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Abstract

Quantum Chromodynamics (QCD), the theory of the strong interaction among
quarks and gluons—the fundamental constituents of hadrons—stands as one of
the pillars of the Standard Model of particle physics. A landmark refinement
in the development of hadron spectroscopy was the relativized quark model
of Godfrey and Isgur, whose predictions successfully reproduced much of the
observed hadron spectrum and established a framework that remains influential
today. Yet, the conventional quark model has intrinsic limitations. Long-
standing puzzles, such as the Λ(1405) resonance, defied a simple quark-model
interpretation and pointed to the need for alternative explanations. Over the
past two decades, hadron spectroscopy has undergone remarkable progress—
sometimes referred to as the “second revolution of hadron physics”—driven
by the discovery of numerous states that cannot, or can only unnaturally, be
accommodated within the conventional quark model. These are collectively
known as exotic states. A second major frontier in hadron physics concerns
the behavior of strongly interacting matter under extreme conditions of baryon
density and/or temperature. Mapping the QCD phase diagram remains one of
the central open challenges in the field, with implications that span from the
early Universe to the structure of neutron stars, as well as to our theoretical
understanding of confinement and chiral symmetry breaking. This thesis
brings together these two lines of research by exploring the properties of exotic
hadronic states both in vacuum and in hot or dense strongly interacting matter.

We begin in Chapter 2 by examining how two prominent exotic states—the
𝑇𝑐𝑐(3875) and the 𝐷∗

𝑠0(2317), hereafter referred to as 𝑇𝑐𝑐 and 𝐷∗
𝑠0—together

with their heavy–quark spin symmetry (HQSS) partners, are modified in a
dense nuclear medium. These states are modeled as 𝐷(∗)𝐷∗ and 𝐷(∗)𝐾 hadronic
molecules, respectively. After reviewing the theoretical framework of nuclear
matter, we introduce the concepts of self–energy and spectral functions and
describe how they can be computed using effective field theories constrained
by heavy–quark and chiral symmetries. We then analyze in-medium meson–
meson scattering, employing interactions tuned to reproduce different molecular
probabilities in the wave function. Our results demonstrate that increasing
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nuclear density and molecular probability leads to a broadening of the scattering
amplitudes and spectral functions. In addition, we find a marked charge–
conjugation asymmetry—especially pronounced for the 𝐷∗

𝑠0—which further
enhances the density and molecular–probability dependence of the results. If
such modifications could be measured, they would provide a novel probe of
meson–meson interactions, meson– and antimeson–nucleon interactions, and
the internal structure of these exotic states.

Turning to the question of how to access density–dependent hadron proper-
ties experimentally, Chapter 3 examines the feasibility of measuring such effects
for the 𝐷 meson, a key constituent of the exotic states previously discussed.
The study relies on the transparency ratio technique, successfully applied to the
𝜂′ meson, in which the particle of interest is photoproduced off various nuclei
𝐴 via 𝛾𝐴 → 𝐷+𝐷−𝐴′. The corresponding cross section depends both on the
𝐷–meson photoproduction on a bound nucleon and on its absorption probability
while propagating through the nucleus. By normalizing to the 12C cross section,
one cancels the production mechanism and isolates the absorption probability,
which scales approximately with the nuclear radius. This absorptive component
is directly related to the imaginary part of the 𝐷–meson self–energy in nuclear
matter. Using a simple nuclear model together with theoretical predictions for
the 𝐷 self–energy, we obtain transparency ratios of about 0.6 for heavy nuclei.
Such values suggest that these measurements could be realistically achieved at
future facilities such as the EIC, EicC, or a possible upgrade of GlueX.

Chapter 4 shifts the focus from density to temperature, presenting a study
of the exotic 𝑇𝑐𝑐 and its HQSS partner in a hot pionic bath. We begin
by introducing the main ideas of thermal field theory in the imaginary–time
(Matsubara) formalism. The analysis builds on the 𝐷(∗)𝐷∗ interaction model
developed in Chap. 2, which dynamically generates the 𝑇𝑐𝑐 pole in the amplitude
and allows the molecular probability to be tuned. For this purpose, the
𝐷 and 𝐷∗ self–energies and spectral functions in a hot pion medium are
required; these are taken from the literature, after briefly discussing their
computation. In close analogy with the high–density case, we obtain a 𝑇𝑐𝑐
spectral function that is strongly dependent on the molecular probability. For
large probabilities, the resonance melts at temperatures of the order of 100 MeV,
whereas for small probabilities the results are highly sensitive to the details of
the 𝐷(∗)𝐷∗ interaction. These findings suggest that experimental information
on 𝐷(∗)𝐷∗ scattering at finite 𝑇—as accessible at RHIC or the LHC—could
provide valuable insight into the molecular nature of the 𝑇𝑐𝑐 and its HQSS
partner. Furthermore, combining such studies with potential measurements
of their spectral properties at finite density (e.g. at FAIR) would offer strong
complementary constraints on their structure and composition.

Lastly, in Chapter 5 we return to the free space (vacuum) to explore
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another exotic–like configuration: three–body bound states. Motivated by the
discovery of the 𝑇𝑐𝑐 and the implied attractive interaction between 𝐷 and 𝐷∗

mesons, we investigate the possibility of a 𝐷𝑁𝐷∗ bound system. The 𝐷𝑁 and
𝐷∗𝑁 interactions, previously employed in Chapter 2 to study charmed–meson
spectral functions in nuclear matter, are revisited here. The analysis is carried
out using the fixed–center approximation to the Faddeev equations, which
provides an appropriate framework for the three–body dynamics. Assuming the
𝐷∗𝑁 subsystem to be bound into either the Λ𝑐(2940) or Λ𝑐(2910), depending
on the total spin of the three-body system, we find resonant–like structures in
the 𝐽𝑃 = 1/2+ and 3/2+ channels. Qualitatively similar results emerge when
instead considering the 𝐷𝑁 pair bound into the Λ𝑐(2765). Within the uncer-
tainties of the approach, these findings support the possible existence of such
states. Their experimental confirmation would provide valuable information on
the 𝐷𝑁 and 𝐷∗𝑁 interactions, thereby clarifying the role of molecular dynamics
in the Λ∗

𝑐 spectrum.
The work presented in this thesis has led to the publication of several

articles [1–5] (four published and one under review), as well as presentations at
international conferences [6–8].





Resumen

La Cromodinámica Cuántica (QCD), la teoría que describe la interacción fuerte
entre quarks y gluones (los constituyentes fundamentales de los hadrones),
constituye uno de los pilares del Modelo Estándar de la física de partículas. Un
avance clave en el desarrollo de la espectroscopía hadrónica fue el modelo de
quarks relativizado de Godfrey e Isgur, cuyas predicciones lograron reproducir
gran parte del espectro hadrónico observado y establecieron un marco que
sigue siendo influyente en la actualidad. Sin embargo, el modelo de quarks
convencional presenta limitaciones intrínsecas. Algunos enigmas persistentes,
como la resonancia Λ(1405), escapaban a una interpretación sencilla dentro de
este marco y apuntaban a la necesidad de explicaciones alternativas. En las dos
últimas décadas, la espectroscopía de hadrones ha vivido un progreso notable
(a menudo denominado la “segunda revolución de la física de hadrones”),
impulsado por el descubrimiento de numerosos estados que no encajan, o solo de
forma forzada, en el modelo tradicional. Estos se conocen colectivamente como
estados exóticos. Otra frontera destacada de la física hadrónica aborda el com-
portamiento de la materia fuertemente interactuante en condiciones extremas
de densidad bariónica y/o temperatura. La descripción del diagrama de fases
de QCD sigue siendo uno de los grandes desafíos abiertos, con implicaciones
que abarcan desde el Universo primitivo hasta la estructura de las estrellas
de neutrones, además de aportar claves para comprender el confinamiento y la
ruptura de la simetría quiral. Esta tesis conecta estas dos líneas de investigación
estudiando las propiedades de estados hadrónicos exóticos tanto en el vacío
como en los medios densos o calientes de materia fuertemente interactuante.

En el Capítulo 2 analizamos cómo dos estados exóticos relevantes (el
𝑇𝑐𝑐(3875) y el 𝐷∗

𝑠0(2317), en adelante 𝑇𝑐𝑐 y 𝐷∗
𝑠0), junto con sus compañeros

relacionados por la simetría de espín del quark pesado (HQSS), se modifican en
un medio nuclear denso. Estos estados se modelan como moléculas hadrónicas
𝐷(∗)𝐷∗ y 𝐷(∗)𝐾, respectivamente. Tras repasar el marco teórico de la materia
nuclear, introducimos los conceptos de autoenergía y funciones espectrales,
y explicamos cómo calcularlos mediante teorías de campos efectivas basadas
en las simetrías quirales y de quark pesado. Posteriormente estudiamos

xv
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la dispersión mesón–mesón en el medio, utilizando interacciones ajustadas
para reproducir diferentes probabilidades moleculares en su función de onda.
Nuestros resultados muestran que un aumento de la densidad nuclear y de
la probabilidad molecular provoca un ensanchamiento de las amplitudes de
dispersión y de las funciones espectrales. Además, identificamos una clara
asimetría de conjugación de carga (especialmente pronunciada en el 𝐷∗

𝑠0),
que refuerza aún más la dependencia de los resultados con la densidad y la
probabilidad molecular. Si estas modificaciones pudieran medirse experimen-
talmente, constituirían una nueva herramienta para investigar las interacciones
mesón–mesón, mesón–nucleón y antimesón–nucleón, así como la estructura
interna de estos estados exóticos.

Respecto al acceso experimental a propiedades hadrónicas dependientes de
la densidad, el Capítulo 3 estudia la viabilidad de medir tales efectos en el mesón
𝐷, un constituyente esencial de los estados exóticos mencionados anteriormente.
El análisis se basa en la técnica del cociente de transparencia, utilizada con éxito
para el mesón 𝜂′, en la que la partícula de interés se fotoproduce en distintos
núcleos 𝐴 mediante la reacción 𝛾𝐴 → 𝐷+𝐷−𝐴′. La sección eficaz resultante
depende tanto de la fotoproducción del mesón 𝐷 en un nucleón ligado como de
su probabilidad de absorción al propagarse por el núcleo. Al normalizar con
respecto a la sección eficaz en 12C, se elimina la contribución del mecanismo de
producción y se aísla la probabilidad de absorción, que escala aproximadamente
con el radio nuclear. Este término de absorción está directamente relacionado
con la parte imaginaria de la autoenergía del mesón 𝐷 en materia nuclear.
A partir de un modelo nuclear sencillo y de predicciones teóricas para la
autoenergía del 𝐷, obtenemos cocientes de transparencia en torno a 0.6 para
núcleos pesados. Estos valores sugieren que tales mediciones podrían realizarse
de manera realista en futuras instalaciones como el EIC, EicC o una posible
actualización de GlueX.

El Capítulo 4 cambia el enfoque de la densidad a la temperatura, con
un estudio del estado exótico 𝑇𝑐𝑐 y de su compañero HQSS en un baño
térmico piónico. Se presentan las ideas fundamentales de la teoría térmica
de campos en el formalismo de tiempo imaginario (Matsubara). El análisis
se apoya en el modelo de interacción 𝐷(∗)𝐷∗ desarrollado en el Cap. 2, que
genera dinámicamente el polo del 𝑇𝑐𝑐 en la amplitud y permite ajustar la
probabilidad molecular. Para ello, se necesitan las autoenergías y funciones
espectrales de 𝐷 y 𝐷∗ en un medio térmico de piones. Utilizamos resultados
obtenidos previamente, aunque hacemos una breve revisión de su cálculo. De
forma análoga al caso de medios densos, obtenemos una función espectral
del 𝑇𝑐𝑐 muy dependiente de la probabilidad molecular. Para probabilidades
altas, la resonancia se funde a temperaturas cercanas a 100 MeV, mientras que
para probabilidades bajas los resultados son extremadamente sensibles a los
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detalles de la interacción 𝐷(∗)𝐷∗. Estos hallazgos indican que la información
experimental sobre la dispersión 𝐷(∗)𝐷∗ a temperatura finita (como la accesible
en RHIC o en el LHC) podría aportar claves importantes sobre la naturaleza
molecular del 𝑇𝑐𝑐 y de su compañero HQSS. Asimismo, combinar estos estudios
con posibles medidas de sus propiedades espectrales a densidad finita (por
ejemplo, en FAIR) ofrecería restricciones complementarias sólidas sobre su
estructura y composición.

Finalmente, en el Capítulo 5 regresamos al espacio libre (vacío) para
explorar otra configuración de tipo exótico: los estados ligados de tres cuerpos.
Motivados por el descubrimiento del 𝑇𝑐𝑐 y la interacción atractiva implícita
entre los mesones 𝐷 y 𝐷∗, estudiamos la posible existencia de un sistema ligado
𝐷𝑁𝐷∗. Las interacciones 𝐷𝑁 y 𝐷∗𝑁, ya empleadas en el Capítulo 2 para
analizar las funciones espectrales de mesones con encanto en materia nuclear,
son revisadas aquí. El estudio se lleva a cabo mediante la aproximación de
centro fijo a las ecuaciones de Faddeev, que ofrece un marco accesible para la
dinámica de tres cuerpos. Suponiendo que el subsistema 𝐷∗𝑁 se ligue formando
la Λ𝑐(2940) o en la Λ𝑐(2910) (según el espín total del sistema), encontramos
estructuras de tipo resonancia en los canales 𝐽𝑃 = 1/2+ y 3/2+. Resultados
similares se obtienen al considerar en su lugar al par 𝐷𝑁 ligado formando
la Λ𝑐(2765). Dentro de las incertidumbres del esquema, estos resultados
apoyan la posible existencia de dichos estados. Su confirmación experimental
proporcionaría información valiosa sobre las interacciones 𝐷𝑁 y 𝐷∗𝑁, aclarando
el papel de la dinámica molecular en el espectro de los estados Λ∗

𝑐.
El trabajo presentado en esta tesis ha dado lugar a la publicación de varios

artículos [1–5] (cuatro publicados y uno en revisión), así como a presentaciones
en congresos internacionales [6–8].





Resum

La teoria de la Cromodinàmica Quàntica (QCD) és un dels pilars del Model
Estàndard de la física de partícules. Aquesta teoria descriu la interacció forta
entre quarks i gluons, que son els constituents fonamentals dels hadrons, Un
avanç decisiu en el desenvolupament de l’espectroscòpia hadrònica va ser el
model de quarks relativitzat de Godfrey i Isgur, les prediccions del qual van
reproduir amb èxit bona part de l’espectre hadrònic observat i van establir
un marc que continua sent de referència hui en dia. Tanmateix, el model de
quarks convencional presenta limitacions intrínseques. Enigmes irresolts, com la
ressonància Λ(1405), van quedar fora d’una interpretació senzilla dins d’aquest
marc i van assenyalar la necessitat d’explicacions alternatives. En les últimes
dues dècades, l’espectroscòpia d’hadrons ha experimentat un progrés notable
(sovint anomenat la “segona revolució de la física d’hadrons”), impulsat pel
descobriment de nombrosos estats que no poden, o només de manera forçada,
encaixar dins del model tradicional. Aquests es coneixen col⋅lectivament com
estats exòtics. Una altra frontera destacada en la física hadrònica és l’estudi
del comportament en condicions extremes de densitat bariònica i/o temperatura
de la matèria fortament interactuant. Determinar el diagrama de fases de la
QCD continua sent un dels grans reptes oberts del camp, amb implicacions que
van des de l’Univers primitiu fins a l’estructura de les estrelles de neutrons, a
més d’aportar noves claus per a la nostra comprensió teòrica del confinament
i de la ruptura de la simetria quiral. Aquesta tesi ha unit aquestes dues línies
d’investigació estudiant les propietats dels estats hadrònics exòtics tant en el
buit com en medis densos o calents de matèria fortament interactuant.

En el Capítol 2 hem analitzat com dos estats exòtics prominents (el
𝑇𝑐𝑐(3875) i el 𝐷∗

𝑠0(2317)), juntament amb els seus companys relacionats per
la simetria d’espín de quark pesat (HQSS), es modifiquen en un medi nuclear
dens. Aquests estats els hem modelat com a molècules hadròniques 𝐷(∗)𝐷∗ i
𝐷(∗)𝐾, respectivament. Després de revisar el marc teòric de la matèria nuclear,
hem introduit els conceptes d’autoenergia i funcions espectrals, i hem descrit
com es poden calcular mitjançant teories efectives de camps condicionades per
les simetries quirals i de quark pesat. A continuació, hem estudiat la dispersió
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mesó–mesó al medi, emprant interaccions ajustades per reproduir diferents
probabilitats moleculars en la funció d’ona. Els nostres resultats mostren que
l’augment de la densitat nuclear i de la probabilitat molecular provoca un
eixamplament de les amplituds de dispersió i de les funcions espectrals. A més,
hem identificat una marcada asimetria de conjugació de càrrega (especialment
intensa per al 𝐷∗

𝑠0), que reforça encara més la dependència dels resultats amb
la densitat i la probabilitat molecular. Si aquestes modificacions es pogueren
mesurar experimentalment, constituirien una nova eina per a investigar les
interaccions mesó–mesó, mesó–nucleó i antimesó–nucleó, així com l’estructura
interna d’aquests estats exòtics.

Pel que fa a l’accés experimental a propietats hadròniques dependents de
la densitat, en el Capítol 3, hem estudiat la viabilitat de mesurar aquestes
propietats en el mesó 𝐷, un constituent fonamental dels estats exòtics esmentats
prèviament. L’estudi s’ha basat en la tècnica del cocient de transparència,
aplicada amb èxit al mesó 𝜂′, en què la partícula d’interés es fotoproduïx
en diversos nuclis 𝐴 mitjançant la reacció 𝛾𝐴 → 𝐷+𝐷−𝐴′. La secció eficaç
resultant depén tant de la fotoproducció del mesó 𝐷 en un nucleó lligat com
de la seua probabilitat d’absorció al propagar-se pel nucli. Quan es normalitza
respecte a la secció eficaç en 12C, s’elimina la dependència del mecanisme de
producció i s’aïlla la probabilitat d’absorció, que escala aproximadament amb el
radi nuclear. Aquest terme d’absorció està directament relacionat amb la part
imaginària de l’autoenergia del mesó 𝐷 en matèria nuclear. Amb un model
nuclear senzill i prediccions teòriques per a l’autoenergia del 𝐷, hem obtingut
cocients de transparència d’aproximadament 0.6 per a nuclis pesats. Aquests
valors indiquen que aquestes mesures poden dur-se a terme de manera realista
en instal⋅lacions futures com l’EIC, l’EicC o una possible ampliació de GlueX.

El Capítol 4 trasllada el focus de la densitat a la temperatura, amb un estudi
de l’estat exòtic 𝑇𝑐𝑐(3875) i del seu company HQSS en un bany tèrmic piònic.
Primer, hem presentat les idees bàsiques de la teoria de camps tèrmics en el
formalisme de temps imaginari (Matsubara). L’anàlisi es fonamenta en el model
d’interacció 𝐷(∗)𝐷∗ desenvolupat en el Cap. 2, que genera dinàmicament el pol
del 𝑇𝑐𝑐 en l’amplitud i permet ajustar la probabilitat molecular. Per a això,
van ser necessàries les autoenergies i funcions espectrals de 𝐷 i 𝐷∗ en un medi
de pions calents, que hem pres de la literatura després de comentar breument
el seu càlcul. En estreta analogia amb el cas d’alta densitat, hem obtingut una
funció espectral del 𝑇𝑐𝑐 molt dependent de la probabilitat molecular. Per a
probabilitats elevades, la ressonància es dissol a temperatures d’uns 100 MeV,
mentre que per a probabilitats baixes, els resultats son extremadament sensibles
als detalls de la interacció 𝐷(∗)𝐷∗. Aquestes troballes suggerixen que la informa-
ció experimental sobre la dispersió 𝐷(∗)𝐷∗ a temperatura finita (com la que és
accessible en RHIC o al LHC) podria aportar pistes valuoses sobre la naturalesa
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molecular del 𝑇𝑐𝑐(3875)+ i del seu company HQSS. A més, combinar aquests
estudis amb possibles mesures de les seues propietats espectrals a densitat finita
(per exemple, en FAIR) proporcionaria restriccions complementàries sòlides
sobre la seua estructura i composició.

Finalment, en el Capítol 5 hem tornat a l’espai lliure (buit) per explorar
una altra configuració de tipus exòtic: els estats lligats de tres cossos. Motivats
pel descobriment del 𝑇𝑐𝑐 i per la interacció atractiva implícita entre els mesons
𝐷 i 𝐷∗, hem estudiat la possible existència d’un sistema lligat 𝐷𝑁𝐷∗. Les
interaccions 𝐷𝑁 i 𝐷∗𝑁, que havíem emprat prèviament en el Capítol 2 per
analitzar les funcions espectrals de mesons amb charm en matèria nuclear, han
estat revisitades ací. L’estudi s’ha dut a terme mitjançant l’aproximació de
centre fix de les equacions de Faddeev, que ofereix un marc accessible per a la
dinàmica de tres cossos. Suposant que el subsistema 𝐷∗𝑁 està lligat formant la
Λ𝑐(2940) o la Λ𝑐(2910) (segons l’espín total del sistema), hem trobat estructures
de tipus ressonància en els canals 𝐽𝑃 = 1/2+ i 3/2+. Resultats similars
apareixen també quan considerem la parella 𝐷𝑁 lligada formant la Λ𝑐(2765).
Dins de les incerteses del plantejament, aquests resultats donen suport a la
possible existència de tals estats. La seua confirmació experimental aportaria
informació valuosa sobre les interaccions 𝐷𝑁 i 𝐷∗𝑁, aclarint el paper de la
dinàmica molecular en l’espectre dels estats Λ∗

𝑐.
El treball presentat en aquesta tesi ha donat lloc a la publicació de diversos

articles [1–4], així com a presentacions en congressos internacionals [6–8].
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Introduction

Spectroscopy has played a central role in the development of modern physics,
providing crucial insight into the symmetries and underlying dynamics of
physical systems. A paradigmatic example is the spectroscopic study of the
hydrogen atom, which was instrumental in the birth of quantum mechanics and,
later, the formulation of quantum electrodynamics. These advances ultimately
paved the way for the Standard Model of particle physics, our most successful
framework to date for describing the known elementary particles and their
interactions. Among its pillars stands Quantum Chromodynamics (QCD), the
theory of the strong interaction, which governs the dynamics of quarks and
gluons through their color charge and explains the formation of hadrons as
bound states of these fundamental constituents.

Beyond the study of hadrons in vacuum, an equally important question
concerns their behavior in a strongly interacting medium. Embedding hadrons
in nuclear matter or exposing them to high temperatures modifies their masses,
widths, and interactions, reflecting the underlying changes in their structure.
Such medium effects are not only of theoretical interest but also have direct
phenomenological consequences: in nuclear physics, they influence the possible
formation of bound states of mesons with nuclei; in astrophysics, they are essen-
tial for understanding the equation of state of neutron stars; and in high–energy
physics, they play a central role in the characterization of the quark–gluon
plasma created in relativistic heavy–ion collisions. This dual perspective—on
hadrons as both isolated states and as probes of extreme environments—
motivates the two main lines of research followed in this manuscript.

At its core, this thesis focuses on the study of exotic hadronic
states—configurations beyond the conventional quark–antiquark and three–
quark picture—within the theoretical framework of low–energy QCD. Particular
attention is given to how such states, exemplified by the 𝑇𝑐𝑐(3875)+ and the
𝐷∗

𝑠0(2317), respond to extreme conditions of nuclear density and temperature.

1
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Their medium modifications provide a unique window into the interplay of the
compact and molecular components in their wave function, while their role in
the possible formation of three-body bound states opens an additional venue
of investigation. To set the stage, the remainder of this introduction offers a
brief overview of QCD and highlights the open questions that continue to drive
research in this field.

1.1 EFT approaches for QCD at low energies
QCD is formulated as a non-Abelian gauge theory based on the local SU(3)
color symmetry. Quarks transform under the fundamental representation,
while gluons belong to the adjoint representation and mediate the interaction
by carrying color themselves. The non-Abelian character of SU(3) color is
intimately related to some of QCD’s most distinctive features, such as gluon self-
interactions, asymptotic freedom at high energies, and color confinement at low
energies. Whereas asymptotic freedom drives the QCD coupling weak at high
energies—making perturbation theory reliable for hard processes—confinement
renders the low-energy regime intractable for standard perturbative methods.
Understanding hadrons and their interactions therefore requires alternative
strategies to standard perturbation theory in order to capture the essential non-
perturbative dynamics of QCD at low energies. On the numerical side, Lattice
QCD (LQCD) provides a first-principles approach by evaluating (Euclidean)
correlators in the path-integral formalism, and has achieved remarkable success
in reproducing much of the hadron spectrum. On the analytical side, there are
several methods, among which the effective field theory (EFT) approach plays a
central role.1 It is within this EFT framework that the present work is situated.

EFTs provide a powerful framework to describe physics in regimes where a
full treatment of the underlying dynamics is either unknown or computationally
intractable. The central idea is to identify the relevant degrees of freedom at
a given energy scale and to construct the most general Lagrangian consistent
with the symmetries of the fundamental theory. The unresolved short-distance
dynamics is then systematically encoded in a finite set of low-energy constants
(LECs).2 In QCD’s low-energy regime, the growth of the strong coupling

1Although we contrast EFTs with LQCD here for exposition, there are also lattice-inspired
simulations built on EFTs. A prominent example is Nuclear Lattice Effective Field Theory [9,
10], which has been used to compute the structure and spectrum of different nuclei.

2Strictly speaking, most low-energy EFTs (e.g., ChPT, HQET, HHChPT) are nonrenormal-
izable in the traditional sense: loop divergences require an infinite tower of higher-dimensional
counterterms. With a power-counting scheme, however, they are renormalizable order by
order, so at any fixed order only a finite number of LECs enter. These LECs encode
short-distance physics and are fixed by data or by matching to the underlying theory. By
contrast, renormalizable gauge theories such as QCD and QED require counterterms only
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constant renders perturbation theory unreliable: Green functions receive dom-
inant nonperturbative contributions and a weakly interacting quasi-particle
description in terms of quarks and gluons breaks down. It is therefore natural
to formulate an EFT in terms of color-singlet hadronic degrees of freedom,
with a Lagrangian constrained by QCD’s symmetries and with short-distance
dynamics absorbed into the LECs. The choice of hadronic fields and the
approximate symmetries to be emphasized depend on the energy scale of
interest.

A key ingredient in the construction of QCD–motivated EFTs is the presence
of a natural hadronic scale, ΛQCD ∼ 0.2 − 0.3 GeV, associated with the onset
of confinement and nonperturbative dynamics. This scale allows one to classify
quarks into “light” and “heavy” depending on whether their masses are small
or large compared to ΛQCD.3 The light quarks (𝑢, 𝑑, 𝑠) satisfy 𝑚𝑞 ≪ ΛQCD,
while the heavy quarks (𝑐, 𝑏, 𝑡) fulfill 𝑚𝑄 ≫ ΛQCD. In each case, different
approximate symmetries emerge, which constrain the form of the EFT at low
energies.

One of the paradigmatic QCD–motivated effective theories is ChPT, built
on the approximate chiral symmetry of the QCD Lagrangian. In the limit of
vanishing light–quark masses 𝑚𝑢, 𝑚𝑑, 𝑚𝑠 → 0 (with 𝑁𝑓 = 3), the theory enjoys
a global SU(3)𝐿×SU(3)𝑅 symmetry acting separately on left– and right–handed
quark fields. However, the QCD vacuum preserves only the vector subgroup
SU(3)𝑉. The axial generators are spontaneously broken and, according to
Goldstone’s theorem, this produces 𝑁2

𝑓 − 1 = 8 massless Goldstone bosons,
identified with the pseudoscalar octet (𝜋, 𝐾, 𝐾̄, 𝜂8). Because chiral symmetry
is only approximate—explicitly broken by the light quark masses—and the
U(1)𝐴 symmetry is anomalous, these states acquire masses and are therefore
pseudo–Nambu–Goldstone bosons (with the mass of the singlet 𝜂′ driven very
large by the anomaly). ChPT is the corresponding low–energy EFT describing
their interactions, organized as a systematic expansion in external momenta
and light–quark masses over the chiral scale Λ𝜒 ∼ 0.7 − 1 GeV, with LECs
encoding short–distance QCD dynamics [11–14].

An important development in the theoretical implementation of ChPT
occurred with the introduction of Unitarized ChPT (UChPT). The central
idea is to take a low-order chiral amplitude and unitarize it through the

for operators already present in the Lagrangian, so no new independent parameters appear
beyond masses, couplings, and field renormalizations. Despite introducing LECs, EFTs remain
predictive because higher-order effects are systematically suppressed by powers of 𝐸/Λ, with
Λ the hard energy scale of the EFT.

3The definition of quark masses is subtle, since quarks are confined and cannot be measured
directly. In practice, one adopts a renormalization scheme (typically MS) and quotes scale–
dependent running masses. Here, the classification into light and heavy refers only to their
relative size compared to ΛQCD.
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Bethe–Salpeter equation (BSE), thereby re-summing higher-order contributions
and restoring exact elastic unitarity of the scattering amplitude, in close analogy
with the role of the Schrödinger equation in quantum mechanics. This extension
significantly enlarges the energy range of applicability of the theory and has led
to striking predictions, such as the two-pole nature of the Λ(1405) resonance in
𝐾̄𝑁 scattering [15–18].

Another approximate symmetry of QCD that becomes especially relevant in
the charm and bottom sectors is heavy–quark spin symmetry (HQSS) [19, 20].
The key idea is that, in the limit 𝑚𝑄 ≫ ΛQCD (𝑚𝑄 being the mass of the heavy
quark), the chromomagnetic interactions that flip the heavy quark spin are
suppressed as ΛQCD/𝑚𝑄. Consequently, the spin of the heavy quark decouples
from the light degrees of freedom, which dominate the hadron’s dynamics. This
feature is not unique to QCD: in general, the magnetic moment 𝜇 associated
with a spin 𝑆 scales as 𝜇 ∝ 𝑆/(2𝑚), so in the heavy–mass limit 𝑚 → ∞ spin
interactions vanish (as in the hyperfine splitting of hydrogen). For hadrons
containing a single heavy quark, HQSS predicts nearly degenerate spin doublets.
A paradigmatic example is the pseudoscalar 𝐷 and vector 𝐷∗ mesons (𝑐 ̄𝑞, with

̄𝑞 a light antiquark), which form an HQSS doublet with a splitting of about
140 MeV. For bottom mesons (𝑏̄𝑞), the symmetry is even better realized, with
the 𝐵–𝐵∗ gap reduced to about 45 MeV. This situation is depicted in Fig. 1.1,
where the mass splittings of the lowest lying strange, charm and bottom mesons
are compared. In particular, it is apparent in this figure that this symmetry is
not well realized for the light 𝐾 and 𝐾∗ mesons.

Beyond spin, the heavy–quark limit also implies an approximate heavy–
quark flavor symmetry (HQFS), since replacing one heavy quark by another
leaves the dynamics unchanged up to 1/𝑚𝑄 corrections. Together, these form
the heavy–quark spin–flavor symmetry, which is central to the spectroscopy of
hadrons containing heavy quarks.

The formal framework that embodies these ideas is heavy–quark effective
theory (HQET), developed in the late 1980s and early 1990s, notably by Isgur
and Wise [21, 22]. HQET expands the QCD Lagrangian in powers of 1/𝑚𝑄,
with HQSS and HQFS exact at leading order and systematically broken at
higher orders [19].

In order to describe hadrons that contain both light and heavy quarks,
the principles of ChPT and HQET can be combined into a unified framework.
This is the basis of heavy–hadron chiral perturbation theory (HHChPT) [23–
26], where heavy–light mesons are treated as matter fields transforming under
both heavy–quark spin–flavor symmetry and the chiral symmetry of the light
sector. In this approach, one constructs the most general effective Lagrangian
consistent with both sets of symmetries, expanding systematically in derivatives
and inverse powers of the heavy–quark mass. HHChPT has been widely used
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Mass [GeV]

𝐾0.5

0.6

0.7

0.8

0.9 𝐾∗

∼ 400 MeV

strange

𝐷1.9

2.0 𝐷∗

∼ 140 MeV

charm

𝐵5.3

5.4
𝐵∗

∼ 45 MeV

bottom

Figure 1.1: Illustration of the approximate HQSS in mesons. In the strange
sector, the 𝐾–𝐾∗ splitting is ∼ 400 MeV, showing that HQSS is badly broken.
For charmed mesons, the 𝐷–𝐷∗ splitting is ∼ 140 MeV, while for bottom mesons
the 𝐵–𝐵∗ splitting is only ∼ 45 MeV. Axis breaks indicate that the absolute
masses are not drawn to scale.

to study the interactions of charmed and bottom mesons with pions, kaons, and
other Goldstone bosons, providing a controlled EFT framework that links the
light and heavy sectors.

It is worth stressing the complementarity between HQET and HHChPT.
HQET provides a systematic 1/𝑚𝑄 expansion of QCD for hadrons with a single
heavy quark, independent of the details of the light sector, and is thus ideally
suited for processes where the dynamics is dominated by the heavy quark itself
(e.g. inclusive decays of the heavy hadron or heavy–to–heavy form factors). By
contrast, HHChPT is tailored to the low–energy regime where soft Goldstone
bosons couple explicitly to heavy–hadron fields, specializing to the study of the
interactions among them in the HQSS and chiral limits.

An alternative line of development is the hidden local symmetry or hidden
gauge formalism [27, 28], in which light vector mesons (𝜌, 𝐾∗, 𝐾̄∗ 𝜔, 𝜙) are
introduced as gauge bosons of a hidden local symmetry embedded in the chiral
Lagrangian. This framework provides natural interaction terms for vector
mesons with pseudoscalars and with themselves, and it has been successfully
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extended to include heavy mesons as well [26]. In particular, the hidden gauge
approach has been instrumental in describing hadronic molecules dynamically
generated by meson–meson or meson–baryon interactions, many of which are
prime candidates for exotic hadrons [29–32].

Together, HHChPT and the hidden gauge formalism exemplify how sym-
metry principles can be combined to construct Lagrangians that capture the
interplay between light–quark chiral dynamics and heavy–quark symmetry,
providing versatile tools to investigate the spectroscopy and interactions of
heavy hadrons in both vacuum and medium. The symmetry–based EFT
framework outlined in this section forms the conceptual foundation for the
hadron–hadron interactions studied throughout this thesis.

1.2 The quark model and exotic hadrons
In the early 1960s, the rapid discovery of new hadrons led to a proliferation
of states that required a unifying principle. A major breakthrough came
with the introduction of the Eightfold Way by Gell-Mann and, independently,
Ne’eman [33, 34]. This classification scheme, based on the approximate SU(3)
flavor symmetry of the strong interactions, organized the observed baryons and
mesons into multiplets (octets, decuplets, and singlets) according to their spin,
parity, and flavor quantum numbers such as isospin and strangeness. Among its
most remarkable successes was the prediction of the Ω− baryon, later discovered
in 1964 [35], which completed the baryon decuplet. Shortly after, Gell-Mann
and Zweig proposed the quark model [36, 37], which provided a physical
interpretation of the Eightfold Way by postulating that hadrons are composed
of more fundamental constituents—quarks—transforming as the fundamental
triplet representation of SU(3) flavor. While the quark model provided an
elegant classification of hadrons, quarks themselves remained hypothetical for
several years. Their dynamical nature as real degrees of freedom was not
confirmed until the early 1970s, when deep inelastic scattering experiments
at SLAC revealed point-like constituents inside the proton, soon identified with
quarks [38–40]. Together, these milestones laid the foundation for QCD and
cemented it as one of the central pillars of the Standard Model of particle
physics.

In the classical quark model, mesons are described as quark–antiquark
(𝑞 ̄𝑞) states, while baryons are composed of three quarks (𝑞𝑞𝑞). This simple
scheme, introduced in the 1960s, successfully accounted for the observed hadron
multiplets and provided an intuitive framework for organizing the spectrum.
However, it is now clear that this picture is not the whole story. Experimentally,
there exist states that either cannot be accommodated within the classical
quark configurations or for which such an assignment is rather unnatural. A
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Figure 1.2: Mass spectrum with known 𝐼𝐺(𝐽𝑃𝐶) observed in the charmonium
region. The 𝐷𝐷̄ line shows the open charm threshold. The well-known 𝑐 ̄𝑐
mesons are shown in black. (The 1 1𝐷2 𝜂𝑐2, expected around 3800 MeV, has
not been seen yet.) The established additional observed states are shown in red,
and the states needing confirmation (i.e., omitted from the Summary Tables)
are labeled in green. The blue color denotes exotic isovectors. Source: PDG
2024 review [18], Fig. 15.2.

subset even carries genuinely exotic quantum numbers that are inaccessible to
conventional 𝑞 ̄𝑞 or 𝑞𝑞𝑞 states. Some examples of these states in the charmonium
sector are presented in Fig. 1.2. From the QCD perspective, the only strict
requirement is that hadrons form overall color singlets, which in principle
allows more complex configurations such as tetraquarks (𝑞𝑞 ̄𝑞 ̄𝑞), pentaquarks
(𝑞𝑞𝑞𝑞 ̄𝑞), glueballs (bound states of gluons), hybrids containing valence gluons,
or even hadronic molecules formed by residual interactions between color-singlet
clusters. In practice, these labels are not absolute: different internal configu-
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rations with the same global quantum numbers can mix. For decades, such
exotic structures remained largely speculative, but the recent discovery of a
rich spectrum of candidates—many located near two-hadron thresholds—has
reignited interest and triggered a lively debate on the true nature of these
states.

Of particular historical relevance was the discovery of the 𝜒𝑐1(3872) (for-
merly 𝑋(3872)), first observed by the Belle Collaboration in 2003 in 𝐵 decays
with the final state 𝐽/𝜓 𝜋+𝜋− [41]. Its existence has since been firmly estab-
lished by numerous experiments (BaBar, BESIII, CDF, D0, LHCb) in several
production channels, including 𝑒+𝑒− annihilation, Λ𝑏 decays, and both ̄𝑝𝑝 and
𝑝𝑝 collisions. This narrow state (Γ < 1 MeV) lies right at the 𝐷0𝐷̄∗0 threshold
and decays predominantly into this channel. Its composition is widely believed
to be largely molecular in line with predictions dating back to 1991 [42]. Since
then, many non-𝑐 ̄𝑐 candidates have been reported above the open-charm thresh-
old, often with quantum numbers consistent with charmonium but incompatible
with a pure 𝑐 ̄𝑐 interpretation. In addition, isovector (charged) mesons have
been observed decaying into 𝑐 ̄𝑐 states accompanied by a charged pion or kaon.
For instance, the 1+− 𝑇𝑐 ̄𝑐1(3900)+ (formerly 𝑍𝑐(3900)+) and the 𝑇𝑐 ̄𝑐𝑠1(4000)+

(formerly 𝑍𝑐𝑠(4000)−) cannot be pure charmonia; they are instead consistent
with 𝑐 ̄𝑐𝑢 ̄𝑑 and 𝑐 ̄𝑐𝑠𝑢̄ configurations, respectively. These states may belong to
the same nonet [43, 44], so identifying the missing multiplet members would
provide important clues about their underlying structure.

Outside the charmonium sector, an even more remarkable milestone was
reached with the observation of the doubly charmed 𝑇𝑐𝑐(3875)+ by LHCb [45].
Unlike the 𝜒𝑐1(3872), whose internal structure can still be debated between a
conventional charmonium and an extended molecular configuration (or both),
the 𝑇𝑐𝑐(3875)+ stands out as one of the clearest indications of a genuine
tetraquark-like hadron: its doubly charmed nature necessarily requires a
minimal quark content of four valence quarks (𝑐𝑐𝑢̄ ̄𝑑). This exceptionally
narrow resonance was observed in the 𝐷0𝐷0𝜋+ invariant-mass spectrum, with
a mass 𝑚thr + 𝛿𝑚exp, where 𝑚thr = 3875.09 MeV is the 𝐷∗+𝐷0 threshold and
𝛿𝑚exp = −360 ± 40+4

−0 keV, and a width of only Γ = 48 ± 2+0
−14 keV (see Fig. 1.3).

Its extreme proximity to the 𝐷0𝐷∗+ and 𝐷+𝐷∗0 thresholds strongly favors a
hadronic-molecule interpretation [46–64], although compact tetraquark scenar-
ios had been proposed long before its observation [65, 66]. The exceptional
clarity of the 𝑇𝑐𝑐(3875)+ as a tetraquark-like candidate, together with the
intense theoretical debate it has generated, provides a natural motivation for
this thesis.

With respect to the charm–strange sector, compelling tetraquark-like state
candidates have been also observed. The scalar 𝐷∗

𝑠0(2317)± was first reported
by BaBar in 2003 [67] and soon after confirmed by CLEO together with the axial
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Figure 1.3: Distribution of 𝐷0𝐷0𝜋+ invariant mass where the contribution of
the non-𝐷0 background has been statistically subtracted. Figure taken from
Ref. [45].

𝐷𝑠1(2460)± [68]. Both resonances lie about 45 MeV below the 𝐷𝐾 and 𝐷∗𝐾
thresholds and are extremely narrow, with widths ≲ 4 MeV at 95% C.L. [18].
Their properties raised several puzzles [69]:

1. Their masses are much lower than predicted by the Godfrey and Isgur
quark model [70].

2. The splitting between the 𝐷𝑠1 and 𝐷∗
𝑠0 equals, within a few MeV, the

𝐷∗–𝐷 mass difference.

3. The strange 𝐷∗
𝑠0(2317) is lighter than the non-strange 𝐷∗

0(2300), contrary
to naive quark-mass hierarchy expectations.

These anomalies are naturally explained if the 𝐷∗
𝑠0(2317) and 𝐷𝑠1(2460) are

predominantly 𝐷𝐾 and 𝐷∗𝐾 bound states, respectively [62, 71, 72], an inter-
pretation further supported by LQCD studies [73–76]. Alternative descriptions
in terms of conventional 𝑐 ̄𝑠 mesons, tetraquarks, or mixed configurations have
also been discussed [77–79], but the molecular picture provides a particularly
consistent resolution of the puzzles. As such, the 𝐷∗

𝑠0(2317), discovered
alongside the 𝜒𝑐1(3872), remains a benchmark case for testing ideas about exotic
hadrons and serves as one of the central motivations of this thesis.
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Another possible exotic-like configuration is that of bound states of three
hadrons. The idea that few-hadron systems might bind through residual strong
interactions dates back to the early studies of the deuteron as a two-nucleon
bound state, which naturally suggested the existence of more complex multi-
body configurations. Theoretical interest in three-body bound states grew
with the development of the Faddeev formalism [80] and, later, the fixed-
center approximation (FCA) [81], tools designed to address the complexities
of three-body dynamics. These methods have since been applied to meson–
meson–meson, meson–meson–baryon, and meson–baryon–baryon systems—
systems composed of six, seven and eight valence quarks, respectively—leading
to predictions of bound or resonant states such as the 𝐾𝑁𝑁 [82], 𝐾𝐾𝑁 [83],
𝜙𝐾𝐾 [84], or 𝐷𝐷𝐾 [85] systems. Experimentally, hints of such configurations
have been reported in kaonic nuclei [86–88] and in the heavy-flavor sector,
though their interpretation remains debated. Today, the study of three-body
hadron states is an active line of research, as it provides not only possible new
exotic candidates but also valuable insight into the two-body interactions that
underlie them.

1.3 Hadronic matter in extreme conditions
The second important topic addressed in this manuscript is that of strongly
interacting hadronic matter under extreme conditions of baryon density or
temperature. At sufficiently high temperatures and/or baryon densities,
hadrons are expected to lose their identity and dissolve into their fundamental
constituents, quarks and gluons, forming a new state of matter known as the
quark–gluon plasma (QGP). The existence of this deconfined phase was already
proposed in the mid–1970s [89, 90], only a few years after the formulation of
QCD. Although color confinement forbids the direct observation of isolated
quarks and gluons, asymptotic freedom predicts that inter-quark forces weaken
at high energies, naturally suggesting a transition from the confined hadronic
phase to a deconfined QGP under extreme conditions. Modern LQCD cal-
culations at vanishing baryon density confirm this picture: the transition is
a smooth crossover around 𝑇𝑐 ≃ 155 MeV, accompanied by the approximate
restoration of chiral symmetry for the light quarks [91–93]. At larger baryon
densities, however, the situation remains far less clear. Lattice methods are
hindered by the sign problem, and progress relies on effective models, functional
approaches, and perturbative calculations, which suggest the possible existence
of a first–order transition line terminating at a critical end point (CEP) (see
reviews [94, 95]). The QCD phase diagram may also contain additional regions,
such as color–superconducting phases at asymptotically high densities, relevant
for the interior of neutron stars. Figure 1.4 summarizes this qualitative picture:
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Figure 1.4: Schematic QCD phase diagram in the (𝑇 , 𝜇𝐵) plane. At low baryon
density, LQCD predicts a smooth crossover around 𝑇𝑐 ≃ 155 MeV. At higher
densities, effective models suggest a first–order phase transition terminating
in a critical end point (CEP). The approximate regions probed by heavy–ion
experiments (LHC/RHIC, FAIR/NICA) and by astrophysical observations of
neutron stars are also indicated.

the crossover region probed in heavy–ion collisions at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC), the conjectured
first–order line at higher densities, and the astrophysical domain explored
through neutron–star observations.

From a wider perspective, the study of QCD matter under extreme condi-
tions connects directly to fundamental questions in physics and cosmology. At
very high temperatures, the QGP is believed to have filled the Universe during
its first microseconds after the Big Bang, before cooling led to the formation
of hadrons and, eventually, nuclei. Conversely, the high–density regime, where
baryon chemical potentials become large, is of crucial importance for the physics
of compact astrophysical objects such as neutron stars. The composition of mat-
ter at several times nuclear saturation density—whether in terms of nucleons,
hyperons, deconfined quarks, or more exotic degrees of freedom—determines
the equation of state that governs the mass–radius relation of neutron stars
and plays a central role in the interpretation of multi-messenger signals from
neutron-star mergers (see [96–100] for some reviews). Thus, exploring the QCD
phase diagram in both temperature and density directions is not only a central
goal of hadronic physics, but also provides essential input to cosmology and
astrophysics.

As illustrated in Fig. 1.4, the extreme conditions required for QGP forma-
tion can be recreated in the laboratory through relativistic heavy-ion collisions



12 1. INTRODUCTION

at facilities such as CERN and Brookhaven National Laboratory (BNL). In 2000,
at the end of the heavy-ion program at the Super Proton Synchrotron (SPS),
CERN reported possible evidence for the formation of the QGP in Pb+Pb
collisions [101]. The discovery was firmly established a few years later, in 2005,
through Au+Au collisions at the RHIC at BNL [102–106]. Recently, the study
of the QGP has entered an exciting new era with the heavy-ion program at
the LHC, where the dedicated ALICE experiment—together with CMS and
ATLAS—provides unprecedented opportunities to probe its properties, from
collective flow to jet quenching and quarkonium suppression [107]. Looking
ahead, new facilities such as the Facility for Antiproton and Ion Research
(FAIR, GSI Darmstadt, Germany) [108] and the Nuclotron-based Ion Collider
fAcility (NICA, JINR Dubna, Russia) aim to extend this exploration toward
the high-baryon-density region of the QCD phase diagram.

That high–density frontier, however, remains much more elusive. Even at
lower beam energies, as in the RHIC Beam Energy Scan and the upcoming FAIR
and NICA programs, the created systems are short–lived and hot, complicating
the extraction of equilibrium properties. A central goal of these programs,
already pursued at RHIC and to be further explored at FAIR and NICA, is the
search for signatures of the conjectured critical end point, though no conclusive
evidence has yet been obtained. Complementary information on dense QCD
matter comes from astrophysical observations of neutron stars, whose masses,
radii, and tidal deformabilities constrain the equation of state at several times
nuclear saturation density [109, 110]. An additional and more controlled
laboratory probe is provided by mesonic atoms, exotic bound states where a
meson replaces an electron in the atomic orbit. Precision spectroscopy of kaonic
or pionic atoms, and potentially of heavier systems with open–charm mesons,
offers unique access to the meson–nucleon interaction at threshold and thereby
constrains in–medium hadron properties [111–119] (see also the reviews [98,
120]). Taken together, heavy–ion experiments, astrophysical data, and mesonic
atoms provide complementary windows into the high–density frontier of QCD
matter, although a complete understanding of this regime—including the
possible existence of color–superconducting phases—remains an outstanding
challenge.

From the theoretical point of view, major efforts have been devoted to
understanding strongly interacting matter in both the high–temperature (QGP)
and high–density (nuclear matter) regimes, which complement one another in
the QCD phase diagram. In the density axis, the theoretical study of nuclear
matter has a long history, dating back to the early liquid–drop and shell models
developed in the mid–20th century to describe bulk nuclear properties and the
structure of finite nuclei [121, 122]. The concept of infinite nuclear matter,
introduced as a simplified model in which surface effects are neglected, soon
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became a cornerstone for understanding the saturation properties of the strong
interaction. In the 1950s and 1960s, Brueckner theory and related many–body
approaches were formulated to deal with the short–range repulsion of the
nucleon–nucleon force [123–125], leading to the first microscopic descriptions
of the nuclear equation of state. These early calculations revealed the so–called
Coester band problem [126], highlighting the need for three–body forces to
reproduce empirical saturation properties.

With the advent of QCD, efforts shifted toward linking these phenomeno-
logical models to the underlying theory of strong interactions. Modern ap-
proaches now combine effective field theories, such as chiral EFT for nuclear
forces [127, 128], with sophisticated many–body methods and inputs from lat-
tice QCD [129–131], providing an increasingly systematic description of nuclear
matter across a wide range of densities and isospin asymmetries. This historical
trajectory illustrates the progressive refinement from phenomenological models
to QCD–motivated frameworks, the latter underpinning much of the present
work on hadrons in a dense medium.

On the temperature side, the study of strongly interacting matter has
followed a parallel historical path. Early applications of statistical mechanics
to hadrons led to the concept of the hadron resonance gas, already in use in
the 1960s to describe particle yields in high–energy collisions [132]. The idea of
a limiting (“Hagedorn”) temperature, beyond which the hadronic description
breaks down, was one of the first hints of a new phase of matter. With the
advent of QCD, these ideas were placed on a firmer footing: finite–temperature
field theory was developed through both real–time and imaginary–time (Mat-
subara) formalisms [133, 134], providing systematic tools to compute thermal
correlators and spectral functions. Numerical LQCD calculations at finite
temperature later established the existence of a smooth crossover around
𝑇𝑐 ≃ 155 MeV [92, 93], where deconfinement and chiral symmetry restoration
occur simultaneously.

