused in most of the cases.

RecPack tries to avoid that by providing a setup–
independent data structure and algorithms, which can be
applied to any dynamic system. The package follows an
“interface” strategy, that is, all the classes that could have a
different implementation have their own interface, in such
a way that the rest of the classes do not depend on such a
specific implementation. This modular structure allows a
great flexibility and generality.

STRUCTURE OF THE PACKAGE

RecPack distinguishes between data classes (passive)
and tools (active). The tree of data classes is shown in
Fig. 1. EVector and EMatrix are just a typedef of CLHEP’s
HepVector and HepMatrix respectively (these are vectors
and matrices of double’s with variable dimension). This
establish the only RecPack external dependence. However,
the user can replace the CLHEP classes by its favorite vec-
tor and matrix classes.

A structure that appears in several levels of the data
model is the pair formed by a vector of parameters (EVec-

∗Université the Genève, CH
† Universitat de Valencia, Spain
‡ CERN, Geneva, CH, and Universidade de Santiago de Compostela,

Spain

tor) and its covariance matrix (EMatrix). Thus, a new class
called HyperVector has being introduced to hold this re-
peated structure. For example, experimental measurements
(Measurement) can be always reduced to a HyperVector,
and the same is true for the fitting or propagation param-
eters (State). Before the track fitting occurs, a Trajectory

HyperVector

EMatrix EVector

Measurement

Trajectory

State

Node

Singularity

Volume

Setup

Surface

Figure 1: Architectural design of the data classes.

is essentially defined as a collection of uncorrelated Mea-
surement’s. Track fitting results are stored in State’s. In
the most general case, the fitting parameters are local and
therefore each Measurement must have a State associated
to it. An intermediate object, called Node, has being in-
troduced to accommodate the Measurement, the State and
the quantities that relate both objects (the residual Hyper-
Vector, the residual Surface [4] and the local χ2 of the fit.).
Consequently, a Trajectory can be seen as a collection of
Node’s, plus a set of global quantities as the total χ2 of
the fit, the number of degrees of freedom, etc. Finally, two
or more trajectories are connected by a Singularity (vertex,
kink, decay), which describes their discontinuities.

The classes Surface, Volume and Setup are treated in Sec.
GEOMETRY.

The tools (see Fig. 2) manipulate the data. Most of them
are pure interfaces (hence the I), allowing them to have
different implementations. Some of the tools contain sub-
tools (ISimulator, Model, IPropagator, etc.). If a tool has
several sub-tools of the same type (i.e. Model has sev-
eral IProjector’s), these are stored in associative contain-
ers (<...> in the graph), which permits the access by key.
Tools are stored in services (svc in Fig. 2), which not only
actuate as containers for the tools, but also as managers.

IPropagator

<IProjector>
<IModelCorrection>

<ISurfaceIntersector><Model>

<INoiser>

IEquation

<IModelConverter>

matching_svc

simulation_svc

navigation_svc

fitting_svc

geometry_svc

R
ec

Pa
ck

M
an

ag
er

<ISimulator> <INoiseSimulator>

model_svc

<IFitter>

<INavigationLogic>

<IInspector>

<IPropagator>

<ITrajectoryFinder>

<IVertexFinder>

<IClusterFinder>

Figure 2: Architectural design of the active classes (tools).
<...> means associative container.

Indeed, the user interacts with the “RecPackManager” via
its services. For example, fitting a trajectory (track) by the
least squares method to a straight line model would look
like:

manager().fitting svc().fit(“Lsq”, “straight line”, track);

In the following sections each of the services is treated in-
dividually.

GEOMETRY

The RecPack geometry service provides the methods for
the definition of the experimental setup (Setup), which is
built through the addition of volumes (Volume) and surfaces
(Surface) with well defined position and axes inside the
setup. One can distinguish between base surfaces, which
have no boundaries, and finite surfaces, which extend the
base class by incorporating a well defined size. RecPack
provides some predefined volume (box, tube –two concen-
tric cylinders– and sphere) and surface types (plane: rectan-
gle and ring; cylinder: cylinder and cylinder sector; sphere:
sphere and sphere sector), but adding new types is straight
forward. As an example, the following code defines a box
called “tracker” placed inside the “mother” volume, and a
surface called “wall” inside the tracker:

add volume(“mother”, “tracker”, “box”,
pos, axis1, axis2, size);

add surface(“tracker”, “wall”, “rectangle”,
pos, axis1, axis2, size);

where pos, axis1, axis2 and size are EVector’s. In this way,
complicated setups as the one of Fig. 3 can be build.

drift chambers

PS 214

time-of-flight

scintillators

beam-muon

identifier

electron

identifier

threshold Cherenkov
dipole magnet

T9 beam

TPC + RPCs in

solenoid magnet

cosmics

trigger wall

FTP + RPCs

Figure 3: Example of experimental setup corresponding to
the HARP detector at CERN-PS [7].

Geometrical objects may have properties, which are in-
directly associated to them in the Setup class. Typical vol-
ume properties are the ones that influence the evolution of
the system (magnetic field, radiation length, etc.). The fol-
lowing c++ code sets x0 (a double) as the radiation length
of the “tracker”:

set volume property(“tracker”, “X0”, x0);

MODEL

The model service is the container and manager for
model related equations: intersection with surfaces, propa-
gation and projection of states, random noise computation,
model conversion, etc. It contains an extensible collection
of Model’s and the corresponding transformations between
them (IModelConverter’s). Each model performs two ma-
jor operations, propagation and projection:

Propagation

Propagation of states (which have a well defined posi-
tion inside the setup) to a given surface or final length is
performed by the interface class IPropagator. Intermediate
calculations are delegated to smaller tools:

• <ISurfaceIntersector>: it is a collection of ISur-
faceIntersector’s, each of which corresponds to a dif-
ferent base surface type (plane, cylinder, sphere). Its
job is to calculate the path length from the actual po-
sition to the given surface.

• IEquation: it computes the state vector at a given
length. This length can be provided by an ISurfaceIn-
tersector, in the case of propagation to a surface, and
externally by the user, in the case of propagation to a
length.

• <IModelCorrection>: this kind of tool applies a
small correction to the propagation than by an IEqua-
tion (i.e. energy loss).

• <INoiser>: each of them computes the random noise
covariance matrix for the given length and for a spe-
cific type of noise (i.e. multiple scattering, energy loss
fluctuations).

Projection

The projection operation transforms a state into a virtual
measurement (predicted–measurement), which can be then
compared with an experimental measurement to compute
a residual. This is crucial for fitting and matching algo-
rithms. These virtual measurements may also be used by
ISimulator’s (see Sec. SIMULATION) to produced sim-
ulated measurements. The state HyperVector is projected
according to the following equations:

~mpred = ~h(~v), C
pred
m = HCvH

T , (1)

where ~h is the projection function, which depends on the
measurement type, H = ∂~h/∂~v is the projection matrix,
~mpred and ~v are the predicted–measurement vector and
state vector respectively, and C

pred
m and Cv their corre-

sponding covariance matrices.
Several measurement types (“xy”, “uv”, “xyz”,” rφ”,

etc.) may coexist in a single trajectory, which can be fitted
to an unique model. To do so, each Model must contain an
extensible collection of IProjector’s, each of which corre-
sponds to a different measurement type.

FITTING

Fitting algorithms, called fitters, need two setup–
dependent operations: prediction of the next measurement
based on the information provided by previous measure-
ments (propagation) and comparison between real and pre-
dicted measurements (projection) to update the fitting pa-
rameters. Fitting equations can be kept independent of the
model and measurement type(s) if these two operations are
external to the fitter. As described above, propagation and
projection are performed by each Model.