These advances have shaped our modern understanding of hot QCD matter,
from the equation of state to transport properties such as viscosities and
diffusion coefficients. In parallel, effective theories and models—including
thermal extensions of chiral perturbation theory, unitarized approaches, and
quasi-particle models—have been developed to describe hadronic excitations
in the medium and their dissolution near 𝑇𝑐. This historical trajectory, much
like that of nuclear matter at high density, illustrates the refinement from early
thermodynamical models to fully QCD–based approaches, which form the basis
for the finite–temperature studies carried out in this thesis.





2

Properties of exotic mesons in
nuclear matter

2.1 Introduction
During the last two decades, hadron spectroscopy has been revolutionized by the
discovery of a plethora of exotic states, which could not be easily accommodated
within conventional constituent quark model states. The charmonium-like
sector—the so-called 𝑋𝑌 𝑍 family—has experienced a decisive progress after the
pioneering observation of the 𝜒𝑐1(3872) [41]. Since then, LHCb has expanded
the landscape with the discovery of the pentaquark candidates 𝑃𝑐 and 𝑃𝑐𝑠
[135–139], as well as with new exotic mesons, such as the 𝑇𝑐𝑠(2900) [140,
141] and the doubly charmed tetraquark-like 𝑇𝑐𝑐(3875)+ [45, 142]. These ad-
vances have sparked vigorous discussions about their underlying structure, with
interpretations ranging from compact multiquark configurations (tetraquarks
or pentaquarks) and hadro-quarkonium to loosely bound hadronic molecules,
kinematical cusps, or various hybrids of these pictures (see, e.g., Refs. [46,
143–148] for relevant reviews).

As discussed in the Introduction, among these exotic states, the recently
discovered 𝑇𝑐𝑐(3875)+ has attracted a strong interest from the hadronic com-
munity, since it is one of the clearest examples of a state with a minimum quark
content of four quarks. This exceptionally narrow resonance was observed in
the 𝐷0𝐷0𝜋+ invariant-mass spectrum, with its mass sitting very close to the
𝐷0𝐷∗+ and 𝐷+𝐷∗0 thresholds (cf. Fig. 1.3) [45]. This fact strongly favors
a hadronic-molecule interpretation [46–64], although a compact tetraquark
picture was proposed well before its discovery [65, 66]. In any case, the
near-threshold nature of the signal implies that hadronic degrees of freedom
must be explicitly included when analyzing experimental data [146].

Further experimental inputs on this state are highly desirable in order to

15
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clarify its nature. In particular, heavy-ion collision femtoscopic correlation
functions for the 𝐷0𝐷∗+ and 𝐷+𝐷∗0 channels have emerged as promising tools
to disentangle relevant dynamical details of its structure. Some analyses have
already been carried out for the 𝑇𝑐𝑐(3875)+, first with coordinate-space wave
functions and potentials in Ref. [149], and more recently using momentum-space
interactions in Ref. [150]. Another alternative way to probe the structure of
the 𝑇𝑐𝑐(3875)+ is to study how it behaves under the extreme densities and
temperatures achieved in heavy-ion collisions at RHIC, the LHC, or the forth-
coming FAIR facility. Similar investigations have already been carried out for
the 𝜒𝑐1(3872). Using a coalescence model, the ExHIC Collaboration [151–153]
showed that treating the 𝜒𝑐1(3872) as a 𝐷𝐷∗ molecule leads to production
yields far exceeding those expected for a compact tetraquark, especially once
the hadronic phase is included [154, 155], because molecular configurations
induce larger production and absorption cross sections in the hadronic medium.
The nature of this exotic state has also been explored with instantaneous
coalescence models [156, 157], a statistical hadronization approach [158, 159],
and a thermal-rate equation scheme [159], although these studies neglected
possible in-medium modifications of the 𝜒𝑐1(3872) in the hadronic phase. Such
medium effects have since been incorporated in calculations that embed the
𝜒𝑐1(3872) in a hot meson bath [160, 161] and in cold nuclear matter [162];
related QCD sum-rule analyses have examined the mass shifts of heavy exotics
such as the 𝜒𝑐1(3872) and 𝑍𝑐(3900) [163, 164].

Another extremely relevant tetraquark-like candidate is the 𝐷∗
𝑠0(2317)±,

first reported by BaBar in 2003 [67] and soon confirmed by CLEO, together
with the 𝐷𝑠1(2460)± [68]. Both resonances lie roughly 45 MeV below the 𝐷𝐾
and 𝐷∗𝐾 thresholds, respectively, and far below the quark model expectations
[70, 165–170]. Both states are isoscalar, with quantum numbers 𝐼(𝐽𝑃) = 0(0+)
for the 𝐷∗

𝑠0 and 0(1+) for the 𝐷𝑠1, so their only allowed strong decays are the
isospin-violating channels 𝐷(∗)

𝑠 𝜋, resulting in widths below 4 MeV at 95% C.L.
[171].

Similarly to the 𝑇𝑐𝑐, numerous theoretical scenarios have been put forward
to explain the structure of the 𝐷∗

𝑠0(2317). Conventional 𝑐 ̄𝑞 quark model
scenarios [77, 172–177], compact tetraquark 𝑐𝑞 ̄𝑞 ̄𝑞 configurations [78, 178–182],
molecular heavy–light meson approaches [71, 72, 143, 183–194], and hybrid
pictures combining quark model, tetraquark, and molecular components [79,
195–197] have been considered. Lattice-QCD studies have also been pivotal.
Early simulations that used only 𝑐 ̄𝑠 interpolators obtained masses above the
physical value [198, 199], whereas later calculations that included two-meson
operators reproduced the experimental masses of both 𝐷∗

𝑠0(2317) and 𝐷∗
0(2300)

resonances [73–75, 200]. The HadSpec Collaboration [76] recently provided a
detailed description of the isoscalar 𝐷𝐾 and 𝐷𝐾 scattering amplitudes and
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the 𝐷∗
𝑠0(2317) pole, in agreement with the unitarized Heavy meson ChPT

(HMChPT) framework of Ref. [72]. This latter scheme also reproduces the
low-lying lattice levels reported in [201], supporting a two-pole structure in the
𝐷∗

0(2300) region, a picture reinforced by the latest HadSpec results [202] and
by high-precision LHCb analyses of 𝐵− → 𝐷+𝜋−𝜋− and 𝐵0

𝑠 →𝐷0𝐾−𝜋+ decays
[203, 204] interpreted in Ref. [69]. Given this sustained interest, complementary
probes, such as femtoscopic correlation functions for the relevant channels, have
been proposed in [205–208].

In summary, the internal structure of exotic tetraquark candidates—
particularly the 𝑇𝑐𝑐(3875) and the 𝐷∗

𝑠0(2317)—has captivated the hadronic
community for over two decades, because it challenges the theoretical foun-
dations of the description of the hadron spectrum. In this chapter, we examine
how the properties of these states (and their corresponding antiparticles) are
modified when they are embedded in nuclear matter for a range of Weinberg
compositeness scenarios [209]. The key idea is that the molecular components
(𝐷∗𝐷 and 𝐷∗ 𝐷 for the 𝑇 +

𝑐𝑐 and 𝑇 −
̄𝑐 ̄𝑐; 𝐷𝐾 and 𝐷 𝐾 for the 𝐷∗+

𝑠0 and 𝐷∗−
𝑠0 ,

respectively) will be renormalized differently, since the medium induces a
charge-conjugation asymmetry. Given the very different meson-nucleon and
antimeson-nucleon interactions, especially for the 𝐾𝑁 and 𝐾𝑁 case, we predict
characteristic density-dependent differences between the in-medium spectra of
𝑇𝑐𝑐(3875)+ and 𝐷∗

𝑠0(2317)+ on the one hand, and their antiparticles 𝑇 ̄𝑐 ̄𝑐(3875)−

and 𝐷∗
𝑠0(2317)− on the other—differences that should grow with increasing

density. Experimental confirmation of such patterns would strongly support
dominant molecular components.1 A preliminary dense-matter study of the
𝐷∗

𝑠0(2317)+ (but not of its antiparticle) appears in Ref. [210], while thermal-
medium effects on the 𝐷∗

0(2300) have been analyzed in Ref. [211] within the
NLO-HMChPT framework, finding no particle–antiparticle asymmetry because
𝐷(∗)𝜋 and 𝐷(∗)𝜋 (and likewise 𝐾𝜋 and 𝐾𝜋) interactions are identical in the
SU(2) limit. Chapter 4 complements the present study on dense matter by
exploring how a hot pionic bath, which does not induce charge conjugation
asymmetry, affects 𝑇𝑐𝑐(3875)±.

The present chapter is structured as follows: First, in Sect. 2.2 we introduce
the concept of nuclear matter and the in-medium nucleon propagator. Next, in
Sect. 2.3 we discuss, in a general way, how the properties of any meson change
when it is embedded in a dense nuclear medium. In particular, we introduce the
important concepts of self-energy and spectral functions, and show the results
obtained in the literature for the finite-density modifications of the 𝐷, 𝐷∗ and
𝐾 mesons (as well as their charge-conjugation partners)—since these are the
building blocks of the molecular states we study in this Thesis. In Sect. 2.4 we

1A density-driven particle–antiparticle asymmetry of this type would likely be different for
compact configurations.
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analyze how to describe two-meson molecular states in nuclear matter. We first
discuss the dynamical generation of such states in vacuum, and introduce the
concept of molecular probability, and afterwards we describe how the presence
of the dense nucleonic medium alters these states, both from the scattering
matrix and from the self-energy points of view. In Sects. 2.5 and 2.6, we show
and discuss the obtained finite-density results for the 𝑇𝑐𝑐 and 𝐷∗

𝑠0, respectively,
focusing on the comparison between the two charge-conjugated partners in each
case. We also analyze the situation for the respective HQSS partners of both the
𝑇𝑐𝑐(3875) and the 𝐷∗

𝑠0(2317). Finally, we provide our conclusions in Sect. 2.7.

2.2 Brief overview of nuclear matter
This section is based on the classic books by Fetter & Walecka [212], and
Mattuck [213]. Let us start by briefly defining what nuclear matter is. For this,
let us consider the ‘semi-empirical mass formula’ for the nuclear binding energy
by Weizsäcker:

𝐸(𝑁, 𝑍) = − 𝑎1𝐴⏟
nuclear
forces

+ 𝑎2𝐴2/3⏟
surface

correction

+ 𝑎3𝑍2𝐴−1/3⏟⏟⏟⏟⏟
Coulomb
correction

+ 1
4𝑎4(𝑁 − 𝑍)2/𝐴⏟⏟⏟⏟⏟⏟⏟

Pauli principle
correction

, (2.1)

where 𝑍 and 𝑁 are the number of protons and neutrons, respectively, and
𝐴 = 𝑍 + 𝑁 is the mass number. The different 𝑎𝑖’s are parameters that
must be fitted to known nuclear masses. In the first term, −𝑎1 represents
the binding energy of a single nucleon within the nucleus (i.e., away from the
surface), because of the attractive nuclear forces, which is around −15.9 MeV.
The remaining terms are corrections to this value arising from, in order of
appearance: the existence of the surface of the nucleus, the Coulomb repulsion
between protons, and the exclusion principle. Next, let us imagine then a system
where there are so many nucleons that the surface correction is negligible,
where the Coulomb force is negligible, and where the number of protons is
equal to the number of neutrons (total isospin zero). In such a simple system,
we would see that the total energy is proportional to the number of nucleons
𝐴. This hypothetical system, consisting of a large number of protons and an
equal number of neutrons interacting only through nuclear forces, is the usual
definition for nuclear matter. Furthermore, isotropy is also requested for this
system, so that the total spin must be zero. The fact that the system is very
large in size—ideally infinite—makes it homogeneous, a property which imposes
both total energy and total momentum conservation. However, the presence of
this medium breaks Lorentz invariance as it defines a privileged frame, in which
the medium is at rest.

When considering a many-body system made out of fermions—like the
nucleons in nuclear matter—the most important feature is the appearance
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of allowed and forbidden states due to Pauli’s exclusion principle. If we
consider the fermions to be non-interacting, these allowed/forbidden states can
be characterized by a given momentum 𝑘𝐹 (the Fermi momentum) and by some
temperature through the Fermi-Dirac distribution. However, in nuclear physics,
thermal agitation is generally very small compared to the typical energy scale,
and thus it can be safely neglected. Then, at zero temperature, we can write
the following relation between the density 𝜌 and the Fermi momentum:

𝜌 = 𝐴
𝑉

= ∑
𝛼

∫ 𝑑3𝑘
(2𝜋)3 𝑛𝛼(𝑘⃗) = 4 ∫ 𝑑3𝑘

(2𝜋)3 Θ (𝑘𝐹 − |𝑘⃗|) = 2
3𝜋2 𝑘3

𝐹. (2.2)

In Eq. (2.2) 𝑛𝛼(𝑘⃗) represents the occupation number of the state with spin
and isospin characterized by 𝛼 and momentum 𝑘⃗, which corresponds to the
Fermi-Dirac distribution at zero temperature.2

2.2.1 Nucleon propagator in nuclear matter

As a simple example of how Pauli blocking modifies the behavior of a Fermi
gas even in the absence of interactions, let us examine the nucleon propagator
in nuclear matter. We start from the expansion in terms of free Dirac spinors
of the nucleon field, written as (x = (𝑡, ⃗𝑥))

𝜓𝛼(x) = ∫ 𝑑3𝑝
(2𝜋)3

1
√2𝜔𝑝

[𝑐𝛼( ⃗𝑝) 𝑢𝛼( ⃗𝑝) 𝑒−𝑖p⋅x + 𝑑†
𝛼( ⃗𝑝) 𝑣𝛼( ⃗𝑝) 𝑒𝑖p⋅x] , (2.3)

where 𝜔𝑝 is the on-shell energy of a nucleon with three–momentum ⃗𝑝, its
four-momentum is denoted as p = (𝜔𝑝, ⃗𝑝). 𝑢𝛼( ⃗𝑝) and 𝑣𝛼( ⃗𝑝) are the Dirac
spinors for the particle and antiparticle solutions, and 𝑐(†)

𝛼 ( ⃗𝑝) and 𝑑(†)
𝛼 ( ⃗𝑝) denote

the corresponding annihilation (creation) operators. The index 𝛼 labels the
spin and isospin degrees of freedom. These operators obey the following
anti-commutation relations:

{𝑐𝛽( ⃗𝑝), 𝑐†
𝛼( ⃗𝑝 ′)} = {𝑑𝛽( ⃗𝑝), 𝑑†

𝛼( ⃗𝑝 ′)} = (2𝜋)3𝛿( ⃗𝑝 − ⃗𝑝 ′)𝛿𝛽𝛼, (2.4)

2Another way to write Eq. (2.2) is

𝜌 = ∫ 𝑑𝜀 𝑔(𝜀)𝑛(𝜀).

where 𝑔(𝜀) is the degeneracy of the energy level 𝜀, which for a Fermi gas of spin 1/2 and
isospin 1/2 particles reads:

𝑔(𝜀) = 4 ∫ 𝑑3𝑘
(2𝜋)3 𝛿 (𝜀 − 𝑘2

2𝑚
) .
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and all the other possible combinations are zero.
We are considering that there is a Fermi sea of nucleons that fills all possible

states up to some Fermi momentum 𝑘𝐹. Therefore, the fundamental state of
the system is no longer the quantum vacuum |0⟩, but a state |Ψ0⟩ with a given
density of non-interacting particles (a Fermi gas). In this situation, we change
the notation:

{
𝑝 > 𝑘𝐹 → 𝑐𝛼( ⃗𝑝) ≡ 𝑎𝛼( ⃗𝑝),

𝑝 < 𝑘𝐹 → 𝑐𝛼( ⃗𝑝) ≡ 𝑏†
𝛼( ⃗𝑝),

(2.5)

where 𝑝 ≡ | ⃗𝑝|. This notation makes it apparent that the operator 𝑐𝛼( ⃗𝑝), which
annihilates a particle, can also be thought of as creating a hole when applied
with 𝑝 below the Fermi momentum. Similarly,

{
𝑝 > 𝑘𝐹 → 𝑐†

𝛼( ⃗𝑝) ≡ 𝑎†
𝛼( ⃗𝑝),

𝑝 < 𝑘𝐹 → 𝑐†
𝛼( ⃗𝑝) ≡ 𝑏𝛼( ⃗𝑝).

(2.6)

In other words, 𝑐†
𝛼( ⃗𝑝) can be reinterpreted to destroy a hole, and thus be-

comes 𝑏𝛼( ⃗𝑝) if applied with momentum within the Fermi sea. From the
anti-commutation relations of Eq. (2.4) we deduce

{𝑎𝛽( ⃗𝑝), 𝑎†
𝛼( ⃗𝑝 ′)} = {𝑏𝛽( ⃗𝑝), 𝑏†

𝛼( ⃗𝑝 ′)} = (2𝜋)3𝛿( ⃗𝑝 − ⃗𝑝 ′)𝛿𝛽𝛼 (2.7)

while all the other combinations vanish. In particular, we have the following.

{𝑎𝛽( ⃗𝑝), 𝑏𝛼( ⃗𝑝 ′)} = {𝑐𝛽( ⃗𝑝)|𝑝>𝑘𝑓
, 𝑐†

𝛼( ⃗𝑝 ′)|𝑝′<𝑘𝐹
} = (2𝜋)3𝛿( ⃗𝑝 − ⃗𝑝 ′)𝛿𝛽𝛼 = 0,

{𝑎†
𝛽( ⃗𝑝), 𝑏†

𝛼( ⃗𝑝 ′)} = {𝑐†
𝛽( ⃗𝑝)|𝑝>𝑘𝑓

, 𝑐𝛼( ⃗𝑝 ′)|𝑝′<𝑘𝐹
} = (2𝜋)3𝛿( ⃗𝑝 − ⃗𝑝 ′)𝛿𝛽𝛼 = 0,

(2.8)

due to the fact that ⃗𝑝 and ⃗𝑝 ′ are different by the definition of the operators 𝑎
and 𝑏. With all of these, we can rewrite the field of Eq. (2.3) as

𝜓𝛼(x) = ∫ 𝑑3𝑝
(2𝜋)3

1
√2𝜔𝑝

{[𝑛𝛼( ⃗𝑝)𝑏†
𝛼( ⃗𝑝) + (1 − 𝑛𝛼( ⃗𝑝))𝑎𝛼( ⃗𝑝)]𝑢𝛼( ⃗𝑝)𝑒−𝑖p⋅x

+ 𝑑†
𝛼( ⃗𝑝)𝑣𝛼( ⃗𝑝)𝑒𝑖p⋅x}. (2.9)

In the one-particle case, we can create a particle from vacuum and annihilate
it from a non-vacuum state. However, in the presence of a Fermi sea, the
fundamental difference is that we cannot create particles with energies below
the Fermi energy of the sea (alt. we cannot annihilate holes with energy above
the Fermi energy). Since there is no Fermi sea of antiparticles, the antiparticle
part of the field remains unchanged.
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Even for non-interacting nucleons, Pauli blocking still produces a measur-
able effect on a system with many nucleons. For example, it is well known
that the requirement for the total wave function to be antisymmetric yields
an expectation value for the distance between two identical particles that is
different from the one obtained in the classical, distinguishable particle scenario.
If the spatial part of the wave function is antisymmetric, then the separation of
the two particles is greater than in the distinguishable case. In contrast, if the
spatial part is symmetric, then it is more probable to find the particles closer
to each other. This phenomenon is known in the literature as the exchange
force, as it can be interpreted as some kind of attractive or repulsive interaction
between fermions. However, this “force” does not arise from any of the four
basic interactions, but from the statistical properties of the system.

From the field in Eq. (2.9) one can compute the Feynman propagator of a
nucleon in nuclear matter with the Pauli blocking effects implemented. This
results in the expression

𝐺𝛽𝛼(𝑝0, ⃗𝑝) = 1
2𝜔𝑝

{[1 − 𝑛𝛼(𝑝)] �p
′ + 𝑚𝑁

𝑝0 − 𝜔𝑝 + 𝑖𝜀
+ 𝑛𝛼(𝑝) �p

′ + 𝑚𝑁
𝑝0 − 𝜔𝑝 − 𝑖𝜀

+ �p
′′ − 𝑚𝑁

𝑝0 + 𝜔𝑝 − 𝑖𝜀
} 𝛿𝛽𝛼, (2.10)

where p′ = (𝜔𝑝, ⃗𝑝) and p′′ = (𝜔𝑝, − ⃗𝑝). In this expression, we can see that
the spin and isospin dependence of the propagator, encoded in the 𝛼 and 𝛽
quantum numbers, is trivial. The first term in this propagator is associated to
particles above the Fermi energy, the second term represents the propagation
of holes below the Fermi energy, and the third term describes the propagation
of antiparticles. Since there is no a Fermi sea of antiparticles, it is evident
that the antiparticle part remains unmodified, as was already noted in the field
definition of Eq. (2.9).

The expressions that have been presented here are valid for a system of
non-interacting fermions. When considering the interactions between them,
their propagators get renormalized and their quasi-particle nature arises.3

3The concept of quasi-particle is commonly used in many-body theory. The physical idea
is that when a particle enters a many body system, it interacts strongly with the particles in
its vicinity, and the latter create a “cloud” around the original particle. This happens, for
example, in the case of a positive ion propagating through water. This positive ion attracts a
cloud of negative ions and then propagates (almost freely, although with a different effective
mass) through the medium. This new system (particle + cloud), which is weakly interacting
with other particles, is what is understood as a quasi-particle. Mathematically, quasi-particles
can be thought of as a new set of degrees of freedom of the system, chosen in such a way that
the interactions among them are minimal. This is the idea behind renormalization in quantum
field theory. A more detailed (and stimulating!) discussion on the concept of quasi-particles
can be found in the first few chapters of Mattuck’s book [213].



22 2. PROPERTIES OF EXOTIC MESONS IN NUCLEAR MATTER

Different approximations for the interactions between them lead to different
results for the ground-state energy of the system, the nucleon self-energies, and
other properties. For example, for low-density nuclear matter, the interaction
between nucleons can be approximated by summing up only the contributions
from the so-called ladder diagrams. This affects the form of the 𝑛𝛼 distribution
to some degree, typically smoothing out a bit the sharp step function.4 However,
for our purposes, there is no special need to consider these interactions. In
reality, if the nuclear matter system is taken to have a density equal to that
of heavy nuclei at their center (the so-called normal nuclear density 𝜌0 = 0.17
fm−3), the mean separation between two nucleons is about 2 fm. We can
compare this with the interaction range of the strong force, which is given
by the inverse mass of the pion and is about 𝑟strong ∼ 1.4 fm. Since the
separation is around 1.5 times the interaction range, one expects that the
attractive interaction can be regarded as ‘weak’, in the sense that the errors
introduced by the omission of this interaction will be less than—or comparable
to, at most—the systematic uncertainties of other parts of our calculation.

In the following sections, we shall not deal anymore with the well-studied
topic of nuclear matter. There are many references in which the properties of
this system have been discussed, e.g. in [212, 213]. We will instead switch to
the subject of heavy mesons in nuclear matter, which is the main focus of this
part of the thesis, and it is necessary to discuss the results that will be shown
for the exotic states 𝑇𝑐𝑐(3875) and 𝐷∗

𝑠0(2317) in Sects. 2.5 and 2.6.

2.3 Meson self-energies in nuclear matter
In this section, we address the question of how the properties of mesons change
when they are immersed in a dense nuclear medium at zero temperature. For
any particle species other than nucleons, the modifications they experience
cannot come from Pauli blocking effects due to the presence of a Fermi sea.
Instead, the nuclear-matter modifications come from the interactions of the
particles with the nucleons in the medium. We illustrate this by discussing first
how the propagator changes.

Let Δ0 be the propagator of a certain meson 𝑀 in the free space—that is,
in vacuum,

Δ0(𝑝0, ⃗𝑝) = 1
(𝑝0)2 − ⃗𝑝2 − 𝑚2

𝑀 + 𝑖𝜀
, (2.11)

where 𝑚𝑀 is the mass of the meson. We will represent this free propagation as
4It can be shown that the interactions between the particles cannot completely remove the

discontinuity of the zero-temperature step function distribution. What they do is reduce its
magnitude to some value < 1. Therefore, the Fermi surface exists even for an interacting
system at zero-temperature (see Sect. 11.3 of Ref. [213]).
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a dashed line in Feynman diagrams. In the presence of the nuclear medium,
there will be some non-zero probability—or, in quantum terms, some probability
amplitude—that it will scatter with one of the nucleons. We shall represent this
interaction as a square, and the associated vertex will be parameterized with
a function 𝑡𝑀𝑁. The free propagation of the nucleon, with which the meson
interacts, will be represented by a solid line. Up to first order in perturbation
theory, the only possible diagram will be given by the one represented in Fig. 2.1.
At higher orders, it is possible to draw many more diagrams that contain more
than one vertex −𝑖𝑡𝑀𝑁 and more than one nucleon loop. Depending on which
diagrams are kept and which are neglected, different approximations to the
interaction between the meson 𝑀 and the nucleons can be built.5 The physical
interpretation of the diagram in Fig. 2.1 is that the meson 𝑀 knocks out a
nucleon 𝑁 from the ground-state with momentum 𝑞 < 𝑘𝑓 and knocks it back in
instantly. This process is known as forward scattering. Although at first sight
the meson’s momentum appears unchanged by the collision—suggesting no net
effect—the process nevertheless produces a genuine change. This change will
be parameterized by a new effective mass and decay width, as we shall see.

M

M

N−itMN

Figure 2.1: Bubble diagram for the forward scattering of a meson 𝑀 on a
nucleon 𝑁 (increasing time taken in the up direction).

The diagram of Fig. 2.1 can be translated into an integral using the standard
set of Feynman rules (e.g., see Table 9.1 in Ref. [213]), and thus one can directly
evaluate the amplitude using the in-medium propagator for the nucleon in
Eq. (2.10). For a meson 𝑀 with a four-momentum p = (𝑝0, ⃗𝑝), this integral

5Some of these approximations are historically important, and they are given a name.
Examples are the Hartree approximation, which considers only forward-scattering diagrams
like the one shown in Fig. 2.1, or the Hartree-Fock, which also considers exchange diagrams
(only possible with identical particles), etc.
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reads

= [𝑖Δ0(𝑝0, ⃗𝑝)]2 (−1) ∫ 𝑑4𝑞
(2𝜋)4 𝑖𝐺𝑁(𝑞0, ⃗𝑞)[−𝑖𝑡𝑀𝑁 (𝑝0 + 𝑞0, ⃗𝑝 + ⃗𝑞)] (2.12)

where 𝑞0 and ⃗𝑞 are the energy and the three-momentum of the nucleon
(respectively) running inside the loop. Note the extra (−1) factor arising from
the closed fermion loop. We shall leave the spin structure of this amplitude
aside for now, and will come back to it in Sect. 2.3.3. Factoring out the external
propagators of the 𝑀 meson, we are left with the following quantity:

− ∫ 𝑑4𝑞
(2𝜋)4 𝐺𝑁(𝑞0, ⃗𝑞) 𝑡𝑀𝑁 (𝑝0 + 𝑞0, ⃗𝑝 + ⃗𝑞) . (2.13)

This integral has a divergent vacuum contribution and a non-divergent density-
dependent contribution, stemming from the vacuum and in-medium parts of
the nucleon propagator 𝐺𝑁 of Eq. (2.10), respectively. In the non-relativistic
limit, we can write the nucleon propagator as

𝐺𝑁(𝑞0, ⃗𝑞) =

vacuum part
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1
𝑞0 − 𝜔𝑞 + 𝑖𝜀

− 1
𝑞0 + 𝜔𝑞 − 𝑖𝜀

+ 𝑛(𝑞) ( 1
𝑞0 − 𝜔𝑞 − 𝑖𝜀

− 1
𝑞0 − 𝜔𝑞 + 𝑖𝜀

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

in-medium part

. (2.14)

In the evaluation of the diagram of Fig. 2.1 we will only keep the density-
dependent part, which will introduce the nuclear medium modifications to the
meson propagator. Consider now the customary prescription

1
𝑥 − 𝑥0 ∓ 𝑖𝜀

= PV 1
𝑥 − 𝑥0

± 𝑖𝜋𝛿(𝑥 − 𝑥0), (2.15)

with PV denoting the principal value of the integral. With this, we can simplify
the density-dependent part of nucleon propagator, obtaining

𝐺𝑁(𝑞0, ⃗𝑞) = 1
𝑞0 − 𝜔𝑞 + 𝑖𝜀

− 1
𝑞0 + 𝜔𝑞 − 𝑖𝜀

+ 2𝜋𝑖 𝑛(𝑞)𝛿(𝑞0 − 𝜔𝑞). (2.16)

Introducing now the in-medium part of the nucleon propagator into the expres-
sion of Eq. (2.13) and integrating over 𝑞0, one finds
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− ∫ 𝑑4𝑞
(2𝜋)4 𝑛(𝑞)2𝜋𝑖𝛿(𝑞0 − 𝜔𝑞)𝑡𝑀𝑁 (𝑝0 + 𝑞0, ⃗𝑝 + ⃗𝑞)

= −𝑖 ∫ 𝑑3𝑞
(2𝜋)3 𝑛(𝑞) 𝑡𝑀𝑁 (𝑝0 + 𝜔𝑞, ⃗𝑝 + ⃗𝑞) ,

and therefore, the lowest-order in-medium meson self-energy reads

−𝑖Π(𝑝0, ⃗𝑝) = −𝑖 ∫
𝑞<𝑘𝐹

𝑑3𝑞
(2𝜋)3 𝑡𝑀𝑁 (𝑝0 + 𝐸𝑁 ( ⃗𝑞 2) , ⃗𝑝 + ⃗𝑞) . (2.17)

Note that this quantity is actually independent of the direction of ⃗𝑝. However,
in our notation, we choose to keep the vector symbol ( )⃗ to avoid any possible
confusion with the four-momentum (denoted here by a bold letter).

= + + + + (· · · )

Figure 2.2: Dressed propagator of the meson 𝑀 in the nuclear medium.

In order for the total probability to add up to one—or, in other words,
for elastic unitarity to be fulfilled—we need to consider that there is some
probability amplitude that the meson 𝑀 scatters with two, three, or more
nucleons one after another. These processes will be less probable than the one
presented in Fig. 2.1, but will nonetheless contribute to the total probability
amplitude. One can draw Feynman diagrams describing these processes and
sort them in ascending numbers of loops, and then proceed to their sum, as in
Fig. 2.2. The sum of all these amplitudes is usually referred to as the dressed
or renormalized propagator of the 𝑀 meson, and we shall represent it with a
double dashed line, and with the function Δ𝜌, where 𝜌 is the nucleon density.
We can translate the diagrams of Fig. 2.2 into equation form and write

Δ𝜌 = Δ0 + Δ0ΠΔ0 + Δ0ΠΔ0ΠΔ0 + Δ0ΠΔ0ΠΔ0ΠΔ0 + ⋯ . (2.18)

Given that the loop identified with Π(𝑝0, ⃗𝑝) in Eq. (2.17) can be factored
out on every diagram in the infinite series of Fig. 2.2, or equivalently on every
term of Eq. (2.18), the series can be rewritten as a geometric series. Applying
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the well-known result for the sum of a geometric series, one ends up with the
standard Dyson’s equation for the dressed propagator of the meson 𝑀:

Δ𝜌(𝑝0, ⃗𝑝) = 1
[Δ0(𝑝0, ⃗𝑝)]−1 − Π(𝑝0, ⃗𝑝)

. (2.19)

The quantity Π(𝑝0, ⃗𝑝) of Eq. (2.17) is known as the (irreducible) self-energy of
𝑀.6 Since the self-energy is, in general, a complex quantity, it will introduce a
certain mass shift and a width to the meson 𝑀 inside of the nuclear medium,
defined by the following equation

(𝑚𝜌
𝑀)2 = 𝑚2

𝑀 + Π (𝑚𝜌
𝑀, ⃗0) . (2.20)

This equation for 𝑚𝜌
𝑀 is, in practical terms, difficult to solve. Given that the

quantity 𝑚𝜌
𝑀 will generally be a complex quantity, one would need to define the

self-energy for complex values of its energy variable. However, we can get a first
approximation of 𝑚𝜌

𝑀 by setting the energy argument of Π to be the mass of
the meson in the vacuum, 𝑚𝑀. Since the self-energy (both real and imaginary
parts) will be small compared to the mass of the 𝑀 meson—otherwise, the
whole formalism of quasi-particles would be meaningless—we can write

𝑚𝜌
𝑀 ≃ 𝑚𝑀 + Π(𝑚𝑀, ⃗0)

2𝑚𝑀
. (2.21)

The quantity Π(𝑝0, ⃗𝑝)/2𝑚𝑀 is often referred to as optical potential. From this
equation, we find that, as a first approximation, the mass of the meson is shifted
by an amount given by

Δ𝑚𝜌
𝑀 = Re Π(𝑚𝑀, ⃗0)

2𝑚𝑀
, (2.22)

and that it develops a width given by

Γ𝑀
2

= − Im Π(𝑚𝑀, ⃗0)
2𝑚𝑀

. (2.23)

The self-energy also introduces a modification to the field normalization (the
factor 1 appearing in the numerator of the propagator), which is often written
in quantum field theory textbooks as 𝑍. We will discuss the value of this
normalization parameter in the following sections.

It is important to stress that the self-energy Π(𝑝0, ⃗𝑝) defined in Eq. (2.17)
incorporates only the effects of the nuclear medium. In particular, it arises

6The term irreducible self-energy indicates that the diagram cannot be separated into two
independent parts. In contrast, a reducible contribution, such as the Δ0ΠΔ0ΠΔ0 term in
Eq. (2.18), can be decomposed into two successive Π insertions.
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from the interactions of the meson with the real nucleons of the Fermi sea, and
does not include the vacuum self-energy generated by virtual nucleon loops. In
the absence of a medium, the nucleon Fermi momentum vanishes, the integral
in Eq. (2.17) is zero, and the propagator reduces to the free form Δ0(𝑝0, ⃗𝑝),
whose physical mass already contains the vacuum self-energy contribution
through renormalization. Since this contribution is absorbed in the parameters
of the effective Lagrangian—notably the 𝑀-meson mass and its coupling to
nucleons—the self-energy of Eq. (2.17) appearing in the in-medium propagator
of Eq. (2.19) accounts exclusively for observable modifications induced by the
nuclear environment.

2.3.1 Computing the self-energy

In the previous section, we have seen that the self-energy of Eq. (2.17) is the
key quantity that defines how the propagator of a meson changes when it is
embedded in a nuclear medium. However, we have not given many details about
how to actually compute this quantity, beyond giving a general expression for
it. Although it may appear to be a rather simple computation, this is really
not the case. In particular, the meson-nucleon interaction, parameterized by
the function 𝑡𝑀𝑁, will also depend on the density. As it turns out, the equation
for the density-dependent self-energy of Eq. (2.17) represents a self-consistent
equation to determine the meson in-medium spectral properties. This has been
studied in many works in the literature, e.g. see Refs. [214–216]). Since we will
be using the results from the mentioned references, we will briefly discuss these
calculations in this section.

Let us assume some interaction kernel, namely 𝑣𝑀𝑁, describing the two-
body interaction in 𝑆−wave of the 𝑀 meson with a nucleon. This interaction
is usually derived from an appropriate EFT such as ChPT or HHChPT. We
will go into more details of this interaction when discussing the specific mesons
that we consider for our calculations (𝐷, 𝐷∗ and 𝐾) in the following sections.
Using this interaction, one can obtain a first approximation to the meson
self-energy by inserting it as the interaction vertex that we denoted as 𝑡𝑀𝑁

in Eq. (2.17). However, this turns out to be not a very good approximation
for the cases studied in this thesis, mainly because of two reasons. On the
one hand, an interaction coming from perturbation theory cannot produce
any dynamically generated states, such as bound states or resonances. This
is because these states correspond to poles in the scattering amplitude, and
the power expansion taken in usual perturbation theory cannot diverge for any
given order (it can only diverge when summing up an infinite set of terms).
In other words, the appearance of dynamically generated states breaks the
convergence of perturbation theory near the regions where these states appear.
On the other hand, the linear 𝑣𝑀𝑁𝜌 approximation for the optical-potential
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is not realistic in the sense that it does not include higher order finite-density
modifications.

In order to generate dynamical states when dealing with standard quantum
field theory in vacuum, one possible method is to solve the Bethe-Salpeter
equation (BSE) for the (unitarized) 𝑇 matrix. In the finite-density scenario, we
can employ the same scheme and write within the on-shell approximation7

𝑡𝑀𝑁
𝜌 (𝑃 0, ⃗𝑃 ) = 𝑣𝑀𝑁(

√
𝑠)

1 − 𝑣𝑀𝑁(
√

𝑠)𝑔𝑀𝑁
𝜌 (𝑃 0, ⃗𝑃 )

. (2.24)

In this equation 𝑔𝑀𝑁
𝜌 (𝑃 0, ⃗𝑃 ) is the in-medium meson-nucleon loop function,

P = (𝑃 0, ⃗𝑃 ) the total meson-nucleon four-momentum and 𝑠 = P2 is the
invariant mass of the system.8 Eq. (2.24) can be represented diagrammatically
as shown in Fig. 2.3.

= + q

P
−

q
Figure 2.3: Diagrammatic representation of the BSE for the unitarized ampli-
tude in the nuclear medium. The white square and the black dot represent 𝑡𝑀𝑁
and 𝑣𝑀𝑁, respectively. The four-momenta involved in the loop are presented
in bold (increasing time taken in the up direction).

The unitarized amplitude of Eq. (2.24) differs from the vacuum one only in
the meson-nucleon loop function,9 defined as

𝑔𝑀𝑁
𝜌 (𝑃 0, ⃗𝑃 ) = 𝑖 ∫

Λ

𝑑4𝑞
(2𝜋)4 Δ𝑀

𝜌 (𝑞0, ⃗𝑞)𝐺𝑁
𝜌 (𝑃 0 − 𝑞0, ⃗𝑃 − ⃗𝑞). (2.25)

7Despite its seemingly crude nature, the on–shell factorization of the Bethe–Salpeter
equation provides an accurate description of the unitarized 𝑇–matrix [217, 218]. The
justification lies in the fact that off–shell contributions merely renormalize the interaction
kernel, and their effects can be absorbed into suitable choices of the renormalization scale
and/or of the higher order counter-terms.

8In Eq. (2.24), we express 𝑣𝑀𝑁 in terms of the invariant mass 𝑠, but the loop-function
𝑔𝑀𝑁 in terms of the individual components of the total four-momentum P. This is in order
to explicitly show that, although the potential 𝑣𝑀𝑁 is a Lorentz-invariant quantity, the finite-
density loop function 𝑔𝑀𝑁

𝜌 is not, due to the fact that the nuclear medium breaks Lorentz
covariance.

9Actually, one can also consider density corrections to the meson-nucleon interaction and
going beyond the potential 𝑣𝑀𝑁, but these corrections are shown to be subdominant.
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In this equation, we label the propagators of the meson and the nucleon with
the superscripts 𝑀 and 𝑁, respectively. Furthermore, since the loop integral is
divergent, it is necessary to regularize it appropriately. The chosen regulator
is a three-momentum cutoff Λ,10 whose value is fixed by requiring that the
vacuum (𝜌 = 0) results reproduce some known experimental quantities—e.g.
in 𝐾−nucleon scattering, the results reproduce the double-pole structure of the
Λ(1405). Once the vacuum loop function has been regularized, it is possible to
implement the density-dependent modifications without the cutoff dependence,
since these modifications are finite. Let us show mathematically what we just
stated. It is possible to write the finite-density meson-nucleon loop function as

𝑔𝑀𝑁
𝜌 (𝑃 0, ⃗𝑃 ) = 𝑔𝑀𝑁

0 (
√

𝑠) + ̃𝑔𝑀𝑁
𝜌 (𝑃 0, ⃗𝑃 ), (2.26)

On the one hand, the vacuum loop function in the previous expression
—𝑔𝑀𝑁

0 (
√

𝑠)— is divergent and it is regulated with the cutoff, fixed as we
discussed before. On the other hand, the ̃𝑔𝑀𝑁

𝜌 term, which is given by

̃𝑔𝑀𝑁
𝜌 (𝑃 0, ⃗𝑃 ) = 𝑖 ∫

Λ

𝑑4𝑞
(2𝜋)4 [Δ𝑀

𝜌 (𝑞0, ⃗𝑞)𝐺𝑁
𝜌 (𝑃 0 − 𝑞0, ⃗𝑃 − ⃗𝑞)

−Δ𝑀
0 (𝑞0, ⃗𝑞)𝐺𝑁

0 (𝑃 0 − 𝑞0, ⃗𝑃 − ⃗𝑞)] , (2.27)

is not divergent. Therefore, there is no need to use any regulator, and we can
safely set Λ → ∞.11

Let us now analyze the density-dependent meson-nucleon loop function.
The propagator of the nucleon inside the loop (𝐺𝑁

𝜌 ) is the same as that given in
Eq. (2.10). The density effects on this propagator arise only from Pauli blocking,
and not from the interactions of the nucleon with the other nucleons of the
Fermi sea. The in-medium meson propagator (Δ𝑀

𝜌 ) was given in Eq. (2.18), and
depends on the 𝑀𝑁 interaction of Eq. (2.24) through the self-energy Π(𝑝0, ⃗𝑝)
(recall Eq. (2.17)). Therefore, we see that Eqs. (2.24) and (2.17) constitute
a coupled system of integral equations for the density-dependent self-energy
Π(𝑝0, ⃗𝑝) and the scattering amplitude 𝑡𝑀𝑁

𝜌 :

⎧{
⎨{⎩

Π(𝑝0, ⃗𝑝) = ∫
𝑞<𝑘𝐹

𝑑3𝑞
(2𝜋)3 𝑡𝑀𝑁

𝜌 (𝑝0 + 𝐸𝑁( ⃗𝑞 2), ⃗𝑝 + ⃗𝑞),

[𝑡𝑀𝑁
𝜌 (𝑝0, ⃗𝑝)]−1 = [𝑡𝑀𝑁

0 (
√

𝑠)]−1 − ̃𝑔𝑀𝑁
𝜌 (𝑝0, ⃗𝑝).

(2.28)

10The cutoff prescription for the regularization of the loop function, together with the
on-shell factorization of the BSE, have been shown to be appropriate for the description of
finite-density effects (see footnote 32 in Sect. 2.6.1).

11In practice, when computing ̃𝑔𝑀𝑁
𝜌 numerically, one needs to cut the integral at some point.

One can choose some Λ′ large enough so that ̃𝑔𝑀𝑁
𝜌 is effectively independent of changes in

the value of this Λ′.
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In practice, this system is solved using a self-consistent numerical algorithm:
one first computes an initial self-energy Π(1) from the vacuum scattering
amplitude 𝑡𝑀𝑁

0 ; this Π(1) yields the first in-medium loop correction ̃𝑔𝑀𝑁,(1)
𝜌

and, in turn, the density-dependent amplitude 𝑡𝑀𝑁,(1)
𝜌 . Feeding 𝑡𝑀𝑁,(1)

𝜌 back
into the calculation produces an improved self-energy Π(2). The cycle is then
repeated until Π and 𝑡𝑀𝑁

𝜌 stabilize, a convergence that in practice is reached
after only a few iterations.

2.3.2 The spectral function

The spectral density function, or simply spectral function, is a quantity—closely
related to the self-energy, as we shall see—that describes the properties of
quasi-particles. The idea is similar to that of the Fourier transform of a
time-dependent function 𝑓(𝑡), which decomposes the original function into the
sum of its components for different frequencies 𝜔. Let us consider the free
propagator for the meson 𝑀 of Eq. (2.11), which in coordinate space can be
written as

𝑖Δ0(𝑡, ⃗𝑥) = 𝜃(𝑡) ∫ 𝑑3𝑞
(2𝜋)3

1
2𝜔𝑞

𝑒−𝑖(𝜔𝑞𝑡− ⃗𝑞⋅𝑥⃗) + 𝜃(−𝑡) ∫ 𝑑3𝑞
(2𝜋)3

1
2𝜔𝑞

𝑒𝑖(𝜔𝑞𝑡− ⃗𝑞⋅𝑥⃗). (2.29)

where 𝜃 represents the step function and 𝜔𝑞 is the energy of the meson with a
three-momentum ⃗𝑞. The first term corresponds to the particle part, while the
second term yields the antiparticle one. Now, let us consider the in-medium
meson propagator and introduce a spectral decomposition by adding an extra
integral over some 𝜔 variable, so that

𝑖Δ𝜌(𝑡, ⃗𝑥) = 𝜃(𝑡) ∫
∞

0
𝑑𝜔 ∫ 𝑑3𝑞

(2𝜋)3 𝑆𝑀(𝜔, ⃗𝑞; 𝜌)𝑒−𝑖(𝜔𝑡− ⃗𝑞⋅𝑥⃗)

+ 𝜃(−𝑡) ∫
∞

0
𝑑𝜔 ∫ 𝑑3𝑞

(2𝜋)3 𝑆𝑀(𝜔, ⃗𝑞; 𝜌)𝑒𝑖(𝜔𝑡− ⃗𝑞⋅𝑥⃗), (2.30)

We have introduced two new functions—𝑆𝑀 for the particle part and 𝑆𝑀 for the
antiparticle one—that will encode the density dependence of the propagator.
These are precisely the spectral functions.12 It is clear from the expression in
Eq. (2.30) that, in order to reproduce the free propagator, one has

𝑆𝑀(𝜔, ⃗𝑞; 𝜌 = 0) = 𝑆𝑀(𝜔, ⃗𝑞; 𝜌 = 0) =
𝛿(𝜔 − 𝜔𝑞)

2𝜔𝑞
. (2.31)

12Alternatively, the spectral function can also be understood in the following way:
𝑆𝑀(𝜔, ⃗𝑞; 𝜌) is the probability density that, if we insert a meson 𝑀 with a three-momentum ⃗𝑞
into the many-body system (characterized by density 𝜌), then we measure its energy to be 𝜔.
A detailed discussion on this can be found in Appendix H of Ref. [213].
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That is, in the free space, the spectral function is just a Dirac delta peaking
at the energy corresponding to a meson with momentum ⃗𝑞. However, when
considering the meson inside of a dense medium, these spectral functions depart
from the delta-like shape shown previously. In general, for a given density and
a three-momentum ⃗𝑞, the spectral function (as a function of the energy variable
𝜔) will no longer peak at 𝜔 = 𝜔𝑞, and it will develop some width—that is, there
will be some nonzero spread of energies contributing to the 𝜔 integration in
Eq. (2.30). Therefore, the energy will no longer be a well-defined quantity for
𝑀 (or 𝑀)—or in other words, 𝑀 (𝑀) will no longer be a stationary state of the
problem, and there will be some non-zero probability of it decaying to other
states. Note also that, in principle, the forms of 𝑆𝑀 and 𝑆𝑀 may be different.
This depends on whether the interactions of the 𝑀 and 𝑀 mesons with the
particles of the medium are different.

Let us now transform the density-dependent propagator in the time-space
variables to the energy-momentum variables (which are the interesting ones in
scattering problems). When done, it reads as follows.

Δ𝑀
𝜌 (𝑝0, ⃗𝑝) = ∫

∞

0
𝑑𝜔 ( 𝑆𝑀(𝜔, ⃗𝑝; 𝜌)

𝑝0 − 𝜔 + 𝑖𝜀
− 𝑆𝑀(𝜔, ⃗𝑝; 𝜌)

𝑝0 + 𝜔 − 𝑖𝜀
) (2.32)

This expression is the usual form of the so-called Källén-Lehmann spectral
representation of the propagator. Its interpretation is similar to what we
discussed for the space-time propagator. It is easily seen that, by setting both
spectral functions to the normalized delta of Eq. (2.31), one recovers the usual
expression for the free propagator in the energy-momentum space.

The self-energy of the meson 𝑀 and its spectral function are related through
the following identity

𝑆𝑀(𝑝0, ⃗𝑝; 𝜌) = − 1
𝜋

Im Δ𝑀
𝜌 (𝑝0, ⃗𝑝) = − 1

𝜋
Im Π(𝑝0, ⃗𝑝)

|(𝑝0)2 − ⃗𝑝2 − 𝑚2
𝑀 − Π(𝑝0, ⃗𝑝)|2

. (2.33)

This identity holds for the particle component of 𝑀 (we have 𝑝0 > 0). For the
antiparticle component, the spectral function reads

𝑆𝑀(𝑝0, ⃗𝑝; 𝜌) = − 1
𝜋

Im Δ𝑀
𝜌 (−𝑝0, ⃗𝑝). (2.34)

These relations can be easily checked by inserting them into Eq. (2.32). Through
these equations, it is clear that the self-energy and spectral functions encode
the same information about how the dense medium affects the properties of the
meson 𝑀. In fact, it is possible to write the spectral representation of Eq. (2.32)
in a more compact way. Extending the definition of the spectral function to
negative energies such that

̃𝑆𝑀(𝑝0, ⃗𝑝; 𝜌) = {
𝑆𝑀(𝑝0, ⃗𝑝; 𝜌) 𝑝0 > 0,

−𝑆𝑀(−𝑝0, ⃗𝑝; 𝜌) 𝑝0 < 0,
(2.35)
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we can write

Δ𝑀
𝜌 (𝑝0, ⃗𝑝) = ∫

∞

−∞
𝑑𝜔

̃𝑆𝑀(𝜔, ⃗𝑝; 𝜌)
𝑝0 − 𝜔 + sign(𝜔) 𝑖𝜀

. (2.36)

We now turn to the interpretation of the spectral functions. The spectral
function can be usually approximated around the quasiparticle peak by a
relativistic Breit–Wigner distribution,13

𝑆(𝐸, ⃗0; 𝜌) ∼ 𝜅
(𝐸2 − 𝑀2)2 + 𝑀2Γ2

, (2.37)

where 𝑀 and Γ are parameters characterizing, respectively, the position of the
maximum and the full width at half maximum of the distribution, and 𝜅 is a
normalization constant.

For the case of 𝑆𝑀, these parameters can be expressed approximately as
(cf. Eq. (2.33))

𝑀2 = 𝑚2
𝑀 + Δ𝑚𝜌

𝑀 = 𝑚2
𝑀 + Re Π(𝑚𝑀, ⃗0), (2.38)

𝑀Γ = −Im Π(𝑚𝑀, ⃗0). (2.39)

Thus, the parameter 𝑀 corresponds to the quasi-particle mass, while Γ rep-
resents its width. In this way we recover, in approximate form, the same
expressions for the in-medium mass shift and width of the meson 𝑀 that
were previously obtained from the self-energy corrections to the propagator,
Eqs.(2.22) and (2.23).

2.3.3 Self-energy in spin and isospin basis

Up to this point, our discussion of the self-energy of the meson 𝑀 has assumed
that the particles involved are both scalar and isoscalar, in order to simplify the
notation. However, we are well aware that nucleons have spin and isospin equal
to 1/2, while the meson 𝑀 will typically have spin 0 or 1, and some isospin
structure as well. In this section, we discuss this issue.

Let us start by studying the spin structure of the self-energy. We will
assume that the meson 𝑀 has a total spin and 𝑧 component of spin given by
the quantum numbers (𝑠, 𝑠𝑧). Similarly, for the nucleon 𝑁, its spin will be
characterized by the pair (𝑟, 𝑟𝑧). We will work for a general 𝑟, and only at the
end of our calculation we will set the nucleon spin quantum number to 1/2.
Having a general expression will also allow us to apply the self-energy (iso)spin
decomposition in the case of finite temperature, which will be studied at the
end of Sect. 4.3.2.

13Also referred to as the Cauchy or Lorentzian distribution.
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The scattering amplitude will be given by

⟨𝑠, 𝑠′
𝑧, 𝑟, 𝑟′

𝑧|𝑡|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩. (2.40)

In this discussion, we will ignore the momentum dependence of the scattering
amplitude. Inserting now a change of basis for the sum of the two spins, we
can write

⟨𝑠, 𝑠′
𝑧, 𝑟, 𝑟′

𝑧|𝑡|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩ =
∑

𝐽′,𝑀′

∑
𝐽,𝑀

⟨𝐽 ′𝑀 ′|𝑠, 𝑠′
𝑧, 𝑟, 𝑟′

𝑧⟩⟨𝐽𝑀|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩⟨𝐽 ′, 𝑀 ′|𝑡|𝐽 , 𝑀⟩, (2.41)

where ⟨𝐽𝑀|𝑗1𝑚1𝑗2𝑚2⟩ are the Clebsch-Gordan coefficients for the sum of the
𝑗1 and 𝑗2 spins to give the total spin 𝐽. Owing to the Wigner-Eckart theorem
and the fact that we assume that the amplitude is 𝑆 wave—so that it conserves
total spin, or in other words, 𝑡 is a spin singlet—we see that

⟨𝐽 ′, 𝑀 ′|𝑡|𝐽 , 𝑀⟩ = 𝑡(𝐽)𝛿𝐽′𝐽𝛿𝑀′𝑀, (2.42)

where 𝑡(𝐽) ≡ ⟨𝐽||𝑡||𝐽⟩ ins the reduced matrix-element. Therefore, we can
simplify the expression for the change of basis in Eq. (2.41) and write it as

⟨𝑠, 𝑠′
𝑧, 𝑟, 𝑟′

𝑧|𝑡|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩ = ∑
𝐽,𝑀

⟨𝐽𝑀|𝑠, 𝑠′
𝑧, 𝑟, 𝑟′

𝑧⟩⟨𝐽𝑀|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩𝑡(𝐽). (2.43)

Now, in the nucleon loop appearing in the self-energy, we have to sum over
all possible third components of spin. Therefore, we will have to calculate

∑
𝑟𝑧

⟨𝑠, 𝑠′
𝑧, 𝑟, 𝑟𝑧|𝑡|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩ = ∑

𝑟𝑧

∑
𝐽,𝑀

⟨𝐽𝑀|𝑠, 𝑠′
𝑧, 𝑟, 𝑟𝑧⟩⟨𝐽𝑀|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩𝑡(𝐽).

(2.44)
Taking into account that the Clebsch-Gordan coefficients ⟨𝐽𝑀|𝑗1𝑚1𝑗2𝑚2⟩ are
zero if 𝑚1 + 𝑚2 ≠ 𝑀, we can simplify this expression as:

∑
𝑟𝑧

⟨𝑠, 𝑠′
𝑧, 𝑟, 𝑟𝑧|𝑡|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩ = 𝛿𝑠′

𝑧,𝑠𝑧
∑
𝑟𝑧

∑
𝐽

(⟨𝐽, 𝑠𝑧 + 𝑟𝑧|𝑠, 𝑠𝑧, 𝑟, 𝑟𝑧⟩)2 𝑡(𝐽). (2.45)

In fact, this preceding equality is independent of the value chosen for 𝑠𝑧.
Let us now particularize Eq. (2.45) for our case of interest. In the following

sections, we will deal with 𝐷 mesons and kaons, which are pseudoscalar states.
We will also be interested in the 𝐷∗ mesons, which are spin vectors. Then, let
us consider a spin 1/2 nucleon (𝑟 = 1/2), and assuming that the meson is a
pseudoscalar (𝑠 = 0), then we find

∑
𝑟𝑧

⟨0, 0, 1/2, 𝑟𝑧|𝑡|0, 0, 1/2, 𝑟𝑧⟩ = 2𝑡(𝐽=1/2). (2.46)
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In turn, for a vector meson (𝑠 = 1) we have

∑
𝑟𝑧

⟨1, 𝑠′
𝑧, 1/2, 𝑟𝑧|𝑡|1, 𝑠𝑧, 1/2, 𝑟𝑧⟩ = 𝛿𝑠′

𝑧,𝑠𝑧
(2

3
𝑡(𝐽=1/2) + 4

3
𝑡(𝐽=3/2)) . (2.47)

This completes the spin decomposition analysis.
We shall now investigate the isospin case. Actually, since the isospin and

spin are completely equivalent, the reasoning in isospin space runs parallel to the
spin case. Again, since the amplitude 𝑡 is isospin symmetric—or in other words,
an isospin singlet—we arrive at an expression analogous to that of Eq. (2.45).
For our cases of interest, which are the charmed 𝐷 mesons and the kaons, we
see that all of them are isodoublets. Then, let us assume a meson with isospin
1/2 and third component 𝑖𝑧. For the nucleon, we know that it is an isodoublet,
and we shall name its third component by 𝑡𝑧. Following the same steps as in
the spin case, one can readily write

∑
𝑡𝑧

⟨1/2, 𝑖′
𝑧, 1/2, 𝑡𝑧|𝑡|1/2, 𝑖𝑧, 1/2, 𝑡𝑧⟩ = 𝛿𝑖′

𝑧,𝑖𝑧
(1

2
𝑡(𝐼=0) + 3

2
𝑡(𝐼=1)) . (2.48)

Now, considering both the spin and isospin structure of the amplitude at
the same time, we arrive at the formulas

Π𝑀𝑁 = ∫
𝑞<𝑘𝐹

𝑑3𝑞
(2𝜋)3 (𝑡(𝑆=1/2,𝐼=0) + 3𝑡(𝑆=1/2,𝐼=1)) (2.49)

for a pseudoscalar meson 𝑀 with isospin 1/2 (like the 𝐷 or 𝐾 mesons), and

Π𝑀∗𝑁 = ∫
𝑞<𝑘𝐹

𝑑3𝑞
(2𝜋)3 (1

3
𝑡(𝐽=1/2,𝐼=0) + 𝑡(𝐽=1/2,𝐼=1)

+2
3

𝑡(𝐽=3/2,𝐼=0) + 2𝑡(𝐽=3/2,𝐼=1)) (2.50)

for a vector meson 𝑀∗ with isospin 1/2 (like the 𝐷∗ mesons). In Eqs. (2.49)
and (2.50) we have omitted the trivial dependence of the self-energy on the
spin and isospin indices of the meson 𝑀 (∗), as well as the energy-momentum
dependence on both Π and the amplitudes 𝑡, which is the same as that shown
in Eq. (2.28).

2.3.4 𝐷(∗), 𝐷(∗), 𝐾 and 𝐾 self-energies in nuclear matter

In this section, we present and analyze the results for the self-energies of the
charmed 𝐷 and 𝐷∗ mesons, and of kaons and antikaons. The results for the
𝐾 and 𝐾 and 𝐷(∗) and 𝐷(∗) spectral functions in the nuclear medium were
obtained in Ref. [214] and Refs. [215, 216, 219], respectively.
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𝐷(∗) and 𝐷(∗) spectral functions

Let us start with the charmed mesons. Before showing the results for the
spectral functions, we briefly discuss the model that was used in Refs. [215, 216,
219] for the 𝐷(∗)−nucleon and 𝐷(∗)−nucleon interactions. Since the channels
of interest involve the charmed pseudoscalar and vector mesons, HQSS needs
to be implemented in the effective interaction. In order to do this, the authors
consider an extension of the Weinberg-Tomozawa (WT) Lagrangian, which
is symmetric in SU(3)−flavor (actually it is chiral SU(3)𝐿 × SU(3)𝑅), to the
SU(6)lsf × HQSS spin-flavor symmetry group (the subscript “lsf” denotes light
quark spin–flavor symmetry).

Under SU(8) spin-flavor symmetry, the potential matrix elements (tree-level
amplitudes) can be written as14

𝑣𝐼𝐽𝑆𝐶
𝑎𝑏 (

√
𝑠) = 𝐷𝐼𝐽𝑆𝐶

𝑎𝑏

√
𝑠 − 𝑀
2𝑓2 (√𝐸 + 𝑀

2𝑀
)

2

, (2.51)

where the labels 𝐼𝐽𝑆𝐶 denote the total isospin, angular momentum, strange-
ness, and charm quantum numbers of the meson-baryon system. The quantities
𝑀 and 𝐸 in the above equation represent the common mass and the center-
of-mass energy of the baryons within the corresponding SU(8) representation,
respectively. The coefficient 𝐷𝐼𝐽𝑆𝐶

𝑎𝑏 is a matrix in the coupled-channel space,
with 𝑎 and 𝑏 indexing the channels, and 𝑓 is the weak decay constant of the
mesons.

However, the 𝑆𝑈(8) spin-flavor symmetry is strongly broken in nature. For
example, the pion and the 𝐷 meson, which are part of the same multiplet
under this symmetry, exhibit significantly different masses. To account for
this symmetry breaking, the authors break this symmetry down to SU(6) ×
HQSS in the open-charm sectors and incorporate the physical hadron masses
in the tree-level interaction of Eq. (2.51), as well as in the computation of
the kinematic thresholds for the various channels. Additionally, they include
corrections for the differences in decay constants between non-charmed and
charmed pseudoscalar and vector mesons. Taking these effects into account,
they rewrite the tree-level amplitudes as

𝑣𝐼𝐽𝑆𝐶
𝑎𝑏 (

√
𝑠) = 𝐷𝐼𝐽𝑆𝐶

𝑎𝑏
2
√

𝑠 − 𝑀𝑎 − 𝑀𝑏
4𝑓𝑎𝑓𝑏

√𝐸𝑎 + 𝑀𝑎
2𝑀𝑎

√𝐸𝑏 + 𝑀𝑏
2𝑀𝑏

, (2.52)

where now different masses 𝑀𝑎(𝑏), CM energies 𝐸𝑎(𝑏), and decay constants 𝑓𝑎(𝑏)
are taken, depending on the channels 𝑎, 𝑏. For further details, the reader can
consult Ref. [215].

14The spinor normalization 𝑢𝑢 = 𝑣𝑣 = 1 has been used for the expression in Eq. (2.51), as
well as the convention 𝑉 = −ℒ.
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Figure 2.4: Spectral functions of the 𝐷 (left) and 𝐷∗ (right) mesons at zero
three-momentum ( ⃗𝑞 = 0), plotted as a function of the charm meson energy 𝐸,
for three nuclear densities: 𝜌 = 0.1𝜌0, 0.5𝜌0, and 𝜌0, with 𝜌0 = 0.17 fm−3. The
dashed lines are located at the mass of the corresponding meson in vacuum.

Using the formula in Eq. (2.52), and employing the self-consistent unitariza-
tion scheme presented in Sect. 2.3.1, one can arrive at the results for the 𝐷, 𝐷∗,
𝐷, and 𝐷∗ spectral functions presented in Fig. 2.4. For zero density, the spectral
functions would correspond to Dirac deltas peaking at the mass of the different
charmed mesons, which are represented by a dashed line in the plots. As density
increases, one observes a general broadening of the spectral functions, as well
as some shift in the peak position, as was discussed when studying the spectral
function in Sec. 2.3.2. However, it is clear that the Lorentzian approximation
given in Eq. (2.37) is not valid in the energy ranges plotted, as several other
peak structures appear in every plot. These peak structures correspond to the
so-called resonance-hole excitations.

We will comment on the nature of the resonance-hole excitations. These
excitations occur for energies of the (off-shell) 𝑀 meson such that the invariant
mass of the 𝑀𝑁 system is near the mass of some resonance in any of the
appropriate spin-isospin channels. As occurs when studying the meson-nucleon
cross section, the presence of these resonances enhances the shape of the spectral
function, producing peaks. However, in the many-body conceptual frame, since
the nucleons filling the Fermi sea are not of interest, one does not speak of 𝑀𝑁
resonances, but of the 𝑀 meson decaying to a resonance-hole pair. From the
reaction point of view, instead of having 𝑀𝑁 → 𝑋, with 𝑋 being the resonance
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of interest, one writes 𝑀 → 𝑋𝑁−1, 𝑁−1 representing the creation of a hole in
the Fermi sea. This is why the structures appearing in the spectral function of
the 𝑀 mesons are called resonance-hole excitations.

J I SU(8) state Couples mainly to Exp. candidate

1
2

0 Λ𝑐(2595) 𝐷∗𝑁 Λ𝑐(2595)

1
Σ𝑐(2556) 𝐷∗Δ —
Σ𝑐(2823) 𝐷𝑁, 𝐷∗𝑁 and 𝐷∗Δ —
Σ𝑐(2868) 𝐷𝑁, 𝐷∗𝑁 and 𝐷∗Δ —

3
2

0 Λ𝑐(2660) Σ∗
𝑐𝜋 Λ𝑐(2625)

Λ𝑐(2941) 𝐷∗𝑁 Λ𝑐(2940)a

1 Σ𝑐(2554) 𝐷Δ and 𝐷∗Δ —
Σ𝑐(2902) 𝐷∗𝑁 Σ𝑐(2800)

a At the time the original work of Ref. [215] was published, there was no
experimental confirmation of the quantum numbers of the Λ𝑐(2940). As of
the year 2025, it is listed in the PDG as 𝐼(𝐽𝑃) = 0(3/2−) [18].

Table 2.1: List of resonances which couple to the 𝐷𝑁 and 𝐷∗𝑁
channels, as predicted by the SU(6) × HQSS spin-flavor model used
in Ref. [215]. The states are classified by their spin 𝐽 and isospin
𝐼 quantum numbers. The main channels to which each resonance
couples are given, as well as their possible experimental counterpart.

In the sector where the 𝐷𝑁 and 𝐷∗𝑁 amplitudes are involved, the SU(6) ×
HQSS model predicts eight resonances, which are listed here in Table 2.1 (for
additional details about these states, see [220]). In the spectral function of the
𝐷 meson, two peaks can be observed at the lower end of the energy spectrum
(around 𝐸 = 1.6 GeV). These peaks correspond to the Σ𝑐(2556) and the
Λ𝑐(2595) states. Near the quasi-particle peak of the 𝐷 meson—which is the
highest one, obeying the real part of the equation for the renormalized mass,
Eq. (2.20)—the Σ𝑐(2823) resonance appears. This resonance is modified by the
nearby Σ𝑐(2868) state, and both of them are found to have an attractive effect
on the 𝐷𝑁 threshold. For the 𝐷∗ state, the quasi-particle peak is shifted toward
higher energies and mixes with the Λ𝑐(2941) resonance. On the left-hand side of
the quasi-particle peak, the structure appearing there is the result of a mixing
between the Σ𝑐(2868)𝑁−1 and Σ𝑐(2902)𝑁−1 excitations (𝑁−1 representing a
nucleon hole). Other resonance-hole states are also visible in the low-energy
part of the plot, such as Σ𝑐(2554)𝑁−1.

Let us now briefly analyze the self-energies of the anti-charmed mesons 𝐷
and 𝐷∗, which are plotted in Fig. 2.5. In the 𝐷 self-energy, one can recognize a
resonance-hole structure very close to the quasi-particle peak. Given the quark
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content of the anti-charmed mesons—𝑐𝑞, with 𝑞 a light quark—the resulting
resonances from the interaction with nucleons must have a minimum of five
valence quarks.15 Therefore, this structure, namely 𝜃(2805), is a loosely bound
pentaquark with 𝐼 = 0, 𝐽 = 1/2 near the 𝐷𝑁 threshold, which is found to
strongly couple to the 𝐷𝑁 and 𝐷∗𝑁 channels [221]. On the other hand, the 𝐷∗

self-energy shows a mixing of the quasi-particle peak with several resonance-hole
states. These states, among others, are described in Ref. [221].
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Figure 2.5: Spectral functions of the 𝐷 (left) and 𝐷∗ (right) mesons at zero
three-momentum ( ⃗𝑞 = 0), plotted as a function of the anti-charm meson energy
𝐸, for three nuclear densities: 𝜌 = 0.1𝜌0, 0.5𝜌0, and 𝜌0. The dashed lines are
located at the mass of the corresponding meson in vacuum.

The appearance of these pentaquark-like resonant structures in the 𝐷(∗)𝑁
amplitudes is a feature of the SU(6) × HQSS spin-flavor model. Other
models—for example, the SU(4) WT model of Ref. [222], or the 𝑡−channel
vector exchange model of Ref. [223]—find a smooth and repulsive behavior for
these amplitudes. In either way, the fact remains that the interaction with
nucleons of the anti-charmed 𝐷 and 𝐷∗ mesons is very different from that of
the charmed 𝐷 and 𝐷∗ mesons. This asymmetry, which can be regarded as a
breaking of charge-conjugation symmetry by the presence of the nuclear Fermi
sea, will have profound effects on the density dependence of the 𝑇𝑐𝑐(3875)+, as
we shall see.

15This was not the case for the charmed mesons with quark content 𝑐𝑞, as the light antiquark
can annihilate one of the light quarks of the nucleon.



2.3. MESON SELF-ENERGIES IN NUCLEAR MATTER 39

𝐾 and 𝐾 spectral functions

Let us now switch our attention to the self-energies that the kaon and anti-
kaon develop when embedded in dense nuclear matter. These self-energies
were computed in Ref. [214] using the lowest-order chiral perturbation theory
Lagrangian that couples the octet of light pseudoscalar mesons to the octet of
1/2+ baryons. The coupled-channels tree-level amplitude (potential), in this
case, reads

𝑣𝑠
𝑎𝑏 = − 𝐶𝑎𝑏

1
4𝑓2 (2

√
𝑠 − 𝑀𝐵𝑎

− 𝑀𝐵𝑏
) √

𝑀𝐵𝑎
+ 𝐸𝑎

2𝑀𝐵𝑎

√
𝑀𝐵𝑏

+ 𝐸𝑏

2𝑀𝐵𝑏

. (2.53)

In this expression, 𝑀𝐵𝑎
and 𝐸𝑎 are the mass and energy of the baryon in the

channel ‘𝑎’, respectively, while
√

𝑠 is the CM energy and 𝐶𝑎𝑏 represents the
coefficients of the matrix in the coupled-channels space. In addition, 𝑓 is the
meson decay constant, which is taken as 𝑓 = 1.15𝑓𝜋 to correctly describe the
experimental characteristics of the low energy 𝐾𝑁 scattering and in particular
to reproduce the properties of the Λ(1405) resonance [214].

Using the potential given in Eq. (2.53), the amplitudes are unitarized,
and the self-energies for the different species are computed in a self-consistent
manner, similar to the formalism presented in Sec. 2.3.1. However, in this
case, the computation incorporates the S- and P-waves of the kaon-nucleon
interaction and takes into account Pauli blocking effects for the intermediate
baryons as well as their self-energies. The authors also take into account
finite-temperature modifications, taking the precaution that the 𝑇 → 0 limit is
correct. This makes the computation more complex than the one presented in
this thesis and can be reviewed in Ref. [214]. We will not dive any deeper into
the details of the calculation and will limit ourselves to present and analyze the
results for the zero-temperature density-dependent spectral functions for the
kaon and the anti-kaon.

For the kaon self-energy, we approximate it by the free-space spectral
function (Dirac delta), shifted to an energy 𝐸qp which depends on the nucleon
density. We write

𝑆𝐾(𝐸, ⃗𝑞; 𝜌) ≈ 𝛿 (𝐸 − 𝐸qp( ⃗𝑞; 𝜌))
2𝐸qp( ⃗𝑞; 𝜌)

. (2.54)

which is justified in light of the fact that the 𝐾𝑁 interaction is very weak in
ChPT, so the medium effects for the kaon are expected to be very small. This
approximation was also used in Ref. [214], and it was found that the kaon
spectral function was well described by this zero-width distribution. In the
left plot of Fig. 2.6, we show the kaon quasi-particle energy (𝐸qp) introduced
in Eq. (2.54) as a function of the modulus of the three momentum, for four
different nuclear densities. As we can see, there is a slight modification of the
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Figure 2.6: Left panel: Kaon quasi–particle energy 𝐸qp [Eq. (2.54)] as a function
of the kaon three-momentum magnitude 𝑞 = | ⃗𝑞| for several nuclear densities,
expressed in units of 𝜌0 = 0.17 fm−3. Right panel: Energy dependence of the
𝐾 spectral function at zero three-momentum ( ⃗𝑞 = 0) for various densities.

in-medium mass for the kaon toward higher energies. However, this difference
becomes less relevant as the momentum increases. The width of the 𝐾 spectral
function is negligible.

The 𝐾 self-energy is represented in the right plot of Fig. 2.6. In this case, one
observes a general broadening of the spectral function, as well as a shift of the
quasi-particle mass towards lower energies—in contrast with the kaon, whose
mass shifted to higher energies. Unlike the case of the 𝐷 mesons, there are
no apparent peaks due to the presence of resonance-hole excitations. However,
in this channel, the two resonances which form the double pole structure of
the Λ(1405) are dynamically generated, and their presence produces both the
shift and the broadening of the 𝐾 spectral function, as thoroughly discussed in
Refs. [112, 214, 224].

We have discussed the modification of the properties of the 𝐷(∗) and 𝐷(∗)

mesons, as well as of kaons and anti-kaons, when they are embedded in a
dense nuclear medium. We are now in a position to analyze the in-medium
scattering and interaction of these mesons. This will be done in the next section.
Once we have presented the formalism for the scattering of two mesons in the
nuclear medium, we will discuss the results obtained for the 𝑇𝑐𝑐(3875) and the
𝐷∗

𝑠0(2317) exotic states.
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2.4 Two-meson scattering in nuclear matter
In this section, we discuss how the two-meson scattering amplitude is changed
when these mesons are inside of a nuclear medium at zero temperature. We also
discuss how the properties of the dynamically generated states are modified.
First, we review the formalism used in free space to dynamically generate a
state in the 𝑆 wave dispersion of two mesons.

2.4.1 Dynamical state generation in vacuum

We begin by considering some 𝑋 state as a generic two-meson 𝑆-wave loosely
bound molecule characterized by quantum numbers 𝐼(𝐽𝑃). Later, we will
specify 𝑋 to represent the 𝑇𝑐𝑐 or the 𝐷∗

𝑠0, corresponding to 𝐷𝐷∗ and 𝐷𝐾
hadron-pairs with quantum numbers 0(1+) and 0(0+), respectively. For now,
however, we shall keep the notation general.

Although spin symmetry is exact—that is, the Hamiltonian does not mix
states with different values of the total angular momentum16—isospin symmetry
is approximate. Isospin-breaking effects arise because the particles within
an isospin multiplet have unequal masses. As a result, the kinetic term in
the Hamiltonian no longer respects isospin symmetry, and the thresholds for
producing pairs of particles are shifted accordingly. These effects can be taken
into account, as was done in Ref. [52] for the case of the 𝑇𝑐𝑐. In this thesis, we
do not consider them and we always work in the isospin limit, assuming equal
masses for mesons within the same isospin multiplet, set to their average value.
For example, in the case of the D mesons we shall take 𝑚𝐷 = (𝑚𝐷0 + 𝑚𝐷+)/2.

Then, under the assumption of exact isospin symmetry, the problem of
two-meson scattering can be treated as a simple single-channel process, with
well-defined quantum numbers 𝐼(𝐽𝑃). We consider two families of potentials
to describe the scattering processes, which can be regarded as the tree-level
amplitude derived from an effective Lagrangian. We choose the following
parameterizations17

≡ −𝑖𝑉𝐴, 𝑉𝐴(𝑠) = 𝐶 + 𝐷𝑠, (2.55a)

≡ −𝑖𝑉𝐵, 𝑉𝐵(𝑠) = 1
𝐶′ + 𝐷′𝑠

, (2.55b)

16In particular, if we assume a purely 𝑆-wave interaction, then it does not mix states with
different total spin.

17In the diagrams of Eqs.(2.55a) and (2.55b) the direction of increasing time is taken upward.
Thus, 𝑉𝐵 represents an 𝑠-channel exchange of some bare state.
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with 𝐶(′) and 𝐷(′) two LECs for each of the two different families of potentials.
These LECs should be fixed to reproduce some known features of the unitarized
amplitude, as we will show below.

Once the interaction kernel 𝑉 (general notation for 𝑉𝐴 or 𝑉𝐵) has been
defined, the amplitude can be unitarized by solving the BSE, as was done in
Sect. 2.3.1 when computing the self-energy of a meson in the nuclear medium.
The unitarized amplitude reads18

𝑇 (𝑠) = [𝑉 −1(𝑠) − Σ0(𝑠)]−1 , (2.56)

where Σ0(𝑠) is the two-meson vacuum loop function, defined as

Σ0(𝑠) = 𝑖 ∫ 𝑑4𝑞
(2𝜋)4 Δ𝑀

0 (𝑃 − 𝑞)Δ𝑀′

0 (𝑞). (2.57)

where the function Δ𝑀
0 is the vacuum 𝑀 meson propagator, and P is the

total four-momentum of the system, with 𝑠 = P2. Since the loop function is
ultraviolet divergent, we need to renormalize it. We employ, as we have done
before in this document, a cutoff Λ in momentum space. The cutoff-dependent
two-meson vacuum loop function reads (see second erratum of [225])

Σ0(𝑠) = 1
32𝜋2

⎧{
⎨{⎩

−Δ
𝑠

log 𝑀2
1

𝑀2
2

+ 𝜈
𝑠

⎡
⎢
⎣

log
𝑠 − Δ + 𝜈√1 + 𝑀2

1
Λ2

−𝑠 + Δ + 𝜈√1 + 𝑀2
1

Λ2

+ log
𝑠 + Δ + 𝜈√1 + 𝑀2

2
Λ2

−𝑠 − Δ + 𝜈√1 + 𝑀2
2

Λ2

⎤
⎥
⎦

+ 2Δ
𝑠

log
1 + √1 + 𝑀2

1
Λ2

1 + √1 + 𝑀2
2

Λ2

− 2 log [(1 + √1 + 𝑀2
1

Λ2 ) (1 + √1 + 𝑀2
2

Λ2 )] + log 𝑀2
1 𝑀2

2
Λ4 } , (2.58)

where

Δ = 𝑀2
2 − 𝑀2

1 , 𝜈 = √[𝑠 − (𝑀1 + 𝑀2)2][𝑠 − (𝑀1 − 𝑀2)2] , (2.59)

and 𝑀1, 𝑀2 are the meson masses. The 𝜈 quantity can also be rewritten as

𝜈 = √𝜆(𝑠, 𝑀2
1 , 𝑀2

2 ) (2.60)

where 𝜆(𝑥, 𝑦, 𝑧) is the Källén (or triangular) function, and is related to the
center-of-mass momentum as 𝑘 = 𝜈/2

√
𝑠.

18We use capital letters to denote the two–meson 𝑇–matrix and potential, in contrast to
the lowercase notation employed for the meson–nucleon case in Eq. (2.24).
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Now, let us assume that there is some 𝑋 state in the 𝑀𝑀 ′ scattering
amplitude, appearing as a bound state below the threshold. Then, the
scattering amplitude will have a pole in the physical Riemann sheet, and can
be written in the vicinity of the pole as

𝑇 (𝑠) = 𝑔2
0

𝑠 − 𝑚2
0

+ ⋯ (2.61)

where 𝑚0 is the mass of the state 𝑋 and 𝑔2
0 its coupling to the meson pair

𝑀𝑀 ′. From the amplitude, one can obtain 𝑚0 and 𝑔0 as

𝑇 −1(𝑚2
0) = 0, 1

𝑔2
0

= 𝑑𝑇 −1(𝑠)
𝑑𝑠

∣
𝑠=𝑚2

0

. (2.62)

Reversing this argument, if one knows 𝑚0 and 𝑔2
0, one can determine the

scattering amplitude near the pole. This is precisely the logic we follow. Since
there are only two LECs in our parameterization of the potential (for each
family), we can exactly solve Eq. (2.62) for 𝐶(′) and 𝐷(′) in terms of 𝑚0 and
𝑔2

0. For the 𝐴−type potential, we find the following expressions:

𝐶 = 1
Σ0(𝑚2

0)
+ 1 + 𝑔2

0Σ′
0(𝑚2

0)
𝑔2

0Σ2
0(𝑚2

0)
𝑚2

0, 𝐷 = −1 + 𝑔2
0Σ′

0(𝑚2
0)

𝑔2
0Σ2

0(𝑚2
0)

, (2.63)

where
Σ′

0(𝑚2
0) ≡ 𝑑Σ0(𝑠)

𝑑𝑠
∣
𝑠=𝑚2

0

. (2.64)

On the other hand, for the LECs appearing in the 𝐵 family of potentials, we
find

𝐶′ = Σ0(𝑚2
0) − 1 + 𝑔2

0Σ′
0(𝑚2

0)
𝑔2

0
𝑚2

0, 𝐷′ = 1 + 𝑔2
0Σ′

0(𝑚2
0)

𝑔2
0

. (2.65)

Note that 𝐶(′) and 𝐷(′) depend on the cutoff Λ through the loop function, so
that the renormalization group equation

𝑑
𝑑Λ

(𝑉 −1 − Σ0) = 0 (2.66)

is fulfilled. In this way, the mass and coupling of the 𝑋 state are cutoff
independent.



44 2. PROPERTIES OF EXOTIC MESONS IN NUCLEAR MATTER

2.4.2 Molecular probability

We now discuss the concept of molecular probability, which will be central to
the discussion of our results. This concept was first introduced by Weinberg
in Ref. [209], and was later reinterpreted in the work of [226]. We will briefly
discuss two simple scenarios considered in the latter reference to illustrate the
concept of molecular probability.

We work in the non-relativistic quantum mechanics framework, and start by
considering the two-meson contact potential in 𝑆 wave, separable in momentum
space

⟨ ⃗𝑝′|𝑉 | ⃗𝑝⟩ = 𝑣 Θ(Λ − 𝑝′)Θ(Λ − 𝑝), (2.67)

where 𝑝 ≡ | ⃗𝑝| is the center-of-mass momentum of the two particles, and 𝑣 is
some constant parameter. For a potential of this form, the Lippmann-Schwinger
equation (LSE) leads to a simple algebraic equation for the scattering ampli-
tude.19

⟨ ⃗𝑝′|𝑇 | ⃗𝑝⟩ = 𝑡(𝐸) Θ(Λ − 𝑝′)Θ(Λ − 𝑝), 𝑡(𝐸) = 𝑣
1 − 𝑣𝐺(𝐸)

(2.68)

In the previous equation, 𝐺 is the non-relativistic two-meson loop function

𝐺(𝐸) = ∫
𝑝<Λ

𝑑3𝑝 1
𝐸 − 𝑚1 − 𝑚2 − 𝑝2

2𝜇

, (2.69)

with 𝑚1 and 𝑚2 the masses of the involved mesons and 𝜇 the reduced mass of
the system. If this simple parameterization for the 𝑡 matrix presents a bound
state, a pole at some energy 𝑚 below threshold, then the coupling of this state
to the two-meson channel can be obtained as20

1
𝑔2 = 𝑑𝑡−1(𝐸)

𝑑𝐸
∣
𝐸=𝑚

= −𝑑𝐺
𝑑𝐸

∣
𝐸=𝑚

→ 1 = −𝑔2𝐺′(𝑚). (2.71)

19In this context we use the term LSE rather than BSE to emphasize that the discussion
is set within nonrelativistic quantum mechanics, as opposed to the relativistic framework
employed in the rest of this chapter.

20The normalization of the quantum mechanics 𝑇–matrix, potential and two-meson prop-
agator loop function differs from the non-relativistic reduction of the quantum field theory
ones, which have been used extensively in this chapter,—by some factors in the single-channel
case. The relation between them are

𝑉 QFT = 32𝜋3𝜇
√

𝑠 𝑉 , 𝑇 QFT = 32𝜋3𝜇
√

𝑠 𝑇 , 𝐺QFT = 𝐺
32𝜋3𝜇

√
𝑠

. (2.70)

In these relations, the ‘QFT’ superscript denotes the quantum-field-theoretical quantities,
while their corresponding quantum mechanics counterparts do not have any superscript. These
relations are derived by comparing the imaginary parts of both loop functions and then taking
into account that the product 𝑉 𝐺 needs to be dimensionless.
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which allows to interpret 𝑃 = −𝑔2𝐺′(𝑚) as the probability that the state with
mass 𝑚 is a molecule composed of the two interacting hadrons.

Let us now consider a scenario where many channels are involved. We start
from a separable potential of the form of Eq. (2.67), where now the constant 𝑣
is taken to be a 𝑁 × 𝑁 square matrix, with 𝑁 being the number of channels
involved. If the resulting 𝑇 matrix has a singularity at a given energy 𝑚, then
the couplings are defined as

𝑔𝑖𝑔𝑗 = lim
𝐸→𝑚

(𝐸 − 𝑚)𝑡𝑖𝑗(𝐸), (2.72)

where the 𝑖𝑗 subscripts denote the matrix element of the 𝑇 matrix in the coupled
channel space. In this scenario, it is possible to show that the normalization of
the wave function of the bound state with mass 𝑚 implies

⟨𝜓|𝜓⟩ =
𝑁

∑
𝑖=1

|⟨𝜙𝑖|𝜓⟩|2 = 1, (2.73)

where |𝜙𝑖⟩ represents the state of the system in channel 𝑖. By solving the
time-independent Schrödinger equation for the state |𝜓⟩ with energy 𝑚, one
can determine the coefficients ⟨𝜙𝑖|𝜓⟩ to be

|⟨𝜙𝑖|𝜓⟩|2 = −𝑔2
𝑖 𝐺′

𝑖(𝑚), (2.74)

where 𝐺′
𝑖 represents the derivative of the loop function in channel 𝑖. The

quantity of Eq. (2.74) is precisely the probability of the channel 𝑖 in the bound
state wave-function.21 Taking the previous equations together, we can write

𝑁
∑
𝑖=1

𝑃𝑖 =
𝑁

∑
𝑖=1

[−𝑔2
𝑖 𝐺′

𝑖(𝑚)] = 1, (2.75)

which is the generalization to 𝑁 channels of the extremely simple formula of
Eq. (2.71).

Let us return to the single-channel case, considering now an energy-
dependent potential.

⟨ ⃗𝑝′|𝑉 | ⃗𝑝⟩ = 𝑣(𝐸) Θ(Λ − 𝑝′)Θ(Λ − 𝑝). (2.76)

In this case, the on-shell factorization of the LSE still yields

𝑡(𝐸) = 𝑣(𝐸)
1 − 𝑣(𝐸)𝐺(𝐸)

(2.77)

21One may be alerted by the minus sign appearing in Eq. (2.74). If the quantity |⟨𝜙𝑖|𝜓⟩|2

is to be interpreted as a probability, it should be strictly positive. This is not a problem since,
for a given 𝑚 below the 𝑖 threshold, 𝐺′

𝑖(𝑚) is actually a negative real number. On the other
hand, 𝑔2

𝑖 is a positive real quantity because the pole is on the real axis of the first Riemann
sheet.
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Applying in this case the formula for the probability that the state with mass
𝑚 is measured as a state in channel 1—the only channel available since we are
in a single-channel approach—yields

𝑃 = −𝑔2𝐺′(𝑚)2 ≠ 1 (2.78)

since then by definition of the coupling

1
𝑔2 = 𝑑𝑡−1

𝑑𝐸
∣
𝐸=𝑚

= (𝑑𝑣−1

𝑑𝐸
− 𝑑𝐺

𝑑𝐸
)∣

𝐸=𝑚

, → 𝑔2 𝑑𝑣−1

𝑑𝐸
∣
𝐸=𝑚

+ 𝑃 = 1. (2.79)

In light of the previous equation, we see that there is now an extra
contribution to the normalization of the state from the energy dependence of
the potential. This contribution accounts for other degrees of freedom which
are not explicitly considered in the two-hadron effective potential 𝑣(𝐸)(e.g. the
exchange of additional states, etc..) We shall interpret

𝑃 = −𝑔2𝐺′(𝑚) (2.80)

as the probability that the state |𝜓⟩ is a two-meson (𝑚1−𝑚2) molecule, while 1−
𝑃 would be the probability weight of other (non-)molecular degrees of freedom.
Assuming that the thresholds for other two-body channels are far away from
the mass 𝑚 of the bound state, 𝑍 ≡ 1 − 𝑃 will parameterize the probability
that the state is actually a genuine degree of freedom of the theory, that is, a
compact quark state, whose properties are modified by the meson cloud. We will
return below to this discussion by analyzing the form of the energy-dependent
potential families considered in the following sections.

Although we identify 𝑃 with the molecular probability, this interpretation
calls for some caution. In order shed some extra light into this topic, some
discussion on the Weinberg compositeness concept and further developments are
in order here. In Ref. [209] the experimental values for the scattering length
(𝑎) and effective range (𝑟) from the proton-neutron scattering were used by
Weinberg to show evidence that the deuteron is composite. However, this does
not follow from the evaluation of the so-called compositeness 𝑃, defined as
𝑃 = 1 − 𝑍 = 1/√1 + 2𝑟/𝑎. This expression gives the meaningless result of
𝑃 = 1.68 > 1 for the molecular probability [227–230], as one would naively
infer from Ref. [209]. The key token for the deuteron compositeness is the fact
that 𝑟 is small and positive on the order of the range ∼ 𝑚−1

𝜋 of the proton-
neutron interaction, as Weinberg indicated, rather than large and negative.
Therefore, any conclusion about the nature of an exotic state based solely on
the calculation of 𝑃 can be misleading, as it neglects corrections of 𝑂(1/𝛾𝑏),
with 𝛾𝑏 = √−2𝜇𝐸𝑏 the binding momentum. Here, 𝜇 and 𝐸𝑏(< 0) are the
reduced mass of the hadron pair and the binding energy (e.g. 𝐸𝑏 = −2.2 MeV
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for the deuteron), respectively. Several later works have worked out different
applications, re-derivations, re-interpretations, and extensions of Weinberg’s
compositeness relations [62, 226–246], but so far there is no clear consensus on
how to apply these relations to determine the compositeness or elementariness
of specific states, in particular if they are not bound.

Note that despite 𝑍 being defined as a bare-state probability in Eq. (18) of
Ref. [209], it is not fully observable as the bare compact QCD states are not
physical, and the effects produced by the interacting hadron cloud should be
considered. Indeed, 𝑍 is a renormalization field factor [209, 227] (as we will
see in Sect. 2.4.4), being scheme and even a regularization-dependent quantity.
However, in the weak binding limit (𝛾𝑏 ≪ 𝛽, with 1/𝛽 providing an estimate of
the interaction range corrections) and for two particle 𝑆−wave scattering, the
quantity 𝑍 is dominated by a term obtained from the residue of the two-hadron
scattering amplitude 𝑓(𝐸) at the physical pole 𝐸 = 𝐸𝑏 [209, 227]. Given that
the latter is the effective coupling of the bound state to the continuum channel,
a measurable quantity, this model-independent contribution to 𝑍 becomes a
valuable measure of the compositeness. The scheme and scale-dependent terms
of 𝑍, for instance those analytic in 𝐸, have to be fixed by some renormalization
condition, but importantly they are suppressed by a factor of the order
𝒪(𝛾𝑏/𝛽) [209, 227]. More specifically, in the weak binding limit

𝑃 = 1 − 𝑍 ≃ 𝜇 ̂𝑔2

𝛾𝑏
+ 𝑂 (𝛾𝑏/𝛽) , ̂𝑔 2 = lim

𝐸→𝐸𝑏
(𝐸𝑏 − 𝐸)𝑓(𝐸) . (2.81)

The above equation shows how the effective coupling ̂𝑔 2, although it does not
fully determine the sub-leading contributions 𝒪(𝛾𝑏/𝛽) to 𝑍, provides most of
the molecular probability 𝑃 = 1 − 𝑍. This will be the scheme followed in this
work. Further discussion and references can be found in Ref. [62].

Returning to the QFT language used in the discussion of the previous section
on the generation of a dynamical state in vacuum (Sect. 2.4.1), we define in this
case

𝑃0 = −𝑔2
0Σ′

0(𝑚2
0) (2.82)

where now the derivative of the loop function is taken with respect to 𝑠 = 𝐸2.22

We denote the molecular probability “𝑃0” in this case to make it apparent that
it is defined from the coupling and loop function in vacuum. This definition
will remain as-is when considering the finite-density effects.

22The definition of Eq. (2.82) is consistent with Eq. (2.81). The couplings ̂𝑔 and 𝑔0 differ
due to the difference of normalization between the scattering amplitudes 𝑓 and 𝑇 used in
Eqs. (2.81) and (2.56), respectively. In addition, note that for a shallow bound state, the
leading term of 𝜕Σ0(𝑠)

𝜕𝑠 ∣
𝑠=𝑚2

0
is proportional to 1/𝛾𝑏.
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In terms of the molecular probability 𝑃0, the two families of potentials read

𝑉𝐴(𝑠) = 1
Σ0(𝑚2

0)
+ Σ′

0(𝑚2
0)

[Σ0(𝑚2
0)]2

1 − 𝑃0
𝑃0

(𝑠 − 𝑚2
0), (2.83a)

𝑉 −1
𝐵 (𝑠) = Σ0(𝑚2

0) − Σ′
0(𝑚2

0)1 − 𝑃0
𝑃0

(𝑠 − 𝑚2
0). (2.83b)

In these expressions, it is already apparent that in the 𝑃0 → 1 limit, the two
families of potentials behave as

lim
𝑃0→1

𝑉𝐴 = lim
𝑃0→1

𝑉𝐵 = 1
Σ0(𝑚2

0)
= const. (2.84)

This result is in line with our previous discussion that energy dependence on
the potential reflects the appearance of additional degrees of freedom.

2.4.3 Dynamical state generation in nuclear matter

Now we take into account the effect that the dense nuclear medium has on
the 𝑇 matrix. In order to do so, we incorporate the density dependence in
the propagators of the two mesons, leaving their interaction unchanged.23 The
in-medium BSE reads

𝑇 −1(𝑠; 𝜌) = 𝑉 (𝑠) − Σ(𝑠; 𝜌), (2.85)

where the density-dependent two-meson loop function is

Σ(𝑠; 𝜌) = 𝑖 ∫ 𝑑4𝑞
(2𝜋)4 Δ𝑀(𝐸 − 𝑞0, ⃗𝑃 − ⃗𝑞; 𝜌)Δ𝑀′(𝑞0, ⃗𝑞; 𝜌), (2.86)

with 𝐸 the total energy and ⃗𝑃 the total three-momentum of the hadron pair.
As we discussed earlier, the introduction of the nuclear medium breaks Lorentz
invariance. Therefore, both the in-medium loop function Σ(𝑠; 𝜌) and the
in-medium 𝑇 matrix 𝑇 (𝑠; 𝜌) should actually depend on 𝐸 and ⃗𝑃 separately.
However, we will derive results only for the case where the center of mass of
the two-meson pair is at rest in the medium rest frame—that is, for ⃗𝑃 = ⃗0. In
this frame, we can simply name 𝑠 = 𝐸2, so as to make the notation simple and
similar to that of the vacuum case.

One can now introduce the spectral decomposition of the meson propaga-
tors,

Δ𝑀(𝑞0, ⃗𝑞) = ∫
∞

0
𝑑𝜔 ( 𝑆𝑀(𝜔, ⃗𝑞; 𝜌)

𝑞0 − 𝜔 + 𝑖𝜀
− 𝑆𝑀(𝜔, ⃗𝑞; 𝜌)

𝑞0 + 𝜔 − 𝑖𝜀
) , (2.87)

23As it was discussed before when dealing the meson self-energy in a dense medium—see
Eq. (2.24)—density modifications in the interaction kernel are considered as sub-leading ones.
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and performing the 𝑞0 integration in Eq. (2.86), one obtains

Σ(𝑠; 𝜌) = ∫
Λ

𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔 ∫

∞

0
𝑑𝜔′ (𝑆𝑀(𝜔, ⃗𝑞; 𝜌)𝑆𝑀′(𝜔′, ⃗𝑞; 𝜌)

𝐸 − 𝜔 − 𝜔′ + 𝑖𝜀

− 𝑆𝑀(𝜔, ⃗𝑞; 𝜌)𝑆𝑀′(𝜔′, ⃗𝑞; 𝜌)
𝐸 + 𝜔 + 𝜔′ − 𝑖𝜀

) (2.88)

In this expression, we have already set ⃗𝑃 = 0. In order to regularize the UV
divergent loop of Eq. (2.88), we introduce a sharp cutoff Λ.24 It is possible
to write the density-dependent loop function in an alternative way, which is
convenient for performing its numerical calculation. With a change of variables
𝜔 → Ω = 𝜔 + 𝜔′, we can write the loop function as follows,

Σ(𝑠 = 𝐸2 ; 𝜌) = 1
2𝜋2 ∫

∞

0
𝑑Ω (𝑓𝑀𝑀′(Ω ; 𝜌)

𝐸 − Ω + 𝑖𝜀
− 𝑓𝑀𝑀′(Ω ; 𝜌)

𝐸 + Ω − 𝑖𝜀
) , (2.89)

where the auxiliary function 𝑓𝑀𝑀′ is defined as

𝑓𝑀𝑀′(Ω; 𝜌) = ∫
Λ

0
𝑑𝑞 𝑞2 ∫

Ω

0
𝑑𝜔 𝑆𝑀 (𝜔, | ⃗𝑞|; 𝜌) 𝑆𝑀′ (Ω − 𝜔, | ⃗𝑞|; 𝜌) . (2.90)

Additional details of the computation of this loop function, which is one of the
main objects of this thesis, are provided in Appendix A.

Once the density-dependent two-meson loop has been determined, one can
describe how the properties of the dynamical 𝑋 state are modified.25 Let us first
focus on how the medium density modifies the pole position and the coupling
when considering the 𝐴−type potential of Eq. (2.83a) as the kernel of the BSE.
The density-dependent pole position, which we shall name 𝑚(𝜌), will be given
by a zero in the inverse amplitude:

0 = 𝑇 −1
𝐴 (𝑚2

𝜌; 𝜌) = 𝑉 −1
𝐴 (𝑚2

𝜌) − Σ(𝑚2
𝜌; 𝜌) (2.91)

This leads to the following implicit equation for 𝑚𝜌:

𝑚2
𝜌 = 𝑚2

0 − 𝑃0
1 − 𝑃0

1
Σ′

0(𝑚2
0)

[Σ0(𝑚2
0) −

[Σ0(𝑚2
0)]2

Σ(𝑚2
𝜌; 𝜌)

] . (type 𝐴) (2.92)

24In principle, finite density effects are cutoff independent, as discussed when analyzing
the finite-density meson-nucleon loop function of Eq. (2.25). However, in our formalism we
kept the cutoff even for the finite-density modifications to the loop. This can result in some
artifacts, which we expect will be small

25Recall that, ultimately, this 𝑋 state will represent either the 𝑇𝑐𝑐(3875) or the 𝐷∗
𝑠0(2317)

states (or their heavy quark spin partners).
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The in-medium coupling can be derived from the density-dependent 𝑇 matrix
through the definition

1
𝑔2

𝜌
= 𝑑𝑇 −1(𝑠; 𝜌)

𝑑𝑠
∣
𝑠=𝑚2

𝜌

, (2.93)

yielding, after using the equation (2.92) for 𝑚𝜌, the following

1
𝑔2

𝜌
= − [

Σ(𝑚2
𝜌; 𝜌)

Σ0(𝑚2
0)

]
2

1 − 𝑃0
𝑃0

Σ′
0(𝑚2

0) − Σ′(𝑚2
𝜌; 𝜌). (type 𝐴) (2.94)

Using now the type−𝐵 potential as the kernel of the BSE, one can derive
in the same way the expressions for the in-medium mass and coupling of the 𝑋
state,

𝑚2
𝜌 = 𝑚2

0 − 1
Σ′

0(𝑚2
0)

𝑃0
1 − 𝑃0

[Σ(𝑚2
𝜌; 𝜌) − Σ0(𝑚2

0)] , (type 𝐵) (2.95)

1
𝑔2

𝜌
= −1 − 𝑃0

𝑃0
Σ′

0(𝑚2
0) − Σ′(𝑚2

𝜌; 𝜌). (type 𝐵) (2.96)

Comparing the expressions for the 𝐴− and 𝐵−type potentials, we see that
they are equivalent when one can approximate Σ(𝑚2

𝜌; 𝜌)/Σ0(𝑚2
0) ≃ 1, that is,

for small in-medium modifications.
We have arrived at an expression for the density-dependent coupling of

the 𝑋 state to the two-meson channel, as well as an implicit equation for the
density-dependent mass. Although this is one way of writing the solution to the
problem we were tackling, in practice it is not a useful one. More specifically,
the resolution of the implicit equation for the in-medium renormalized mass
𝑚𝜌 would require knowledge of the finite-density two-meson loop function for
complex values of its argument (of 𝑚𝜌) and it is not evident how to perform an
analytic continuation to the complex plane of the loop function of Eq. (2.88).
The fact that 𝑚𝜌 will be complex can be easily seen by approximating this mass
in the medium by the vacuum mass in the self-consistent equation. Taking, for
example, the expression of 𝑚𝜌 arising from the 𝐵 potential, one finds

𝑚2
𝜌 = 𝑚2

0 − 1
Σ′

0(𝑚2
0)

𝑃0
1 − 𝑃0

[Σ(𝑚2
0; 𝜌) − Σ0(𝑚2

0)] . (2.97)

Since Σ(𝑚2
0; 𝜌) can (and will) have an imaginary part even for energies below

threshold, 𝑚𝜌 will become complex.
Given that the problem of determining the value of 𝑚𝜌—or in other

words the pole position—is difficult, we shall focus in determining the density-
dependent scattering amplitude 𝑇 (𝑠; 𝜌) on the real axis. From the lineshapes
obtained, we will infer the medium modifications of the mass and width of the
state. We will also explore in Sect. 2.4.7 an approximate method to determine
the position of the pole.
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2.4.4 Self-energy formalism and relation to the 𝑇–matrix
scheme

In this subsection, we investigate the modification of the properties of a given
state 𝑋, which couples to a two-meson channel, in a dense nuclear medium. The
discussion runs parallel to what was studied at the beginning of Sec. 2.3 when
dealing with the meson self-energies. However, there is a key difference, which
is the fact that the 𝑋 state is dressed by the nuclear medium only through its
coupling to the two-meson channel, and we do not take into account any direct
dressing in the 𝑋 propagator. This is appropriate for instance to describe the
medium-properties of a charmonium-like (𝑐𝑐) state as the 𝑋(3872), since one
expects the 𝑋𝑁 → 𝑋𝑁 coupling to be small. However, this exotic resonance
is successfully described as a (𝐷𝐷∗ + ℎ𝑐) molecule [226], and therefore its line-
shape in a dense medium should be strongly affected by the density-dependent
self-energies that the 𝐷(∗) and 𝐷(∗) mesons acquire.