The fitting service is in charge of fitting clusters, trajecto-
ries and vertices via its fitters (IFitter). The user can either
use one of the existing fitters or provide his own. Two fit-
ters for trajectories (least squares and Kalman filter [1]-[2])
and one for vertices (Kalman filter [3]) are available.

A trajectory fitter takes a raw Trajectory (a collection of
Node’s with Measurement’s and empty State’s) and trans-
forms it into a fitted Trajectory, in which the State’s have
meaningful contents. Similarly, the vertex fitter takes a raw
Vertex (in this case the measurements are the fitted trajec-
tories while the state associated to each trajectory is empty
before the fit). In the case of a Kalman Filter fit (for trajec-
tories or vertices) a seed state must be provided.

The following example illustrates the functionality of
this service: a set of 2D measurements have been produced
by a charged particle in a magnetic field. These measure-
ments have been already introduced in a raw Trajectory
(track) and now we want to fit it, first by least squares, and
then use the result of this fit (track.state()) as a seed for a
Kalman filter fit. The necessary c++ code would be:

fit(“Lsq”, “Helix”, track);

fit(“Kalman”, “Helix”, track, track.state());

NAVIGATION

The main functionality of the navigation service is to
propagate states to any surface, volume or length within
the setup. This operation is performed by special IPropa-
gator’s, called navigators, which are capable to handle the
volume hierarchy and volumes with inhomogeneous prop-
erties. One navigator (“RecPackNavigator”) is provided by
default, but others can be added easily (i.e. Geant4 [5]).

The “RecPackNavigator” propagates the state in several
steps. Propagation in each step is performed by the IPropa-
gator associated to the Model in the actual volume. Before
and after each step a list of IInspector’s (associated to vol-
umes and surfaces) is called. An IInspector is a tool that
performs a concrete action: set the properties of the en-
tering volume, sum up intermediate path lengths, set the
length of the next step (dynamic stepping), etc. User de-
fined IInspector’s can be added to any surface or volume.
For example, a “CounterInspector” could be added to a
given surface in order to count the number of times this
surface is traversed.

Two important features of the “RecPackNavigator” are:
i) the intersection with surfaces [6] is done analytically
whenever is possible (and numerically otherwise) and ii)
user defined INavigationLogic’s allow to establish the se-
quence in which volumes and surfaces must be traversed.

MATCHING

This generic name refers to the methods that are related
with pattern recognition (PR) problems. In general, the
purpose of PR algorithms is to distribute the existing mea-
surements into trajectories and these into vertices. On can
distinguish two types of PR algorithms: matching func-
tions, which serve to estimate the probability of two ob-
jects of being related to each other (trajectory–trajectory,
measurement–trajectory, trajectory–vertex, etc.), and PR
logics, which define the sequence in which such a rela-
tions are established. The first are always general, while
the second may have a strong setup dependence. PR log-
ics are introduced via three types of tools: IClusterFinder,
ITrajectoryFinder and IVertexFinder, which build clusters
(Measurement’s), trajectories and vertices respectively us-
ing the available matching functions and following a spe-
cific strategy.

Currently, the RecPack matching service provides
trajectory–measurement, trajectory–trajectory and
trajectory–vertex matching functions. For the mo-
ment, PR logics are not implemented. In the future, one
could try to identify common PR logics and include them
in this service. For example, PR in a series of parallel
planes which produce 2D measurements occurs always
in a similar way. The same is true for a volume with 3D
measurements (i.e. TPC), etc.

SIMULATION

Some times reconstruction programs must operate over
simulated measurements. However, in general the user
must provide the classes and methods that allow the in-
terface between simulation and reconstruction, which is
not always an easy task. The RecPack simulation service
solves this problem by generating simulated measurements
with the data format required by the rest of the services.