X

X

M ′M

Figure 2.7: Self-energy diagram for the 𝑋 state coupling to mesons 𝑀 and
𝑀 ′. The black dots represent the bare coupling ̂𝑔, and the double dashed lines
correspond to the 𝑀𝑀 ′ loop function dressed with the nucleons of the system
(time taken in the vertical direction).

Let us start by considering a preexisting bare 𝑋 state with mass 𝑚̂ and
coupling ̂𝑔 to a given two-meson channel. In free space, the irreducible self-
energy of the 𝑋 state due to its coupling to the two mesons (see Fig. 2.7) can
be written as

−𝑖Π(𝑋)
0 (𝑠) = [−𝑖 ̂𝑔][𝑖Σ0(𝑠)][−𝑖 ̂𝑔] ⇒ Π(𝑋)

0 (𝑠) = ̂𝑔2Σ0(𝑠), (2.98)

where Σ0 is the two-meson loop function in vacuum. Upon resummation of all
the possible insertions of the self-energy, one ends with the dressed propagator
for the 𝑋:

Δ−1
0 (𝑠) = Δ̂−1(𝑠) − Π(𝑋)

0 (𝑠) (2.99)
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where
Δ̂−1(𝑠) = 𝑠 − 𝑚̂2 + 𝑖𝜀 (2.100)

is the bare 𝑋 propagator. From this formula, one defines the physical mass of
the 𝑋 state in vacuum as

𝑚2
0 = 𝑚̂2 + Π(𝑋)

0 (𝑚2
0) = 𝑚̂2 + ̂𝑔2Σ0(𝑚2

0). (2.101)

Since the loop function is, in principle, divergent, so too will be the bare mass
𝑚̂, such that the physical mass 𝑚0 is finite. Furthermore, the renormalized
coupling is given by

𝑔2
0 = ̂𝑔2𝑍0 (2.102)

with 𝑍0 the field renormalization factor,

1
𝑍0

= 𝑑Δ−1
0 (𝑠)
𝑑𝑠

∣
𝑠=𝑚2

0

= 1 − ̂𝑔2Σ′
0(𝑚2

0). (2.103)

One can invert the relation between ̂𝑔2 and 𝑔2
0

𝑔2
0 = ̂𝑔2

1 − ̂𝑔2Σ′
0(𝑚2

0)
→ ̂𝑔2 = 𝑔2

0
1 + 𝑔2

0Σ′
0(𝑚2

0)
, (2.104)

and inserting this into the definition of the field normalization factor yields

𝑍0 = 1
1 − ̂𝑔2Σ′

0(𝑚2
0)

= 1 + 𝑔2
0Σ′

0(𝑚2
0) = 1 − 𝑃0, (2.105)

with 𝑃0 the molecular probability defined in Eq. (2.82). From this last relation,
and given the interpretation of 𝑃0, the meaning of the 𝑍0 factor is clear: It
represents the probability that the state is a pure “bare” state, in contrast to
having a molecular nature in the two-meson channel considered.

Let us now consider a dense nucleon medium that renormalizes the meson
propagators. Proceeding exactly as in the vacuum case, we find the renormal-
ized mass and coupling

𝑚2
𝜌 = 𝑚̂2 + Π(𝑋)

𝜌 (𝑚2
𝜌) = 𝑚̂2 + ̂𝑔2Σ(𝑚2

𝜌; 𝜌), (2.106)

𝑔2
𝜌 = ̂𝑔2

1 − ̂𝑔2Σ′(𝑚2
𝜌; 𝜌)

. (2.107)

Since the bare 𝑚̂ and ̂𝑔2 are potentially divergent quantities, it is more useful
to rewrite the previous expressions in terms of the finite 𝑚2

0 and 𝑔2
0, using the

relations of Eqs. (2.101) and (2.104). This results in the following expressions:

𝑚2
𝜌 = 𝑚2

0 + 𝑔2
0

1 + 𝑔2
0Σ′

0(𝑚2
0)

[Σ(𝑚2
𝜌; 𝜌) − Σ0(𝑚2

0)] , (2.108)



2.4. TWO-MESON SCATTERING IN NUCLEAR MATTER 53

𝑔2
𝜌 = 𝑔2

0
1 − 𝑔2

0 [Σ′(𝑚2
𝜌; 𝜌) − Σ′

0(𝑚2
0)]

. (2.109)

In terms of the molecular probability, these relations read

𝑚2
𝜌 = 𝑚2

0 − 1
Σ′

0(𝑚2
0)

𝑃0
1 − 𝑃0

[Σ(𝑚2
𝜌; 𝜌) − Σ0(𝑚2

0)] , (2.110)

𝑔2
𝜌 = − 1

1−𝑃0
𝑃0

Σ′
0(𝑚2

0) + Σ′(𝑚2
𝜌; 𝜌)

. (2.111)

Note that from the previous expressions we have 𝑚𝜌 → 𝑚0 and 𝑔2
𝜌 → 𝑔2

0 in the
limit 𝜌 → 0.

Comparing these last equations with those that were obtained using the
𝑇–matrix formalism in Sect. 2.4.3, we see that they are completely equivalent
to the case where the type−𝐵 potential was used—see Eqs. (2.95) and (2.96).
This should be expected, as the type−𝐵 potential can be expressed as

𝑉𝐵(𝑠) = ̂𝑔2

𝑠 − 𝑚̂2 (2.112)

using the relations between the vacuum and the bare parameters that were
derived in this section. This shows that this interaction is generated by the
exchange of a bare state 𝑋. The only difference between the self-energy
formalism presented here and the 𝑇–matrix presented in the previous section
is the choice of the asymptotic state (the state that is placed in the nuclear
medium). In this section, this asymptotic state is the bare 𝑋, while in Sect. 2.4.3
we considered the two mesons as asymptotic states. Aside from this minor
difference, both formalisms are completely equivalent in this case. On the other
hand, the type−𝐴 interaction is not of the form of an explicit exchange of any
bare state in the 𝑠−channel. It can be understood as a purely molecular contact
interaction plus some energy dependence coming from a Taylor expansion
around the physical vacuum pole of contributions arising from the exchange
of some genuine bare quark-model states.

2.4.5 Spectral functions in the self-energy and 𝑇–matrix for-
malisms

In the previous subsection, we found that the dressed propagator for the 𝑋
state in nuclear matter can be expressed as

Δ(𝑠; 𝜌) = 1
𝑠 − 𝑚̂2 − Π(𝑋)

𝜌 (𝑠)
= 1

𝑠 − 𝑚2
0 − [Π(𝑋)

𝜌 (𝑠) − Π(𝑋)
0 (𝑚2

0)]
, (2.113)
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where we define

Π̃(𝑋)(𝑠; 𝜌) = Π(𝑋)
𝜌 (𝑠) − Π(𝑋)

0 (𝑚2
0) = ̂𝑔2 [Σ(𝑠; 𝜌) − Σ0(𝑚2

0)] (2.114)

as the contribution to the self-energy of the 𝑋 coming from the nuclear medium.
What we call Π̃(𝑋) is analogous to what we were referring to as Π when studying
the meson self-energies in Sect. 2.3. That is, Π̃(𝑋) is a quantity that contains
only the effects of the nuclear medium—so that when 𝜌 tends to zero, we have
Π̃(𝑋) → 0. We can now use the definition given in Eq. (2.33) for the spectral
function in terms of the propagator.

𝑆(𝑋)(𝑠; 𝜌) = − 1
𝜋

Im Δ(𝑠; 𝜌). (2.115)

It is also possible to define the 𝑋 spectral function from the two-meson
𝑇–matrix point of view. Let us start by considering the potential 𝑉𝐵 as the
kernel to derive the 𝑇–matrix, since in this case we have shown that the results
are equivalent to those arising from the self-energy formalism. We have

𝑇 −1
𝐵 (𝑠; 𝜌) = 𝑉 −1

𝐵 (𝑠) − Σ(𝑠; 𝜌)

→ 𝑇 −1
𝐵 (𝑠) = 𝑠 − 𝑚̂2

̂𝑔2 − Σ(𝑠; 𝜌) = 𝑠 − 𝑚̂2 − ̂𝑔2Σ(𝑠; 𝜌)
̂𝑔2 = Δ−1(𝑠; 𝜌)

̂𝑔2 . (2.116)

For the specific form 𝑉𝐵 of the potential, we obtain that 𝑇𝐵 and the 𝑋 state
propagator only differ in the normalization, given by the bare coupling. This
motivates the definition

𝑆(𝑋)(𝑠; 𝜌) = − 1
𝜋

Im 𝑇 (𝑠; 𝜌)
̂𝑔2 (2.117)

which will be exactly equal to the self-energy of Eq. (2.115) for the 𝑇–matrix
computed using 𝑉𝐵 as the kernel, and will only be approximately equal in the
region around the 𝑋 vacuum-mass 𝑚0 when using any other potential that
produces the same pole as 𝑉𝐵 in the free space. In particular, for the case of
𝑉𝐴, which can be rewritten in terms of the bare coupling, we have

𝑉𝐴(𝑠) = 1
Σ0(𝑚2

0)
− 1

̂𝑔2Σ2
0(𝑚2

0)
(𝑠 − 𝑚2

0), (2.118)

so that the 𝑇–matrix can be approximated in a region around the vacuum pole
mass 𝑚0 as

𝑇 −1
𝐴 (𝑠; 𝜌) = [ 1

Σ0(𝑚2
0)

− 1
̂𝑔2Σ0(𝑚2

0)
(𝑠 − 𝑚2

0)]
−1

− Σ(𝑠; 𝜌)
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= [Σ0(𝑚2
0) + 1

̂𝑔2 (𝑠 − 𝑚2
0) + 𝒪 ((𝑠 − 𝑚2

0)2

̂𝑔4 )] − Σ(𝑠; 𝜌)

= Δ−1(𝑠; 𝜌)
̂𝑔2 + 𝒪 ((𝑠 − 𝑚2

0)2

̂𝑔4 ) . (2.119)

This expansion is completely general and can be applied to any 𝑇-matrix. From
Eq. (2.119) it follows that, for a generic potential, the definition of the spectral
function of the 𝑋 in terms of the two-meson scattering 𝑇-matrix coincides
with that obtained from the renormalized propagator only if the 𝑋 state
couples sufficiently strongly to the two-meson channel. The required strength
of this coupling depends on the energy range under consideration—through the
numerator of the higher-order terms in Eq. (2.119)—and is characterized by
the density-dependent width of the 𝑋 state, Γ(𝑋):

̂𝑔2 ≫ 𝑚0Γ(𝑋)(𝜌). (2.120)

Expressing the bare coupling in terms of the molecular probability yields

̂𝑔2 = − 1
Σ′

0(𝑚2
0)

𝑃0
1 − 𝑃0

, (2.121)

so that the condition in Eq. (2.120) translates into requiring a sufficiently large
value of 𝑃0, i.e. close to unity.

2.4.6 Analysis of the limiting values for the molecular proba-
bility

It is interesting to study the limiting cases 𝑃0 → 0 (purely compact state)
and 𝑃0 → 1 (purely molecular state).26 Let us start with the purely compact
scenario. In this case, one has

𝑔2
0 = − 𝑃0

Σ0(𝑚2
0)

→ 0, (2.122)

and through Eq. (2.104), necessarily ̂𝑔2 → 0. This means that the 𝑋 state does
not couple to the two-meson channel, and therefore it does not get renormalized
by the mesons. From the propagator point of view,

Δ(𝑠; 𝜌) = 1
𝑠 − 𝑚2

0 − ̂𝑔2 [Σ(𝑠; 𝜌) − Σ0(𝑚2
0)]

26We do not consider states with 𝑃0 > 1, although physical examples exist for which the
molecular probability evaluated as in Eq. (2.82) results in a value greater than one, most
famously the deuteron [209] (see discussion in Sect. 2.4.2).
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= 𝑍0
𝑍0(𝑠 − 𝑚2

0) − 𝑔2
0 [Σ(𝑠; 𝜌) − Σ0(𝑚2

0)]
→ 1

𝑠 − 𝑚2
0 + 𝑖𝜀

, (2.123)

and therefore it holds true that 𝑚̂ = 𝑚0 = 𝑚𝜌. In the 𝑇–matrix approach, in
either the type 𝐴 or 𝐵 scenarios, it is also found that 𝑔2(𝜌) → 0. This signals
that the 𝑇–matrix is not fit for describing the 𝑋 state in this scenario, since
the coupling is zero and therefore the 𝑋 cannot be dynamically generated in
the two-meson scattering amplitude. This can also be seen in the fact that
the potentials need to become singular at the vacuum mass of the 𝑋, with
𝑉 ′(𝑚2

0) ∼ 1/𝑃0 → ∞.
Considering now the purely molecular case, we have that both the 𝐴 and 𝐵

potentials become equal and constant, cf. (2.84). The 𝑇–matrix takes the form

𝑇 (𝑠; 𝜌) = 1
Σ0(𝑚2

0) − Σ(𝑠; 𝜌)
(2.124)

and the in-medium mass is related to the vacuum mass, independently of the
potential used, through

Σ0(𝑚2
0) − Σ(𝑚2

𝜌; 𝜌) = 0, (2.125)

with the in-medium coupling being

𝑔2
𝜌 = − 1

Σ′(𝑚2
𝜌; 𝜌)

. (2.126)

Analyzing the situation from the self-energy point of view, we see that the
propagator of Eq. (2.123) becomes null—except when 𝑠 = 𝑚2

𝜌, when both the
numerator and the denominator are zero—as 𝑃0 → 1 and 𝑍0 → 0. However,
with the usual field renormalization, one can remove the factor 𝑍0 from the
numerator. This results in the following propagator:

𝑍−1
0 Δ(𝑠; 𝜌) = 1

𝑍0(𝑠 − 𝑚0)2 − 𝑔2
0 [Σ(𝑠; 𝜌) − Σ0(𝑚2

0)]
. (2.127)

Even in this form, as 𝑍0 goes to zero, the vacuum part of the propagator
vanishes, and we are simply left with the part originating from the self-energy
Π̃(𝑋). This is because there is no bare compact state in this limit, and the pole
structure is generated only from the two-meson loop function contribution. We
can check that in this limit,

̂𝑔2 = 𝑔2
0

𝑍0
→ ∞, 𝑚̂2 = 𝑚2

0 − ̂𝑔2Σ0(𝑚2
0) → ∞. (2.128)

The result holds even when regularizing the loop function Σ0.



2.4. TWO-MESON SCATTERING IN NUCLEAR MATTER 57

2.4.7 Effective loop function

In the last two paragraphs of Sect. 2.4.3 we pointed out that the exact deter-
mination of the pole of the unitarized amplitude in the finite-density scenario
was a difficult task, given that it would require the analytic continuation to the
complex plane of the density-dependent two-meson loop function Σ(𝑠; 𝜌). To
perform this analytic continuation for complex values of 𝑠 is not straightforward.
In this subsection, we present an approximate method that allows us to search
for poles in the complex plane and that will be used in our study of the 𝑇 +

𝑐𝑐.
The physical motivation for this method is that we can approximately

understand the two-meson loop function in the nuclear medium as arising from
the now unstable mesons, whose masses in the medium are shifted toward
complex values. Although the spectral functions of the mesons may have a rich
structure due to the presence of resonance-hole excitations, as is the case for 𝐷
and 𝐷∗, this structure is mostly washed out when the integration over the energy
variables of the spectral functions is calculated in the in-medium loop function;
cf. Eq. (2.88). Therefore, one can approximately account for the density effects
on the mesons by just the modification of their masses 𝑀1 → 𝑀 eff

1 (𝜌) and
𝑀2 → 𝑀 eff

2 (𝜌), and therefore write

Σ(𝑠; 𝜌) ≃ Σ0 (𝑠; 𝑀 eff
1 (𝜌), 𝑀 eff

2 (𝜌)) . (2.129)

The function Σ0 (𝑠; 𝑀 eff
1 (𝜌), 𝑀 eff

2 (𝜌)) is just the analytic formula for the rel-
ativistic two-meson loop function of Eq. (2.58), where we have replaced the
masses of the mesons in vacuum, 𝑀1 and 𝑀2, by their effective masses in
the nuclear medium, 𝑀 eff

1 (𝜌) and 𝑀 eff
2 (𝜌). Since Σ0 already has an analytic

expression, its analytic continuation to complex values of 𝑠 is straightforward,
and therefore it is easy to look for the poles of the 𝑇–matrix in the complex
plane by numerically solving the following equation for the complex variable 𝑧:

𝑇 −1(𝑧) = 𝑉 −1(𝑧) − Σ0 (𝑧; 𝑀 eff
1 (𝜌), 𝑀 eff

2 (𝜌)) = 0. (2.130)

Next, we discuss the values we shall take for 𝑀 eff
1 (𝜌) and 𝑀 eff

2 (𝜌). Contrary
to what one might expect, we do not take these masses from their respective
spectral functions. We fix these values by fitting Σ0 to the known function
Σ(𝑠; 𝜌) on the real axis. That is why we speak of effective masses, since they
do not necessarily correspond to their values dependent on the nuclear density.
We parameterize the density-induced changes on the effective masses as

𝑀 eff
1 (𝜌) = 𝑀1 + Δ𝑀(𝜌) − 𝑖Γ(𝜌)

2
, (2.131)

𝑀 eff
2 (𝜌) = 𝑀2 + Δ𝑀(𝜌) − 𝑖Γ(𝜌)

2
. (2.132)
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Although, in principle, the mass changes induced by density are different for
each of the 𝐷(∗) and 𝐷̄(∗) mesons, we take them to be the same and describe
them only with the two parameters Δ𝑀 and Γ. In this way, we reduce the
number of free parameters used in the fit and, as we will see, we find a good
enough description of the original loop function Σ(𝑠; 𝜌), as shown for the 𝐷∗𝐷
loop function in Fig. 2.17 of Sect. 2.5.5.

2.5 Finite density results for the 𝑇𝑐𝑐(3875)
In this section, we particularize the formalism that was presented in Sect. 2.4 to
the case of the 𝑇𝑐𝑐(3875)+ and its antiparticle, the 𝑇𝑐𝑐(3875)−. Then, we show
the obtained results for these exotic states, as well as make some predictions
for their HQSS partners.

2.5.1 Review of the formalism applied to the 𝑇𝑐𝑐

We start by considering the 𝑇𝑐𝑐(3875)+ as a 𝐷∗𝐷 state with isospin and spin-
parity quantum numbers 𝐼(𝐽𝑃) = 0(1+). Therefore, we assume that 𝑇 +

𝑐𝑐 is an
isoscalar state, with only a minor isospin breaking that arises from the different
masses of the channels involved, as we detail below. This is consistent with
the experimental analyses of [45, 52, 142], where no peak was observed in the
isospin 𝐼 = 1 channel 𝐷+𝐷∗+.

As was already mentioned at the start of Sect. 2.4, we consider a HQET
interaction, which is diagonal in the isospin basis, and only take into account the
𝑆−wave contribution since 𝑇𝑐𝑐(3875)+ is located almost at the 𝐷𝐷∗ threshold.
The relation between isospin and particle bases is27

|𝐷𝐷∗, 𝐼 = 1⟩ = − 1√
2

(|𝐷∗+𝐷0⟩ + |𝐷∗0𝐷+⟩) , (2.133)

|𝐷𝐷∗, 𝐼 = 0⟩ = − 1√
2

(|𝐷∗+𝐷0⟩ − |𝐷∗0𝐷+⟩) , (2.134)

In the particle basis {𝐷∗+𝐷0, 𝐷∗0𝐷+}, the interaction, which is not diagonal,
reads

𝒱 = 1
2

(𝑉1 + 𝑉0 𝑉1 − 𝑉0
𝑉1 − 𝑉0 𝑉1 + 𝑉0

) , (2.135)

27Note that there is a global “−” sign in this change of basis which does not affect the overall
results. This “−” sign comes from the isospin convention |𝑑⟩ = −| 1

2 , + 1
2 ⟩, |𝑢⟩ = | 1

2 , − 1
2 ⟩, which

implies for the charmed mesons |𝐷0⟩ = |𝑐𝑢⟩ = | 1
2 , − 1

2 ⟩, |𝐷+⟩ = |𝑐𝑑⟩ = −| 1
2 , + 1

2 ⟩. There is no
sign difference for anticharmed mesons |𝐷0⟩ and |𝐷−⟩.
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where 𝑉0 and 𝑉1 are effective contact interactions in the isospin 0 and isospin
1 channels, respectively. The BSE in this coupled-channel approach reads

𝒯−1(𝑠) = 𝒱−1 − 𝒢(𝑠) , (2.136)

where the diagonal matrix 𝒢(𝑠) is constructed from the two-meson loop func-
tions,

𝒢(𝑠) = (Σ𝐷∗+𝐷0(𝑠) 0
0 Σ𝐷∗0𝐷+(𝑠)) . (2.137)

Isospin-breaking effects enter the unitarized 𝑇–matrix through the kinetic terms
of the different two-meson loop functions, due to the mass splitting between
the charged and neutral 𝐷 mesons. However, when taking the exact isospin
limit, in which 𝑚𝐷 = (𝑚𝐷+ + 𝑚𝐷0)/2 and similarly for the vector mesons
𝑚𝐷∗ = (𝑚𝐷∗+ +𝑚𝐷∗0)/2, the loop function becomes proportional to the identity

𝒢(𝑠) = 𝕀2×2Σ0(𝑠). (2.138)

In this equation, the vacuum loop function Σ0 is given in Eq. (2.58), particu-
larizing the masses 𝑀1 and 𝑀2 to 𝑚𝐷 and 𝑚𝐷∗ . Therefore, in Eq. (2.136) the
isospin channels decouple, and we can solve their 𝑇 −matrices independently.
This is precisely what we do in this study. In order to regularize Σ0, we take a
three-momentum sharp cutoff Λ = 700 MeV, and we will take the same cutoff
for both the vacuum and the nuclear-density dependent loops.

We take the 𝐼 = 0 amplitude and for the interaction kernel we use the 𝐴 and
𝐵 families of 𝑆−wave potentials presented in Eqs. (2.83a) and (2.83b). Since
we work in the isospin limit, we cannot take 𝑚0 to be the physical mass of the
𝑇𝑐𝑐. Instead, we take a binding energy with respect to the isospin-symmetric
𝐷𝐷∗ threshold of 𝐸𝐵 = 𝑚𝐷 +𝑚𝐷∗ −𝑚0 = 0.8 MeV. This value is motivated by
the analysis performed in the isospin limit in Ref. [52]. With the 𝑚0 parameter
already fixed, we consider several scenarios for the molecular probability 𝑃0
ranging from 0 to 1. We show the resulting potentials in Fig. 2.8.

In Fig. 2.8 it is apparent that both families of potentials can be substantially
different. However, there are some remarks that can be made. Firstly, we see
that the value of the potential and of its first derivative at 𝑠 = 𝑚2

0 is the same
for both the 𝐴 and 𝐵 families.

𝑉𝐴(𝑚2
0) = 𝑉𝐵(𝑚2

0) = 1
Σ0(𝑚2

0)
, (2.139a)

𝑉 ′
𝐴(𝑚2

0) = 𝑉 ′
𝐵(𝑚2

0) = − 1
̂𝑔2 [Σ0(𝑚2

0)]2 . (2.139b)

This is a direct result of the definition of the LECs by fixing the pole position
and the value of the coupling, recall Eqs. (2.62). It is clear from the plots of
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Figure 2.8: Plot of 𝑉𝐴 (left-hand side) and 𝑉𝐵 (right-hand side) potentials of
Eqs. (2.83a) and (2.83b) as a function of the invariant mass

√
𝑠 for different

values of the molecular probability 𝑃0.

Fig. 2.8 that both potentials become singular at
√

𝑠 = 𝑚0 if 𝑃0 → 0, and both
become very similar around

√
𝑠 = 𝑚0 when 𝑃0 → 1. All these features were

already noted when discussing the limiting cases of 𝑃0 in Sect. 2.4.6. Therefore,
a similar qualitative behavior of the unitarized amplitude should be expected
in the 𝐴 and 𝐵 scenarios when considering a value for 𝑃0 close to unity, while
some important differences may arise for small molecular probabilities.

2.5.2 Nuclear medium results for the 𝑇𝑐𝑐(3875)+

In this section, we first discuss the in-medium 𝐷𝐷∗ loop function and show
some results for the density-dependent 𝑇 −matrices, computed using 𝑉𝐴 or 𝑉𝐵
as kernels of the BSE. After that, we present equivalent results for the spectral
functions within the self-energy formalism.

In-medium amplitude

Now, we examine the results we have obtained for the 𝐼(𝐽𝑃) = 0(1+) 𝐷∗𝐷
amplitude inside of the nuclear medium |𝑇 (𝐸; 𝜌)|2 [Eq. (2.85)]. We plot
different quantities as functions of the energy 𝐸 of the 𝐷∗𝐷 pair in the nuclear
medium rest frame ( ⃗𝑃 = ⃗0). Note that 𝐸 ≡

√
𝑠 in the notation of the previous

sections, first introduced in Sect. 2.4.3. First, we show in Fig. 2.9, results for the
in-medium 𝐷∗𝐷 loop function. To better interpret the density modifications
to the loop function, we rewrite the 𝑇–matrix in the medium, first shown in
Eq. (2.85), as

𝑇 −1(𝑠 ; 𝜌) = 𝑉 −1
eff (𝑠 ; 𝜌) − Σ0(𝑠 ) , (2.140a)

𝑉 −1
eff (𝑠 ; 𝜌) = 𝑉 −1(𝑠) + 𝛿Σ(𝑠 ; 𝜌) , (2.140b)
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where 𝛿Σ(𝑠 ; 𝜌) = [Σ0(𝑠) − Σ(𝑠 ; 𝜌)]. In this new expression, the medium cor-
rections are incorporated into the effective potential 𝑉eff, while the two-meson
loop is that of the vacuum. This will be used in order to infer whether the
nuclear medium induces an effective attractive or repulsive behavior on the
two-meson interaction.
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Figure 2.9: 𝐷∗𝐷 loop function for various values of the nuclear matter density 𝜌
as a function of the 𝐷∗𝐷 pair energy 𝐸 in the c.m. frame. The solid and dashed
lines stand for the real and imaginary parts, respectively. A three-momentum
cutoff Λ = 700 MeV is implemented for its regularization.

We are now ready to examine the loop function in the medium Σ(𝐸; 𝜌),
presented in Fig. 2.9 for various values of the nuclear density 𝜌 ranging from
zero to 𝜌0, with 𝜌0 = 0.17 fm−3 the normal nuclear matter density. On the one
hand, regarding the imaginary part (dashed lines), we see that the unitarity cut,
which sharply begins at the 𝐷∗𝐷 threshold in vacuum, becomes smoothed as
the density increases. Additionally, we observe that the loop function develops
an imaginary part even for energies below the threshold. This occurs because
the 𝐷 and 𝐷∗ mesons acquire a certain width, determined by their spectral
functions, when they are placed within the medium. As we have already
discussed, this width is the result of the interactions between the 𝐷 and 𝐷∗

mesons and nucleons, which lead to inelastic processes (for example 𝐷𝑁 → Λ∗
𝑐)

and therefore to the decay of the 𝐷 and 𝐷∗ mesons in the medium. On the
other hand, the real part (solid lines) also flattens with increasing densities and
shifts toward a larger, less negative value, so Re 𝛿Σ(𝑠 ; 𝜌) < 0. Invoking now
the definition of 𝑉eff, this means that Re 𝑉 −1

eff (𝑠; 𝜌) ≤ 𝑉 −1(𝑠). This would imply
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Figure 2.10: Squared modulus of the 𝐷∗𝐷 amplitudes obtained by solving the
BSE using the 𝑉𝐴(𝑠) (left column) and 𝑉𝐵(𝑠) (right column) potentials, as
a function of the center-of-mass energy 𝐸, for several values of the nuclear
density 𝜌 (different line colors) and for two values of the molecular probability
𝑃0 (𝑃0 = 0.2 in the top row and 0.8 in the bottom row). Note that the
amplitudes have been normalized to be one at their maximum.

that the effect of the medium is to generate repulsion in the 𝐷∗𝐷 interaction.
However, one has to take this claim with caution, since the imaginary part of the
density-dependent loop is sizable, so that 𝑉 −1

eff will also have a large imaginary
part, which we cannot neglect.

After calculating the modified 𝐷∗𝐷 loop function Σ(𝐸; 𝜌), the 𝐷∗𝐷
𝑇–matrix in nuclear medium can be derived from the 𝑇𝑐𝑐(3875)+ mass and its
𝐷∗𝐷 probability (𝑚0 and 𝑃0) in vacuum, as previously discussed. We consider
two families of 𝑇 −matrices, namely 𝑇𝐴 and 𝑇𝐵, derived from the 𝑉𝐴(𝐸) and
𝑉𝐵(𝐸) potentials, respectively, and different values of the molecular probability
𝑃0.

In Fig. 2.10 we present the squared modulus of the 𝑇𝐴 (left column) and
𝑇𝐵 (right column) amplitudes for different densities, considering two values for
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the molecular probability 𝑃0 = 0.2 (top row) and 0.8 (bottom row). In order
to better compare between the different density scenarios considered, we have
normalized the squared amplitudes to be one at the maximum of the 𝑇𝑐𝑐 peak.
When comparing the amplitude computed using the 𝑉𝐴(𝐸) potential and the
one obtained from the 𝑉𝐵(𝑠) potential, we conclude that for high values of the
molecular 𝐷∗𝐷 component, the predictions of both potentials are very similar.
This was expected since in the limit 𝑃0 → 1 both potentials are very similar in
the region of energies around 𝑠 = 𝑚2

0, as was already discussed when analyzing
Fig. 2.8. For small values of 𝑃0 (𝑃0 = 0.2 in the upper plots), both potentials are
very different, leading to distinct 𝑇 −matrices in the medium, despite giving rise
to the same mass (𝑚0) and coupling (𝑔2

0) in the free space. This can be easily
understood since the 𝐴 potential presents a zero very close to 𝑚0, while 𝑉𝐵 has
a pole near 𝑚0. These features produce great distortions on their respective
𝑇 −matrices.

Comparing the density dependence of the in-medium 𝑇 −matrices for small
and large 𝑃0 cases, we find that the medium effects are significantly larger for the
scenarios where a high molecular probability is considered. This is natural, since
density corrections affect the 𝑇𝑐𝑐 only through its coupling to the 𝐷𝐷∗ channel
in our model. For large values of 𝑃0, the width increases significantly with
density, and the peak position is shifted to higher energies. When considering
a small molecular component, the changes to the 𝑇𝑐𝑐(3875)+ become less
important and, as mentioned before, the 𝑇 −matrices differ depending on the
used potential. The amplitudes deduced from 𝑉𝐴(𝐸) show the zero that this
type of potential has below 𝑚0, with the position of the zero being independent
of the nuclear density, as discussed in Ref. [162]. However, the amplitude below
and above this zero shows a clear dependence on the density. In contrast,
when using the 𝑉𝐵(𝐸) interaction, we basically observe the peak induced by
the bare pole present in the potential. In this case, the in-medium effects are
even smaller than when considering the 𝑉𝐴(𝐸) potential, and for 𝑃0 = 0.2
the amplitude is almost density independent. Considering these important
differences between the low and high 𝑃0 scenarios, any experimental input
on |𝑇 (𝐸; 𝜌)|2, in particular for energies around 𝑚0, could shed light on the
dynamics of the interacting 𝐷∗𝐷 pair.

In-medium self-energy and spectral function

We shall now analyze the density-induced modifications to the 𝑇 +
𝑐𝑐 from the

equivalent self-energy point of view. The functional dependence of the 𝑇 +
𝑐𝑐 self-

energy in the energy and density variables is equivalent to that of the two-meson
in-medium loop function. The only difference is an overall normalization factor,
given by the bare coupling ̂𝑔, and a shift to the real part given by Σ0(𝑚2

0), cf.



64 2. PROPERTIES OF EXOTIC MESONS IN NUCLEAR MATTER

3820 3840 3860 3880 3900 3920 3940
−0.2

−0.1

0

0.1

0.2

E [MeV]

Z
0
∆

−
1

T
+ c
c
(E

;
ρ
)
[ G

eV
2
]

P0 = 0.2

ρ = 0.10ρ0
ρ = 0.30ρ0
ρ = 0.50ρ0
ρ = 0.75ρ0
ρ = 1.00ρ0

3820 3840 3860 3880 3900 3920 3940
−0.2

−0.1

0

0.1

0.2

E [MeV]

Z
0
∆

−
1

T
+ c
c
(E

;
ρ
)
[ G

eV
2
]

P0 = 0.4

3820 3840 3860 3880 3900 3920 3940
−0.2

−0.1

0

0.1

0.2

E [MeV]

Z
0
∆

−
1

T
+ c
c
(E

;
ρ
)
[ G

eV
2
]

P0 = 0.8

3820 3840 3860 3880 3900 3920 3940
−0.2

−0.1

0

0.1

0.2

E [MeV]

Z
0
∆

−
1

T
+ c
c
(E

;
ρ
)
[ G

eV
2
]

P0 = 1.0

Figure 2.11: Plots of the inverse of the propagator of the 𝑇𝑐𝑐(3875)+ as a
function of the center-of-mass energy 𝐸 for different values of the nuclear density
𝜌 (different colors on the graphs) and for different values of the molecular
probability 𝑃0 on each graph. The solid (dashed) lines correspond to the real
(imaginary) parts of the propagator. Also note that the propagator has been
conveniently normalized with a 𝑍0 factor.

Eq. (2.114). Thus, we find it redundant to plot Π̃(𝑇 +
𝑐𝑐), as it is extremely similar

to the function of Fig. 2.9.
It is more interesting to analyze the density behavior of the 𝑇 +

𝑐𝑐 propagator.
In Fig. 2.11 we plot the inverse of the 𝑇 +

𝑐𝑐 propagator for several densities
(different line colors) considering four molecular probabilities. We divide the
propagator by the field renormalization constant 𝑍0 in order for it not to be
null in the 𝑃0 → 1 limit. For zero molecular probability, this propagator is
just the vacuum propagator of the 𝑇 +

𝑐𝑐, which does not have an imaginary part,
and whose inverse real part is linear in 𝑠, vanishing for 𝑠 = 𝑚2

0. For increasing
values of 𝑃0, the propagator has an increasing contribution from Π̃(𝑇 +

𝑐𝑐). This
produces a nonzero imaginary part, and shifts the position of the zero in the
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real part. The position of this zero defines the quasi-particle mass:28

Re Δ−1
𝑇 +

𝑐𝑐
(𝑚qp; 𝜌) = 0. (2.141)

The position of the quasi-particle mass is not significantly affected by the den-
sity for small molecular probabilities (see the plots corresponding to 𝑃0 = 0.2
and 0.4), it is markedly shifted toward higher values with increasing density in
the 𝑃0 = 0.8 scenario. At a specific molecular probability value between 0.9
and 1, 𝑚qp approaches infinity, resulting in no solutions for the mass of the
quasi-particle for 𝑃0 = 1. This signals the fact that, for high enough molecular
probabilities, it stops making sense to talk about the renormalization of a bare
preexisting 𝑇 +

𝑐𝑐 core. The linear behavior on 𝑠 of the inverse propagator is
“overwritten” by the self-energy contribution, and one can no longer discuss
the presence of a 𝑇 +

𝑐𝑐 quasi-particle. In the limiting case of 𝑃0 = 1, the inverse
propagator is completely determined by the 𝑇 +

𝑐𝑐 self-energy. Therefore, the plot
in the lower right corner of Fig. 2.11 simply represents the Π̃(𝑇 +

𝑐𝑐) self-energy
part.

In Fig. 2.12 we present the results for the 𝑇 +
𝑐𝑐 spectral function. We consider

both the genuine spectral function defined from the 𝑇 +
𝑐𝑐 propagator—equivalent

to the one originating from the 𝑇𝐵 amplitude as discussed in the formalism—in
the right column, as well as the spectral function arising from the imaginary
part of the 𝑇𝐴 amplitude, shown in the left column. The two rows of this figure
correspond to the molecular probabilities of 0.2 and 0.8. For small molecular
probabilities, the lineshapes of both spectral functions are quite different, since
one can hardly define a spectral function coming from the two-body 𝐷∗𝐷
scattering amplitude in this case. Again, it is inferred from these graphs that for
a low value of 𝑃0 there is little effect arising from the dense nuclear medium. In
the high molecular component scenario, both pictures give comparable results
and produce a much larger 𝑇 +

𝑐𝑐 width, which increases with density. One can
observe in these plots that the position of the quasi-particle mass, linked to the
position of the peak in the spectral functions, shifts toward higher energies, as
we have already noted by looking at the inverse propagator.

2.5.3 Nuclear medium results for the 𝑇 ̄𝑐 ̄𝑐(3875)−

We will now discuss the results for the charge-conjugated partner of the
𝑇𝑐𝑐(3875)+, namely the 𝑇𝑐𝑐(3875)−. We will refer to this state as 𝑇 −

̄𝑐 ̄𝑐 for short.
The comparison between both charge-conjugation partners was an important
novelty in the work of Ref. [1] as compared with the previous analysis of the

28Recall that we are always taking the system to be at rest in the nuclear-matter rest frame.
If the 𝑇 +

𝑐𝑐 had some nonzero three-momentum, we would talk about the quasi-particle energy
instead.
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Figure 2.12: Spectral function of the 𝑇 +
𝑐𝑐, obtained from the 𝑇𝐴 (left column)

or the 𝑇𝐵(𝑠) (right column) amplitudes, with the latter being equivalent to
the spectral function obtained directly from the propagator. These spectral
functions are displayed as function of the center-of-mass energy 𝐸, for several
values of the nuclear density 𝜌 (different line colors) and for two values of
the molecular probability 𝑃0 (𝑃0 = 0.2 and 0.8 in the top and bottom
rows, respectively). The spectral functions have been divided by the field
normalization factor 𝑍0.

𝜒𝑐1(3872) in the nuclear medium of [162]. Due to charge-conjugation symmetry,
the 𝑇𝑐𝑐(3875)− has the same vacuum mass 𝑚0 and coupling 𝑔2

0 as the 𝑇 +
𝑐𝑐. In

the free space, the description of the 𝑇 −
̄𝑐 ̄𝑐 runs parallel to that of the 𝑇 +

𝑐𝑐, but
taking into account that now this state couples to the 𝐼(𝐽𝑃) = 0(1+) 𝐷∗𝐷
two-meson channel. However, the presence of the dense nuclear medium breaks
this symmetry, and the 𝑇 −

̄𝑐 ̄𝑐 will no longer have the same mass and coupling as
its charge-conjugation sibling, the 𝑇 +

𝑐𝑐.
When considering the 𝑇 −

̄𝑐 ̄𝑐 in dense nuclear matter, the anticharmed 𝐷 and
𝐷∗ mesons will get renormalized by the medium. As we already noted when
discussing their spectral functions, the changes produced by the nuclear medium
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Figure 2.13: Real (left) and imaginary (right) parts of the 𝐷∗𝐷 (solid lines)
and 𝐷∗𝐷 (dashed lines) loop functions. We show results for different values of
the nuclear medium density as a function of the c.m. energy of the meson pair.

to the 𝐷 and 𝐷∗ will be different from those produced to their charge-conjugated
partners 𝐷 and 𝐷∗, cf. Figs. 2.4 and 2.5. This is because the nucleons of the
Fermi sea interact very differently with the charmed or anticharmed mesons.
The 𝐷∗𝐷 in-medium loop function—which we will denote as Σ(𝑠; 𝜌)—using
now the 𝐷∗ and 𝐷 spectral functions, is

Σ(𝐸2 ; 𝜌) = 1
2𝜋2 ∫

∞

0
𝑑Ω (𝑓𝐷𝐷∗(Ω ; 𝜌)

𝐸 − Ω + 𝑖𝜀
− 𝑓𝐷𝐷∗(Ω ; 𝜌)

𝐸 + Ω − 𝑖𝜀
) , (2.142)

and we find different density patterns as compared with the 𝐷∗𝐷 in-medium
loop of Eq. (2.89). This can be seen in Fig. 2.13, where we present a comparison
of the real (left-hand plot) and imaginary (right-hand plot) parts of the 𝐷∗𝐷
(solid lines) and 𝐷∗𝐷 (dashed lines) loop functions for several values of the
nuclear density 𝜌 (line colors). The real and imaginary parts of the loop
functions 𝐷∗𝐷 and 𝐷∗𝐷 are the same in vacuum (𝜌 = 0) as required by
charge-conjugation symmetry, which ensures that the pairs of 𝐷∗𝐷 and 𝐷∗𝐷
mesons have the same masses. However, when considering a density different
from zero (even as small as 0.1 𝜌0), notable differences appear between the
two loop functions. Similarly to Eq. (2.140) of our analysis of the 𝐷∗𝐷 loop
function, we can also define for the in-medium 𝐷∗𝐷 pair an effective potential
𝑉eff(𝑠 ; 𝜌). Since the free space terms are equal, it follows that

𝑉 −1
eff (𝑠 ; 𝜌) − 𝑉 −1

eff (𝑠 ; 𝜌) = 𝑉eff(𝑠 ; 𝜌) − 𝑉eff(𝑠 ; 𝜌)
𝑉eff(𝑠 ; 𝜌)𝑉eff(𝑠 ; 𝜌)

= Σ(𝑠 ; 𝜌) − Σ(𝑠 ; 𝜌) (2.143)

Examining the real part of the loop function at the various densities
displayed in Fig. 2.13, one sees that the 𝐷∗𝐷 curves consistently lie below the
corresponding 𝐷∗𝐷 ones, a separation that is most pronounced below threshold.
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Figure 2.14: In medium 𝐷∗𝐷 (solid lines) and 𝐷∗𝐷 (dashed lines) modulus
square amplitudes obtained by solving the BSE using the 𝑉𝐴(𝑠) (left) and 𝑉𝐵(𝑠)
(right) potentials, for vacuum molecular probabilities 𝑃0 = 0.2 (orange) and
𝑃0 = 0.8 (blue), and for different nuclear densities 𝜌.

Because the real part of the 𝐷∗𝐷 loop function for all densities is more negative
than its 𝐷∗𝐷 counterpart, it follows that Re [Σ(𝑠 ; 𝜌) − Σ(𝑠 ; 𝜌)] > 0. Conse-
quently, taking into account the previous remark together with Eq.(2.143), one



2.5. FINITE DENSITY RESULTS FOR THE 𝑇𝑐𝑐(3875) 69

concludes that the medium induces a generally more repulsive interaction for
the 𝑇 +

𝑐𝑐 than for the 𝑇 −
̄𝑐 ̄𝑐. Therefore, we should anticipate that the 𝑇 +

𝑐𝑐 will
be generated at higher energies than the 𝑇 −

̄𝑐 ̄𝑐. Turning to the imaginary part
for the 𝑇 −

̄𝑐 ̄𝑐 case, it is of the same order as the shift in the real part across
all densities, and thus cannot be ignored—just as was observed for the 𝑇 +

𝑐𝑐 in
Sect. 2.5.2. Moreover, the density-dependent imaginary part of the 𝐷∗𝐷 loop
varies with energy more abruptly than its 𝐷∗𝐷 counterpart. As a result, for
energies below the two-meson threshold, one finds |Im, Σ| < |Im, Σ|, whereas
well above threshold, the inequality reverses, |Im, Σ| > |Im, Σ|. Near—but still
below—the vacuum threshold, the imaginary parts of the two loop functions
approach one another. Even so, deciding whether the 𝑇 −

̄𝑐 ̄𝑐 or the 𝑇 +
𝑐𝑐 ends up with

a larger width remains impossible, because the width depends on the energy at
which each state is produced for a given density, and those production energies
are expected to differ. Should both states be created close to the two–meson
threshold, their widths may well turn out to be similar, since in that region the
imaginary parts of the respective loop functions are nearly identical.

Figure 2.14 displays several panels with the modulus squared of the in-
medium 𝑇-matrices for 𝐷∗𝐷 (solid curves) and 𝐷∗𝐷 (dashed curves). In every
case, the BSE equation is solved with the corresponding density-dependent
two-meson loop, using either the type A kernel (left column) or the type B kernel
(right column). Three densities are examined—0.1𝜌0 (top), 0.5𝜌0 (middle), and
𝜌0 (bottom)—and for each density two molecular probabilities are considered,
𝑃0 = 0.2 (orange) and 𝑃0 = 0.8 (blue). The width of the 𝑇 −

̄𝑐 ̄𝑐 peak increases
as the density increases, an effect that becomes more pronounced at larger 𝑃0,
mirroring the behavior already observed for 𝑇 +

𝑐𝑐 in Sect. 2.5.2. The relative
position and width of the 𝑇 −

̄𝑐 ̄𝑐 and 𝑇 +
𝑐𝑐 peaks depend jointly on 𝑃0 and the

density. Specifically, for sufficiently high molecular probability and density,
the 𝑇 −

̄𝑐 ̄𝑐 maximum always appears at a lower energy than the 𝑇 +
𝑐𝑐 maximum.

At small 𝑃0 and low density, this separation is hardly visible, as anticipated.
Regarding the widths, the 𝑇 −

̄𝑐 ̄𝑐 state tends to be narrower than the 𝑇 +
𝑐𝑐 once

both 𝑃0 and the density are large, although this difference is less striking than
the shift in the peak positions and is difficult to discern directly in Fig. 2.14.
Overall, the two states respond quite differently inside nuclear matter, and their
properties prove highly sensitive to the molecular probability assigned in free
space.

2.5.4 Nuclear medium results for the HQSS partner of the
𝑇𝑐𝑐(3875): the 𝑇 ∗

𝑐𝑐(4016)

As discussed in Sect. 1.1, HQSS arises in the limit 𝑚𝑄 ≫ ΛQCD, where spin–
dependent interactions of the heavy quark are suppressed. As a consequence,
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hadrons containing a heavy quark appear in nearly degenerate spin doublets,
such as the pseudoscalar 𝐷 and vector 𝐷∗ mesons, split by about 140 MeV, or
the 𝐵 and 𝐵∗ mesons, with a smaller gap of roughly 45 MeV.

Theoretically, the 𝑇 +
𝑐𝑐—understood as a 𝐼(𝐽𝑃) = 0(1+) 𝐷∗𝐷 state—also has

an HQSS partner in the 𝐼(𝐽𝑃) = 0(1+) 𝐷∗𝐷∗ channel. We will refer to this state
as 𝑇 ∗

𝑐𝑐(4016). This state has been studied in several theoretical works [52, 53,
247], although no experimental confirmation is currently available. Similarly
to the case of the lowest-lying charmed mesons, where the mass splitting is
𝑚𝐷∗ −𝑚𝐷 ∼ 𝑚𝜋, one also expects in this case that the mass difference between
the 𝑇𝑐𝑐 and the 𝑇 ∗

𝑐𝑐 will be of about the mass of the pion. That is, the binding
energy of the 𝑇 ∗

𝑐𝑐 with respect to the 𝐷∗𝐷∗ threshold will be similar to the
binding energy of the 𝑇𝑐𝑐 with respect to the 𝐷∗𝐷 threshold. In fact, due to
the modification of the reduced mass of the system, the binding energy of the
𝑇 ∗

𝑐𝑐 with respect to the 𝐷∗𝐷∗ threshold is theoretically found to be slightly
larger than that of the 𝑇𝑐𝑐 with respect to the 𝐷∗𝐷 threshold—around 1.5
MeV depending on the regularization scale [162], which is to be compared with
the binding of 0.8 MeV of the 𝑇𝑐𝑐. In our calculation, we shall fix again the
potential parameters in order to produce a 𝑇 ∗

𝑐𝑐 pole in the free-space 𝐷∗𝐷∗

scattering amplitude at some given energy 𝑚∗
0. We will study the dependence

of the results by varying the chosen value for 𝑚∗
0 to be within the binding energy

range 𝐸∗
𝐵 ∈ [0.8, 1.6] MeV (𝐸∗

𝐵 = 2𝑚𝐷∗ − 𝑚∗
0).

The density effects are incorporated through the corresponding loop func-
tion:

Σ∗(𝐸 ; 𝜌) = 1
2𝜋2 ∫

∞

0
𝑑Ω (𝑓𝐷∗𝐷∗(Ω ; 𝜌)

𝐸 − Ω + 𝑖𝜀
− 𝑓𝐷∗𝐷∗(Ω ; 𝜌)

𝐸 + Ω − 𝑖𝜀
) , (2.144)

which only involves in this case the heavy-light vector mesons. In Fig. 2.15 we
compare the results obtained for the 𝐷∗𝐷∗ loop with the 𝐷𝐷∗ loop previously
shown in Fig. 2.9. We consider several densities and plot the real part
(left-hand plot) and the imaginary part (right-hand plot) of both functions
with respect to the on-shell center-of-mass momentum 𝑘 = √2𝜇(𝐸 − 𝐸th) for
the corresponding channel, with 𝜇 the reduced mass and 𝐸th the production
threshold of either the 𝐷∗𝐷 or the 𝐷∗𝐷∗ channel.

We observe in this case that the two loop functions do not coincide in
vacuum. This is because they correspond to different channels, where particles
with different masses are involved. As an example, we study the imaginary
parts of both vacuum loop functions, given by

Im Σ0(𝑠) = − 𝑘(𝑠)
8𝜋

√
𝑠

, (2.145)

with 𝑘 the on-shell center of mass momentum of the considered system. For
small 𝑘, we can approximate this function by a straight line, resulting in the
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Figure 2.15: Real (left-hand side) and imaginary (right-hand side) parts of the
𝐷∗𝐷∗ (solid lines) and 𝐷∗𝐷 (dashed lines) scattering loop functions (Σ∗ and
Σ, respectively) for different values of the nuclear medium density 𝜌. Since the
thresholds for the 𝐷∗𝐷 and 𝐷∗𝐷∗ channels are different, we plot the two loops
as functions of the magnitude of the center-of-mass three-momentum 𝑘.

following results for the 𝐷∗𝐷 and 𝐷∗𝐷∗ loops, respectively:

Im Σ0(𝑠) ≃ − 𝑘(𝑠)
8𝜋(𝑚𝐷 + 𝑚𝐷∗)

,

Im Σ∗
0(𝑠) ≃ − 𝑘(𝑠)

8𝜋(𝑚𝐷∗ + 𝑚𝐷∗)
,

𝑘 ≪ 𝑚𝐷. (2.146)

These lines have slightly different slopes, characterized by the sum of the masses
of the particles in each channel. This slope difference is clearly visible in the
right-hand plot of Fig. 2.15. One can analyze the real part in the same way, and
the difference between both functions can be shown to depend on the masses
of the particles involved in each channel, as well as the chosen value for the
cutoff. With increasing density, the differences between the 𝐷∗𝐷 and the 𝐷∗𝐷∗

loops become increasingly more notable, arising from the different 𝐷𝑁 and 𝐷∗𝑁
interactions.

Next, we show some results for the in-medium 𝐷∗𝐷∗ scattering amplitude,
using the 𝑉𝐴 and 𝑉𝐵 potentials, where the LECs are chosen to produce a pole
in the first Riemann sheet below the threshold, with a binding energy between
0.8 and 1.6 MeV, and with a molecular probability 𝑃0. The binding energy
interval considered produces a band of different solutions, which can be taken
as a measure of the systematic uncertainty arising from the HQSS part of our
model.29 These results are presented in Fig. 2.16.

29There are other sources of systematic uncertainties in the calculation, as the truncation
of the effective theory, or the determination of the cutoff-dependent real part of the finite
density loop function.
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Figure 2.16: Squared modulus of the 𝐷∗𝐷∗ amplitudes obtained by solving
the BSE using the 𝑉𝐴(𝑠) potential (left column) and the 𝑉𝐵(𝑠) potential (right
column), as a function of the center-of-mass energy 𝐸, for several values of
the nuclear density 𝜌 (different line colors) and for two values of the molecular
probability 𝑃0 (𝑃0 = 0.2 in the top row and 0.8 in the bottom row). The bands
cover the solutions corresponding to taking the 𝑇 ∗+

𝑐𝑐 binding energy to be in the
interval [0.8, 1.6].

The amplitudes in this figure show a similar behavior to that found for
the 𝐷∗𝐷 case. Again, density effects are more notable for a high value of the
molecular probability. The specific shape of the scattering amplitude is strongly
dependent on the potential family for a small value of 𝑃0, while for 𝑃0 close to
1 these differences become very minor. The interval considered for the binding
energy of 𝑇 ∗+

𝑐𝑐 produces a band of uncertainty which is negligible compared to
density effects. Therefore, one can qualitatively describe the behavior of the
𝑇 ∗+

𝑐𝑐 taking its binding to be any of the values considered. In what follows, we
will choose a value for the binding energy of 0.8 MeV.
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Figure 2.17: Real (left) and imaginary (right) parts of the exact density-
dependent loop function (solid lines) and the fitted effective loop function
(dashed lines) for the 𝐷∗𝐷 meson pair.

2.5.5 Poles in the complex plane

In this section, we adopt the approximation of Eq.(2.129) for the different in-
medium loop functions considered—that is, the 𝐷∗𝐷, 𝐷∗𝐷, 𝐷∗𝐷∗ and 𝐷∗𝐷∗

loop functions. As was discussed in Sect. 2.4.7, we take the analytic formula
for the loop function in vacuum and fit the (complex) values for the masses
of the mesons in order to reproduce the exact finite-density loop function. In
Fig. 2.17 we show a comparison between the effective loop function obtained
(dashed lines) and the original one for the case of 𝐷∗𝐷 scattering. We can
see that there is a very good agreement between the original finite-density loop
function and the effective one. A similar good agreement is also obtained for
the rest of the channels, and the results of the various fits are shown in Table
2.2.

Once the effective analytic loop functions have been determined, we can
evaluate the amplitudes on the whole 𝑠 complex plane, exploring several
densities 𝜌 and vacuum probabilities 𝑃0. A systematic search reveals a pole
on the first Riemann sheet (as defined in Ref. [162]), situated away from the
real axis. This does not violate the analyticity of the full scattering 𝑇–matrix
of the process. The fact that we find poles away from the real axis on the
first Riemann sheet is produced by our effective treatment of the many-body
channels 𝐷∗𝐷𝑁 → 𝐷∗𝐷𝑁 ′ and 𝐷∗𝐷𝑁 → 𝐷∗𝐷𝑁 ′, included in the effective
loop. The resulting complex poles are shown in Fig. 2.18. There we plot,
for several densities (varying line colors) the pole trajectories (dashed lines)
obtained from varying 𝑃0 from 0 (common upper end of every trajectory, on the
real axis) to 1 (lower end of every trajectory, with Im(𝐸) < 0). In zigzag lines
we also present the location of the unitarity cut of the effective loop functions,
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Figure 2.18: Top: Complex pole positions of the 𝑇 ̄𝑐 ̄𝑐(3875)− (left) and the
𝑇𝑐𝑐(3875)+ (right) for different values of the density (𝜌) and vacuum molecular
probabilities (𝑃0) obtained using the potential 𝑉𝐴(𝑠). Different line colors
represent different densities, while the continuous dashed lines correspond
to results obtained by running 𝑃0 from 0 (upper end) to 1 (lower end).
The points in these lines correspond to steps in the molecular probability of
Δ𝑃0 = 0.1. The zigzag lines represent the unitarity cut of the effective loop
function Σ0 (𝑠; 𝑀 eff

1 (𝜌), 𝑀 eff
2 (𝜌)) for different densities, as detailed in Sect. IIIB

of Ref. [162]. Bottom: Same as the top plots, but for the 𝑇 ∗
̄𝑐 ̄𝑐(4016)− (left) and

the 𝑇 ∗
𝑐𝑐(4016)+, heavy quark spin partners of the 𝑇 ̄𝑐 ̄𝑐(3875)− and the 𝑇𝑐𝑐(3875)+.
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𝐷∗𝐷

𝜌/𝜌0 Δ𝑀 [MeV] Γ/2 [MeV]

0.10 0.58 2.8

0.30 1.48 8.4

0.50 2.19 14.2

0.75 2.77 21.5

1.00 3.03 28.7

𝐷∗𝐷

𝜌/𝜌0 Δ𝑀 [MeV] Γ/2 [MeV]

0.10 −0.55 2.2

0.30 −1.61 6.0

0.50 −2.48 9.5

0.75 −3.50 13.5

1.00 −4.41 17.4

𝐷∗𝐷∗

𝜌/𝜌0 Δ𝑀 [MeV] Γ/2 [MeV]

0.10 0.79 3.4

0.30 1.05 9.6

0.50 0.88 15.5

0.75 0.39 22.8

1.00 −0.16 29.9

𝐷∗𝐷∗

𝜌/𝜌0 Δ𝑀 [MeV] Γ/2 [MeV]

0.10 0.05 2.8

0.30 −0.88 7.7

0.50 −2.01 12.0

0.75 −3.48 17.1

1.00 −4.85 21.9

Table 2.2: Table of the parameters Δ𝑀 and Γ/2 (given in MeV) describing
the meson masses modification of the effective loop function for 𝐷∗𝐷 scattering
(upper left-hand side), 𝐷∗𝐷 scattering (upper right-hand side), 𝐷∗𝐷∗ scattering
(lower left-hand side) and for 𝐷∗𝐷∗ scattering (lower right-hand side). For the
fits, 51 points of the original loop were sampled in a symmetric interval of 120
MeV around the respective thresholds of the 𝐷∗𝐷 and 𝐷∗𝐷∗ channels.

which gets displaced away from the real axis for complex values of the meson
masses.

The results presented in Fig. 2.18 reinforce the conclusions drawn previously.
For zero molecular probability, we see that the pole is not affected by the density
of the medium, staying at the corresponding vacuum mass 𝑚0. With increasing
density and molecular probabilities, all poles are driven toward the complex
plane, developing a significant width. For 𝑃0 = 1, the poles fall to the left
of the unitarity cut of the effective loop with the corresponding density. This
is due to the fact that, since the potential is real, the effective loop function
must also be real for the 𝑇–matrix to present a pole. This occurs below the
threshold, which is now located in the complex plane. In the 𝑃0 = 1 case, the
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width of the corresponding state is given by the sum of the effective widths of
the mesons, given by the parameter Γ in Table 2.2. Comparison of the upper
panels of Fig. 2.18 shows that the nucleonic medium drives the 𝑇 +

𝑐𝑐 and 𝑇 −
̄𝑐 ̄𝑐

poles along clearly distinct trajectories in the (𝜌, 𝑃0) plane. Typically, the 𝑇 +
𝑐𝑐

becomes broader than the 𝑇 −
̄𝑐 ̄𝑐, while its effective mass shifts to higher energies,

whereas the 𝑇 −
̄𝑐 ̄𝑐 moves to lower energies relative to their free-space position. A

similar situation is found when comparing the HQSS partners of the bottom
panels, with the 𝑇 ∗−

̄𝑐 ̄𝑐 moving to lower energies and getting a smaller width than
the 𝑇 ∗+

𝑐𝑐 . Furthermore, the HQSS partners seem to be slightly more affected
by the nuclear medium than the 𝑇 ±

𝑐𝑐 states. The experimental measurement
of these density patterns would provide valuable information on the complex
dynamics of the 𝑇 +

𝑐𝑐 tetraquark state discovered by LHCb.

2.6 Finite density results for the 𝐷∗
𝑠0(2317)

We dedicate this section to the study of the 𝐷∗
𝑠0(2317)+, as well as its charge

conjugation and HQSS partners, in nuclear matter. For this, we must first
discuss the main specific features of the 𝑆−wave 𝐷(∗)𝐾 and 𝐷(∗)𝐾 scattering
formalism. Because the present study addresses Goldstone boson–charmed
meson scattering—not charmed meson–charmed meson interactions—we must
relate our interaction kernel to the amplitudes derived in Heavy-Meson Chiral
Perturbation Theory.30 First, we will discuss the modifications of the general
formalism that was presented in Sect. 2.4. Then, we will show the results
obtained, comparing them with what has already been shown for the 𝑇𝑐𝑐 and
partners in Sect. 2.5.

2.6.1 Review of the formalism applied to the 𝐷∗
𝑠0 case

Vacuum amplitude and matching of the effective potentials to HM-
ChPT

The 𝐷∗
𝑠0(2317)+ (𝐷∗

𝑠0(2317)−) is modeled in vacuum as a bound state in the
𝐼(𝐽𝑃) = 0(0+) 𝐷𝐾 (𝐷𝐾) amplitude. We work again in the isospin limit, taking
𝑚𝐷 = (𝑚𝐷+ + 𝑚𝐷0)/2 and 𝑚𝐾 = (𝑚𝐾+ + 𝑚𝐾0)/2.31 In this case, similar to
what was shown for the case of the 𝑇𝑐𝑐 in Sect. 2.5.1, both isospin channels
decouple, and we are left with a single-channel BSE for the isoscalar 𝑇–matrix.

30HMChPT is the restriction to the single heavy-meson sector of HHChPT, first discussed
in the Introduction, Chap. 1.

31We omit explicit 𝐷𝑠𝜂 coupled-channel effects, since its threshold sits about 150 MeV
above the 𝐷𝐾 one; any modest influence it may have near the 𝐷∗

𝑠0(2317) can be safely
absorbed through a retuning of the low-energy constants (cf. Refs. [236, 248–250]).
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For the 𝐷𝐾 (𝐷𝐾) loop function we take the cutoff regulator Λ to be 700
MeV—the same one that we used in our study of 𝐷∗𝐷(∗) scattering amplitudes.
For the interaction kernel, we consider again the two families of potentials
first presented in Eqs. (2.83a) and (2.83b). The parameters of both potential
families are fixed by choosing a value for the molecular probability 𝑃0 ∈ [0, 1],
and taking the mass of 𝐷∗

𝑠0 in vacuum to be 𝑚0 = 2317.8 MeV, as listed on
the PDG [18]. Using the physical mass for the 𝐷∗

𝑠0 while taking the unphysical
isospin symmetric masses for the 𝐷 and 𝐾 mesons is not consistent. However,
given that the binding energy of the 𝐷∗

𝑠0 is about 45 MeV—much larger in
this case than for the 𝑇𝑐𝑐—we expect that using the physical mass of the 𝐷∗

𝑠0
instead of the unphysical mass in the isospin limit will not significantly affect
the final results and conclusions.

Although we are parameterizing the interaction kernel in the same manner
as we did when studying the 𝐷∗𝐷 scattering, the interaction among charmed
mesons and light goldstone bosons originates from a different effective theory,
namely HMChPT. The LO 𝑆-wave, isoscalar 𝐷𝐾 interaction obtained in
HMChPT is [191]

𝑉𝜒LO(𝑠) = −3𝑠 + 2𝑚2
𝐾 + 2𝑚2

𝐷 + (𝑚2
𝐷 − 𝑚2

𝐾)2/𝑠
4𝑓2 , (2.147)

with 𝑓 ≃ 93 MeV. Reference [194] employed this LO kernel—unitarized through
the on-shell BSE equation—to connect the 𝐷∗

𝑠0(2317) to the enhancements
observed just above threshold in the 𝐷0𝐾+ and 𝐷0𝐾− invariant-mass spectra
measured by BaBar in the decays 𝐵+ →𝐷0𝐷0𝐾+ and 𝐵0 →𝐷−𝐷0𝐾+ [251], as
well as by LHCb in 𝐵𝑠 →𝜋+𝐷0𝐾− [204]. This analysis revealed a pole at 2315±
17 MeV with a molecular probability of 70+6

−10%. Whereas Ref. [194] fixed the
ultraviolet behavior through a subtraction constant fitted to those spectra, in
the present work we adopt a sharp momentum cutoff, which is more convenient
for implementing nuclear-medium effects.32 Both renormalization prescriptions
are equivalent, and we reproduce the results of [194] in the kinematic region of
interest with a cutoff Λ = 875 ± 85 MeV (cf. Eq. (52) of Ref. [255]).

The connection of the HMChPT potential with the 𝑉𝐴− or 𝑉𝐵−type
potentials can be made by taking a power expansion of 𝑉𝜒𝐿𝑂 (type 𝐴) or 𝑉 −1

𝜒𝐿𝑂
(type 𝐵) in the vicinity of the position of the 𝐷∗

𝑠0(2317) pole. However, we
will still fix the LECs of the 𝑉𝐴 and 𝑉𝐵 potentials from the values of 𝑚0 and
𝑃0, rather than matching them directly to the 𝑉𝜒𝐿𝑂 potential. In Fig. 2.19,

32This choice is consistent with the calculations of the 𝐷(∗), 𝐷(∗) and 𝐾 spectral functions
in a medium of Refs. [214–216, 219] and, in combination with the on-shell BSE, has already
provided an excellent description of kaonic-atom data via the resulting antikaon–nucleus
optical potential [214, 252–254]. We do not expect off-shell contributions to significantly
affect the main conclusions of this work.
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Figure 2.19: Real parts of the free-space 𝑆−wave isoscalar 𝐷𝐾 inverse ampli-
tudes obtained using the LO HMChPT scheme followed in Ref. [194] (magenta
band) and the 𝑉𝐴 (left panel) and 𝑉𝐵 (right panel) families of potentials
(Eqs. (2.83a) and (2.83b) respectively), adjusted for different 𝐷∗

𝑠0(2317) molec-
ular probabilities (𝑃0), as functions of the center of mass energy (𝐸) of the
𝐷𝐾 pair. The band of the HMChPT result accounts for the uncertainty
on the subtraction constant fitted in Ref. [194] to the combined BaBar and
LHCb mass distributions. The imaginary part (black dashed line) of the
inverse amplitude for real 𝐸 (=

√
𝑠) is the same independently of the potential

and of the used regularization method, as it is derived from unitarity, i.e.
Im[𝑇 −1(𝑠)] = −Im[Σ0(𝑠)] = 𝜃 (𝑠 − (𝑚𝐷 + 𝑚𝐾)2) 𝜆1/2(𝑠, 𝑚2

𝐷, 𝑚2
𝐾)/(16𝜋𝑠), with

𝜃 and 𝜆 the step and Källen functions, respectively.

we present a comparison of the vacuum inverse 𝑇 −matrices derived from the
𝐴 and 𝐵 potentials—both determined by 𝑚0 = 2317.8 MeV and for several
values of 𝑃0—and from the 𝑉𝜒𝐿𝑂 potential. For the regularization of the loop
function when computing the 𝑇–matrix using 𝑉𝜒𝐿𝑂 as the kernel, we use the
dimensional regularization scheme of Ref. [194], in particular, employing the
same subtraction constant fitted in that reference instead of the sharp cutoff
used elsewhere in this manuscript. We see that the LO HMChPT result in the
region of interest around the 𝐷∗

𝑠0(2317) mass (2280 MeV < 𝐸 < 2390 MeV) is
reasonably well reproduced using both the 𝑉𝐴 and 𝑉𝐵 families of potentials and
molecular probabilities between 0.5 and 0.7.

𝐷𝐾 and 𝐷𝐾 scattering in isospin-symmetric nuclear matter

Now we focus on the modifications of the 𝑇 amplitude introduced by the 𝐷𝐾
and 𝐷𝐾 loop functions, Σ(𝑠; 𝜌) and Σ(𝑠; 𝜌), respectively, computed in a nuclear
environment. As we have mentioned before, the dense nuclear medium breaks
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charge-conjugation symmetry, and as a consequence, the scattering amplitudes
of 𝐷𝐾 and 𝐷𝐾 will no longer be the same. Furthermore, we expect large
asymmetries in this case (as compared with the 𝑇𝑐𝑐) since, as we saw in Sect. 2.3,
the spectral functions for the kaon—which is approximately a Dirac delta—and
the antikaon—showing a large broadening due to the excitation of states such
as the Λ(1405)—are radically different.

We make use again of Eq. (2.89) in order to compute the two-meson loop
function in the nuclear medium. However, there is now a simplification as
compared with the case of two charmed mesons. This simplification lies in
the fact that the kaon spectral function is extremely narrow and can be
approximated by a Dirac delta function (recall Eq. (2.54) of Sect. 2.3). In
terms of the Dirac delta approximation for the kaon spectral function, we can
simplify the expression for the auxiliary function 𝑓𝐷𝐾 which enters into the
computation of the in-medium loop function. This yields

𝑓𝐷𝐾(Ω; 𝜌) = ∫
Λ

0
𝑑𝑞 𝑞2 𝑆𝐷(Ω − 𝐸(𝐾)

qp , | ⃗𝑞 |; 𝜌)
2𝐸(𝐾)

qp
, (2.148)

which reduces in one the number of integrals needed, as compared with the
expression of Eq. (2.90).

Finally, we can define an effective density-dependent potential, including
the effects of the in-medium loop functions, in the same way presented when
analyzing the 𝑇𝑐𝑐, cf. Eqs. (2.140).

𝑇 −1(𝑠; 𝜌) = 𝑉 −1
eff (𝑠; 𝜌) − Σ0(𝑠) , (2.149a)

𝑉 −1
eff (𝑠; 𝜌) = 𝑉 −1(𝑠) + 𝛿Σ(𝑠; 𝜌) , (2.149b)
𝛿Σ(𝑠; 𝜌) = Σ0(𝑠) − Σ(𝑠; 𝜌) , (2.149c)

The density behavior of the effective potential will allow us to discuss how
the nuclear environment effectively changes the interaction between the two
mesons. In the 𝐷𝐾 case, we analogously define the effective potential resulting
now from the charge-conjugated loop function Σ. Since at zero density both
loops are equal, both effective potentials are related as

𝑉 −1
eff (𝑠; 𝜌) − 𝑉 −1

eff (𝑠; 𝜌) = Σ(𝑠; 𝜌) − Σ(𝑠; 𝜌) . (2.150)

The HQSS partner of the 𝐷∗
𝑠0(2317): the 𝐷𝑠1(2460)

Just as the vector 𝐷∗ lies roughly one pion mass above the pseudoscalar 𝐷, the
isoscalar axial meson 𝐷𝑠1(2460) (𝐽𝑃 = 1+) sits about 𝑚𝜋 higher in energy than
its scalar partner 𝐷∗

𝑠0(2317) (𝐽𝑃 = 0+). This near-degeneracy is commonly
interpreted as evidence that the two states form a HQSS doublet, whose light
degrees of freedom carry isospin 𝐼 = 0 and spin–parity 𝑠𝑃

ℓ = 1/2+ [197].
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Within our approach, the 𝐷𝑠1(2460)+ is dynamically generated from the
isoscalar 𝑆-wave 𝐷∗𝐾 interaction. HQSS then implies that the 𝐼(𝐽𝑃) = 0(0+)
𝐷𝐾 and 𝐼(𝐽𝑃) = 0(1+) 𝐷∗𝐾 amplitudes are identical once the pseudoscalar
𝐷 mass is replaced by the vector 𝐷∗ mass and the difference between the
𝐷𝐾 and 𝐷∗𝐾 thresholds has been taken into account. Only small HQSS
breaking corrections enter the coefficients of the potentials 𝑉𝐴 and 𝑉𝐵, reflecting
the difference between the splittings 𝑚𝐷𝑠1(2460) − 𝑚𝐷∗

𝑠0(2317) and 𝑚𝐷∗ − 𝑚𝐷.
Density effects are incorporated by evaluating the in-medium 𝐷∗𝐾 and 𝐷∗𝐾
loop functions in the same way as described in Sect. 2.4.3.

2.6.2 Nuclear medium results for the 𝐷∗
𝑠0 and partners

In this section, we examine how nuclear matter modifies the 𝐷(∗)𝐾 and
𝐷(∗) 𝐾 loop functions and the corresponding squared moduli of the scattering
amplitudes in the 𝐼(𝐽𝑃) = 0(0+) and 0(1+) channels, where the 𝐷∗

𝑠0(2317) and
𝐷𝑠1(2460) poles are located. Since many of the findings are qualitatively similar
to what was found in Sect. 2.5 for the 𝑇𝑐𝑐 in nuclear matter, we shall now focus
on the main observations and conclusions for the case at hand, not entering
into as many details as we did in Sect. 2.5.

Figure 2.20 shows the line shapes of the 𝐷 𝐾 (solid curves) and 𝐷𝐾 (dashed
curves) loop functions for densities from 𝜌 = 0 up to normal nuclear matter
density, 𝜌0 = 0.17 fm−3. Charge–conjugation symmetry forces both loop
functions to coincide at 𝜌 = 0; yet, as the density grows, the real [left panel of
Fig. 2.20] and imaginary [right panel of Fig. 2.20(b)] parts of Σ(𝑠; 𝜌) and Σ(𝑠; 𝜌)
drift apart markedly. The resulting charge–conjugation asymmetry—that is,
the difference between the 𝐷𝐾 and 𝐷𝐾 curves—is considerably larger than
the 𝐷∗𝐷 versus 𝐷∗ 𝐷 pattern reported in Sect. 2.5.2 for the 𝑇𝑐𝑐(3875)+ and
𝑇 ̄𝑐 ̄𝑐(3875)− tetraquarks.

Inspecting the loop functions in the vicinity of the vacuum 𝐷∗
𝑠0 pole (𝐸 ≃

2320 MeV) reveals two key features. First, the imaginary part of the 𝐷 𝐾 loop
exceeds that of the 𝐷𝐾 loop, so we expect that the in-medium 𝐷∗−

𝑠0 develops a
larger width than the 𝐷∗+

𝑠0 . This broadening originates from the sizeable width
acquired by the antikaon quasi-particle peak in matter (cf. Fig. 2.6), whereas
the kaon peak retains its sharp structure.

Second, in the same energy window, the real part of the 𝐷 𝐾 loop is
significantly more negative than its 𝐷𝐾 counterpart. Via Eq. (2.150) one finds

Re(𝑉 −1
eff ) − Re(𝑉 −1

eff ) > 0, (2.151)

which, if the imaginary parts of the effective potentials are momentarily
neglected, implies that 𝑉eff is more repulsive than 𝑉eff. As a consequence, the
𝐷∗+

𝑠0 pole is driven to higher energies relative to the 𝐷∗−
𝑠0 pole. We emphasize
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Figure 2.20: Real (left) and imaginary (right) parts of the 𝐷𝐾 (solid lines) and
𝐷𝐾 (dashed lines) loop functions. We show results for different values of the
nuclear medium density (in units of 𝜌0 = 0.17 fm−3) as a function of the center
of mass energy of the heavy light-Goldstone meson pair. Figure taken from
Ref. [2].

that omitting the imaginary part is an approximation, especially for the 𝐷 𝐾
channel, where it is not negligible.

The in-medium behavior of the 𝐷∗𝐾 and 𝐷∗ 𝐾 loop functions follows
almost the same density pattern as the 𝐷𝐾 and 𝐷 𝐾 cases, so we omit the
corresponding plots. The qualitative conclusions are unchanged. The main
differences are (i) the vacuum threshold now lies at 𝐸 = 𝑚𝐷∗ + 𝑚𝐾 and (ii)
the imaginary part in matter is somewhat larger, owing to the slightly stronger
𝐷∗𝑁 and 𝐷∗𝑁 interactions. Even so, the kaon and antikaon spectral functions
continue to dominate the overall shape of the loop functions.

We now focus on the in-medium amplitudes for the 𝐷(∗)𝐾 and 𝐷(∗)𝐾
channels. Figure 2.21 displays |𝑇 |2 obtained with the 𝑉𝐴 interaction and two
molecular probabilities, 𝑃0 = 0.2 and 𝑃0 = 0.8. These choices represent two
opposite scenarios, the larger value reproducing approximately the HMChPT
result of Ref. [194] (see discussion on the previous subsection 2.6.1). We
consider the densities 𝜌 = 0.5 𝜌0 (top panels) and 𝜌 = 𝜌0 (bottom panels).
Calculations with the 𝑉𝐵 interaction lead to almost indistinguishable curves for
both molecular contents, differing only slightly in the resonance tails.33

The left-hand panels of Fig. 2.21 show the isoscalar–scalar 𝐼(𝐽𝑃) = 0(0+)
amplitudes for the 𝐷𝐾 and 𝐷 𝐾 channels—corresponding to the 𝐷∗+

𝑠0 and 𝐷∗−
𝑠0

states—plotted with dashed and solid curves, respectively. We see that these
states, which were bound in vacuum, acquire a finite width once embedded in

33The similarity between the 𝑉𝐴 and 𝑉𝐵 results is greater here than in the 𝜒𝑐1(3872)
(Ref. [162]) or 𝑇𝑐𝑐(3875)+ (Sect. 2.5 and also Ref. [1]) analyses because the 𝐷∗

𝑠0(2317)± is
much more deeply bound.
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Figure 2.21: Left panels: In-medium 𝐷𝐾 (solid lines) and 𝐷𝐾 (dashed lines)
modulus squared amplitudes obtained by solving the BSE using the 𝑉𝐴(𝑠)
potential, for vacuum molecular probabilities 𝑃0 = 0.2 (orange) and 𝑃0 = 0.8
(blue), and for nuclear densities 𝜌 = 0.5𝜌0 (top) and 𝜌 = 𝜌0 (bottom). Right
panels: Same as left panels but for 𝐷∗𝐾 (solid lines) and 𝐷∗𝐾 (dashed lines)
modulus square amplitudes. In all plots the dotted vertical lines correspond,
from left to right, to the vacuum 𝐷∗

𝑠0(2317)± or 𝐷𝑠1(2460)± mass and 𝐷(∗)𝐾
(𝐷(∗)𝐾) threshold.

nuclear matter, the broadening being more pronounced in the high-molecular
probability scenario. As density and 𝑃0 increase, the 𝐷∗+

𝑠0 peak shifts markedly
to higher energies, while the 𝐷∗−

𝑠0 peak moves to lower energies—much more
so than for the 𝑇 +

𝑐𝑐 and 𝑇 −
̄𝑐 ̄𝑐. This trend, anticipated from the real part of the

effective potential, persists in the shown amplitudes, where the imaginary parts
of the loop functions are included. For every density and molecular content
considered, the 𝐷∗−

𝑠0 develops a larger width than the 𝐷∗+
𝑠0 , a difference that

stems primarily from the contrasting in-medium renormalization of kaon and
antikaon propagators.

The right-hand panels of Fig. 2.21 display the isoscalar–axial 𝐼(𝐽𝑃) = 0(1+)
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amplitudes for 𝐷∗𝐾 and 𝐷∗ 𝐾, corresponding to the 𝐷+
𝑠1 and 𝐷−

𝑠1 poles.
Although their overall medium evolution resembles that of the scalar partners,
two differences stand out. First, both axial states acquire noticeably larger
widths, a consequence of the slightly stronger 𝐷∗𝑁 and 𝐷∗𝑁 interactions
predicted by the model of Refs. [220, 256]. Second, the 𝐷+

𝑠1 peak does not
move upward in energy as the 𝐷∗+

𝑠0 does. Taken together, these effects make the
in-medium line shapes of 𝐷+

𝑠1 and 𝐷−
𝑠1 less distinct than those of the 𝐷∗+

𝑠0 –𝐷∗−
𝑠0

pair across all density and molecular-probability scenarios considered.
Similar conclusions can be drawn for the behavior of the 𝐷∗

𝑠0(2317)± states
(and their HQSS partners) in the nuclear medium from their self-energy,
spectral functions, and pole positions in the 𝑠 complex plane. All of these
quantities signal a strong charge conjugation asymmetry in nuclear matter,
which is strongly dependent on the molecular component of these states.
Showing all these different plots here, as was done for the case of the 𝑇𝑐𝑐,
would not add any additional points to the discussion, so we end this results
section here.

2.7 Conclusions
In this chapter, we have carried out a unified and comparatively detailed explo-
ration of the in-medium behavior of two different families of heavy exotic candi-
dates that are dynamically generated as poles in unitarized 𝑆-wave two-meson
amplitudes. Firstly, we have analyzed in a general way how the individual
mesons are modified when embedded in a dense nuclear medium, and explained
the self-consistent procedure used for the computation of their self-energies and
spectral functions. Then, we have discussed how the two-meson scattering
matrix is modified in nuclear matter, considering all the density dependence
in the dressed two-meson loop functions. We have shown how two families
of energy-dependent interactions, both consistent with HQSS yet differing in
their analytic structure, allow us to vary the molecular probability associated
to these states. We have applied this formalism to the study of finite-nuclear
density effects on the tetraquark-like 𝑇𝑐𝑐(3875) and 𝐷∗

𝑠0(2317) states, together
with their HQSS partners. In general terms, the resulting trajectories of the
poles in the complex energy plane reveal a pronounced sensitivity to both the
density of the nuclear medium and the degree of molecular compositeness.

The first part of the study focuses on the 𝑇𝑐𝑐(3875)+ and its antiparticle
𝑇 ̄𝑐 ̄𝑐(3875)−, which we model as isoscalar 𝐷∗𝐷 and 𝐷∗𝐷 molecules, respectively.
The medium effects are incorporated by dressing the charmed mesons with the
self-consistent spectral functions of Refs. [215, 216, 219]. When the molecular
component dominates, the 𝑇 +

𝑐𝑐 experiences a strong broadening accompanied
by an upward mass shift, whereas the 𝑇 −

̄𝑐 ̄𝑐 becomes only moderately wider and



84 2. PROPERTIES OF EXOTIC MESONS IN NUCLEAR MATTER

is driven downward in energy. These opposite trends are due to the appreciable
difference between the attractive 𝐷(∗)𝑁 interaction and the comparatively
weaker 𝐷(∗)𝑁 counterpart. Using HQSS, we have extended the calculation to
the HQSS partners 𝑇 ∗

𝑐𝑐(4016)+ and 𝑇 ∗
̄𝑐 ̄𝑐(4016)− generated in 𝐷∗𝐷∗ and 𝐷∗𝐷∗

scattering. Owing to the stronger 𝐷∗𝑁 coupling, the medium modifications
are amplified in this 𝐽𝑃 = 1+ sector, yet the qualitative particle–antiparticle
asymmetry persists.

The second part of the chapter addresses the strange–charm systems
𝐷∗

𝑠0(2317)± and 𝐷𝑠1(2460)±. These states are produced dynamically from
isoscalar 𝐷(∗)𝐾 and 𝐷(∗)𝐾 amplitudes whose free-space kernels reproduce their
empirical masses with different Weinberg compositeness probabilities. The
embedding in nuclear matter is performed by dressing not only the charmed
mesons but also the kaons and antikaons with their respective self-energies,
thereby capturing the marked disparity between the attractive 𝐾𝑁 interaction
and the weakly repulsive 𝐾𝑁 channel. This disparity breaks charge-conjugation
symmetry in a spectacular fashion: already at half nuclear saturation density
the spectral distribution of the 𝐷∗

𝑠0(2317)+ is pushed to higher energies and
becomes significantly narrower, while its antiparticle migrates to lower energies
and develops a much broader Breit-Wigner-like profile, with the two lineshapes
barely overlapping when the molecular probability is large. A similar pattern
emerges for the HQSS partners 𝐷𝑠1(2460)±, although the resonances are glob-
ally wider because the underlying 𝐷∗𝑁 and 𝐷∗𝑁 interactions are stronger than
their pseudoscalar counterparts. In any case, kaon-antikaon dynamics within
the nuclear medium remains the driving mechanism behind the pronounced
particle–antiparticle asymmetry.

Taken together, these results demonstrate that the magnitude—and possi-
bly the sign—of the density-induced mass and width shifts are closely related to
two ingredients: the hadron-molecular content of the state and the difference in
the strength of meson and anti-meson interactions with nucleons. Consequently,
precision measurements of the in-medium spectral functions of the 𝑇𝑐𝑐(3875)
and the 𝐷∗

𝑠0(2317) states, e.g. in relativistic heavy-ion collisions at the
Compressed Baryonic Matter (CBM) experiment at FAIR or in fixed-target
̄𝑝–nucleus experiments at PANDA, would provide a stringent experimentally

driven test of their internal structure. Confirming the predicted mass shifts and
widths would strongly support a dominant molecular configuration, whereas a
milder or qualitatively different behavior would favor the compact tetraquark
interpretation. In addition, such data would offer valuable constraints on the
not well-known self-energies of kaons, antikaons and open-charm mesons in
dense nuclear matter, thereby closing the feedback loop between exotic-hadron
spectroscopy and the physics of the hadronic medium.



3

On the measurement of the D
meson width in nuclear matter
with the transparency ratio

3.1 Introduction and motivation
In Chapter 2 we have analyzed how two tetraquark–like candidates—the
doubly charmed 𝑇𝑐𝑐 and the charmed–strange 𝐷∗

𝑠0—are modified as they
propagate through nuclear matter. Our main conclusion is that, if the predicted
density patterns could be observed experimentally—in particular the charge–
conjugation asymmetry induced by the medium—they would provide a novel
probe of the internal structure of these exotic states. Both 𝑇𝑐𝑐 and 𝐷∗

𝑠0 are, a
priori, compatible with both compact tetraquark and hadronic molecular inter-
pretations, though their proximity to two–meson thresholds strongly favors the
latter. Medium effects may offer additional discrimination: hadronic molecules,
being loosely bound systems of two hadrons, are expected to be more fragile in
nuclear matter than genuine tetraquark states, whose color–driven binding is
comparatively stronger. While we have provided theoretical predictions for the
in–medium modifications of these states, their experimental verification remains
an important challenge.

To probe how nuclear density affects a given state, one must design an
experiment in which the state propagates through nuclear matter. Such a
medium exists naturally in two contexts: neutron stars and atomic nuclei. The
former, however, is far beyond the reach of controlled laboratory experiments,
leaving atomic nuclei as the practical environment in which these effects can be
studied. For the case of light mesons, many methods have been put forward to
study the meson–nucleus interaction, e.g. scattering of pions and kaons with

85
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nuclei, or mesonic atoms [257, 258]. These particular studies were possible
because pion and kaon beams are available. However, for the vast majority of
particles there exist no beams, rendering the experimental investigation of their
in-medium properties much more difficult. Examples of such particles are 𝜂
and 𝜂′. Nevertheless, the determination of the 𝜂− and 𝜂′−nucleus interaction
and the possibility of the existence of 𝜂(′)−nucleus bound states have been
experimentally investigated [259–268].

One of the available experimental methods for determining the nuclear prop-
erties of particles is known as transparency ratio, first proposed in Ref. [269].
In this method, a highly energetic photon is sent toward a nucleus target, so
that it interacts with one of the nucleons and produces the hadron whose finite
nuclear density properties are to be determined. This method was conceived
to determine the width of antiprotons ( ̄𝑝) in the nuclear medium. Although
̄𝑝 beams are available, the measurement of the ̄𝑝 absorption in nuclei was not

useful, since the 𝑝 ̄𝑝 annihilation probability is so large that the ̄𝑝−nucleus cross
section is roughly 𝜋𝑅2, with 𝑅 the radius of the nucleus—that is, nearly all
antiprotons are absorbed in such a scenario. The insensitivity of this experiment
to the ̄𝑝 width in the nuclear medium stimulated the proposal of an alternative
method. The idea was to produce the antiprotons inside the nucleus, rather
than measuring the absorption from a ̄𝑝 beam. In this approach, a beam of
photons—that can reach all parts of the nucleus with negligible absorption—is
used to produce an antiproton inside the nucleus, and then the probability that
it leaves the nucleus without being absorbed is determined. Subsequently, by
measuring the ̄𝑝 production in different nuclei, it is possible to determine the
̄𝑝 width. This method has become popular and has been used to determine

the properties in the medium of different particles [270–278]. In Ref. [274] the
transparency ratio technique was applied to the reaction 𝛾𝐴 → 𝜂′𝐴′ (𝐴 and 𝐴′

representing the initial and final nuclei), comparing 𝜂′ production on 12C, 40Ca,
93Nb and 208Pb. In order to suppress possible contributions from multinucleon
processes, the production rates were normalized to that of 12C.

Although it would be highly desirable to measure the properties of 𝑇𝑐𝑐 or 𝐷∗
𝑠0

in the nuclear medium, the transparency ratio is actually not suitable for this
task, since there are some kinematic restrictions—due to energy and momentum
conservation—that render it unusable. Basically, in order to produce very
massive particles from a photon-nucleon collision one needs a very energetic
photon, which is an important challenge on the experimental side. Furthermore,
if we consider the minimum energy that the photon needs to produce this
heavy particle, which would produce it at rest in the center-of-mass frame,
then in the laboratory (LAB) frame—where the nucleus is at rest—the heavy
particle is boosted to a very high momentum. This is not desirable for two
reasons: First, the probability density per unit length for the absorption of the
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Figure 3.1: Minimum (solid line) and maximum (dashed line) values of the
three-momentum with which the 𝐷∗

𝑠0(2317) (green line), the 𝐷𝑠 (blue line)
and the isospin-symmetric 𝐷 (orange line) mesons are produced (through the
photoproduction reactions given in the legend of the plot) in the LAB frame,
as a function of the photon-energy.

heavy particle inside of the nucleus is inversely proportional to the magnitude
of its three-momentum (we will show this in the next sections). Therefore, the
higher the momentum of the particle, the less sensitive the method becomes
to its in-medium width. Second, the theoretical determination of the finite
nuclear density self-energies at high three-momentum is unreliable because of
the presence of momentum cutoffs—or any general renormalization scale—in
the calculation. Therefore, it is desirable that the particle subject to the
finite-nuclear-density study is produced with a minimum momentum in the
LAB frame. For this, however, one needs an even more energetic photon.

This situation is illustrated in the plot of Fig. 3.1. There, we consider
the photoproduction of several charmed mesons, including the 𝐷∗

𝑠0(2317), off a
nucleon 𝑁. The reactions considered are

𝛾 𝑁 → D∗
s0 𝐷𝑠 𝑁 ′, (3.1a)

𝛾 𝑁 → Ds 𝐷𝑠 𝑁 ′, (3.1b)
𝛾 𝑁 → D 𝐷 𝑁 ′. (3.1c)

In order to conserve the charm and strangeness quantum numbers, a cor-
responding anti-meson also needs to be produced. In Fig. 3.1 we plot the
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minimum three-momentum (in solid lines) that the mesons marked in bold get
in the LAB frame, as a function of the photon energy. As we can see, the greater
the mass of the produced charmed meson, the higher the minimum photon
energy needed to produce it, marked by the leftmost end of each of the displayed
curves. Furthermore, the minimum LAB momentum decreases with growing
𝑝𝛾,lab, but saturates at some value. For the case of the 𝐷∗

𝑠0, this value is around
2.6 GeV. This momentum is very large compared to the maximum momentum
available in the theoretical predictions, of about 1 GeV. Furthermore, the
photon energies required to produce the 𝐷∗

𝑠0 with this momentum are about
50 GeV, which are unrealizable in any present or planned future experiments.
The 𝑇𝑐𝑐 case—though not treated explicitly—would be even less favorable, due
to its larger mass. It is now clear that the transparency ratio is not suitable,
at least at the present time, for measuring the nuclear-density modifications to
these states.

However, the situation is different for a lighter meson, such as the 𝐷 mesons.
The photon energies required for producing a 𝐷 meson with momentum below 2
GeV are around 20 GeV. These energies can be achieved by future experiments
such as the EIC or the EicC. Given this more hopeful scenario, our aim in this
section is to study in more depth the feasibility of this measurement, providing
some theoretical predictions. Although the nuclear medium properties of 𝐷
mesons have been extensively studied theoretically in the literature [1, 2, 162,
210, 215, 222, 279–286], the experimental observation of these theoretical results
remains an unexplored field. The study presented in this chapter aims to
propose a method based on the use of the nuclear transparency ratio. We
investigate the following reaction:

𝛾 𝐴 → 𝐷+𝐷−𝐴′, (3.2)

where 𝐴 represents a nuclear target. We will consider 12C, 40Ca, 93Nb and
208Pb—the same nuclei that were used in the investigation of the nuclear density
properties of the 𝜂′ in Ref. [274]. We will base our results on the theoretical
predictions for the 𝐷 meson nuclear-density-dependent self-energy obtained in
Ref. [215]. This study is of a prospective character, and some approximations
will be made. We shall test the robustness of some of the approximations
considered in order to strengthen our main conclusion, which will be on the
feasibility of this measurement. When the experiment is eventually carried out,
improvements to the calculation can be taken into account, some of which we
mention at the end of the chapter.

This chapter is organized as follows. In Sect. 3.2 we define the transparency
ratio and present the formalism used for its evaluation. In Sect. 3.3, we show
the main result of this work and discuss some improvements to the evaluation
of the transparency ratio to test their robustness. In Sect. 3.4 we draw our
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conclusions on the feasibility of this measurement.

3.2 Computing the 𝐷+ transparency ratio

N ′

D+

D−

γ N

Figure 3.2: Schematic picture of the process considered for the 𝛾𝐴 → 𝐷+𝐷−𝐴′

reaction.

A schematic picture of the photoproduction of a 𝐷𝐷 pair from a nucleon
inside a given nucleus—which is the key process defining the transparency
ratio—is given in Fig. 3.2. This process takes place in two steps. Firstly, the
photon 𝛾 scatters on a nucleon 𝑁 inside the nucleus—characterized by some
mass number 𝐴—producing as a result 𝐷+ and 𝐷− mesons, and a recoiling
nucleon 𝑁 ′. Secondly, the 𝐷 mesons propagate inside the nucleus, and there
is some nonzero probability that they are absorbed by the nuclear medium
(that is, that they undergo inelastic scattering with one of the other nucleons),
this probability being governed by the imaginary part of their self-energy. The
complete cross section for the production of a 𝐷 meson off a nucleus through
the reaction

𝛾 𝑁 → 𝐷+ 𝐷− 𝑁 ′ (3.3)

consists of the combination of these two steps. We refer to this cross section as
𝜎𝐴.

Now, in the usual definition of the transparency ratio, one normalizes 𝜎𝐴 by
𝐴 times the production cross section off a nucleon, which we shall name 𝜎𝑁.1

𝑇 = 𝜎𝐴
𝐴𝜎𝑁

. (3.4)

By construction, this quantity will be very sensitive to the absorption part of
the 𝐷 mesons and not so sensitive to the details of their production. However,
there can be contributions to 𝜎𝐴 arising from multistep processes leading to the

1Alternatively, it is also common to normalize 𝜎𝐴 with respect to the production cross
section off the deuteron.
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same final state 𝐷+𝐷−𝑁 ′. In order to reduce the impact of such processes in
the evaluation of the transparency ratio, we normalize the result to that of the
12C nucleus.

𝑇 = 𝜎𝐴/𝐴
𝜎12/12

. (3.5)

This was also done in the study of the 𝜂′ transparency ratio of Ref. [274], as
already mentioned in the introduction.

With this, we have presented our definition for the transparency ratio 𝑇,
which depends on the mass number of the target nuclei, 𝐴. However, a further
comment is in order here. We have chosen to study the 𝐷+ meson instead
of the 𝐷−. This is because the photoproduction of the 𝐷− could take place
through several two-body final states such as 𝛾𝑁 → 𝐷−(Λ𝑐, Σ𝑐, … ). For the
𝐷+, since its quark content is 𝑐 ̄𝑑, any two-body channel should proceed through
the creation of pentaquark-like resonances, which have not been observed.

3.2.1 Survival probability of the 𝐷+ in a nucleus

We start by computing the survival probability of the 𝐷+ meson in the nucleus
once it has been produced off a nucleon, which corresponds to the second step
in the nucleus cross section 𝜎𝐴 introduced previously. First, we need to define
a model for the density profile of the different nuclei considered. As a starting
point, we take a very simple picture for the nuclei, assuming a sphere of constant
density 𝜌0 = 0.17 fm−3.

𝜌(𝑟) = {
𝜌0, | ⃗𝑟| ≤ 𝑅,
0, | ⃗𝑟| > 𝑅,

𝑅 = ( 3𝐴
4𝜋𝜌0

)
1
3

. (3.6)

We refer to this model as “hard-sphere” nucleus. In this density parameteriza-
tion, we compute the radius of each nucleus (𝑅) from 𝜌0 and the mass number
𝐴. We will study the overall impact that this simplistic representation of the
nuclei has on the final results by considering more realistic harmonic oscillator
or two-parameter Fermi distributions for the different nuclei in Sect. 3.3.1.

With the density profile of the nuclei defined, we now evaluate the ab-
sorption probability of the 𝐷+ meson inside the nucleus. We know that the
probability density per unit time that a given particle decays is

𝑑𝑃
𝑑𝑡

= 1
Γ

(3.7)

where Γ is the width of the particle. As we already found in Eq. (2.23), this
decay width can be related to the imaginary part of the self-energy through the
following approximate expression.

Γ ≃ Im Π(𝑚𝐷, ⃗𝑝 = ⃗0; 𝜌)
𝑚𝐷

. (3.8)
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where 𝑚𝐷 is the mass of the 𝐷 meson, ⃗𝑝 its three-momentum, and 𝜌 is the
density of the nuclear medium. Note that this previous relation was found for
zero three-momentum. We now aim to generalize this expression for Γ to the
case of 𝑝 > 0.

The energy 𝑝0 corresponding to a 𝐷 meson with three-momentum ⃗𝑝 is
determined by the pole of the renormalized propagator—cf. (2.18), so that

(𝑝0)2 − ⃗𝑝2 − 𝑚2
𝐷 − Π(𝑝0, ⃗𝑝; 𝜌) = 0. (3.9)

This 𝑝0 energy will be complex, and its real and imaginary parts will be given
by

𝑝0 = 𝐸qp − 𝑖Γ
2

, (3.10)

where 𝐸qp is the quasiparticle energy. Isolating now the real and imaginary
parts of Eq. (3.9) we write the following system of equations for 𝐸qp and Γ:

𝐸2
qp − Γ2

4
− ⃗𝑝2 − 𝑚2

𝐷 − Re Π(𝐸qp − 𝑖Γ/2, ⃗𝑝; 𝜌) = 0, (3.11a)

−𝐸qpΓ − Im Π(𝐸qp − 𝑖Γ/2, ⃗𝑝; 𝜌) = 0. (3.11b)

Similarly to what was discussed in Sect. 2.3 when studying the meson self-energy
in a general way, an exact solution to these equations is difficult to find, as
one would need to evaluate the self-energy Π for complex values of its energy
argument. However, we can extract a first-order approximation to the solution
of this system of coupled equations by setting Γ = 0 everywhere except in the
left term in the imaginary part equation (3.11b). In more detail, we can solve

̃𝐸2
qp − ⃗𝑝2 − 𝑚2

𝐷 − Re Π( ̃𝐸qp, ⃗𝑝; 𝜌) = 0 (3.12)

for ̃𝐸qp, and then use this value to determine the width via

Γ̃ = −
Im Π( ̃𝐸qp, ⃗𝑝; 𝜌)

̃𝐸qp
. (3.13)

Taking the 𝐷 spectral functions that were determined in [215] for a nuclear
density of 𝜌0 = 0.17 fm−3, we obtain the approximate value for the quasiparticle
energy, which is plotted in the left panel of Fig. 3.3 (orange line). For reference,
we also show in blue the relativistic free-space energy of the meson. Using the
obtained values of ̃𝐸qp as a function of the modulus of the three-momentum,
we can now evaluate the imaginary part of the self-energy to obtain a first
approximation of Γ̃. The line shape obtained for Im Π as a function of the
momentum is shown in the right panel of Fig. 3.3.
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Figure 3.3: Left panel: Plot of the relativistic free-space 𝐷 meson energy 𝐸0 =
√𝑚2

𝐷 + ⃗𝑝2 (blue line) and of the 𝐷 quasiparticle energy obtained from solving
Eq. (3.12) (orange line), as functions of the 𝐷 meson three-momentum in the
nucleus rest-frame (LAB frame). Right panel: Plot of the imaginary part of the
self-energy evaluated at the quasiparticle energy for normal nuclear density, as
a function of the 𝐷 meson three momentum.

In the work of Ref. [215] the spectral functions for the D mesons were
determined up to a three-momentum of | ⃗𝑝| = 1 GeV. However, as we discussed
in Sect. 3.1, in our calculation the minimum momentum with which the 𝐷
mesons are produced is around 1.5 GeV, depending on the energy of the incident
photon; cf. Fig. 3.1. Therefore, some sort of extrapolation is needed. In the
prospective character of this work, we shall take a constant extrapolation, with

Im Π ≃ −0.1 GeV2 = const. (3.14)

This constant value is of the order of magnitude of the results shown in the
right panel of Fig. 3.3. However, we will study the impact that reducing this
constant value has on the final results.

Up to this point, we have presented how the width of a state is related with
the differential probability that the state decays per unit time, and how one
can estimate this width from the imaginary part of the self-energy. However, in
our evaluation, we need the differential decay probability per unit length. This
quantity is related to the one from Eq. (3.7) as

𝑑𝑃
𝑑𝑙

= 𝑑𝑃
𝑑𝑡

𝑑𝑡
𝑑𝑙

= 1
Γ

1
𝑣

≃ − Im Π
𝐸𝑣

= − Im Π
𝑝

. (3.15)

To arrive at the previous expression, we have used the relativistic formula for the
velocity 𝑣 = 𝑝/𝐸. Actually, the quantity we are interested in is the probability
that the 𝐷 meson leaves the nucleus without being absorbed. This survival
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⃗𝑟

⃗𝑝lab 𝜃′

𝐿

Figure 3.4: Diagrammatic representation of the nucleus in the hard-sphere
model, together with the ⃗𝑟 and 𝑝lab vectors, the angle 𝜃′ between them, and
the distance 𝐿.

probability, which we name 𝑆, is given by2

𝑆( ⃗𝑟, ⃗𝑝lab; 𝜌) = exp [− ∫
⃗𝑟′

−Im Π (𝐸qp, 𝑝lab; 𝜌( ⃗𝑟′))
𝑝lab

𝑑𝑙] (3.18)

where ⃗𝑟 represents the point inside the nucleus where the 𝐷+ meson is produced,
and the trajectory of the 𝐷+ in its way out of the nucleus is parametrized in
terms of 𝑙 as

⃗𝑟′ = ⃗𝑟 + 𝑙 ⃗𝑝lab
𝑝lab

(3.19)

with ⃗𝑝lab the three-momentum of the 𝐷+ meson in the LAB frame, and 𝑝lab its
modulus.