The user must declare the active volumes and surfaces
(the ones that produce measurements), and specify the
measurement type in each of them. Active surfaces pro-
duce a measurement when they are intersected, while active
volumes produced measurements through dynamic step-
ping (see Sec. NAVIGATION)

Given a simulation seed (State), the simulation service
uses the navigation service to produce an ideal trajectory
inside the setup. Then, a special IInspector (“MeasSim-
ulator”) creates ideal measurements (according to Eq. 1)
in the active volumes or surfaces by calling the IProjector
corresponding to the measurement type in that volume or
surface. Finally, propagation noise and experimental er-
rors are introduced by a set of INoiseGenerator’s (multiple
scattering, energy loss fluctuations, measurement resolu-
tion, etc.).

This simple simulator does not attempt to be a full sim-
ulator (i.e. Geant4). Instead, its main purpose is to serve
as a debugging tool or as a fast simulator. Existing simula-
tion toolkits, as Geant4, could be easily integrated into Rec-
Pack by implementing the IInspector’s that generate mea-
surements in the different subdetectors. Such an inspectors
should be able to access the Geant4 information and then
use it to create specific measurements.

RECPACK VERSIONS AND CLIENTS

RecPack was born in the HARP experiment at CERN-
PS [7] (see Fig. 3). The initial version, RecPack-0 is being
also used in MICE [8], MuScat [9] and MIPP [10]. A re-
organization of the code, RecPack-1 [11], was done in or-
der to gain in flexibility and generality. This version is be-
ing used by the SciBar detector, which is part of the K2K
experiment [12], and served as inspiration for LHCb [13]
reconstruction software and for the design of future exper-
iments as HERO and SuperNova [14]. The T2K [15] and
NEMO [16] Collaborations have recently shown interest
in using RecPack as a toolkit for their reconstruction soft-
ware. A new version, RecPack-2, described in this article,
is being realised at the moment for these experiments. All
other RecPack users will update to the new version as soon
as it is ready.

CONCLUSIONS

In summary, RecPack is a modular and extensible recon-
struction toolkit, which provides the basic data structure
and most of the common methods needed by any recon-
struction program: matching, fitting and navigation. It also

has functionality to perform a quick interface with simula-
tion packages.

ACKNOWLEDGMENTS

We would like to thank Gersende Prior for her help with
the Kalman Filter vertex fit. The contribution of Malcolm
Ellis and Federico Sanchez, as the main RecPack users,
has being essential for reporting a non negligible amount
of bugs.

REFERENCES

[1] R.E. Kalman, J. Basic Eng. 82 (1960) 35
R.E. Kalman, R.S. Bucy, J. Basic Eng. 83 (1961) 95

[2] R. Fruhwirth, M. Regler, Nuc. Inst. Meth. A241 (1985) 115.

[3] R. Fruhwirth. Nucl. Inst. Meth. A262 (1987) 444

[4] The residual is always calculated as the length of a geodesic
over a surface.

[5] A. Dell’Acqua et al., GEANT4 Collaboration, Nucl. Inst.
Meth. A506 (2003) 250.

[6] The problem of intersecting a volume is always reduced to
the intersection with its outer walls.

[7] http://harp.web.cern.ch/harp/

[8] http://hep04.phys.iit.edu/cooldemo/

[9] http://hepunx.rl.ac.uk/neutrino–factory/muons/muscat.html

[10] http://ppd.fnal.gov/experiments/e907/e907.htm

[11] A. Cervera-Villanueva, J.J. Gomez-Cadenas and J.A. Her-
nando. Nucl. Inst. Meth. A534 (2004) 180-183

[12] S.H. Ahn. et al. The K2K Collaboration. Phys. Lett. B511
(2001) 178-184

[13] http://lhcb.web.cern.ch/lhcb/

[14] No references available yet.

[15] http://neutrino.kek.jp/jhfnu/

[16] R. Arnold et al. The NEMO Collaboration. Nucl. Inst. Meth.
A536 (2005) 79-122