For the hard-sphere nuclear model, for which the density is given by
Eq. (3.6), the integral of Eq. (3.18) can be easily evaluated analytically. This

2This expression for the survival probability arises from

𝑆(𝑙 + 𝑑𝑙) = 𝑆(𝑙) [1 − 𝑑𝑃
𝑑𝑙

𝑑𝑙] , (3.16)

where [1 − 𝑑𝑃
𝑑𝑙 𝑑𝑙] represents the probability that the 𝐷 meson is not absorbed in a distance

𝑑𝑙. This equation can be rewritten as

𝑑𝑆
𝑑𝑙

= −𝑑𝑃
𝑑𝑙

𝑆(𝑙), (3.17)

which yields the usual exponential decay law for a constant decay probability 𝑑𝑃/𝑑𝑙. The
solution will not be exponential for a general dependence of 𝑑𝑃/𝑑𝑙 on 𝑙.
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results in

𝑆HS( ⃗𝑟, ⃗𝑝lab; 𝜌) = exp [
Im Π (𝐸qp, 𝑝lab; 𝜌0)

𝑝lab
∫

⃗𝑟′

𝑑𝑙]

= exp [
Im Π (𝐸qp, 𝑝lab; 𝜌0)

𝑝lab
𝐿] , (3.20)

where the remaining integral is just the length 𝐿 of the straight line that
connects ⃗𝑟 with the surface of the nucleus in the direction of ⃗𝑝lab. Due to
rotational symmetry, this quantity depends only on the distance between the
point where the 𝐷+ is created and the center of the nucleus, 𝑟 (taking the origin
of coordinates at the center of the nucleus); and on the angle between ⃗𝑟 and
⃗𝑝lab, which we name 𝜃′. A diagram presenting ⃗𝑟, ⃗𝑝lab, 𝜃′ and 𝐿 is presented in

Fig. 3.4. The expression for 𝐿 can easily be found to yield3

𝐿(𝑟, 𝜃′) = √𝑅2 − 𝑟2 sin2 𝜃′ − 𝑟 cos 𝜃′. (3.21)

For a more realistic density distribution in the nucleus, e.g. harmonic oscillator
or two-parameter Fermi distributions, the integral of Eq. (3.18) will be more
complex, and we shall solve it numerically.

This concludes our calculation of the survival probability of the 𝐷+ meson
inside the nucleus once it has been produced. We will next deal with the
production cross section of the 𝐷+ meson, as well as present the phase-space
integration of the three-body final state.

3.2.2 Nucleon cross section and phase space evaluation

𝑡

𝑘

𝑞 𝑖

𝑝

𝑝′

𝑞

𝛾

𝑁

𝐷+

𝐷−

𝑁 ′

Figure 3.5: Schematic diagram for the process 𝛾𝑁 → 𝐷+𝐷−𝑁 ′, indicating the
different momentum labels.

We now consider the photoproduction of the 𝐷+𝐷− pair off a nucleon,
ignoring for the moment the role of the nucleus, and in particular the absorption

3This can be done by squaring Eq. (3.19), taking ( ⃗𝑟′)2 = 𝑅2 and solving for 𝑙.



3.2. COMPUTING THE 𝐷+ TRANSPARENCY RATIO 95

of the 𝐷+ meson. In Fig. 3.5 we show a schematic diagram of this process,
indicating the momentum label corresponding to each particle. The cross
section for this process will be given by

𝜎𝑁 = 1
4𝑚𝑁 ∣𝑘⃗lab∣

∫ 𝑑3𝑞
(2𝜋)3

1
2𝐸(𝑞)

∫ 𝑑3𝑝
(2𝜋)3

1
2𝜔(𝑝)

∫ 𝑑3𝑝′

(2𝜋)3
1

2𝜔(𝑝′)

× 4𝑚2
𝑁 |𝑡|2 (2𝜋)4𝛿4(k + qi − p − p′ − q). (3.22)

In this previous expression, 𝑚𝑁 is the mass of the nucleon, and

∣𝑘⃗lab∣ =
√𝜆(𝑠, 𝑚2

𝑁, 0)
2𝑚𝑁

= 𝑠 − 𝑚2
𝑁

2𝑚𝑁
(3.23)

is the momentum of the photon in the LAB frame (𝜆 being the Källén function),
where the nucleus is at rest. 𝐸(𝑞) represents the energy of the final nucleon, and
𝜔 represents the energy of either the 𝐷+ or the 𝐷− mesons. In our notation,
we use bold letters (e.g., p) to denote the four-momenta, while three-momenta
are represented with the standard vector notation ( ⃗𝑝). The modulus of a three-
momentum is represented by a simple letter (𝑝). In addition, a factor 4𝑚2

𝑁
arising from the field normalization of the nucleons has been added to render the
squared modulus of the 𝑇–matrix element—represented by |𝑡|2—dimensionless.

After integrating the energy-momentum conservation deltas and performing
a change of variables (details for this integration are given in Appendix B), we
can write this cross section as

𝜎𝑁 = 𝑚2
𝑁

(𝑠 − 𝑚2
𝑁)

√
𝑠

1
32𝜋4 ∫

𝑚max
inv

𝑚min
inv

𝑝𝑝′𝑑𝑚inv ∫
1

−1
𝑑 cos 𝜃 ∫

2𝜋

0
𝑑𝜙 |𝑡|2. (3.24)

In this simplified expression, 𝑝 represents the momentum of the 𝐷+ in the 𝛾𝑁
center of mass frame, parametrized as

⃗𝑝 = 𝑝 ⎛⎜
⎝

sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃
⎞⎟
⎠

, 𝑝 =
√𝜆(𝑠, 𝑚2

𝐷, 𝑚2
inv)

2
√

𝑠
, (3.25)

𝜔(𝑝) = 𝑠 + 𝑚2
𝐷 − 𝑚2

inv
2
√

𝑠
, (3.26)

where the 𝜃 and 𝜙 angles are taken with respect to the direction of the
momentum of the incident photon 𝑘⃗, which is taken along the 𝑧 axis

𝑘⃗ = 𝑘 ⎛⎜
⎝

0
0
1
⎞⎟
⎠

, 𝑘 = 1
2
√

𝑠
(𝑠 − 𝑚2

𝑁) (center of mass frame), (3.27)
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𝑘lab = 1
2𝑚𝑁

(𝑠 − 𝑚2
𝑁) (LAB frame). (3.28)

In addition, 𝑚inv is the invariant mass associated to the 𝐷−𝑁 ′ pair (with 𝑁 ′

the nucleon emitted in 𝛾𝑁 → 𝐷+𝐷−𝑁 ′). The integration limits for 𝑚inv are4

𝑚min
inv = 𝑚𝐷− + 𝑚𝑁, (3.31a)

𝑚max
inv =

√
𝑠 − 𝑚𝐷+ . (3.31b)

We explicitly distinguish 𝑚𝐷− and 𝑚𝐷+ to indicate which final–state particle
we are referring to. Lastly, we define 𝑝′ to be the three-momentum of the 𝐷−

meson in the 𝑁𝐷− rest frame. This is given by

𝑝′ =
√𝜆 (𝑚2

inv, 𝑚2
𝐷− , 𝑚2

𝑁)
2𝑚inv

, (3.32)

which is the usual relativistic formula for the center-of-mass three-momentum
of a two-particle system (cf. Eq. (2.60) replacing 𝑠 → 𝑚2

inv).
In summary, in Eq. (3.24) we have presented the cross section for the

photoproduction of the 𝐷+𝐷− pair off a nucleon. Although this expression
depends on the transition matrix element |𝑡|2, when taking the transparency
ratio—recall Eqs. (3.4) and (3.5)—the features arising in the different cross
sections due to |𝑡|2 will mostly cancel. In other words, we expect the dependence
of the transparency ratio on the features of the scattering amplitude to be
residual. Then, we shall approximate it to be constant.

|𝑡|2 ∼ const. (3.33)

In Sect. 3.3.1 we will improve on this assumption by considering a strong
momentum dependence in |𝑡|2.

4The lower limit follows from the fact that the minimum invariant mass corresponds to a
null relative three-momentum in the 𝑁𝐷− rest frame. The maximum value is derived from
the definition of the total invariant mass 𝑠

𝑠 = (𝑃𝑁𝐷− + 𝑝𝐷+)2, (3.29)

where 𝑃𝑁𝐷− the total four-momentum of the 𝑁𝐷− pair and 𝑝𝐷+ is the four momentum of
the 𝐷+. Then, for a fixed 𝑠, the maximum value of 𝑚2

inv = 𝑃 2
𝑁𝐷− is obtained when the 𝑁𝐷+

pair and the 𝐷+ meson have zero relative three-momentum in the center of mass frame, so
that

𝑠 = 𝑚2
inv + 𝑚2

𝐷+ + 2𝑚inv𝑚𝐷+. (3.30)



3.2. COMPUTING THE 𝐷+ TRANSPARENCY RATIO 97

3.2.3 Photoproduction cross section off a nucleus

We now focus on the 𝐷+ photoproduction off a nucleon lying inside a nucleus.
The basic building block is the cross section of Eq. (3.24), but now we have to
take into account the nucleon density in the nucleus and the survival probability
of the 𝐷+ in nuclear matter.

In the local density approach, the differential cross section (per unit volume)
for the 𝐷+ production off a nucleon will be proportional to the nucleon density
at the point ⃗𝑟 where the photon impinges:5

𝑑𝜎
𝑑𝑉

∝ 𝜌( ⃗𝑟)|𝑡|2. (3.34)

Furthermore, we also need to consider the survival probability of the 𝐷+ meson,
given in Eq. (3.18). Taking both of these considerations into account, the total
cross section for the photoproduction of the 𝐷+ meson off a nucleus now reads
as follows.

𝜎𝐴 = 𝑚2
𝑁

(𝑠 − 𝑚2
𝑁)

√
𝑠

1
32𝜋4 ∫

𝑚max
inv

𝑚min
inv

𝑝𝑝′𝑑𝑚inv ∫
1

−1
𝑑 cos 𝜃 ∫

2𝜋

0
𝑑𝜙 ∫ 𝑑3𝑟

𝜌( ⃗𝑟)|𝑡|2 exp [∫
⃗𝑟′

Im Π (𝐸qp, 𝑝lab; 𝜌( ⃗𝑟′))
𝑝lab

𝑑𝑙] . (3.35)

This expression is simplified in the hard-sphere nuclear model, where the density
distribution is a step function:

𝜎HS
𝐴 = 𝑚2

𝑁
(𝑠 − 𝑚2

𝑁)
√

𝑠
1

32𝜋4 ∫
𝑚max

inv

𝑚min
inv

𝑝𝑝′𝑑𝑚inv ∫
1

−1
𝑑 cos 𝜃 ∫

2𝜋

0
𝑑𝜙 ∫

𝑟<𝑅
𝑑3𝑟

𝜌0|𝑡|2 exp [
Im Π (𝐸qp, 𝑝lab; 𝜌0)

𝑝lab
𝐿(𝑟, 𝜃′)] . (3.36)

At this point, in order to evaluate the cross section of Eq. (3.36), it only
remains to define the integration over ⃗𝑟 and the quantity 𝑝lab, which corresponds
to the momentum of the 𝐷+ meson in the LAB frame, where the nucleus is at
rest. The position vector ⃗𝑟 is taken as

⃗𝑟 = 𝑟 ⎛⎜⎜
⎝

sin ̃𝜃 cos ̃𝜙
sin ̃𝜃 sin ̃𝜙

cos ̃𝜃

⎞⎟⎟
⎠

. (3.37)

5For the sake of clarity, we omit in this formula extra differentials associated to the
momentum coordinates of the produced particles.
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Figure 3.6: Percentage of 𝐷+ mesons with 𝑝lab < 2 GeV as a function of the
photon momentum in the LAB frame, estimated using two different methods.
The blue line corresponds to the the fraction of sampled points in the Monte
Carlo integration for which 𝑝lab < 2 GeV. The orange line is computed taking
the ratio of the nucleon cross section including the 𝑝lab < 2 GeV condition,
divided by the total nucleon cross section computed in the full available phase
space.

However, given the symmetry of this setup, the integration over the ̃𝜙 angle is
redundant, and we can safely add a factor 2𝜋 to Eq. (3.36) and take ̃𝜙 = 0.

Lastly, to obtain ⃗𝑝lab from ⃗𝑝 we perform a boost from the 𝛾𝑁 center-of-
mass frame—where the initial nucleon 𝑁 has momentum ⃗𝑞𝑖 = −𝑘⃗—to the LAB
frame—where 𝑁 is at rest ( ⃗𝑞𝑖,lab = ⃗0).6 This boost is given by the general
formula of Ref. [287]:

⃗𝑝lab = [(𝐸(𝑞𝑖)
𝑚𝑁

− 1) ⃗𝑝 ⋅ ⃗𝑞𝑖
| ⃗𝑞𝑖|2

− 𝜔(𝑝)
𝑚𝑁

] ⃗𝑞𝑖 + ⃗𝑝. (3.38)

Once ⃗𝑝lab has been obtained, one can easily compute the angle 𝜃′ needed to
evaluate 𝐿(𝑟, 𝜃′) from

cos 𝜃′ = ⃗𝑟 ⋅ ⃗𝑝lab
𝑟𝑝lab

. (3.39)

6In the LAB frame—defined as the nucleus rest frame—we set the nucleon’s initial
momentum to zero. Although this neglects its statistical (Fermi) motion inside the nucleus,
the approximation is expected to be excellent because the 𝐷+ photoproduction threshold
requires a photon with very large momentum 𝑘⃗.
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With this, we are now in a position to calculate the transparency ratio
of Eq. (3.5). However, before proceeding with the results, we shall make
some remarks about the photon energies needed for this process, extending
the discussion that was first presented in Sect. 3.1, in particular in Fig. 3.1.
The minimum value of

√
𝑠 for 𝛾𝑁𝑖 is

(
√

𝑠)min = 𝑚𝑁 + 𝑚𝐷− + 𝑚𝐷+ ≃ 4.678 GeV, (3.40)

which corresponds to a photon momentum 𝑘 ≃ 11.17 GeV (see Fig. 3.1). We
can use the general boost of Eq. (3.38) to obtain the minimum 𝑝lab. This
minimum occurs when the 𝐷+ meson’s center-of-mass momentum is maximal
and antiparallel to the incoming photon momentum.

⃗𝑝 =
√𝜆[𝑠, 𝑚2

𝐷, (𝑚min
inv )2]

2
√

𝑠
⎛⎜
⎝

0
0

−1
⎞⎟
⎠

. (3.41)

Using this previous expression, together with the fact that in the center-of-mass
frame ⃗𝑞𝑖 = −𝑘⃗, one can easily evaluate the minimum value of the 𝐷+ momentum
in the LAB frame. The value for the modulus of this momentum turns out to
be

𝑝min
lab = −𝐸(𝑞𝑖)

𝑚𝑁
𝑝 + 𝜔(𝑝)

𝑚𝑁
𝑞𝑖. (3.42)

As discussed in Sect. 3.1, we find that for values of 𝑠 close to the 𝐷+𝐷−𝑁 ′

threshold the minimum momentum of the 𝐷+ in the LAB frame is of the order
of 3 GeV. For growing 𝑠, 𝑝min

lab tends to the asymptotic value

lim
𝑠→∞

𝑝min
lab = 𝑚2

𝐷 − 𝑚2
𝑁

2𝑚𝑁
= 1.387 GeV. (3.43)

This behavior can also be observed in the plot of Fig. 3.1.
As we already mentioned in the Introduction, producing a 𝐷+ meson with

a high LAB momentum is not desirable for two reasons:

1. The absorption probability is suppressed by 𝑝lab, cf. Eq. (3.18).

2. The theoretical calculation of Ref. [215] for the imaginary part of the 𝐷+

self-energy in the nuclear medium is available up to 1 GeV.

Due to these reasons and given the minimum 𝑝lab shown in Eq. (3.43), we
select momenta 𝑝lab < 2 GeV. We expect that including this momentum filter
in the experiment should improve its efficiency. We can then estimate the
photon energy that maximizes the fraction of 𝐷+ that are produced with a
LAB momentum below 2 GeV. This estimate is obtained in two ways: 1) by
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a Monte Carlo integration of the phase space in Eq. (3.36), computing the
fraction of sampled points for which 𝑝lab < 2 GeV (blue line);7 and 2) by taking
the ratio of the nucleon cross section—cf. (3.24)—restricted to 𝑝lab < 2 GeV to
the total nucleon cross section evaluated over the entire phase space. We see
a qualitative agreement between both evaluations, although the latter method
produces a result which is roughly 0.7 that of the former. In any case, from
the shape of both momentum distributions we see that the optimal photon
momentum in the LAB frame is 𝑘lab ≃ 50 GeV, which corresponds to a 𝛾𝑁
invariant mass of

√
𝑠 ≃ 10 GeV. We therefore perform our transparency–ratio

calculations at this energy.

3.3 Predictions for the 𝐷+ transparency ratio
In this section, we discuss the results for the transparency ratio for the 𝐷+

mesons—shown in Fig. 3.7—as a function of the mass number of the nucleus
𝐴. We consider three constant values for the imaginary part of the self-energy
of the 𝐷+: Im Π = −0.1 GeV2 (red, solid), −0.05 GeV2 (blue, dashed), and
−0.025 GeV2 (green, dotted)—the latter two being half and one quarter of
the value of Eq. (3.14), respectively—to test the sensitivity of 𝑇 (𝐴) to the
absorption part of the nuclear cross section.

For Im Π = −0.1 GeV2, 𝑇 (𝐴) departs markedly from unity, indicating that
a measurement of this observable should be sensitive to the 𝐷+ width in the
nuclear medium. An analogous sensitivity was observed in 𝜂′ photoproduction
on nuclei [274], where the data implied an in–medium width at 𝜌 = 𝜌0 of

Γ𝜂′ = − Im Π𝜂′/𝐸𝜂′ ≃ 15 ∼ 25 MeV.

Reducing the magnitude of Im Π to −0.05 or −0.025 GeV2 shifts 𝑇 (𝐴) closer
to 1, yet it remains clearly below unity, showing that values smaller than those
inferred in Ref. [215] would still be experimentally observable.

However, there are some caveats to these results. In our calculation, we
have assumed that Im Π is dominated by genuine absorption (where the 𝐷+

disappears) and that quasielastic 𝐷+𝑁 → 𝐷+𝑁 ′ is subleading. This holds
in the calculations of Ref. [215], where the main contributions to Im Π arise
from 𝐷𝑁 → 𝜋Σ𝑐, 𝜋Λ𝑐, 𝐾Ξ𝑐, and 𝐷∗𝑁. However, this may not be the case
when considering other 𝐷𝑁 interaction models. In order to suppress possible
contributions from quasi-elastic scattering, we propose the following filter,
which could be applied in future studies when actual data is available.

Kinematically, the large photon energies produce 𝐷+𝐷−𝑁 in a tight forward
cone in the LAB frame. However, if a 𝐷+ undergoes a quasielastic collision,

7The blue line in Fig. 3.6 corresponds to the result shown in Fig. 2 of Ref. [3]. The orange
line was not considered in that reference.
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Figure 3.7: Transparency ratio of Eq. (3.5), normalized to 12C as a function
of the mass number of nuclei. The three lines show the transparency ratio
calculated with different values of Im Π. The points (circles, triangles and
squares) in the figure indicate the results for 12C, 40Ca, 93Nb, and 208Pb.

𝐷+𝑁 → 𝐷+𝑁 ′, its direction spreads and the final 𝐷+ is no longer as forward–
peaked as the primary one. Therefore, an additional forward angle filter
on the detected 𝐷+ would suppress quasi-elastic events, effectively selecting
those that did not interact and allowing the absorptive part of the in-medium
self-energy to be better isolated. A similar argument applies to primary 𝐷+

with | ⃗𝑝lab| > 2 GeV that lose energy through quasi-elastic scattering. In a
further step, one could account for photon shadowing at the experimental
energy, which is expected to be much smaller than the strong absorption suffered
by 𝐷 mesons [274].

In addition, easily implemented refinements of the transparency ratio cal-
culation are possible. First, one may use realistic (e.g., two-parameter Fermi
model) density profiles for each nucleus. This changes the evaluation of the
integral in Eq. (3.18), requiring an explicit 𝜌–dependence of the imaginary part
of the 𝐷+ self-energy. Second, since the assumption of a constant scattering
amplitude |𝑡|2 can be thought of as rather crude, we shall introduce its dominant
energy dependence. In the next section, we incorporate these corrections into
the nuclear cross section of Eq. (3.35) and reassess the transparency ratio to
test the robustness of the results shown in Fig. 3.7.
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3.3.1 Improved density profiles and momentum-dependent
photoproduction

In order to derive the results for the 𝐷+ transparency ratio shown in Fig. 3.7,
some approximations were used. Among them, we assumed a constant density
profile for the different nuclei and did not consider any energy or momentum
dependence on the 𝐷+ photoproduction amplitude. These approximations were
made under the argument that the transparency ratio is not very sensitive to
the details of the production or the shape of the nucleus, but rather to the
absorption of the 𝐷+ meson. However, in this section, we shall test the validity
of this assumption, using more realistic density profiles for the different nuclei,
as well as the main energy dependence on the photoproduction amplitude.

Let us start by considering the improved density profiles for the different
nuclei. Following Refs. [274, 288, 289], we take a two-parameter Fermi model
for the 40Ca, 93Nb and 208Pb, given by

𝜌2pF(𝑟) = ̃𝜌0
1 + exp (𝑟−𝑅

𝑎 )
. (3.44)

This density distribution depends on two parameters with length dimensions,
𝑅 and 𝑎, and a normalization constant ̃𝜌0 which is chosen so that

∫ 𝑑3𝑟 𝜌2pF(𝑟) = 𝐴 (3.45)

for the different nuclei (with 𝐴 their mass number). The different parameters
used for each nucleus are presented in Table 3.1.

Nucleus 𝑅 [fm] 𝑎 [fm] ̃𝜌0 [fm−3]
40Ca 3.51 0.563 0.176
93Nb 4.87 0.573 0.169
208Pb 6.62 0.549 0.160

Table 3.1: Numerical constants of the two-parameter Fermi model for 40Ca,
93Nb, 208Pb. Taken from Ref. [288] (see also [289]).

For the case of 12C, we use a harmonic oscillator model, with the expression
for the density profile being in this case as follows.

𝜌HS(𝑟) = ̃𝜌0 (1 + 𝑐 ( 𝑟
𝑅

)
2
) 𝑒−(𝑟/𝑅)2

. (3.46)

The 𝑐 and 𝑅 parameters are taken to be [289]

𝑐 = 1.082 [dimensionless], 𝑅 = 1.692 fm, (3.47)
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Figure 3.8: Density profiles of the different nuclei considered (in different colors)
as a function of the radial coordinate 𝑟, extracted from Ref. [288].

while ̃𝜌0 is again computed from the normalization of the density distribution,

̃𝜌0 = ∫ 𝑑3𝑟 𝜌HS(𝑟) = 12. (3.48)

Its value is found to be ̃𝜌0 = 0.170 fm−3.
In Fig. 3.8, we plot the different density profiles for the four nuclei con-

sidered. These shapes are more realistic than the simple step functions of
Eq. (3.6). When taking these density distributions into account, the integration
of the absorption probability through the path that the 𝐷+ meson follows on
its way out of the nucleus—cf. Eq. (3.18)—has to be done with more care.
Taking the imaginary part of the 𝐷+ self-energy to be proportional to the
density (which is true for small enough values of the density), we now write the
survival probability of the 𝐷+ meson as

𝑆( ⃗𝑟, ⃗𝑝lab; 𝜌) = exp ⎡⎢
⎣

∫
⃗𝑟′

Im Π (𝐸qp, 𝑝lab; 𝜌0) 𝜌(𝑟′)
𝜌0

𝑝lab
𝑑𝑙⎤⎥

⎦
. (3.49)

In this expression, 𝜌(𝑟′) represents one of the different density profiles previously
introduced for the various nuclei, and 𝑟′ is the distance from the center of the
nucleus to the point of the trajectory of the 𝐷+ meson, parametrized in terms
of 𝑙 through Eq. (3.19) (taking the origin of coordinates at the center of the
nucleus). Since there is no easy analytical expression for the integral in this
case, we perform it numerically using a Gauss-Legendre algorithm.
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Next, we will include some momentum dependence in the photoproduction
amplitude. Although the result of the nuclear cross section is greatly affected
by the functional form of this amplitude, we expect that the effect on the final
result for the transparency ratio will be small, since both the numerator and
denominator of Eq. (3.5) will be affected in a similar way. However, we shall
test this assertion here.

In Ref. [290], the authors compute the amplitude for the 𝛾𝑝 → 𝐷+𝐷∗−𝑝 and
other related processes, evaluating its dependence on momentum and angular
variables. In order to probe whether the transparency ratio is sensitive to
changes in the amplitude, we do not consider it necessary to include all the
different variables. We shall implement only the amplitude dependence on the
variable 𝑡′ = (qi − q)2 (qi and q being the four-momentum of the initial and
final nucleons, respectively), which leads to the largest variation in the cross
section—a reduction of two orders of magnitude from 𝑡′ ≃ 0 to 𝑡′ ≃ −1 GeV2.
Considering any other variables would unnecessarily complicate the calculation.
Therefore, we now assume

|𝑡|2 = |𝑡0|2 exp [log (10−2) 𝑡′

−1 GeV2 ] . (3.50)

When considering this new momentum dependence on the amplitude, we
need to revise the phase space integration of Eq. (3.35). Due to the dependence
of 𝑡′ on the angle between ⃗𝑞𝑖 and ⃗𝑞, we need to consider the integration over
the ⃗𝑞 angles explicitly (not just a factor 4𝜋). If we evaluate the ⃗𝑝′ ( ⃗𝑝′ being
the momentum of the 𝐷− meson) and ⃗𝑞 integration in the 𝐷−𝑁 ′ rest frame (as
detailed in Appendix B), where ⃗𝑝′ = − ⃗𝑞, we can instead integrate the angles of
the ⃗𝑝′ momentum.

4𝜋 → ∫
+1

−1
𝑑cos ̃𝜃′ ∫

2𝜋

0
𝑑 ̃𝜙′, ⃗𝑝′ = 𝑝′ ⎛⎜⎜

⎝

sin ̃𝜃′ cos ̃𝜙′

sin ̃𝜃′ sin ̃𝜙′

cos ̃𝜃′

⎞⎟⎟
⎠

. (3.51)

Besides, since the ⃗𝑞 momentum is taken in the 𝐷−𝑁 ′ rest frame, in order
to evaluate 𝑡′ we need to boost ⃗𝑞𝑖 from the 𝛾𝑁 rest frame—where ⃗𝑞𝑖 = −𝑘⃗ with
𝑘⃗ the photon momentum; and the 𝐷−𝑁 ′ pair has momentum − ⃗𝑝, with ⃗𝑝 the
momentum of the 𝐷+ meson—to the 𝐷−𝑁 ′ rest frame. This boost is given by

⃗𝑞𝑖,boost = − [(𝐸𝐷−𝑁′(𝑝2)
𝑚inv

− 1) ⃗𝑝 ⋅ 𝑘⃗
𝑝2 − 𝐸𝑁(𝑘2)

𝑚inv
] ⃗𝑝 − 𝑘. (3.52)

In this expression, we have

𝐸𝐷−𝑁′(𝑝2) = √𝑚2
inv + 𝑝2 𝐸𝑁(𝑘2) = √𝑚2

𝑁 + 𝑘2, (3.53)
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with 𝑚inv the invariant mass of the 𝐷−𝑁 ′ system. Now we are in position
to evaluate the momentum transfer squared, which results in the following
expression.

𝑡′ = (qi − q)2 = 2𝑚2
𝑁 − 2𝐸𝑁(𝑞2

𝑖,boost)√𝑚2
𝑁 + 𝑝′2 − 2 ⃗𝑞𝑖,boost ⋅ ⃗𝑝′. (3.54)

With all this considerations, the nuclear cross section is now written as

𝜎𝐴 = 𝑚2
𝑁

(𝑠 − 𝑚2
𝑁)

√
𝑠

1
64𝜋4

× ∫
𝑚max

inv

𝑚min
inv

𝑝𝑝′𝑑𝑚inv ∫
1

−1
𝑑 cos 𝜃 ∫

2𝜋

0
𝑑𝜙 ∫

1

−1
𝑑 cos ̃𝜃′ ∫

2𝜋

0
𝑑 ̃𝜙′ ∫

+1

−1
𝑑 cos ̃𝜃 ∫ 𝑑𝑟𝑟2

× 𝜌(𝑟)|𝑡0|2 exp [4.6 𝑡′

1 GeV2 ] exp ⎡⎢
⎣

∫
⃗𝑟′

Im Π (𝐸qp, 𝑝lab; 𝜌0) 𝜌(𝑟′)
𝜌0

𝑝lab
𝑑𝑙⎤⎥

⎦
. (3.55)

In order to evaluate the seven integrals of this expression, we use a Monte Carlo
integration method, selecting again the points for which 𝑝lab is smaller than 2
GeV. For the integral in the exponential defining the survival probability of the
𝐷+ meson, we use the Gauss-Legendre quadrature.

Transparency ratio results including the previous improvements

In Fig. 3.9 we present a comparison of the transparency ratio, including the
previously discussed improvements to the nuclear density profiles and the
production amplitude (green squares), with the original transparency ratio of
Fig. 3.7 for Im Π = −0.1 GeV2 (red line). For reference, we also include as
blue points the results of the transparency ratio obtained when considering
only the improved density profiles, and no momentum dependence on the
photoproduction amplitude. The green squares have some attached error
bands, which indicate the uncertainty coming from the Monte Carlo integration
method. These statistics are computed by repeating the evaluation of the
integral twenty times, taking for each evaluation a different random seed to
initialize the random number generator. Then, the green squares correspond
to the mean value of the results obtained for each of the seeds, while the error
bands represent their standard deviation. The Monte Carlo integration errors
in the original calculation (red curve) and in the variant that accounts only for
the density correction (blue circles) are negligible; therefore, we do not include
them.

Although minor differences appear between the different cases considered
in Fig. 3.9, the overall behavior remains essentially unchanged: for 208Pb
the deviation is approximately 5%, and only slightly larger for 40Ca and
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Figure 3.9: Green squares: results for the transparency ratio to 12C using
realistic densities with Im Π = Im Π( ̃𝜌0)𝜌(𝑟)/ ̃𝜌0 and Im Π( ̃𝜌0) = −0.1 GeV2, as
well as the momentum dependence of the 𝐷+𝐷− photoproduction amplitude.
The error bands in this case indicate the uncertainties of the Monte Carlo
integration method. Blue circles: results obtained when only the changes in the
nuclear density are considered. Red solid line: result of Fig. 3.7 for Im Π = −0.1
GeV2 with the simplified treatment.

93Nb. Further variations arising from different momentum dependencies of
the 𝛾𝑁→𝐷+𝐷−𝑁 ′ amplitude should therefore be minimal. This corroborates
the conclusion of [274] that the transparency ratio is largely insensitive to the
details of the production mechanism. Our tests show that the modest shifts
visible in Fig. 3.9 stem mainly from the use of realistic nuclear density profiles,
while refinements of the transition amplitude itself play a secondary role.

Regarding experimental feasibility, the GlueX facility at Jefferson Lab can
deliver photons with energies up to roughly 12 GeV [291]. Although this
exceeds the 11.2 GeV threshold for 𝐷+𝐷− production, it is insufficient to create
slow 𝐷+ mesons with laboratory momenta below 2 GeV; Fig. 3.6 shows that
a photon energy close to 21 GeV is required. A possible future upgrade of
the JLab electron beam to 22 GeV [292] would open that kinematic window,
although with limited statistics. Looking further ahead, future machines will
comfortably reach the energies needed for 𝛾𝐴→𝐴′ 𝐷+𝐷− and enhance the yield
of low-momentum 𝐷+ mesons. The US Electron-Ion Collider (EIC) is expected
to achieve electron-proton center-of-mass energies up to 100 GeV [293], while
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China’s EicC plans electron-nucleus collisions in the 10 ∼ 15 GeV range [294].
To our knowledge, the reaction proposed here offers the first realistic avenue
for directly measuring the in-medium width of the 𝐷 meson.

3.4 Conclusions
We have investigated the feasibility of extracting the in-medium width of the 𝐷
mesons through nuclear transparency measurements. The process considered
is 𝛾𝐴 → 𝐷+𝐷−𝐴′, driven at the nucleon level by 𝛾𝑁 → 𝐷+𝐷−𝑁 ′, where 𝑁
denotes a bound nucleon. Once produced, the 𝐷+ is tracked, and the probability
that it leaves the nucleus without being absorbed is evaluated. Our integration
scheme for the total nuclear cross section is designed so that observables of
interest—such as the fraction of 𝐷+ mesons escaping with a given momentum,
the emission angles, or the invariant masses of the unobserved 𝐷− and 𝑁 ′—are
obtained with ease.

The calculation employs the imaginary part of the 𝐷+ in-medium self-energy
from Ref. [215]. Because these self-energy results are available only up to 𝑝≃1
GeV. whereas the produced mesons carry at least 1.4 GeV, we restrict our
sample to 𝐷+ mesons detected with 𝑝𝐷+ < 2 GeV. By scanning the photon
energy, we find that the fraction of mesons in this momentum window peaks
for a photon energy in the laboratory frame of 𝑘lab ≃ 50 GeV. The resulting
transparency ratios, normalized to 12C, fall to about 0.6 for heavy nuclei such
as 208Pb—a substantial suppression that should be clearly measurable. Suitable
photon beams will be available at forthcoming facilities such as the EIC and
EicC, or at an upgraded GlueX.

To keep the study transparent, we have adopted several simplifying as-
sumptions. We also outline possible refinements to our calculations that can
be adjusted to the relevant photon energies and experimental constraints once
a concrete setup is defined. For the present exploratory stage, we have demon-
strated both the feasibility of the measurement and the kinematic conditions
that can optimize the sensitivity to the theoretically predicted 𝐷+ self-energy.
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Exotics at finite temperature:
study of the 𝑇𝑐𝑐

4.1 Introduction
The structure of the 𝑇𝑐𝑐 has been an object of great interest among the hadronic
community. As already discussed, on the one hand, numerous studies support
the molecular interpretation of this state [46–64, 295–299], largely motivated
by its proximity to the 𝐷0𝐷∗+ and 𝐷+𝐷∗0 thresholds. On the other hand,
a compact tetraquark configuration has also been proposed, even prior to its
experimental observation [65, 66, 300–303]. However, the proximity of the
state to the 𝐷0𝐷∗+ and 𝐷+𝐷∗0 thresholds strongly suggests that hadronic
degrees of freedom must be explicitly considered for a reliable interpretation of
experimental data [147, 246, 304].

Given the current interest in the 𝑇𝑐𝑐(3875)+, ongoing research aims at
identifying the scenarios in which its internal structure and properties can be
most clearly revealed. Recent progress includes studies that employ lattice
QCD to generate and analyze the nature of the state [61, 305–310], as well as
investigations based on femtoscopic correlation functions [149, 150, 311].

Another venue to explore the nature of the 𝑇𝑐𝑐(3875)+ is to study its behav-
ior under the extreme density and temperature conditions achieved at facilities
such as the RHIC, the LHC, and the future FAIR. In Ref. [156], the production
of exotic tetraquarks 𝑇𝑄𝑄 (𝑄 = 𝑐, 𝑏) was analyzed in Pb+Pb collisions at the
LHC within a quark coalescence framework, yielding production rates an order
of magnitude lower than previously estimated. In Ref. [312], the centrality
dependence, rapidity distributions, transverse momentum spectra, and elliptic
flow of the 𝑇𝑐𝑐(3875)+ (and possible isospin partners) were investigated at LHC
energies using the A Multi-Phase Transport (AMPT) model with coalescence.
This study reported a strong enhancement of the 𝑇𝑐𝑐 yield in Pb+Pb relative to

109
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𝑝𝑝 collisions, comparable to 𝜒𝑐1(3872) in central events, but with a significantly
stronger suppression towards peripheral collisions. Furthermore, Ref. [313]
employed the coalescence model for Pb+Pb collisions at √𝑠𝑁𝑁 = 5.02 TeV,
concluding that the 𝑇𝑐𝑐 could be interpreted either as a compact multiquark
configuration or as a loosely bound molecular state composed of charmed
mesons.

With the aim of exploring the finite-density regime relevant to the CBM
experiment at FAIR, in Chapter 2 we investigated the properties of the
𝑇𝑐𝑐(3875)+ and 𝑇 ̄𝑐 ̄𝑐(3875)−, together with their HQSS partners, in nuclear
matter. This study highlighted the characteristic density dependence of this
particle–antiparticle pair under the assumption of small or large molecular
component in these tetraquark-like states. In the present chapter, our focus
shifts from density to temperature: we study the behavior of the 𝑇𝑐𝑐(3875)+

and its HQSS partner, the 𝑇𝑐𝑐(4016)∗+, in the hot environment produced in
heavy-ion collisions at RHIC and the LHC. In what follows, we shall adopt
the molecular perspective as a working hypothesis, while keeping in mind the
possible interplay with compact tetraquark components. However, we shall not
consider direct temperature effects on these tetraquark components.

The production of loosely bound hadronic molecules in a hot plasma is, at
first sight, counterintuitive. Since the plasma temperature can greatly exceed
the binding energy of such states, one would naturally expect them to dissociate
almost instantaneously through scattering with other particles. Nevertheless,
experiments demonstrate that these molecular states are indeed produced in
heavy-ion collision (HIC) experiments and appear to emerge from a hadron
gas whose temperature is orders of magnitude larger than their binding energy
[314]. Moreover, thermodynamical analyses, such as the study in Ref. [315],
indicate that the production yield of these states remains nonzero even in the
limit where their binding energy tends to zero.

In this chapter, we investigate hadrons at finite temperature, with emphasis
on the exotic 𝑇𝑐𝑐(3875)+ and its HQSS partner, 𝑇 ∗

𝑐𝑐(4016). Sect. 4.2 introduces
the imaginary-time formalism (ITF), which provides the statistical basis for
thermal field theory. Sect. 4.3 addresses two-meson scattering in a hot medium,
presenting the finite-temperature loop function together with the 𝐷 and 𝐷∗

spectral functions of Refs. [211, 316]. Finally, Sect. 4.4 applies this formalism
to analyze the spectral properties of 𝑇𝑐𝑐(3875)+ and 𝑇 ∗

𝑐𝑐(4016)+ in a hot pion
bath, while Sect. 4.5 summarizes the main conclusions.

4.2 Thermal Systems in Imaginary Time
Standard Quantum Field Theory is typically formulated at zero temperature,
an approximation that is adequate in many contexts, such as nuclear systems,
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Figure 4.1: Number density of several hadrons in a hot medium at 𝑇 = 150
MeV, as a function of the modulus of their three-momentum 𝑝.

where the characteristic energy scales far exceed ordinary thermal energies.
There are, however, situations in which temperature effects play a central role.
Two paradigmatic examples are cosmology, which probes the extremely hot
conditions of the early universe, and the hot quark-gluon plasma produced in
HICs. In such cases, a modified theoretical framework is required: Thermal
Quantum Field Theory (often abbreviated as Thermal Field Theory) or Finite-
Temperature Field Theory.

The idea of connecting temperature with microscopic motion predates
kinetic theory itself. Philosophers such as Francis Bacon [317] speculated on
this relation, which was later formalized within the kinetic theory of gases.
Maxwell’s derivation of the velocity distribution [318] provided the first rigorous
statistical link between temperature and kinetic energy, a concept that remains
central today: temperature characterizes the statistical distribution of particles
over accessible energy states. This statistical foundation extends naturally to
quantum systems, where fermions (half-integer spin) obey the Fermi–Dirac
distribution and bosons (integer spin) follow the Bose–Einstein distribution.
Figure 4.1 illustrates these distributions for several hadronic species in a
medium at 𝑇 = 150 MeV, showing how the number density of heavier particles
is increasingly suppressed.

In this section we present the basic concepts of thermal field theory, with
particular emphasis on the Imaginary-Time Formalism (ITF). Pioneered by
Matsubara [133], the ITF provides the foundation of equilibrium thermal field
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theory. Its main advantage lies in its close similarity to zero-temperature
QFT: standard perturbative and diagrammatic techniques can be applied with
only minor modifications. The essential difference is that time is analytically
continued to imaginary values and compactified to the finite interval [0, 𝛽], with
𝛽 = 1/𝑘𝐵𝑇 (𝑘𝐵 being the Boltzmann constant and 𝑇 the temperature). In the
energy domain this compactification leads to a discrete set of frequencies, the
so-called Matsubara frequencies. The main features of the ITF will be discussed
in detail in the following sections.

Shortly after the development of Matsubara’s approach, Kubo [319] and
Martin and Schwinger [320] formulated the Kubo–Martin–Schwinger (KMS)
condition, which expresses a fundamental relation between thermal propagators
in equilibrium. Further advances were made by Keldysh [321], who introduced a
complementary real-time formalism. Together, these developments established
the modern framework of thermal field theory.

The discussion in this chapter draws primarily on Chap. 14 of Mattuck’s
textbook [213], which focuses on fermionic systems. We begin by reviewing
the statistical foundations of temperature and particle distributions, and then
proceed to introduce the Imaginary-Time Formalism and its main features.

4.2.1 From 𝑇 = 0 to finite temperature

Consider a system composed of many interacting particles. We denote by |Ψ𝑖⟩,
with 𝑖 = 0, 1, 2, … , the energy eigenstates of the corresponding Hamiltonian.
At 𝑇 = 0, the system occupies its lowest-energy state, namely the many-body
vacuum in occupation-number formalism, |Ψ0⟩. For finite temperature (𝑇 > 0),
however, the system is no longer restricted to the ground state but instead has
a finite probability of being found in excited states.1 The probability of finding
the system in the excited state |Ψ𝑖⟩ is given by

𝒫𝑖 = 𝑒−𝛽(𝐸𝑖−𝜇𝑁𝑖)

∑𝑛 𝑒−𝛽(𝐸𝑛−𝜇𝑁𝑛) = 𝜌𝑖
𝑍

, (4.1)

where 𝐸𝑖 is the energy of the state |Ψ𝑖⟩, 𝑁𝑖 is its particle number, and 𝜇 is the
chemical potential, defined as the energy required to remove a particle from the
system. The denominator of Eq. (4.1), 𝑍, is the “grand partition function”; and
the numerator, 𝜌𝑖, is the “grand distribution function”. We work in the grand
canonical ensemble since, in the occupation number formalism, the number of
particles 𝑁 of the system is not fixed. It is useful to define the distribution
operator—often referred to as the density matrix—as

̂𝜌 = 𝑒−𝛽(𝐻̂−𝜇𝑁̂), (4.2)
1A similar situation arises when external potentials are applied.
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where 𝐻̂ is the Hamiltonian of the system, and ̂𝑁 is the number operator. In
terms of the distribution operator, we can write the probabilities of Eq. (4.1)
as

𝒫𝑖 = ⟨Ψ𝑖| ̂𝜌|Ψ𝑖⟩
∑𝑛⟨Ψ𝑛| ̂𝜌|Ψ𝑛⟩

= 𝜌𝑖
tr ̂𝜌

, (4.3)

where tr represents the trace of an operator.
The thermal expectation value of some 𝑂̂ operator is then obtained as

⟨𝑂̂⟩ =
tr (𝑂̂ ̂𝜌)

tr ̂𝜌
= ∑

𝑛
𝒫𝑛 ⟨Ψ𝑛|𝑂̂|Ψ𝑛⟩ , (4.4)

which corresponds to a weighted average of the expectation value of the operator
over all possible energy eigenstates of the system. For convenience, we shall
adopt the shorthand notation ⟨𝑂̂⟩ to denote such thermal expectation values.2

Note that the trace in Eqs. (4.3) and (4.4) uses the exact interacting
many-body system state vectors {|Ψ𝑖⟩}. These states are typically difficult
to determine. Nevertheless, since the trace is basis independent, one can
instead choose the more accessible eigenstates of the non-interacting many-body
system, which we name {|Φ𝑖⟩}. On this basis, Eq. (4.4) reads

⟨𝑂̂⟩ =
∑𝑛,𝑚⟨Φ𝑛|𝑂̂|Φ𝑚⟩⟨Φ𝑚| ̂𝜌|Φ𝑛⟩

∑𝑛⟨Φ𝑛| ̂𝜌|Φ𝑛⟩
. (4.5)

In the next section, we shall present how the single-particle propagator—one
of the main building blocks of perturbation theory—changes when considering
the thermal effects. In what follows, we will drop the hat ( )̂ symbols off
operators to make the notation lighter.

4.2.2 The finite-temperature propagator for a non-interacting
particle in imaginary time formalism

At zero temperature, the Feynman propagator for a fermion is defined as

𝐺(𝑘, 𝑡2 − 𝑡1; 𝑇 = 0) = −𝑖⟨Ψ0|𝑇 {𝑐𝑘(𝑡2)𝑐†
𝑘(𝑡1)}|Ψ0⟩ (4.6)

where 𝑇 {} is Wick’s time-order operator.3

2An alternative convention defines the normalized density operator as ̂𝜌 = 𝑒−𝛽(𝐻̂−𝜇𝑁̂)/𝑍,
which satisfies tr ̂𝜌 = 1. In that case, probabilities are written as 𝒫𝑖 = ⟨Ψ𝑖| ̂𝜌|Ψ𝑖⟩, and
expectation values take the simpler form ⟨𝑂̂⟩ = tr (𝑂̂ ̂𝜌). Both conventions are equivalent, but
we shall adopt in this chapter the unnormalized one as done in [213].

3For fermions, the time-ordering operator introduces a factor (−1) each time two operators
are permuted. For bosons, no such factor appears.
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To generalize this expression to finite temperature, the ground-state ex-
pectation value must be replaced by a thermal average over all energy states,
weighted by their corresponding probabilities, as discussed in Sect. 4.2.1. This
leads to

𝐺(𝑘, 𝑡2 − 𝑡1; 𝑇 ) = −𝑖⟨𝑇 {𝑐𝑘(𝑡2)𝑐†
𝑘(𝑡1)}⟩ = −𝑖

tr [𝑇 {𝑐𝑘(𝑡2)𝑐†
𝑘(𝑡1)}𝜌]

tr 𝜌
. (4.7)

However, this form is not suitable for diagrammatic perturbation theory. Thus,
it is customary to introduce a modified propagator4

𝒢(𝑘, 𝜏2 − 𝜏1) = −⟨𝑇 {𝑐𝑘(𝜏2)𝑐†
𝑘(𝜏1)}⟩ (4.8)

where the creation and annihilation operators evolve according to5

𝑂(𝜏) = 𝑒(𝐻−𝜇𝑁)𝜏𝑂𝑒−(𝐻−𝜇𝑁)𝜏 (4.9)

with 𝑂 representing any operator, and

0 < 𝜏1, 𝜏2 < 𝛽, 𝜏 real. (4.10)

As we shall justify in the following, it is possible to expand diagrammatically the
modified propagator 𝒢 presented Eq. (4.8). Notice that 𝒢 can be obtained from
the temperature-dependent 𝐺 function by making the following replacements:

𝐻 → 𝐻 − 𝜇𝑁
𝑖𝑡 → 𝜏

(4.11)

so that since 𝜏 is real, 𝑡 will be imaginary. In this sense, 𝒢 is known as the
imaginary time propagator—and this framework is known as Imaginary Time
Formalism (ITF).

Two remarks are worth noting here. First, the time-ordering operator
in Eq. (4.8) orders the operators such that 𝜏 decreases from left to right.
Second, the analytic continuation that relates 𝒢 to the thermal propagator
𝐺 corresponds to a Wick rotation, as represented in Fig. 4.2. This continuation
allows one to extract physical information from calculations carried out in
imaginary time.

Let us now briefly comment on why the function 𝒢 can be expanded as a
series of diagrams, in close analogy with the vacuum propagator. The key point
is that the distribution operator satisfies the relation

𝜕𝜌
𝜕𝛽

= −(𝐻 − 𝜇𝑁)𝜌 (Bloch’s equation). (4.12)

4In this definition an overall factor of 𝑖 is omitted, following the conventions of Refs. [212,
213]. We also suppress the explicit temperature label for notational simplicity.

5As is common in scattering theory, we work in the interaction picture, so that operators
evolve with the free Hamiltonian.
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This follows directly by differentiating the definition of 𝜌 given in Eq. (4.2).
Equation (4.12) closely resembles the time-dependent Schrödinger equation,
which is precisely the equation solved by the zero-temperature propagator,6

𝑖𝜕𝜓
𝜕𝑡

= 𝐻𝜓 (Schrödinger’s equation). (4.13)

The correspondence between these two equations is clear. This suggests that
by performing the replacements 𝐻 → 𝐻 − 𝜇𝑁 and 𝑡 → −𝑖𝜏 everywhere, it is
possible to build a finite-temperature perturbation theory based on the Bloch
equation in a similar way to the zero-temperature perturbation theory, which is
based on the Schrödinger equation. In particular, if the replacements are made
in the zero-temperature propagator 𝐺, the resulting 𝒢 can be expanded in a
series of diagrams which are very similar to the zero-temperature series. One
can also construct a new set of Feynman rules for these diagrams, which are
found for the fermionic case in Table 14.1 of Mattuck’s book [213].7

We shall now discuss some properties of the 𝒢 function. Firstly, the variables
𝜏1, 𝜏2 are restricted to the interval (0, 𝛽), so that their difference 𝜏 = 𝜏2 − 𝜏1
is restricted to −𝛽 < 𝜏 < 𝛽. This restriction is needed because 𝒢 is only
guaranteed to converge in that interval. To illustrate this, we first consider the
𝜏 > 0 case and introduce the shifted Hamiltonian 𝐻̃ = 𝐻 − 𝜇𝑁. Starting from
the definition of the imaginary time propagator, we write

𝒢(𝑘, 𝜏) = − 1
𝑍

tr 𝜌𝑐𝑘(𝜏)𝑐†
𝐾(0) = − 1

𝑍
∑

𝑖
⟨Ψ𝑖|𝑒−𝛽𝐻̃𝑒+𝜏𝐻̃𝑐𝑘𝑒−𝜏𝐻̃𝑐†

𝑘|Ψ𝑖⟩

= − 1
𝑍

∑
𝑖,𝑗

⟨Ψ𝑖|𝑒−𝛽𝐻̃𝑒+𝜏𝐻̃𝑐𝑘𝑒−𝜏𝐻̃|Ψ𝑗⟩⟨Ψ𝑗|𝑐
†
𝑘|Ψ𝑖⟩

= − 1
𝑍

∑
𝑖,𝑗

𝑒(−𝛽+𝜏)𝐸̃𝑖𝑒−𝜏𝐸̃𝑗⟨Ψ𝑖|𝑐𝑘|Ψ𝑗⟩⟨Ψ𝑗|𝑐
†
𝑘|Ψ𝑖⟩, (4.14)

where we have inserted a complete set of eigenstates {|Ψ𝑖⟩} of 𝐻̃, and we have
denoted ̃𝐸𝑖 ≡ 𝐸𝑖 − 𝜇𝑁𝑖. Now, since the values for ̃𝐸𝑖,𝑗 can be arbitrarily large,
we can guarantee that the sum is finite if the exponents are negative, so we
have conditions −𝛽 + 𝜏 < 0 and −𝜏 < 0 that yield 0 < 𝜏 < 𝛽. One can make a
similar argument for the 𝜏 < 0 case, which yields the conditions −𝛽−𝜏 < 0 and
𝜏 < 0, thus −𝛽 < 𝜏 < 0. Taking everything into account, we have 𝜏 ∈ (−𝛽, 𝛽),
which is the result introduced previously.

An additional property of the (fermion) boson imaginary time propagator
is that it obeys (quasi-)periodic boundary conditions on the interval (−𝛽, 𝛽):

Fermions ∶ 𝒢𝐹(𝑘, 𝜏) = −𝒢𝐹(𝑘, 𝜏 + 𝛽) for −𝛽 < 𝜏 < 0, (4.15)
6In this section we are working in the non-relativistic quantum mechanics framework.
7Note that we have not used the Fermi-Dirac statistics to define the imaginary time

propagator 𝒢, so that this definition should be valid for both fermions and bosons.
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Bosons ∶ 𝒢𝐵(𝑘, 𝜏) = +𝒢𝐵(𝑘, 𝜏 + 𝛽) for −𝛽 < 𝜏 < 0. (4.16)

We can easily prove this using tr 𝐴𝐵 = tr 𝐵𝐴. For the fermion imaginary time
propagator (we have 𝜏 < 0),

𝒢𝐹(𝑘, 𝜏) = − 1
𝑍

tr 𝑒−𝛽𝐻̃𝑇 {𝑐𝑘(𝜏)𝑐†
𝑘(0)} = 1

𝑍
tr 𝑒−𝛽𝐻̃𝑐†

𝑘(0)𝑐𝑘(𝜏)

= 1
𝑍

tr 𝑐𝑘(𝜏)𝑒−𝛽𝐻̃𝑐†
𝑘(0) = 1

𝑍
tr 𝑒−𝛽𝐻̃𝑒+𝛽𝐻̃𝑐𝑘(𝜏)𝑒−𝛽𝐻̃𝑐†

𝑘(0)

= 1
𝑍

tr 𝑒−𝛽𝐻̃𝑐𝑘(𝜏 + 𝛽)𝑐†
𝑘(0) = −𝒢𝐹(𝑘, 𝜏 + 𝛽). (4.17)

For bosons, given that the time-ordering operator does not change the sign of
the product, we have

𝒢𝐵(𝑘, 𝜏) = − 1
𝑍

tr 𝑒−𝛽𝐻̃𝑇 {𝑎𝑘(𝜏)𝑎†
𝑘(0)} = − 1

𝑍
tr 𝑒−𝛽𝐻̃𝑎†

𝑘(0)𝑎𝑘(𝜏)

= − 1
𝑍

tr 𝑎𝑘(𝜏)𝑒−𝛽𝐻̃𝑎†
𝑘(0) = − 1

𝑍
tr 𝑒−𝛽𝐻̃𝑒+𝛽𝐻̃𝑎𝑘(𝜏)𝑒−𝛽𝐻̃𝑎†

𝑘(0)

= − 1
𝑍

tr 𝑒−𝛽𝐻̃𝑎𝑘(𝜏 + 𝛽)𝑎†
𝑘(0) = 𝒢𝐵(𝑘, 𝜏 + 𝛽). (4.18)

Since 𝜏 is restricted to the finite interval (−𝛽, 𝛽), the propagator does not
admit a Fourier integral decomposition as in the zero-temperature case. Instead,
it is taken to be periodic in imaginary time, repeating itself in intervals of 2𝛽
from −∞ to +∞. As a consequence, the propagator can be expressed as a
Fourier series with discrete frequencies associated with the variable 𝜏.

𝒢(𝑘, 𝜏) = 1
𝛽

+∞

∑
𝑛=−∞

𝒢(𝑘, 𝜔𝑛)𝑒−𝑖𝜔𝑛𝜏, (4.19)

𝒢(𝑘, 𝜔𝑛) = 1
2

∫
+𝛽

−𝛽
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏, (4.20)

𝜔𝑛 = 𝑛𝜋
𝛽

. (4.21)

The 𝜔𝑛 discrete frequencies are known as Matsubara frequencies.
Given the (quasi-)periodic conditions for the fermion and boson imaginary-

time propagators that were presented in Eqs. (4.15), (4.16), we find that for
fermions only odd frequencies are realized (the Fourier coefficients 𝒢(𝑘, 𝜔𝑛) for
the even frequencies are zero), while for bosons only even frequencies appear.

Fermions ∶ 𝜔𝐹
𝑛 = (2𝑛 + 1)𝜋

𝛽

Bosons ∶ 𝜔𝐵
𝑛 = (2𝑛)𝜋

𝛽

𝑛 = 0, ±1, ±2, … (4.22)



4.2. THERMAL SYSTEMS IN IMAGINARY TIME 117

We can see this using Eq. (4.20)

𝒢(𝑘, 𝜔𝑛) = 1
2

∫
+𝛽

−𝛽
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏

= 1
2

∫
0

−𝛽
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏 + 1

2
∫

+𝛽

0
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏

= 1
2

∫
0

−𝛽
𝑑𝜏 [±𝒢(𝑘, 𝜏 + 𝛽)] 𝑒𝑖𝜔𝑛𝜏 + 1

2
∫

+𝛽

0
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏

= 1
2

∫
𝛽

0
𝑑𝜏 ′ [±𝒢(𝑘, 𝜏 ′)] 𝑒𝑖𝜔𝑛(𝜏′−𝛽) + 1

2
∫

+𝛽

0
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏 (4.23)

Using the general formula for 𝜔𝑛 we have

𝜔𝑛(𝜏 − 𝛽) = 𝑛𝜋
𝛽

(𝜏 − 𝛽) = 𝜔𝑛𝜏 − 𝑛𝜋 (4.24)

thus,

1
2

∫
𝛽

0
𝑑𝜏 [±𝒢(𝑘, 𝜏)] 𝑒𝑖𝜔𝑛(𝜏−𝛽) + 1

2
∫

+𝛽

0
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏

= 1
2

∫
𝛽

0
𝑑𝜏 [±𝒢(𝑘, 𝜏)] 𝑒𝑖𝜔𝑛𝜏𝑒−𝑖𝑛𝜋 + 1

2
∫

+𝛽

0
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏

= 1
2

∫
𝛽

0
𝑑𝜏 (−1)𝑛 [±𝒢(𝑘, 𝜏)] 𝑒𝑖𝜔𝑛𝜏 + 1

2
∫

+𝛽

0
𝑑𝜏 𝒢(𝑘, 𝜏)𝑒𝑖𝜔𝑛𝜏

= 0 if {
𝑛 odd, boson.
𝑛 even, fermion.

(4.25)

From this, Eq. (4.22) follows immediately.
Moreover, once the particle statistics (fermionic or bosonic) are specified—

and thus the corresponding Matsubara frequencies are fixed—the (quasi-)peri-
odic boundary conditions allow the imaginary-time domain to be restricted to
the interval (0, 𝛽), as illustrated in Fig. 4.2. No additional physical information
is contained in any other imaginary-time interval.

We shall now take a look at the explicit form of the imaginary time
propagator for finite-temperature fermion and boson systems. In the fermion
case, writing explicitly the time-ordering operator in terms of the Heavyside
step function 𝜃, we have

𝒢𝐹(𝑘, 𝜏) = − 1
𝑍

∑
𝑖

⟨Φ𝑖|𝑒−𝛽𝐻̃ [𝜃(𝜏) 𝑐𝑘(𝜏)𝑐†
𝑘(0) − 𝜃(−𝜏) 𝑐†

𝑘(0)𝑐𝑘(𝜏)] |Φ𝑖⟩
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Re 𝑡

Im 𝑡

𝜏
Wick rotation:
𝑡 → − 𝑖𝜏 , 𝑖𝑡 → 𝜏

0

−𝛽

𝛽

Bosons: 𝒢𝐵(𝑘, 𝜏) = +𝒢𝐵(𝑘, 𝜏 + 𝛽)
Fermions: 𝒢𝐹(𝑘, 𝜏) = −𝒢𝐹(𝑘, 𝜏 + 𝛽)

Figure 4.2: Wick rotation from real time 𝑡 to imaginary time 𝜏 = 𝑖𝑡. In the
imaginary-time formalism, the time direction is compactified to 𝜏 ∈ [0, 𝛽] with
periodic (bosons) or antiperiodic (fermions) boundary conditions.

= − 1
𝑍

∑
𝑖

⟨Φ𝑖|𝑒−𝛽𝐻̃ [𝜃(𝜏) 𝑒𝜏𝐻̃𝑐𝑘𝑒−𝜏𝐻̃𝑐†
𝑘 − 𝜃(−𝜏) 𝑐†

𝑘𝑒𝜏𝐻̃𝑐𝑘𝑒−𝜏𝐻̃] |Φ𝑖⟩. (4.26)

Given that
𝑒𝜏𝐻̃𝑐𝑘𝑒−𝜏𝐻̃|Φ𝑖⟩ = 𝑒−𝜏(𝜖𝑘−𝜇)𝑐𝑘|Φ𝑖⟩, (4.27)

we find

𝒢𝐹(𝑘, 𝜏) = − 1
𝑍

∑
𝑖

(𝜌0)𝑖 [𝜃(𝜏) 𝑒−𝜏(𝜖𝑘−𝜇)⟨Φ𝑖|𝑐𝑘𝑐†
𝑘|Φ𝑖⟩

− 𝜃(−𝜏) 𝑒−𝜏(𝜖𝑘−𝜇)⟨Φ𝑖|𝑐
†
𝑘𝑐𝑘|Φ𝑖⟩]

= − [𝜃(𝜏) 𝑒−𝜏(𝜖𝑘−𝜇)⟨𝑐𝑘𝑐†
𝑘⟩ − 𝜃(−𝜏) 𝑒−𝜏(𝜖𝑘−𝜇)⟨𝑐†

𝑘𝑐𝑘⟩] . (4.28)

Now, in this previous expression, the following thermal expectation values have
appeared.

⟨𝑐𝑘𝑐†
𝑘⟩ = ⟨1 − 𝑁𝑘⟩ ≡ 𝑓+

𝑘 , ⟨𝑐†
𝑘𝑐𝑘⟩ = ⟨𝑁𝑘⟩ ≡ 𝑓−

𝑘 . (4.29)
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These correspond to the number density of particles and holes at finite tem-
perature, which are described by the Fermi-Dirac distribution in the case of
fermions.8

𝑓+
𝑘 = 1

𝑒−𝛽(𝜖𝑘−𝜇) + 1
, (4.30a)

𝑓−
𝑘 = 1

𝑒𝛽(𝜖𝑘−𝜇) + 1
. (4.30b)

With these distributions, the imaginary time fermion propagator is written as

𝒢𝐹(𝑘, 𝜏) = − [𝜃(𝜏)𝑓+
𝑘 − 𝜃(−𝜏)𝑓−

𝑘 ] 𝑒−𝜏(𝜖𝑘−𝜇). (4.31)

Even though in order to operate with this quantity it is convenient to work
with imaginary time, we shall perform a Wick rotation and come back to the
standard thermal propagator (defined for real values of the time and energy
variables) for some paragraphs in order to better interpret it. This results in
the following expression:

𝐺𝐹(𝑘, 𝑡; 𝑇 ) = −𝑖 [𝜃(𝑡)𝑓+
𝑘 − 𝜃(−𝑡)𝑓−

𝑘 ] 𝑒−𝑖𝑡(𝜖𝑘−𝜇). (4.32)

This propagator can also be cast in the energy-momentum space as9

𝐺𝐹(𝑘, 𝜖; 𝑇 ) =
𝑓+

𝑘
𝜖 − (𝜖𝑘 − 𝜇) + 𝑖𝜀

+ 𝑓−
𝑘

𝜖 − (𝜖𝑘 − 𝜇) − 𝑖𝜀
. (4.33)

The particle part of this propagator—the part with positive time 𝑡 in
Eq. (4.32)—is multiplied by the 𝑓+

𝑘 distribution, while the hole part—with
negative time 𝑡 in Eq. (4.32)—is multiplied by the 𝑓−

𝑘 distribution. It is in this
sense that 𝑓+

𝑘 describes the particle distribution, while 𝑓−
𝑘 describes the hole

distribution.
It is interesting to compare the result in Eq. (4.31) with the zero-

temperature propagator, given by the following expressions.10

𝐺𝐹(𝑘, 𝑡, 𝑇 = 0) = −𝑖 [𝜃(𝑡)𝜃(𝜖𝑘 − 𝜖𝐹) − 𝜃(−𝑡)𝜃(𝜖𝐹 − 𝜖𝑘)] 𝑒−𝑖𝜖𝑘𝑡, (4.34)
8The Fermi–Dirac and Bose–Einstein distributions follow directly from evaluating the

thermal averages of creation and annihilation operators in occupation number formalism,
using their respective (anti)commutation relations. A detailed derivation can be found in
Sect. 14.2 of Ref. [213].

9In this expression, we have included the standard positive infinitesimal 𝜀, not to be
confused with the energy variable 𝜖.

10One may also compare the zero-temperature propagator of Eq. (4.34) to that of the nucleon
propagator in a dense medium of Eq. (2.10), presented in Sect. 2.2.1. The differences between
the nucleon propagator of Eq. (2.10) and the fermion propagator of Eq. (4.34) are only due
to the relativistic nature of Eq. (2.10).
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Figure 4.3: Fermi-Dirac distributions for holes (𝑓−) and particles (𝑓+) consid-
ering different temperatures.

𝐺𝐹(𝑘, 𝜖, 𝑇 = 0) = 𝜃(𝜖𝑘 − 𝜖𝐹)
𝜖 − 𝜖𝑘 + 𝑖𝜀

+ 𝜃(𝜖𝐹 − 𝜖𝑘)
𝜖 − 𝜖𝑘 − 𝑖𝜀

. (4.35)

When comparing the finite-temperature with the zero-temperature propagators,
we see that aside from the shift in energy by 𝜇, the essential effect of the
temperature is to smooth the 𝜃 step functions into the 𝑓+

𝑘 and 𝑓−
𝑘 Fermi

distributions, respectively. This makes it so that, at finite temperature, a
particle can propagate with an energy below the Fermi energy, and a hole
can propagate with an energy above the Fermi energy. This is not possible in
the zero-temperature case, due to the presence of the sharp step functions. The
softening of the particle and hole step functions can be observed in Fig. 4.3.

For a bosonic system, the computation is analogous—except for some sign
differences—and we can steadily arrive to the following expression for the finite-
temperature imaginary time boson propagator:

𝒢𝐵(𝑘, 𝜏) = − [𝜃(𝜏)𝑏+
𝑘 + 𝜃(−𝜏)𝑏−

𝑘 ] 𝑒−𝜏(𝜖𝑘−𝜇). (4.36)

Here, the 𝑏+
𝑘 and 𝑏−

𝑘 appear, defined as

𝑏+
𝑘 = − 1

𝑒−𝛽(𝜖𝑘−𝜇) − 1
, (4.37a)

𝑏−
𝑘 = 1

𝑒𝛽(𝜖𝑘−𝜇) − 1
. (4.37b)

These are the particle and hole Bose-Einstein distributions. The imaginary-time
propagator of Eq. (4.36) translates into the following thermal propagator:

𝐺𝐵(𝑘, 𝑡, 𝑇 ) = −𝑖 [𝜃(𝑡)𝑏+
𝑘 + 𝜃(−𝑡)𝑏−

𝑘 ] 𝑒−𝑖(𝜖𝑘−𝜇)𝑡, (4.38)
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Figure 4.4: Bose-Einstein distributions for holes (𝑏−) and particles (𝑏+) consid-
ering different temperatures.

𝐺𝐵(𝑘, 𝜖, 𝑇 ) =
𝑏+

𝑘
𝜖 − 𝜖𝑘 + 𝑖𝜀

− 𝑏−
𝑘

𝜖 − 𝜖𝑘 − 𝑖𝜀
. (4.39)

This propagator again mainly differs from the corresponding zero-temperature
boson propagator—which, since we are working in the non-relativistic quantum
mechanics framework, is identical to the fermion one presented in Eq. (4.34)—in
the different distributions 𝑏+

𝑘 and 𝑏−
𝑘 . We compare different temperature

scenarios for the Bose distribution in Fig. 4.4
Some remarks on the interpretation of fermion and boson particle/hole

distributions are in order. At first sight, the functions 𝑓−
𝑘 and 𝑏−

𝑘 appear to
represent the number densities of particles populating the many-body ground
state at finite temperature. However, in the literature (cf. Ref. [213]), these
functions are more naturally regarded as hole distributions: they indicate
the regions in momentum space where holes can be created and propagate.
Conversely, 𝑓+

𝑘 and 𝑏+
𝑘 are interpreted as particle distributions, specifying where

additional particles may propagate. This viewpoint becomes evident upon
inspection of the propagators in Eqs. (4.40) and (4.41), and it is consistent
with the general particle–hole picture in many-body physics, where the already
occupied momentum states are treated implicitly.

In the case of nuclear matter at zero temperature (see Sect. 2.2.1), the
distinction between particles and holes was tied to the Fermi momentum:
creation and annihilation operators were defined according to whether they
acted on states above or below the Fermi surface. This simple separation,
however, breaks down at finite temperature, since the sharp Fermi surface
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disappears. In this regime, one can create a hole (i.e., annihilate a particle)
even in states above the Fermi energy, or create a particle (i.e., annihilate a
hole) in states below it. As a result, both particles and holes may coexist in
the same momentum state. This behavior is illustrated Figs. 4.3 and 4.4.

In the following subsections, we shall consider an interacting theory, so that
the propagators will be modified by these interactions. Although the thermal
propagators that have been shown are the ones with physical meaning, they
are not fit for perturbation theory, as was discussed in the first paragraphs of
this section. Then, we return to the imaginary-time propagators, and compute
their explicit form in the (𝑘, 𝜔𝑛)−space, which will be of great utility in the
following computations.

We start by considering the Fourier transform of the fermion propagator of
Eq. (4.23). As was shown in Eq. (4.25), only odd frequencies give a nonzero
result. Also, as discussed before, due to the quasi-periodic conditions one
can easily take the integration from the (−𝛽, 𝛽) interval to the (0, 𝛽) interval.
Taking this into account, we can write

𝒢𝐹(𝑘, 𝜔𝐹
𝑛) = ∫

𝛽

0
𝑑𝜏 𝒢𝐹(𝑘, 𝜏) 𝑒𝑖𝜔𝐹

𝑛𝜏

= − ∫
𝛽

0
𝑑𝜏 𝑓+

𝑘 𝑒(𝑖𝜔𝐹
𝑛−𝜖𝑘+𝜇)𝜏

= − 1
𝑒−𝛽(𝜖𝑘−𝜇) + 1

𝑒(𝑖𝜔𝐹
𝑛−𝜖𝑘+𝜇)𝜏

𝑖𝜔𝐹
𝑛 − 𝜖𝑘 + 𝜇

∣
𝜏=𝛽

𝜏=0

= 1
𝑖𝜔𝐹

𝑛 − 𝜖𝑘 + 𝜇
. (4.40)

We find a very simple result, extremely similar to the vacuum propagator in
energy-momentum space, but replacing the energy variable by the imaginary
and discrete fermionic Matsubara frequencies 𝑖𝜔𝐹

𝑛. We can perform a similar
calculation for the boson case, obtaining

𝒢𝐵(𝑘, 𝜔𝐵
𝑛 ) = 1

𝑖𝜔𝐵
𝑛 − 𝜖𝑘 + 𝜇

. (4.41)

Notice how this simple expression is equivalent to that of the fermion propaga-
tor, the only difference being the bosonic Matsubara frequencies.

In this section we have analyzed in detail the propagators of bosons and
fermions at finite temperature within the imaginary-time formalism (ITF).
These propagators, particularly in energy–momentum space, provide the basic
building blocks for the developments of the following sections, and will serve as
our starting point.

We make two additional remarks. First, the expressions for the thermal
propagators given in Eqs. (4.40) and (4.41) were derived in the context of the
non-relativistic Schrödinger equation. In what follows, however, we shall mainly
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deal with relativistic bosons (such as pions) described by the Klein–Gordon
equation. The generalization to this case is straightforward: the ITF propaga-
tors differ from their zero-temperature counterparts only in that the continuous
energy variable is replaced by discrete Matsubara frequencies (multiplied by
the imaginary unit). This replacement remains valid in relativistic quantum
mechanics, and thus the relativistic propagators in ITF are obtained in complete
analogy.

Second, the discreteness of the Matsubara frequencies, cf. Eq. (4.22),
modifies the structure of the Feynman rules at finite temperature. In particular,
the energy integral associated with each internal line becomes an infinite sum
over Matsubara frequencies.

∫ 𝑑4𝑘
(2𝜋)4 ⟶ 1

𝛽
∑

𝑛
∫ 𝑑3𝑘

(2𝜋)3 . (4.42)

In the following subsection, we discuss the standard techniques employed to
evaluate these sums, which will play a central role in the calculation of meson
self-energies and two-meson loop functions.

4.2.3 The Matsubara frequency summation

The Matsubara frequency summation is the sum over the Matsubara frequencies
that appears when evaluating diagrams with internal loops in thermal field
theory within the ITF. These sums are typically of the form

1
𝛽

∑
𝑛

𝐹(𝑖𝜔𝑛) (4.43)

with 𝐹 some analytic function and 𝜔𝑛 the Matsubara frequencies. We show
here how to perform this sum.

The first step consists in analytically continuing 𝐹(𝜔) to the entire complex
𝜔-plane. This can be conveniently achieved by using the Källén-Lehmann
spectral representation, which is a special case of dispersion relations applied
to two-point functions. The key idea is then to apply Poisson’s formula, which
allows one to relate the discrete sum to a contour integral.11

1
𝛽

∑
𝑛

𝐹(𝑖𝜔𝑛) = 1
2𝜋𝑖

∮
𝐶

𝑑𝜔𝐹(𝜔)𝑔(𝜔). (4.44)

In this expression, we have introduced the auxiliary function 𝑔(𝜔), which is
chosen to present poles on the imaginary 𝜔 axis at the Matsubara frequencies

11Poisson’s summation formula, derived from Cauchy’s residue theorem, is valid provided
that the function 𝐹 is analytic on the imaginary axis.
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𝐶′

𝐶

𝜔 – plane

Figure 4.5: Contours used for a finite-temperature calculation. Blue crosses
represent the poles presented by the auxiliary function 𝑔(𝜔) at the Matsubara
frequencies. Orange crosses represent other singularities that arise from 𝐹(𝜔).

that we are considering, either fermionic or bosonic,

fermion: 𝑔𝐹(𝜔) = − 1
𝑒𝛽𝜔 + 1

= −𝑓−(𝜔), (4.45)

boson: 𝑔𝐵(𝜔) = 1
𝑒𝛽𝜔 − 1

= 𝑏−(𝜔). (4.46)

and the contour 𝐶 surrounds the imaginary axis. In Fig. 4.5, we represent
this situation, showing the poles of the 𝑔(𝜔) function—that is, the Matsubara
frequencies—as blue crosses (×), as well as the contour 𝐶 around the imaginary
axis. It can be steadily checked using Cauchy’s residue theorem that with
these auxiliary functions, Eq. (4.44) is fulfilled. Also note that the expres-
sions of the auxiliary functions 𝑔(𝜔) coincide (except for a global sign in the
fermion case) with the Fermi or Bose hole distributions—cf. Eqs. (4.30b) and
(4.37b)—replacing 𝜖𝑘 − 𝜇 → 𝜔.12

Apart from the singularities arising from 𝑔(𝜔), the original function 𝐹(𝜔)
will have singularities of its own. Consider now the contour 𝐶′ presented in
Fig. 4.5. Using again the residue theorem, we see that the integral around 𝐶′

will be equal to the sum of the residues from the blue poles on the imaginary
axis—that is, equal to the contour integral around 𝐶—plus the residues from
the 𝐹(𝜔) function, presented in orange. Since the integral around 𝐶′ tends to

12Alternatively, the 𝑔(𝜔) functions can also be chosen as the particle distributions.
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zero as the radius of this contour grows to infinity, we have

∮
𝐶′

𝑑𝜔𝐹(𝜔)𝑔(𝜔) = 0 = ∮
𝐶

𝑑𝜔𝐹(𝜔)𝑔(𝜔) + 2𝜋𝑖 ∑
Residues of 𝐹(𝜔)𝑔(𝜔)
at poles of 𝐹(𝜔).

(4.47)

From this relation, and taking into account Eq. (4.44), we obtain a simple
formula for evaluating the Matsubara frequency sum.

1
𝛽

∑
𝑛

𝐹(𝑖𝜔𝑛) = − ∑
Residues of 𝐹(𝜔)𝑔(𝜔)
at poles of 𝐹(𝜔).

(4.48)

4.3 Two-meson scattering at finite temperature: The
𝑇𝑐𝑐 case

Having established the ITF framework, we now proceed to the study of 𝐷𝐷∗

scattering in a hot medium, which constitutes the central focus of this chapter.
To set the stage, we briefly recall the formalism previously employed to describe
the 𝑇𝑐𝑐 in a dense nuclear medium. As will become evident, this framework
can be largely extended to the finite-temperature case, with the principal
modification arising from the thermal two-meson loop function, which differs
from its dense nuclear-medium counterpart in Sect. 2.5. We therefore begin
with a concise review of the formalism before turning to its application at finite
temperature.

We start by considering a 𝐷∗𝐷 single-channel 𝑆-wave interaction kernel in
the 𝐼(𝐽𝑃) = 0(1+) channel, where the 𝑇𝑐𝑐(3875) state appears. The effective
field theory that governs the 𝐷𝐷∗ interaction is consistent with HQSS and
is diagonal on the isospin basis. Taking a Taylor expansion of this effective
interaction (type 𝐴) or its inverse (type 𝐵) around the 𝑇 +

𝑐𝑐 mass in free space,
which we name 𝑚0, yields the following families of potentials.

𝑉𝐴(𝑠) = 𝐶1 + 𝐶2 (𝑠 − 𝑚2
0) , (4.49a)

𝑉𝐵(𝑠) = [𝐶′
1 + 𝐶′

2 (𝑠 − 𝑚2
0)]−1 . (4.49b)

In these expressions, 𝑠 is the total invariant mass squared of the system, and
the quantities 𝐶′

1 and 𝐶′
2 are low-energy constants. The unitarization of the

scattering amplitude is performed using the BSE in the on-shell scheme,

𝒯−1(𝑠) = 𝑉 −1(𝑠) − Σ0(𝑠), (4.50)

where Σ0(𝑠) is the vacuum 𝐷𝐷∗ loop function—cf. Eq. (2.58)—taken in the
exact isospin limit, where 𝑚𝐷 = (𝑚𝐷+ +𝑚𝐷0)/2 (and similarly for the charmed
vector mesons 𝐷∗+ and 𝐷∗0).
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The two LECs of each potential family are fixed by imposing that the
vacuum amplitude presents a bound state at an invariant mass squared 𝑚2

0
with molecular probability 𝑃0. The invariant mass is taken to be

𝑚0 = 𝑚𝐷 + 𝑚𝐷∗ − 0.8 MeV, (4.51)

which corresponds to the mass of the 𝑇𝑐𝑐(3875) in the exact isospin limit [52].
The molecular probability 𝑃0 is related to the coupling 𝑔2

0 of the bound state
to the 𝐷𝐷∗ channel through [209, 226]

𝑃0 = −𝑔2
0Σ′(𝑚2

0), (4.52)

a relation that was discussed in Sect. 2.4.2. Once the 𝐶(′)
1 and 𝐶(′)

2 LECs have
been fixed, the two families of potentials take the form presented in Eqs. (2.83a)
and (2.83b).

We now introduce the temperature-dependent modifications to the
𝑇–matrix. Starting from the BSE in the on-shell approximation, the
temperature dependence enters through the dressing of the 𝐷𝐷∗ mesons in
the intermediate loop, while the interaction kernel is kept identical to the
vacuum case:13

𝒯−1(𝐸, ⃗𝑃 ; 𝑇 ) = 𝑉 −1(𝑠) − Σ(𝐸, ⃗𝑃 ; 𝑇 ). (4.53)

Here, 𝐸 and ⃗𝑃 denote the total energy and three-momentum of the system
(recall that Lorentz invariance is broken in the medium), and 𝑠 = 𝐸2 − ⃗𝑃 2. As
in the nuclear matter study, we work in the rest frame of the medium, setting

⃗𝑃 = ⃗0. The essential difference with respect to the finite-density BSE lies in
the loop function: instead of the density-dependent 𝐷𝐷∗ loop, we must now
evaluate the thermal two-meson loop Σ(𝐸, ⃗𝑃 ; 𝑇 ). Its explicit form, which will
be derived in the ITF framework below in section 4.3.1, reads

Σ(𝐸, ⃗𝑃 = 0; 𝑇 ) = ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔 ∫

∞

0
𝑑𝜔′ 𝑆𝐷(𝜔, | ⃗𝑞|) 𝑆𝐷∗(𝜔′, | ⃗𝑞|)

× { [1 + 𝑏−(𝜔, 𝑇 ) + 𝑏−(𝜔′, 𝑇 )] ( 1
𝐸 − 𝜔 − 𝜔′ + 𝑖𝜀

− 1
𝐸 + 𝜔 + 𝜔′ + 𝑖𝜀

)

+ [𝑏−(𝜔, 𝑇 ) − 𝑏−(𝜔′, 𝑇 )] ( 1
𝐸 + 𝜔 − 𝜔′ + 𝑖𝜀

− 1
𝐸 − 𝜔 + 𝜔′ + 𝑖𝜀

) }. (4.54)

In this expression, the Bose–Einstein distributions 𝑏−(𝜔, 𝑇 ), introduced in the
previous section, enter explicitly. The real part of this loop is divergent and is

13Here, the 𝑇–matrix is denoted by the calligraphic 𝒯 to avoid confusion with the temper-
ature 𝑇.
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regularized, as in the finite-density analysis of Sect. 2.5, with a three-momentum
cutoff Λ = 700 MeV.

The computation of Eq. (4.54) requires the 𝐷 and 𝐷∗ spectral functions
in a hot medium. These functions incorporate both statistical corrections and
the dressing of the heavy mesons due to their interaction with the thermal
environment. In this work, we employ the spectral functions obtained in
Refs. [211, 316], derived from the interaction of 𝐷(∗) mesons with a thermal
pion bath. For completeness, the derivation of the corresponding self-energies
within ITF is summarized in Sect. 4.3.2, from which the spectral functions
follow directly via Eq. (2.33). Finally, we note that at finite temperature the
𝐷(∗) and 𝐷̄(∗) spectral functions coincide, since the interaction with light mesons
is the same for particles and antiparticles in the isospin limit. This fact has
been used in writing the loop of Eq. (4.54). Additional details on the evaluation
of the thermal 𝐷𝐷∗ loop function are given in Appendix C.

Once the thermal loop function and thus the 𝑇–matrix have been computed,
the spectral function of the 𝑇𝑐𝑐 can be defined directly from the 𝑇–matrix as

𝑆(𝐸, ⃗𝑃 ; 𝑇 ) = − 1
𝜋

Im 𝒯(𝐸, ⃗𝑃 ; 𝑇 )
̂𝑔2 , (4.55)

with ̂𝑔2 the bare coupling of the 𝑇𝑐𝑐 to the 𝐷𝐷∗ channel. This bare coupling is
related to the vacuum coupling 𝑔2

0 and molecular probability 𝑃0 through,

̂𝑔2 = 𝑔2
0

𝑍0
= − 1

Σ′
0(𝑚2

0)
𝑃0

1 − 𝑃0
. (4.56)

As discussed in Sect. 2.4.5, this definition is, in the case of the 𝑉𝐵 interaction
kernel, completely equivalent to the usual one in terms of the propagator,

𝑆(𝐸, ⃗𝑃 ; 𝑇 ) = − 1
𝜋

Im Δ(𝑇𝑐𝑐)(𝐸, ⃗𝑃 ; 𝑇 ) (4.57)

For a general interaction kernel, the spectral function arising from the 𝑇–matrix
through Eq. (4.55) is similar to the usual definition only in the energy region
around the vacuum mass of the 𝑇𝑐𝑐. For reference, the renormalized propagator
of the 𝑇𝑐𝑐 in a hot medium reads

Δ(𝑇𝑐𝑐)(𝐸, ⃗𝑃 ; 𝑇 ) = [𝐸2 − ⃗𝑃 2 − Π̃(𝑇𝑐𝑐)]
−1

, (4.58)

where the 𝑇𝑐𝑐 self-energy is described by

Π̃(𝑇𝑐𝑐) = ̂𝑔2 [Σ(𝐸, ⃗𝑃 ; 𝑇 ) − Σ0(𝑚2
0)] . (4.59)

These formulas are equivalent to the density-dependent expressions first pre-
sented in Eqs. (2.113) and (2.114).
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In both the 𝐷𝐷∗ amplitude and the 𝑇𝑐𝑐 spectral function, the temperature
dependence enters entirely through the two-meson loop function. In the
following section, we derive this loop within the ITF, which provides the
foundation for the subsequent analysis.

4.3.1 Two–meson loop function in Imaginary Time Formalism

𝑀 𝑀 ′

𝑀 𝑀 ′

𝑖𝜔𝑛, ⃗𝑝

𝑖𝜔𝑛, ⃗𝑝

𝑀 ′

𝑖𝜔𝑛 − 𝑖𝜔𝑚, ⃗𝑝 − ⃗𝑞
𝑀

𝑖𝜔𝑚, ⃗𝑞

Figure 4.6: Diagram representing the two-meson loop function in the ITF (with
imaginary time increasing upwards). The double internal lines indicate dressed
propagators in the thermal medium.

In this section, we address the finite-temperature two-meson loop function
within the ITF. Our goal is to derive a general expression that will serve as a
common building block in two contexts: first and foremost, in the unitarization
of the 𝐷𝐷∗ scattering amplitude at finite temperature [Eq. 4.53]; and second,
in the evaluation of the charmed-meson self-energies (Sect. 4.3.2).

The two-meson loop diagram shown in Fig. 4.6 can be evaluated using the
ITF Feynman rules (see Table 14.1 of Ref. [213]). Its contribution is given by14

𝒢𝑀𝑀′(𝑖𝜔𝑛, ⃗𝑝) = − 1
𝛽

∑
𝑚

∫ 𝑑3𝑞
(2𝜋)3 Δ𝑀(𝑖𝜔𝑚, ⃗𝑞) Δ𝑀′(𝑖𝜔𝑛 − 𝑖𝜔𝑚, ⃗𝑝 − ⃗𝑞). (4.60)

To perform the Matsubara sum, it is convenient to rewrite the propagators
in terms of their Källén–Lehmann spectral representation. Using the compact
form introduced in Eq. (2.36), the loop function takes the form

𝒢𝑀𝑀′(𝑖𝜔𝑛, ⃗𝑝) = − 1
𝛽

∑
𝑚

∫ 𝑑3𝑞
(2𝜋)3 ∫ 𝑑𝜔1 ∫ 𝑑𝜔2

14As discussed in Fetter and Walecka [212] (pp. 271–275), a minus sign arises from the
additional insertion of the interaction kernel when solving the BSE. This convention differs
from that in Mattuck [213] (pp. 249–252), where the extra sign is not included.
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× 𝑆𝑀(𝜔1, ⃗𝑞)
𝑖𝜔𝑚 − 𝜔1

𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)
𝑖𝜔𝑛 − 𝑖𝜔𝑚 − 𝜔2

. (4.61)

The function
𝐹(𝜔) = 𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)

(𝜔 − 𝜔1)(𝑖𝜔𝑛 − 𝜔 − 𝜔2)
(4.62)

exhibits poles at 𝜔 = 𝜔1 and 𝜔 = 𝑖𝜔𝑛 −𝜔2. Applying the summation formula of
Eq. (4.48), and choosing the Bose–Einstein hole distribution 𝑔(𝜔) = 𝑏−(𝜔) as the
auxiliary function—which ensures the correct treatment of bosonic Matsubara
poles—one obtains

𝒢𝑀𝑀′(𝑖𝜔𝑛, ⃗𝑝) = ∫ 𝑑3𝑞
(2𝜋)3 ∫ 𝑑𝜔1 ∫ 𝑑𝜔2

× 𝑆𝑀(𝜔1, ⃗𝑞)𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞) [ 𝑏−(𝜔1)
𝑖𝜔𝑚 − 𝜔1 − 𝜔2

+ 𝑏−(𝑖𝜔𝑛 − 𝜔2)
𝑖𝜔𝑛 − 𝜔1 − 𝜔2

] . (4.63)

To further simplify this expression, we make use of the fact that the bosonic
Matsubara frequency is proportional to an even integer, so that

𝑏−(𝜔2 − 𝑖𝜔𝑛) = 1
𝑒𝛽𝜔2𝑒−𝑖𝛽𝜔𝑛 − 1

= 1
𝑒𝛽𝜔2 − 1

= 𝑏−(𝜔2). (4.64)

Furthermore, from Eqs. (4.37a) and (4.37b) it is easily seen that

𝑏−(−𝜔) = −𝑏+(𝜔) = − [1 + 𝑏−(𝜔)] . (4.65)

Using these two properties, we can write the imaginary-time propagator as

𝒢𝑀𝑀′(𝑖𝜔𝑛, ⃗𝑝) = ∫ 𝑑3𝑞
(2𝜋)3 ∫ 𝑑𝜔1 ∫ 𝑑𝜔2

× [1 + 𝑏−(𝜔1) + 𝑏−(𝜔2)] 𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)
𝑖𝜔𝑛 − 𝜔1 − 𝜔2

. (4.66)

Thus, in this formalism, the Bose–Einstein statistical factors naturally emerge
from the use of the auxiliary distribution 𝑔(𝜔) in the Matsubara summation.

Starting from the imaginary-time loop function of Eq. (4.66), the corre-
sponding real-time expression is obtained by performing a Wick rotation of the
external energy variable. The result reads

𝐺𝑀𝑀′(𝑝0, ⃗𝑝) = ∫ 𝑑3𝑞
(2𝜋)3 ∫ 𝑑𝜔1 ∫ 𝑑𝜔2

× [1 + 𝑏−(𝜔1) + 𝑏−(𝜔2)] 𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)
𝑝0 − 𝜔1 − 𝜔2 + sign(𝑝0) 𝑖𝜀

. (4.67)
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Equation (4.67) constitutes the general result for the two-meson propagator in
a hot medium. To proceed further, it is useful to separate the energy integra-
tions into positive- and negative-energy contributions, thereby distinguishing
between particle and antiparticle contributions:

∫
+∞

−∞
𝑑𝜔1 = ∫

0

−∞
𝑑𝜔1 + ∫

∞

0
𝑑𝜔1 = ∫

∞

0
𝑑(−𝜔1) + ∫

∞

0
𝑑𝜔1. (4.68)

Employing the relation of Eq. (4.65), together with the definition of the compact
spectral function ̃𝑆 introduced in Eq. (2.35), one arrives at the expression

𝐺𝑀𝑀′(𝑝0, ⃗𝑝) = ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔1 ∫

∞

0
𝑑𝜔2

× { [1 + 𝑏−(𝜔1) + 𝑏−(𝜔2)]

× (𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)
𝑝0 − 𝜔1 − 𝜔2 + 𝑖𝜀

− 𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)
𝑝0 + 𝜔1 + 𝜔2 + 𝑖𝜀

)

+ [𝑏−(𝜔1) − 𝑏−(𝜔2)]

× (𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)
𝑝0 + 𝜔1 − 𝜔2 + 𝑖𝜀

− 𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)
𝑝0 − 𝜔1 + 𝜔2 + 𝑖𝜀

) }, (4.69)

valid for positive 𝑝0.15

The real part of Eq. (4.69) is divergent and requires regularization, for which
we employ a sharp momentum cutoff as in previous chapters. The imaginary
part, on the other hand, is finite.

Although Eq. (4.69) was written by explicitly distinguishing between the
particle and antiparticle spectral functions, this separation is unnecessary at
finite temperature. In a hot medium, the mesons 𝑀 (′) and their antiparticles
𝑀(′) interact in the same way with the surrounding pion bath.16 As a result,
the corresponding spectral functions coincide, and the two-meson loop can be
expressed in the simplified form

𝐺𝑀𝑀′(𝑝0, ⃗𝑝) = ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔1 ∫

∞

0
𝑑𝜔2 𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)

15This expression should be compared with the nuclear-density two-meson propagator of
Eq. (2.88). As expected, both coincide in the limit 𝑏− → 0, corresponding to zero temperature.

16The 𝑀𝜋 and 𝑀𝜋 interactions are the same due to pions and antipions belonging to the
same isospin multiplet.
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× { [1 + 𝑏−(𝜔1) + 𝑏−(𝜔2)] ( 1
𝑝0 − 𝜔1 − 𝜔2 + 𝑖𝜀

− 1
𝐸 + 𝜔1 + 𝜔2 + 𝑖𝜀

)

+ [𝑏−(𝜔1) − 𝑏−(𝜔2)] ( 1
𝑝0 + 𝜔1 − 𝜔2 + 𝑖𝜀

− 1
𝐸 − 𝜔1 + 𝜔2 + 𝑖𝜀

) }. (4.70)

The imaginary part of the two-meson loop can be expressed as

Im 𝐺𝑀𝑀′(𝑝0, ⃗𝑝) = −𝜋 ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔1 ∫

∞

0
𝑑𝜔2 𝑆𝑀(𝜔1, ⃗𝑞) 𝑆𝑀′(𝜔2, ⃗𝑝 − ⃗𝑞)

× {sign(𝑝0) [1 + 𝑏−(𝜔1) + 𝑏−(𝜔2)] [𝛿(𝜔2 − (𝑝0 − 𝜔1)) − 𝛿(𝜔2 + (𝑝0 + 𝜔1)) ]

+ sign(𝑝0) [𝑏−(𝜔1) − 𝑏−(𝜔2)] [𝛿(𝜔2 − (𝑝0 + 𝜔1)) − 𝛿(𝜔2 + (𝑝0 − 𝜔1)) ]}.

(4.71)

For positive external energy 𝑝0, the delta function 𝛿(𝜔2 + 𝑝0 + 𝜔1) never
contributes, since its argument cannot vanish. After integrating over 𝜔2, the
result becomes

Im 𝐺𝑀𝑀′(𝑝0, ⃗𝑝) = − 1
2𝜋

∫ 𝑞2 𝑑𝑞

× { ∫
𝑝0

0
𝑑𝜔 [1 + 𝑏−(𝜔) + 𝑏−(𝑝0 − 𝜔)] 𝑆𝑀(𝜔, ⃗𝑞) 𝑆𝑀′(𝑝0 − 𝜔, ⃗𝑝 − ⃗𝑞)

+ ∫
∞

0
𝑑𝜔 [𝑏−(𝜔) − 𝑏−(𝑝0 + 𝜔)]

× [𝑆𝑀(𝜔, ⃗𝑞) 𝑆𝑀′(𝑝0 + 𝜔, ⃗𝑝 − ⃗𝑞) + 𝑆𝑀′(𝜔, ⃗𝑝 − ⃗𝑞) 𝑆𝑀(𝑝0 + 𝜔, ⃗𝑞)]}. (4.72)

The first contribution in Eq. (4.72) corresponds to the usual unitarity cut,
now modified by the thermal population factors 𝑏−(𝜔) that account for the
presence of particles in the heat bath. The second contribution, however, has
no counterpart at zero temperature: it is generated exclusively by the medium
and is referred to as the Landau cut. This term is particularly important in the
subthreshold region, where it provides an additional source of imaginary part
to the two-meson propagator.

Since the objective of this chapter is to evaluate the 𝐷𝐷∗ thermal loop
function, it is essential to determine the corresponding 𝐷 and 𝐷∗ spectral
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functions at finite temperature. These spectral functions, in turn, are directly
determined by the in-medium self-energies of the charmed mesons. The
following subsection is therefore devoted to their introduction and discussion.

4.3.2 𝐷 and 𝐷∗ self energies

In this section, we shall apply the ITF presented in Sect. 4.2 to describe the
properties of heavy mesons—in particular of the 𝐷 and 𝐷∗—when they are
embedded in a hot medium. We will introduce the formalism and results for the
temperature-dependent charmed-meson spectral functions that were obtained
in Refs. [211, 316] and thoroughly discussed in Ref. [322]. The spectral functions
obtained in these references serve as the starting point in our calculation.

Meson self-energy in Imaginary Time Formalism

𝑀

𝑀

𝜋−𝑖𝑡𝑀𝜋

𝑖𝜔𝑛, ⃗𝑝 𝑖𝜔𝑚, ⃗𝑞

𝑖𝜔𝑛, ⃗𝑝

Figure 4.7: Self-energy diagram for an 𝑀 meson in the presence of a hot bath
of pions in ITF (increasing imaginary time taken in the up direction).

We start by considering the irreducible self-energy of a meson 𝑀 in the
presence of a hot bath of pions, which are the dominant light-meson species in
a hot hadronic medium, cf. Fig. 4.1. The diagram representing this self-energy
is shown in Fig. 4.7.

Within the ITF framework, the self-energy is obtained by applying the
corresponding Feynman rules to the diagram shown in Fig. 4.7 (cf. Table 14.1
of Mattuck’s book [213]). The resulting expression is

Π(𝑖𝜔𝑛, ⃗𝑝) = − 1
𝛽

∑
𝑚

∫ 𝑑3𝑞
(2𝜋)3 Δ𝜋(𝑖𝜔𝑚, ⃗𝑞) 𝑡𝑀𝜋(𝑖𝜔𝑚 + 𝑖𝜔𝑛, ⃗𝑞 + ⃗𝑝) , (4.73)

where Δ𝜋 denotes the pion propagator and 𝑡𝑀𝜋 the unitarized 𝑀𝜋 𝑇–matrix.17

17Here we denote the 𝑇–matrix with a lowercase 𝑡 in order to distinguish it from the 𝐷𝐷∗

𝑇–matrix presented in Eq. (4.50). Similarly, lowercase letters are used in this case for the 𝑀𝜋
potential and the 𝑀𝜋 loop.
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As in the case of the two-meson loop discussed earlier, it is convenient, prior to
performing the Matsubara frequency sum, to rewrite both the pion propagator
and the 𝑇-matrix in terms of their spectral representations. The latter takes
the form

𝑡𝑀𝜋(𝑖𝜔, ⃗𝑝) = − 1
𝜋

∫
+∞

−∞
𝑑𝜔′ Im 𝑡𝑀𝜋(𝜔′, ⃗𝑝)

𝑖𝜔 − 𝜔′ . (4.74)

Substituting these representations into Eq. (4.73), the self-energy becomes

Π(𝑖𝜔𝑛, ⃗𝑝) = 1
𝜋𝛽

∑
𝑚

∫ 𝑑3𝑞
(2𝜋)3 ∫

+∞

−∞
𝑑𝜔1

̃𝑆𝜋(𝜔1, ⃗𝑞)
𝑖𝜔𝑚 − 𝜔1

× ∫
+∞

−∞
𝑑𝜔2

Im 𝑡𝑀𝜋(𝜔2, ⃗𝑞 + ⃗𝑝)
𝑖𝜔𝑚 + 𝑖𝜔𝑛 − 𝜔2

. (4.75)

In contrast to Eq. (4.73), the pole structure of the summed function is now
explicit. After analytic continuation 𝑖𝜔𝑚 → 𝜔, the poles are located at

𝜔 = 𝜔1, 𝜔 = 𝜔2 − 𝑖𝜔𝑛. (4.76)

Using the Matsubara summation formula derived in the previous section, and
choosing the Bose-Einstein hole distribution 𝑔(𝜔) = 𝑏−(𝜔) as the auxiliary
function, one finally obtains

Π(𝑖𝜔𝑛, ⃗𝑝) = 1
𝜋

∫ 𝑑3𝑞
(2𝜋)3 ∫

+∞

−∞
𝑑𝜔1 ∫

+∞

−∞
𝑑𝜔2

×
̃𝑆𝜋(𝜔1, ⃗𝑞) Im 𝑡𝑀𝜋(𝜔2, ⃗𝑞 + ⃗𝑝)

𝜔2 − 𝑖𝜔𝑛 − 𝜔1
[𝑏−(𝜔1) − 𝑏−(𝜔2)] . (4.77)

In deriving this result, the properties of the Bose-Einstein distribution given in
Eqs. (4.64) and (4.65) have been used.

To make the structure of Eq. (4.77) more transparent, we separate the
𝜔1 and 𝜔2 integrals into their positive and negative branches. In doing so,
we employ the definition of the compact spectral function ̃𝑆 introduced in
Eq. (2.35) (taking into account that the pion and antipion spectral functions
are the same), together with the property

Im 𝑡𝑀𝜋(−𝜔2, ⃗𝑞 + ⃗𝑝) = − Im 𝑡𝑀𝜋(𝜔2, ⃗𝑞 + ⃗𝑝), (4.78)

which follows directly from the spectral decomposition of Eq. (4.74). We then
perform a Wick rotation from imaginary frequencies to the real energy axis,
𝑖𝜔𝑛 → 𝑝0 +𝑖𝜀, introducing the standard 𝑖𝜀 prescription. With these ingredients,
the self-energy can be expressed as (taking 𝑝0 > 0)

Π(𝑝0, ⃗𝑝) = 1
𝜋

∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔1 ∫

∞

0
𝑑𝜔2
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× { [1 + 𝑏−(𝜔1) + 𝑏−(𝜔2)]

× [ 1
−𝑝0 + 𝜔2 + 𝜔1 − 𝑖𝜀

+ 1
𝑝0 + 𝜔2 + 𝜔1 + 𝑖𝜀

]

− [𝑏−(𝜔2) − 𝑏−(𝜔1)]

× [ 1
−𝑝0 + 𝜔2 − 𝜔1 − 𝑖𝜀

+ 1
𝑝0 + 𝜔2 − 𝜔1 + 𝑖𝜀

] }

× 𝑆𝜋(𝜔1, ⃗𝑞) Im 𝑡𝑀𝜋(𝜔2, ⃗𝑞 + ⃗𝑝). (4.79)

Now, as explained in Refs. [211, 316], an approximation is taken in order
to simplify the self-energy. Since the interactions of a light meson with a
dominantly pionic medium are weak, the pion propagator can be approximated
by the free-space one, so that its spectral function becomes a Dirac delta
function18

𝑆𝜋(𝜔, ⃗𝑞) = 1
2𝜔𝜋(𝑞)

𝛿 [𝜔 − 𝜔𝜋(𝑞)] , where 𝜔𝜋(𝑞) = √𝑚2
𝜋 + 𝑞2. (4.80)

With this, the meson self-energy becomes

Π(𝑝0, ⃗𝑝) = 1
𝜋

∫ 𝑑3𝑞
(2𝜋)3

1
2𝜔𝜋(𝑞)

∫
∞

0
𝑑𝜔2

× { [1 + 𝑏−(𝜔𝜋(𝑞)) + 𝑏−(𝜔2)]

× [ 1
−𝑝0 + 𝜔2 + 𝜔𝜋(𝑞) − 𝑖𝜀

+ 1
𝑝0 + 𝜔2 + 𝜔𝜋(𝑞) + 𝑖𝜀

]

− [𝑏−(𝜔2) − 𝑏−(𝜔𝜋(𝑞))]

× [ 1
−𝑝0 + 𝜔2 − 𝜔𝜋(𝑞) − 𝑖𝜀

+ 1
𝑝0 + 𝜔2 − 𝜔𝜋(𝑞) + 𝑖𝜀

] }

× Im 𝑡𝑀𝜋(𝜔2, ⃗𝑞 + ⃗𝑝). (4.81)

Although not made explicit in our notation, the temperature dependence of
the previous expression arises in two ways: directly through the Bose–Einstein

18A similar approximation was taken when discussing the finite-nuclear density self energies
in Sect. 2.3. One can see that in Eq. (2.17) no nucleon spectral function appears.
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distributions 𝑏− and indirectly through the unitarized amplitude 𝑡𝑀𝜋. Con-
sequently, the self-energy contains both a thermal correction and a vacuum
contribution. To isolate the thermal effects in the real part of the self-energy,
Ref. [323] proposed subtracting the vacuum contribution, i.e. the real part of
the self-energy computed at 𝑇 = 0, from the corresponding finite-temperature
calculation. In the present work, we adopt an alternative procedure: we retain
only the thermal contribution by dropping the constant “1” in the factor
[1 + 𝑏−(𝜔𝜋, 𝑇 ) + 𝑏−(𝜔2, 𝑇 )] appearing in Eq. (4.81). This term is precisely
the piece that survives in the zero-temperature limit, where the Bose–Einstein
distributions vanish, and therefore must be excluded. For the imaginary part of
the self-energy, however, the vacuum term of Eq. (4.81) is also retained, since
it is finite and physically meaningful.

The final expression for the thermal correction to the 𝑀-meson self-energy
then reads

Π̃(𝑝0, ⃗𝑝) = 1
𝜋

∫ 𝑑3𝑞
(2𝜋)3

1
2𝜔𝜋

∫
∞

0
𝑑𝜔

× { [𝑏−(𝜔𝜋) + 𝑏−(𝜔)] [ 1
−𝑝0 + 𝜔 + 𝜔𝜋 − 𝑖𝜀

+ 1
𝑝0 + 𝜔 + 𝜔𝜋 + 𝑖𝜀

]

− [𝑏−(𝜔) − 𝑏−(𝜔𝜋)] [ 1
−𝑝0 + 𝜔 − 𝜔𝜋 − 𝑖𝜀

+ 1
𝑝0 + 𝜔 − 𝜔𝜋 + 𝑖𝜀

] }

× Im 𝑡𝑀𝜋(𝜔, ⃗𝑞 + ⃗𝑝). (4.82)

Equation (4.82) thus provides the working expression for the 𝑀-meson self-
energy in a thermal pion bath, where medium effects are encoded in the
Bose–Einstein factors and the finite-temperature 𝑀𝜋 amplitude. This ampli-
tude, however, depends itself on the 𝑀 self-energy, leading to a self-consistent
calculation—as was also the case in the dense nuclear medium (cf. Sect. 2.3.1).
This calculation is briefly examined in the following subsection.

Although Eq. (4.82) may at first sight look quite different from the self-
energy obtained in Eq. (2.17) for the case of finite nuclear density (see Sect. 2.3),
the two expressions are in fact closely related. If one neglects the contribution
of the 𝑏−(𝜔) term—since the 𝜔 integral is relevant for 𝜔 around ±(𝑝0 ±𝜔𝜋), with
𝑝0 near the heavy-meson mass—the spectral decomposition of the amplitude
can be reverted, and the self-energy rewritten as

Π̃(𝑝0, ⃗𝑝) = 1
𝜋

∫ 𝑑3𝑞
(2𝜋)3

𝑏−(𝜔𝜋)
2𝜔𝜋

[𝑡𝑀𝜋(𝑝0 + 𝜔𝜋, ⃗𝑞 + ⃗𝑝) − 𝑡𝑀𝜋(𝑝0 − 𝜔𝜋, ⃗𝑞 + ⃗𝑝)] .

(4.83)
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This expression mirrors Eq. (2.17), with the following differences: 1) the replace-
ment of the step function—encoding the Fermi–Dirac distribution of nucleons at
zero temperature—by the Bose–Einstein distribution 𝑏−(𝜔𝜋), describing pions
in the thermal bath; 2) the additional contribution from the 𝑡𝑀𝜋(𝑝0 −𝜔𝜋, ⃗𝑝+ ⃗𝑞)
amplitude, which explicitly makes the self-energy charge-conjugation symmet-
ric; and 3) an overall normalization factor 1/(2𝜔𝜋), which appears because the
pions of the thermal bath are bosons.

The expression in Eq. (4.82) was employed in Refs. [211, 316] to evaluate
the self-energies of the 𝐷(∗) mesons in a hot medium populated by pions. In
the present work, we follow the same strategy, using the results obtained in
these references. Before discussing the unitarization procedure for the 𝑀𝜋
𝑇–matrix, it is convenient to first examine the spin–isospin structure of the
finite-temperature self-energy.

We now concentrate on the case of interest: 𝐷 and 𝐷∗ mesons propagating
in a thermal pion bath. Since pions carry no spin, the spin dependence of the
charmed-meson self-energy is trivial, and the problem reduces to isospin. Mak-
ing use of the general spin/isospin decomposition of the scattering amplitude
derived in Sect. 2.3.3 (see Eq. (2.45)), one finds

Π𝐷(∗)𝜋 = Π𝐷(∗)𝜋(𝐼 = 1
2) + 2 Π𝐷(∗)𝜋(𝐼 = 3

2) , (4.84)

where the isospin channel 𝐼 is indicated in parentheses. This decomposition
applies equally to both the 𝐷 and 𝐷∗ mesons.

Unitarization of the 𝐷(∗)𝜋 amplitude

We now deal with the interaction between a heavy meson and a light meson, in
particular between 𝐷(∗) mesons and pions. Similarly to the finite-density study
presented in Chap. 2, the 𝑇–matrix for 𝐷𝜋 (or 𝐷∗𝜋) scattering is unitarized
using the BSE within the on-shell factorization scheme.

𝑡𝐷(∗)𝜋 = 𝑣𝐷(∗)𝜋

1 − 𝑣𝐷(∗)𝜋𝑔𝐷(∗)𝜋 . (4.85)

In the following, we discuss the two main ingredients of this equation: the
interaction kernel 𝑣𝐷(∗)𝜋 and the finite-temperature loop function 𝑔𝐷(∗)𝜋. In
complete analogy to what was presented in Sect. 2.3 and 2.4, the medium
effects are incorporated through the 𝐷(∗)𝜋 loop, leaving the interaction kernel
unmodified.

As discussed in the Introduction, the effective Lagrangian governing the
interaction of light mesons and heavy mesons can be constructed by exploiting
two symmetries of the QCD Lagrangian: chiral symmetry and HQSS. This
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effective field theory is known as HMChPT, and we already made use of it
when describing the 𝐷𝐾 interaction in Sect. 2.6.

Here, we present the 𝑆–wave 𝐷𝜋 and 𝐷∗𝜋 amplitude arising from the
effective Lagrangian at next-to-leading order in chiral power counting and at
strictly the lowest order in the heavy-quark mass expansion. At this order,
there are no tree-level diagrams connecting the different HQSS partners—that
is, the 𝐷 and 𝐷∗—and the two sectors are decoupled. The 𝑆-wave tree-level
amplitude—or potential in classical terms—is given by the following expression.

𝑣𝑀𝜋(𝑠) = 1
𝑓2

𝜋
[𝐶LO

4
(3

2
𝑠 − Δ+ − Δ2

−
2𝑠

)

− 4 𝐶0ℎ0 + 2 𝐶1ℎ1

+ (−4 𝐶24ℎ2 + 2 𝐶35ℎ3) (𝑠 − Δ−)2

4𝑠

+ (−2 𝐶24ℎ4 + 2 𝐶35ℎ5)
(𝑠 − Δ+)2

4

+ (−2 𝐶24ℎ4 + 2 𝐶35ℎ5) (𝑠
4

− Δ2
−

4𝑠
)

2

]. (4.86)

In Eq. (4.86), the variable 𝑠 denotes the total invariant mass squared of the
system, 𝑓𝜋 = 92.4 MeV is the pion decay constant, and Δ± = 𝑚2

𝐷(∗) ± 𝑚2
𝜋 with

𝑚𝐷(∗) the mass of the considered charmed meson—either the pseudoscalar 𝐷
or the vector 𝐷∗—and 𝑚𝜋 the pion mass. In addition, the constants 𝐶𝑖 (with
𝑖 = {LO, 0, 1, 24, 35}) are isospin coefficients, listed in Tab. 4.1. The lowercase
ℎ𝑖 (𝑖 = {0, 1, 2, 3, 4, 5}) represent low-energy constants, and are provided in
Tab. 4.2. Further discussion of this amplitude can be found in Sect. 2.3.2 of
Ref. [322]—see Eq. (2.174) there—and in the references therein. As stated
before, this interaction kernel is taken to be the same in vacuum and at
finite temperature, and temperature effects are incorporated into the unitarized
𝑇–matrix through the 𝐷(∗)𝜋 loop function, whose calculation is detailed in the
next subsection.

𝐼 𝐶LO 𝐶0 𝐶1 𝐶24 𝐶35
1
2 −2 𝑚2

𝜋 −𝑚2
𝜋 1 1

3
2 1 𝑚2

𝜋 −𝑚2
𝜋 1 1

Table 4.1: Isospin coefficients 𝐶𝑘 appearing in the 𝐷(∗)𝜋 → 𝐷(∗)𝜋 interaction
given in Eq. (4.86), considering the two possible isospin channels. These
coefficients are taken from Table 14.5 in Ref. [322].
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ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 [MeV−2] ℎ5 [MeV−2]
𝐷Φ 0.033 0.45 −0.12 1.67 −0.0054 ⋅ 10−6 −0.22 ⋅ 10−6

𝐷∗Φ 0.033 0.45 −0.12 1.67 −0.0047 ⋅ 10−6 −0.19 ⋅ 10−6

Table 4.2: Values of the LECs for the interaction of 𝐷 and 𝐷∗ mesons with the
light mesons (in particular pions) represented by Φ, taken from Fit-2B in [324].

With the expression for the loop function of Eq. (4.69), we are ready to
discuss the unitarization procedure of the self-energy of the 𝐷(∗) mesons. We
shall now particularize it to the case of a charmed 𝐷 meson and a pion—the
extension to the 𝐷∗𝜋 case being straightforward. Similarly to what was done
when discussing the self-energy expression of Eq. (4.79), a delta-like spectral
function is taken for the pion—cf. Eq. (4.80). Taking this approximation, the
loop function yields

𝑔𝐷𝜋(𝑝0, ⃗𝑝) = ∫ 𝑑3𝑞
(2𝜋)3

1
2𝜔𝜋

∫
∞

0
𝑑𝜔1 𝑆𝐷(𝜔1, ⃗𝑞)

× { [1 + 𝑏−(𝜔1) + 𝑏−(𝜔𝜋)] ( 1
𝑝0 − 𝜔1 − 𝜔𝜋 + 𝑖𝜀

− 1
𝐸 + 𝜔1 + 𝜔𝜋 + 𝑖𝜀

)

+ [𝑏−(𝜔1) − 𝑏−(𝜔𝜋)] ( 1
𝑝0 + 𝜔1 − 𝜔𝜋 + 𝑖𝜀

− 1
𝐸 − 𝜔1 + 𝜔𝜋 + 𝑖𝜀

) }. (4.87)

where the energy of the pion is

𝜔𝜋 = √𝑚𝜋 + ( ⃗𝑝 − ⃗𝑞)2. (4.88)

Taking the 𝑔𝐷𝜋 loop of Eq. (4.87) and the interaction kernel 𝑣𝐷𝜋 presented
in Eq. (4.86), one can determine the unitarized amplitude 𝑡𝐷𝜋 needed to obtain
the self-energy of the 𝐷, presented in Eq. (4.81). However, since the loop
function depends on the 𝐷 spectral function—and therefore on its self-energy—
this defines a self-consistent system of coupled equations for the 𝑇–matrix and
the self-energy. This is in complete analogy to what was discussed in Sect. 2.3 for
the case of a dense nuclear medium, and is also solved iteratively, as described
in the paragraph following Eq. (2.28). Further details on the determination of
the finite-temperature spectral functions of the 𝐷 and 𝐷∗ mesons can be found
in Ref. [322]. In the present work, we rely on the results reported therein,
although we reproduce some of them. In the following, we will provide a brief
overview of these spectral functions. However, before showing the self-energies,
we shall discuss the 𝐷𝜋 loop function of Eq. (4.87).



4.3. 𝐷𝐷∗ SCATTERING AT FINITE TEMPERATURE 139

𝐷𝜋 loop at finite temperature
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Figure 4.8: Three different iterations in the evaluation of the 𝐷𝜋 loop. The
solid lines correspond to the real part of the loop, while dashed lines represent
its imaginary part. First and second iterations were computed by the authors,
while the seventh iteration shown here is courtesy of Dr. Gloria Montaña.

Figure 4.8 shows the 𝐷𝜋 loop for zero center-of-mass three momentum,
evaluated at 𝑇 = 150 MeV—a temperature close to the QCD crossover and
the highest value considered in this analysis. The solid and dashed curves
correspond to the real and imaginary parts of the loop, respectively. The
three sets of curves, distinguished by color, correspond to successive iterations,
beginning with the initial one in which the 𝐷-meson spectral function is taken
as a Dirac delta. The evolution of the curves illustrates the rapid convergence
of the iterative algorithm.

The most distinctive feature of the loop function presented in Fig. 4.8, in
comparison to the loops at finite density shown in Chap. 2, is the appearance
of the Landau cut, which can be observed in the imaginary part (dashed lines)
below the threshold. In the first iteration, one observes a sharp onset of the 𝐷𝜋-
Landau cut—due to the delta-like 𝐷 spectral function—that appears exactly at
𝑝0 = 𝑚𝐷 − 𝑚𝜋 ∼ 1730 MeV. This can be easily inferred from Eq. (4.87) when
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𝑆𝐷(𝜔1, ⃗𝑞) is approximated by a Dirac delta, reading

𝑔𝐷𝜋(𝑝0, ⃗𝑝 = 0) = 1
2𝜋2 ∫ 𝑞2 𝑑𝑞 1

4𝜔𝐷𝜔𝜋

× { [1 + 𝑏−(𝜔𝐷, 𝑇 ) + 𝑏−(𝜔𝜋, 𝑇 )]

× ( 1
𝑝0 − 𝜔𝐷 − 𝜔𝜋 + 𝑖𝜀

− 1
𝑝0 + 𝜔𝐷 + 𝜔𝜋 + 𝑖𝜀

)

+ [𝑏−(𝜔𝜋, 𝑇 ) − 𝑏−(𝜔𝐷, 𝑇 )]

× ( 1
𝑝0 − 𝜔𝐷 + 𝜔𝜋 + 𝑖𝜀

− 1
𝑝0 + 𝜔𝐷 − 𝜔𝜋 + 𝑖𝜀

) }. (4.89)

In this expression, 𝜔𝐷 = √𝑚2
𝐷 + 𝑞2 and 𝜔𝜋 = √𝑚2

𝜋 + 𝑞2, and the sign of the
infinitesimal 𝜀 is the same as that of the external energy 𝑝0. The imaginary
part of this loop yields

Im 𝑔𝐷𝜋(𝑝0, ⃗𝑝 = 0) = − 1
2𝜋

∫ 𝑞2 𝑑𝑞 1
4𝜔𝐷𝜔𝜋

× { [1 + 𝑏−(𝜔𝐷, 𝑇 ) + 𝑏−(𝜔𝜋, 𝑇 )] [𝛿(𝑝0 − 𝜔𝐷 − 𝜔𝜋) + 𝛿(𝑝0 + 𝜔𝐷 + 𝜔𝜋)]

+ [𝑏−(𝜔𝜋, 𝑇 ) − 𝑏−(𝜔𝐷, 𝑇 )] [𝛿(𝑝0 − 𝜔𝐷 + 𝜔𝜋) + 𝛿(𝑝0 + 𝜔𝐷 − 𝜔𝜋)] }, (4.90)

which can be rewritten as

Im 𝑔𝐷𝜋(𝑝0, ⃗𝑝 = 0) = − 1
2𝜋

∫ 𝑞2𝑑𝑞 1
4𝜔𝐷𝜔𝜋

× {[1 + 𝑏−(𝜔𝐷, 𝑇 ) + 𝑏−(𝜔𝜋), 𝑇 )]

× 𝜔𝐷𝜔𝜋
(𝜔𝐷 + 𝜔𝜋)𝑞

[𝜃(𝑝0 − 𝑚𝐷 − 𝑚𝜋)𝛿(𝑞 − 𝑘1) + 𝜃(−𝑝0 − 𝑚𝐷 − 𝑚𝜋)𝛿(𝑞 − 𝑘2)]

+ [𝑏−(𝜔𝜋, 𝑇 ) − 𝑏−(𝜔𝐷, 𝑇 )]

× 𝜔𝐷𝜔𝜋
(𝜔𝐷 − 𝜔𝜋)𝑞

[𝜃(𝑝0 + 𝑚𝐷 − 𝑚𝜋)𝜃(−𝑝0)𝛿(𝑞 − 𝑘4)

+ 𝜃(−𝑝0 + 𝑚𝐷 − 𝑚𝜋)𝜃(𝑝0)𝛿(𝑞 − 𝑘3)]}, (4.91)
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where 𝜃 represents the step function, and the different 𝑘𝑖 denote the values of
𝑞 that make the arguments of the different deltas zero. As it turns out,

𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 =
√𝜆[(𝑝0)2, 𝑚2

𝐷, 𝑚2
𝜋]

2𝑝0 ≡ 𝑘(𝑝0) (4.92)

which is the usual relativistic formula for the relative momentum of two particles
in the center-of-mass frame. As indicated by the step functions, the arguments
of the original deltas of Eq. (4.90) can only be zero for a determined sign of the
external energy 𝑝0. If we set 𝑝0 > 0, then only two of the four deltas contribute,
and so we can write

Im 𝑔𝐷𝜋(𝑝0 > 0, ⃗𝑝 = 0) = − 1
8𝜋

𝑘(𝑝0)
𝑝0

× {𝜃(𝑝0 − 𝑚𝐷 − 𝑚𝜋)[1 + 𝑏−(𝜔𝐷, 𝑇 ) + 𝑏−(𝜔𝜋), 𝑇 )]

+ 𝜃(−𝑝0 + 𝑚𝐷 − 𝑚𝜋)[𝑏−(𝜔𝜋, 𝑇 ) − 𝑏−(𝜔𝐷, 𝑇 )]}, (4.93)

The first term gives rise to the unitarity cut for 𝑝0 ≥ 𝑚𝐷 + 𝑚𝜋, while the
second yields the Landau cut for 0 ≤ 𝑝0 ≤ 𝑚𝐷 − 𝑚𝜋. The unitarity cut is
very similar to that of the two-meson loop in vacuum, cf. Eq. (2.145), the only
difference being the presence of the Bose-Einstein distributions. The Landau
cut present in the finite-temperature loop is not found in the vacuum loop,
its presence reflects different processes involving the absorption and creation
of meson pairs from the thermal bath.19 The fact that both the unitarity
and the Landau cuts start sharply at a given value of the external energy
arises from the Dirac-delta approximation for the meson spectral functions.
When improving the determination of the spectral function of the 𝐷 meson in
successive iterations of the computation of its self-energy, these sharp thresholds
smooth out, and as one can see in Fig. 4.8, where there is a non-zero imaginary
part for all values of 𝑝0.

Thermal 𝐷 and 𝐷∗ spectral functions

The main input from Refs. [211, 316] employed in our analysis are the 𝐷- and
𝐷∗-meson self-energies and spectral functions in a thermal pion bath. Their
derivation has been summarized here, emphasizing the essential conceptual

19A detailed discussion on the physical interpretation of the cuts of the finite-temperature
two-meson loop can be found in Ref. [322] after Fig. 3.5.
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Figure 4.9: Spectral functions of the 𝐷 (left) and 𝐷∗ (right) mesons at zero
three-momentum ( ⃗𝑞 = 0) as functions of the charm-meson energy 𝑝0. Results
are shown for five temperatures, distinguished by color. The vertical dashed
lines indicate the vacuum masses of the corresponding mesons. Results have
been taken from Refs. [211, 316].

steps. We now present the resulting spectral functions, which constitute a
key ingredient in the finite-temperature analysis of the 𝑇𝑐𝑐.

Figure 4.9 displays the 𝐷 and 𝐷∗ spectral functions at zero three-momentum
as functions of the energy for several temperatures. Both cases show a
qualitatively similar pattern: the widths broaden markedly with increasing
temperature, while the quasi-particle peak shifts to energies below the corre-
sponding vacuum mass. This similarity reflects the nearly identical 𝐷𝜋 and 𝐷∗𝜋
interaction kernels, governed by the comparable low-energy constants listed in
Tab. 4.2.

It is also worth emphasizing that the temperature-dependent spectral func-
tions of Fig. 4.9 exhibit far less structure than their nuclear-density-dependent
counterparts (cf. Fig. 2.4). At finite density, resonance–hole excitations gen-
erate pronounced features in the spectral distributions, whereas, in a thermal
medium, the spectral functions remain essentially Lorentzian in shape.

Having established the thermal 𝐷 and 𝐷∗ spectral functions, we can now
incorporate them into the finite-temperature 𝐷𝐷∗ loop function, as presented
at the beginning of Sect. 4.3. This provides the foundation for the study of 𝐷𝐷∗

scattering in a hot medium and, consequently, for investigating the temperature
dependence of the exotic 𝑇𝑐𝑐(3875) state. This analysis represents one of the
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central results of the present thesis. In the following section, we shall discuss
the obtained thermal modifications to the 𝑇𝑐𝑐 and its HQSS partner.

4.4 Thermal modifications to the 𝑇𝑐𝑐 and 𝑇 ∗
𝑐𝑐

In this section, we present our results for the temperature-dependent behavior of
the exotic doubly-charmed resonance 𝑇𝑐𝑐(3875). We will start by discussing the
𝐷𝐷∗ thermal loop function, switching afterwards to the scattering amplitude
and the 𝑇𝑐𝑐 spectral function. We shall also devote a section to the discussion
of the results for its HQSS partner, the 𝑇 ∗

𝑐𝑐.

4.4.1 The 𝐷𝐷∗ loop at finite temperature

We begin with the thermal 𝐷𝐷∗ loop function at finite temperature, shown in
Fig. 4.10. As previously discussed, the real part is obtained from Eq. (4.70)
using a cutoff regularization with Λ = 0.7 GeV, while the imaginary part follows
directly from Eq. (4.72). Both quantities are evaluated employing the 𝐷-
and 𝐷∗-meson spectral functions determined in Refs. [211, 316] and previously
described in Sect. 4.3.2.

The thermal modifications of the charmed mesons are clearly reflected in
the dressed loop function. As the temperature increases, the onset of the
unitarity cut in the imaginary part (dashed lines) softens and shifts toward
lower energies, while the real part (solid lines) evolves accordingly: the cusp
at the 𝐷𝐷∗ threshold decreases at higher temperatures, and the value of the
real part around the vacuum threshold—and in particular just below it, where
the 𝑇𝑐𝑐 state lies in the vacuum—increases, becoming less negative. If the
in-medium 𝑇-matrix is rewritten as

𝑇 −1(𝑠; 𝜌) = 𝑉 −1
eff (𝑠; 𝜌) − Σ0(𝑠) , (4.94a)

𝑉 −1
eff (𝑠; 𝜌) = 𝑉 −1(𝑠) + [Σ0(𝑠) − Σ(𝑠; 𝜌)] , (4.94b)

as first shown in Eqs. (2.140), this increase in the real part of the loop can
be interpreted as a corresponding increase in the effective interaction 𝑉eff (see
also the discussion following Eq. (2.140)). In this sense, the hot medium can
be thought to induce an effective repulsive contribution. This interpretation,
however, must be taken with caution, as a sizable imaginary part of the loop
below the threshold may strongly affect this conclusion.

In Ref. [161], the authors studied the impact of a thermal pionic medium
on the exotic 𝜒𝑐1(3872) state as a 𝐷𝐷∗ molecule. In that work, they show
the 𝐷𝐷∗ thermal loop function in Fig. 2. Since the thermal pionic medium
does not distinguish between particles and antiparticles, the results for the
𝐷𝐷∗ loop reported in Ref. [161] should be similar to those found here for the
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Figure 4.10: Real (solid) and imaginary (dashed) parts of the 𝐷𝐷∗ loop function
at several temperatures, ranging from 𝑇 = 0 to 𝑇 =150 MeV.

𝐷𝐷∗ loop. This is precisely the case, as can be observed when comparing the
temperature dependence of the imaginary part of both loops. The real part also
demonstrates the same qualitative behavior, although its precise values depend
on the regularization scale, which differs here from that adopted in Ref. [161].

When contrasting the finite-temperature 𝐷𝐷∗ loop with its counterpart at
finite nuclear density (see Fig. 2.9), one observes a markedly different qualitative
behavior. The most striking difference is that, at the highest temperature
considered in Fig. 4.10, the imaginary part becomes significantly larger below
threshold than in the case of normal nuclear density. As a consequence, we
expect that in this high-temperature scenario the 𝑇𝑐𝑐 peak will develop a much
stronger broadening as compared to the dense nuclear medium scenario at
normal nuclear density.

4.4.2 The 𝐷𝐷∗ amplitude and the 𝑇𝑐𝑐 spectral function

We now turn to the results for the 𝐷𝐷∗ scattering amplitude in the thermal
medium, computed using the BSE as discussed in Eq. (4.53). The obtained
results are displayed on Fig. 4.11 as a function of the center of mass energy of
the meson pair, which is at rest in the frame of the hot medium. In the left
column, we show results that come from the 𝑉𝐴 interaction kernel, while the
right column contains the results obtained when the 𝑉𝐵 kernel is used. Two
different molecular probabilities are considered, 𝑃0 = 0.2 in the top row and
𝑃0 = 0.8 in the bottom row.
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Figure 4.11: Squared modulus of the 𝐷∗𝐷 amplitudes obtained by solving the
BSE using the 𝑉𝐴(𝑠) potential (left column) and the 𝑉𝐵(𝑠) potential (right
column), as a function of the center-of-mass energy 𝐸, for several values of
the temperature (different line colors) and for two values of the molecular
probability 𝑃0 (𝑃0 = 0.2 in the top row and 0.8 in the bottom row).

A comparison of the 𝒯–matrices obtained from the 𝑉𝐴 and 𝑉𝐵 potentials20

reveals that, for large molecular probabilities (right column), the results are
practically indistinguishable at all temperatures. As already noted in Sect. 2.5
for the nuclear medium case, this agreement stems from the fact that the zero
of 𝑉𝐴 and the bare pole of 𝑉𝐵 lie far from the physically relevant energy region
and therefore introduce no substantial modifications. In contrast, for a small
molecular component (𝑃0 = 0.2, left column), the two interactions lead to
visible differences, producing distinct 𝒯–matrices at finite temperature, despite
reproducing the same 𝑇𝑐𝑐(3875)+ mass and 𝐷𝐷∗ coupling at zero temperature.

The temperature evolution of the 𝒯–matrices also depends strongly on
the value of 𝑃0. For large compositeness, the width increases rapidly with
temperature, and the 𝑇𝑐𝑐(3875)+ dissolves above 𝑇 ≃ 120 MeV. By contrast, at

20See Fig. 2.8 for a plot of these potentials.
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Figure 4.12: Spectral functions of the 𝑇 +
𝑐𝑐 state obtained from the 𝒯𝐵 amplitude,

which is equivalent to those derived directly from the propagator. The results
are shown as functions of the center-of-mass energy 𝐸, for several temperature
values 𝑇 (indicated by different line colors), and for four choices of the molecular
probability 𝑃0 (corresponding to the four panels). All spectral functions are
normalized by the field normalization factor 𝑍0.

small 𝑃0, the modifications are less pronounced and sensitive to the choice
of potential. In the case of 𝑉𝐴, the position of the zero characteristic of
this interaction is unaffected by the temperature, as also observed in the
finite-density scenario of Sect. 2.5. For 𝑉𝐵, on the other hand, the peak tied
to the bare pole shifts toward higher energies and gradually diminishes as the
temperature increases, in clear contrast to the behavior found for large 𝑃0.

Similar remarks can be made about the results for the 𝑇𝑐𝑐 spectral functions
stemming from the 𝑉𝐴 and 𝑉𝐵 interactions, as defined in Eq. (4.55). For con-
ciseness, we restrict our discussion to the type–𝐵 case, with the corresponding
results displayed in Fig. 4.12. The four subplots illustrate the dependence of the
spectral function on the compositeness parameter, with values 𝑃0 = 0.2, 0.4,
0.8, and 1. In analogy with Sect. 2.5, the spectral functions have been divided
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by the field normalization factor 𝑍0 to compensate for their behavior when the
compositeness tends to one. For the low-𝑃0 cases (top row), the quasi-particle
peak, taken as the maximum of the spectral function, shifts toward higher
energies. In contrast, for large molecular probabilities (bottom row), the peak
moves toward lower energies. The latter behavior, however, is less sharply
defined due to the substantial broadening of the peak, particularly at high
temperatures. This observation is consistent with the thermal evolution of the
squared modulus of the 𝐷𝐷∗ scattering amplitude shown in Fig. 4.11. It is
again clear that, for high molecular probabilities, the 𝑇𝑐𝑐 state melts down
at a temperature 𝑇 ∼ 120 MeV, its width becoming very large. Overall, the
complete dissolution of the 𝑇𝑐𝑐 at high temperatures contrasts with its behavior
in nuclear matter (see Fig. 2.12), where the width of the state increases only
moderately. This difference arises because, at the temperatures considered here,
the 𝐷 and 𝐷∗ spectral functions undergo substantial medium modifications,
which in turn generate a much larger width. In contrast, the modifications
induced at normal nuclear density, as shown in Fig. 2.12, are considerably
milder.

As discussed previously, the 𝑆(𝑇𝑐𝑐)
𝐵 spectral function may also be interpreted

as originating from the genuine propagator of the 𝑇𝑐𝑐, which is renormalized
through its molecular component in the presence of the thermal pion bath.
Figure 4.13 displays the inverse of this propagator for several values of the
compositeness parameter 𝑃0, with different temperatures represented by dis-
tinct line colors in each panel. Similarly to the spectral function, the propagator
is also divided by the field renormalization constant 𝑍0.

For 𝑃0 = 0, the propagator reduces to the vacuum propagator of the 𝑇 +
𝑐𝑐,

which contains no imaginary part and whose inverse real part is linear in 𝑠,
vanishing at 𝑠 = 𝑚2

0. As 𝑃0 increases, the propagator acquires an additional
contribution from Π̃(𝑇 +

𝑐𝑐), cf. (4.59), which generates a nonzero imaginary part
and simultaneously shifts the position of the zero in the real part. The
location of this zero defines the quasi-particle mass, as given in Eq. (2.141).
Overall, a qualitative correspondence can be identified between the evolution
of the quasi-particle mass illustrated in Fig. 4.13 and the peak structure of
the spectral functions shown in Fig. 4.12 for the small-molecular-probability
scenarios. Nevertheless, this correspondence weakens at large molecular proba-
bilities, where the imaginary part of the self-energy increases, and the real part
exhibits a marked nonlinear behavior. For instance, in the 𝑃0 = 0.8 case, the
quasi-particle mass shifts upward, while the peak of the spectral function moves
to lower energies.

The position of the quasi-particle mass is found to be largely insensitive
to temperature variations at low molecular probabilities, as illustrated in the
cases 𝑃0 = 0.2 and 0.4. In contrast, and as already mentioned, for 𝑃0 = 0.8 the
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Figure 4.13: Plots of the inverse of the propagator of the 𝑇𝑐𝑐(3875)+ at zero
three-momentum ⃗𝑃 = ⃗0 as a function of the center-of-mass energy 𝐸, for
different values of the temperature 𝑇 (different colors on the graphs) and for
different values of the molecular probability 𝑃0 on each graph. The solid
(dashed) lines correspond to the real (imaginary) parts of the propagator. Also
note that the propagator has been conveniently normalized with a 𝑍0 factor.

quasi-particle mass exhibits a clear shift toward higher values with increasing
temperature. This trend originates from the fact that thermal modifications
to the bare 𝑇𝑐𝑐 state are included only through its coupling to the 𝐷𝐷∗

mesons, which vanishes in the limit 𝑃0 → 0. For high molecular probabilities,
particularly in the fully composite case 𝑃0 = 1, additional nontrivial features
emerge. At high temperatures, no quasi-particle mass solution is obtained from
the condition that the real part of the self-energy is zero. At lower temperatures,
however, specifically for 𝑇 = 60 and 80 MeV, the real part becomes zero at two
distinct energy values. In general, only the leftmost of these solutions gives rise
to a significant peak in the spectral function, as the rightmost one is associated
with a large imaginary part. This behavior can be explicitly confirmed by
comparison with the spectral functions shown in Fig. 4.12.

Since the 𝐷(∗)𝜋 and 𝐷(∗)𝜋 interactions are identical owing to isospin symme-
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try, the results obtained for the charge-conjugated partner of the 𝑇 +
𝑐𝑐, namely

the 𝑇 −
̄𝑐 ̄𝑐, are exactly the same. This behavior contrasts with that observed in

a dense nuclear medium, where a clear charge-conjugation asymmetry arises,
depending on the molecular probability.

In the following section, we discuss the results obtained in the HQSS
symmetric 𝐷∗𝐷∗ sector, paying attention to the thermal behavior of the HQSS
sibling of the 𝑇𝑐𝑐(3875), as we did when studying the modifications due to the
nuclear density of these states.

4.4.3 Results for the HQSS partner: the 𝑇 ∗
𝑐𝑐(4016)
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Figure 4.14: Real (solid) and imaginary (dashed) parts of the 𝐷∗𝐷∗ loop
function at several temperatures, ranging from 𝑇 = 0 to 𝑇 =150 MeV.

The 𝑇 +
𝑐𝑐, interpreted as a 𝐷∗𝐷 bound state, with quantum numbers 𝐼(𝐽𝑃) =

0(1+), is expected to have a HQSS partner in the 𝐼(𝐽𝑃) = 0(1+) 𝐷∗𝐷∗ channel,
referred to as 𝑇𝑐𝑐(4016)∗. Although not yet experimentally confirmed, theory
predicts its mass to lie roughly one pion mass above the 𝑇𝑐𝑐, leading to a similar
or slightly larger binding energy. Estimates suggest a binding of about 1.5 MeV
for 𝑇 ∗

𝑐𝑐, compared to 0.8 MeV for 𝑇𝑐𝑐 [52]. In this section, and similarly to the
study of Sect. 2.5.4, the parameters of the potential are fixed to produce a 𝑇 ∗

𝑐𝑐
pole in the 𝐷∗𝐷∗ amplitude, and the analysis explores variations within the
expected binding energy range of 0.8–1.6 MeV.

The temperature effects are incorporated through the loop function of
Eq. (4.70), which in this case involves only the lowest-lying charmed vector
mesons. Results are shown in Fig. 4.14 for several temperatures. The behavior
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Figure 4.15: Squared modulus of the 𝐷∗𝐷∗ amplitudes obtained by solving the
BSE using the 𝑉𝐴 potential, as a function of the center-of-mass energy 𝐸, for
several values of the hot pion bath temperature (different line colors) and for
different values of the molecular probability 𝑃0. The bands cover the solutions
corresponding to taking the 𝑇 ∗+

𝑐𝑐 binding energy to be in the interval [0.8, 1.6].

of this loop function closely resembles that of the 𝐷𝐷∗ loop discussed earlier in
Fig. 4.10, with the main distinction being a shift in the position of the threshold.
The thermal effects manifest as a pronounced increase in the imaginary part of
the loop and a shift of the unitarity threshold towards lower energies.

In Fig. 4.15 we present the results for the 𝒯-matrix obtained with the type–𝐴
interaction kernel. The corresponding amplitudes stemming from the type–𝐵
kernel, although differing from 𝒯𝐴 at small compositeness, exhibit an overall
behavior comparable to that discussed in Fig. 4.11 for the 𝐷𝐷∗ channel, aside
from the expected mass shift in this new system. The LECs of the 𝐷∗𝐷∗

effective interaction are fixed to reproduce both the molecular probability 𝑃0
indicated in each plot and the vacuum mass of the 𝑇 ∗

𝑐𝑐, assumed to lie 0.8–1.6
MeV below the 𝐷∗𝐷∗ threshold. This range of binding energies, introduced
to account for systematic uncertainties of the model, generates a band of
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𝒯–matrix solutions, shown in Fig. 4.15. As in the study of nuclear-density
effects on the 𝑇–matrices in Sect. 2.5, the amplitudes in Fig. 4.15 display a
behavior qualitatively similar to that of the 𝐷∗𝐷 case. Thermal effects become
increasingly significant at large values of the molecular probability, while the
uncertainty associated with the 𝑇 ∗

𝑐𝑐 binding energy produces only a minor band
compared to the much larger temperature-driven modifications.

4.5 Conclusions
In this chapter, we have investigated the behavior of hadrons at finite tempera-
ture, and shown results for the exotic doubly charmed state 𝑇𝑐𝑐(3875)+ and its
HQSS partner, the 𝑇 ∗

𝑐𝑐(4016). We began in Sect. 4.2 by introducing the ITF,
emphasizing the statistical origin of thermal modifications for both fermions and
bosons. Sect. 4.3 was devoted to two-meson scattering in a hot medium. First,
we revisited the general framework for two-meson scattering in a many-body
system, originally presented in Sect. 2.4, and introduced the modifications
induced by the thermal medium through the two-meson loop function. Then,
we presented the computation of this finite-temperature two-meson loop within
the ITF, followed by a discussion on the required 𝐷 and 𝐷∗ spectral functions,
summarizing the formalism and results of Refs. [211, 316]. Finally, in Sect. 4.4,
we presented our results for the spectral properties of the tetraquark-like states
𝑇𝑐𝑐(3875)+ and 𝑇 ∗

𝑐𝑐(4016)+, described as isoscalar 𝐷𝐷∗ and 𝐷∗𝐷∗ 𝑆–wave
bound states, respectively, in a hot pion environment.

At zero temperature—in close analogy with the nuclear matter study of
Chapt. 2—we have employed two families of energy-dependent Bethe–Salpeter
kernels, with their LECs tuned so as to perform a systematic exploration of the
compositeness parameter. Finite-temperature effects up to 𝑇 = 150 MeV were
incorporated through the 𝐷(∗) thermal spectral functions of Ref. [316], which
were implemented in the propagators within the ITF.

Our results show significant modifications of the 𝐷(∗)𝐷∗ scattering am-
plitudes already at 𝑇 = 80 MeV. These arise from the dressing of the two
open-charm meson loop functions with the 𝐷 and 𝐷∗ spectral functions, which
soften and shift the onset of the unitarity cut of the imaginary part toward lower
energies as the temperature increases. The real part evolves consistently, with
the cusp at the 𝐷𝐷∗ threshold decreasing at higher temperatures. We then
examined the sensitivity of the thermal line shapes of these tetraquark-like
states to their Weinberg molecular content. The 𝐷(∗)𝐷∗ scattering amplitudes
and the 𝑇 (∗)

𝑐𝑐 spectral functions have been found to vary more rapidly with
temperature for large molecular probabilities than for low ones. Furthermore,
the widths grow substantially, leading to the dissolution of these states above
𝑇 ∼ 100 − 120 MeV. In contrast, for small molecular components, the ther-
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mal modifications are milder and depend strongly on the choice of the BSE
interaction kernel.

Together, these findings highlight that experimental determinations of
𝐷(∗)𝐷∗ scattering amplitudes at finite temperature—such as those achievable in
RHIC or the LHC—can provide valuable insight into the molecular nature of the
𝑇𝑐𝑐(3875)+ and 𝑇𝑐𝑐(4016)∗+. Moreover, by combining the thermal line-shape
patterns of these states with future measurements at FAIR (CBM, PANDA) of
their spectral properties in dense nuclear matter (as discussed in Chap. 2), as
well as of their antiparticles, it should be possible to place strong constraints
on the structure and composition of these exotic tetraquark-like states.



5

Three–body bound states: the
𝐷𝑁𝐷∗ system

5.1 Introduction
Three–body bound states have attracted increasing attention in recent years,
with a comprehensive overview provided in the review of Ref. [325] (see Table 1
therein). Additional perspectives are offered in Ref. [326], which discusses
different strategies for extracting information on the nature of such states from
experimental data. A complementary argument is made in Ref. [327], where
it is emphasized that, although meson number is not conserved—favoring the
decay of multimeson systems into states with fewer mesons—flavor is conserved
in strong interactions. As a result, multimeson states with different flavor
content are expected to be relatively stable. Another mechanism that enhances
stability is large spin, since high-spin states typically decay through channels
requiring high orbital angular momentum, which are suppressed. Along these
lines, multi-rho configurations [328] as well as 𝐾∗ plus multi-rho states with
high spin [329] have been explored and found to be compatible with existing
experimental observations.

Among the many possibilities, systems containing one nucleon and two
mesons have received particular attention. The 𝜋𝜋𝑁 system was investigated
in Ref. [330], while the 𝐾𝐾̄𝑁 state was studied in Refs. [83, 331, 332]. More
recently, the systems 𝑁𝐷𝐾, 𝑁𝐷𝐾̄, and 𝑁𝐷𝐷̄ were addressed in Ref. [333]. In
particular, the 𝑁𝐷𝐷̄ configuration was shown to be bound [333]. This result is
not unexpected: the 𝐷𝐷̄ interaction is known to be rather strong and capable
of generating a bound state [188, 334–337], while the 𝐷𝑁 interaction is also
attractive, as will be discussed later in Sect. 5.2.1.

In the broader context of hadron physics, the discovery of the 𝑇𝑐𝑐 resonance
by the LHCb Collaboration [45, 142] represents a major milestone. As already
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mentioned, the 𝑇𝑐𝑐 has been widely interpreted as a 𝐷𝐷∗ molecular state [46–58,
60–62, 149, 338–340], raising the natural question of whether the 𝐷𝑁𝐷∗ system
could also form a bound state. This possibility has already been addressed in
Ref. [341] using the Gaussian expansion method. Alternative interpretations
in terms of compact tetraquarks have also been proposed [65, 66, 342–347].
However, a detailed analysis in Ref. [246] shows that, although the pole position
alone cannot exclude a compact tetraquark description, the predicted scattering
lengths and effective ranges in that scenario are in strong disagreement with
current experimental data.

The work of Ref. [341] constructs the potentials for the 𝐷𝑁, 𝐷∗𝑁, and 𝐷𝐷∗

interactions within a one-boson-exchange model, and subsequently applies the
Gaussian expansion method [348, 349] to investigate the binding of the 𝐷𝑁𝐷∗

system. Their analysis concludes that bound-state solutions are possible in the
channels 𝐼(𝐽𝑃) = 1

2 (1
2

+) and 1
2 (3

2
+), although the predicted binding energies

exhibit a strong dependence on the cutoff used in the loop regularization and on
other model parameters. As is common in variational approaches, the widths
of the states are not evaluated.

In the present chapter, we revisit this problem from a different perspective
by employing the fixed center approximation (FCA) to the Faddeev equations.
While this method is, in principle, less accurate, it benefits from being con-
strained by empirical input and, importantly, provides access to the widths of
the states [123, 325, 350].

This chapter is organized as follows. In Sect. 5.2 we introduce the three–
body scattering formalism within the FCA. We begin with the two–body
interactions in Sect. 5.2.1, which provide the basic building blocks of the
three–body amplitude. Sect. 5.2.2 presents the FCA framework, followed by
a discussion of the cluster form factor in Sect. 5.2.3. Applying these ingredients
to the 𝐷𝑁𝐷∗ system, we conclude the formalism with an analysis of the spin and
isospin structure of the amplitudes, as well as their normalization. The results
for the 𝐷𝑁𝐷∗ scattering amplitude are given in Sect. 5.3, where both systematic
and statistical uncertainties are assessed in a qualitative way. Finally, Sect. 5.4
summarizes our main findings.

5.2 Three–body 𝐷𝑁𝐷∗ scattering: formalism
The three–body problem has long been recognized as one of the most challeng-
ing questions in physics. Even in classical mechanics, it played a central role
in the development of dynamical systems theory, from Lagrange’s pioneering
solutions [351] to Poincaré’s groundbreaking insights into chaos [352, 353].
Its fame has even extended into popular culture, as in the science fiction
of Cixin Liu [354]. From the quantum perspective, the problem is equally
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demanding. Directly solving the Schrödinger equation for a three–body system
is hindered by the coexistence of multiple scattering channels and the difficulty
of disentangling different dynamical contributions [355].

A rigorous framework to address this challenge was provided by L. D. Fad-
deev in the 1960s, with the formulation of what are now known as the Faddeev
equations [356, 357]. These equations, in principle exact, decompose the
full three–body wave function into well-defined components corresponding to
the different pairwise interactions. While they represent a major theoretical
achievement, their exact solution remains highly non-trivial, and practical
applications often require controlled approximations.

One such approximation is the FCA to the Faddeev equations [328, 333,
358, 359]. The central idea is simple and physically intuitive: if two of
the particles form a tightly bound and relatively heavy cluster, it can be
treated as an approximately rigid core with which the third particle scatters.
In this way, the three–body problem is effectively reduced to a sequence of
two–body scatterings. The FCA thus provides a powerful and computationally
manageable tool, especially relevant in hadronic and nuclear physics, where
cluster structures are common [360]. Although approximate, it has been
successfully applied to identify bound states and resonances, demonstrating
its utility as a bridge between the exact but difficult Faddeev framework and
phenomenological descriptions.

The applicability of the FCA depends crucially on the stability of the chosen
cluster. This requirement is naturally satisfied when the two–body subsystem is
strongly bound and when the external particle is lighter than the constituents
of the cluster. In principle, one might consider the 𝐷𝐷∗ system—identified
with the 𝑇𝑐𝑐—as the cluster, with the nucleon acting as the external particle.
However, this possibility is discarded: the very small binding energy of the
𝑇𝑐𝑐 (0.36 MeV with respect to the 𝐷∗+𝐷0 threshold [45]) makes it unlikely to
survive the interaction with a nucleon without being broken apart. By contrast,
both the 𝐷𝑁 and 𝐷∗𝑁 systems are predicted to be more strongly bound in a
variety of models, making them more suitable candidates for the role of the
cluster within the FCA framework.

In what follows, we primarily focus on the configuration with a 𝐷∗𝑁 cluster
and an external 𝐷 meson, while also examining the complementary case of
a 𝐷𝑁 cluster with an external 𝐷∗. We will first discuss the model used for
these interactions. Once this issue has been settled, we will examine the FCA
formalism.

5.2.1 𝐷∗𝑁, 𝐷𝑁 and 𝐷𝐷∗ two body interactions

In this section, we briefly discuss the interaction model used for the 𝐷∗𝑁, 𝐷𝑁,
and 𝐷𝐷∗ systems, which is central for analyzing the three–body interaction in
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the FCA. These interactions were already brought up when studying the 𝑇𝑐𝑐
in a dense nuclear medium in Chapter 2. However, in this chapter, we take a
simplified model; thus, a brief discussion of them is in order here.

We begin by discussing the 𝐷𝐷∗ interaction, which has recently become
a popular topic in hadron physics. The discovery of the 𝑇𝑐𝑐 state by the
LHCb Collaboration [45] has stimulated extensive studies of the 𝐷𝐷∗ system,
where the 𝑇𝑐𝑐 naturally emerges as a dynamically generated state [46–64]. As
discussed in Chapter 2, although compact tetraquark interpretations of the
𝑇𝑐𝑐 have also been proposed [65, 66], the near-threshold location of the state
with respect to 𝐷∗+𝐷0 and 𝐷∗0𝐷+ strongly suggests that hadronic degrees
of freedom must be explicitly included in order to achieve a quantitative
description of the experimental data [146].

Furthermore, the 𝐷𝑁 interaction has been the subject of intense study.
Early work in Refs. [279, 280] approached it by analogy with the 𝐾̄𝑁 in-
teraction. More refined calculations were later carried out in Refs. [210,
222, 223, 281, 361], where all coupled channels to 𝐷𝑁 were considered, and
their dynamics described through vector-meson exchange—a mechanism that,
under some approximations, fulfills the chiral symmetry of the chiral SU(3)
Lagrangian [362] (see Appendix A of Ref. [363] for practical applications). In
these studies, the free parameters, in particular the cutoffs regulating the loops,
were fitted by requiring that the interaction generates the Λ𝑐(2595) resonance.
An alternative view was presented in Ref. [220], where a meson-exchange model
constrained by the 𝑆𝑈(6)lsf × 𝐻𝑄𝑆𝑆 spin–flavor symmetry1 was employed,
mixing pseudoscalar-baryon and vector-baryon channels. In that framework, it
was found that the Λ𝑐(2595) also couples strongly to 𝐷∗𝑁, and that the latter
channel predominantly generates the Λ𝑐(2625). Similar results were obtained
in Ref. [256]. The possible interpretation of Λ𝑐(2625) (3/2−) as the spin
partner of Λ𝑐(2595) (1/2−) has been revisited in Ref. [364] within a heavy-quark
spin-flavor symmetry approach supplemented by lattice QCD input, showing
that significant deviations from the simple HQSS-partner picture are possible.

There are nonetheless strong arguments suggesting that the Λ𝑐(2595) is
not predominantly a molecular state of 𝐷𝑁, 𝜋Σ𝑐, or related channels, in
analogy to the Λ(1405). Whereas the higher Λ(1405) pole (Λ(1420)) lies only
about 10 MeV below the 𝐾̄𝑁 threshold, the Λ𝑐(2595) is located approximately
200 MeV below the 𝐷𝑁 threshold. In this region, constituent quark model
calculations predict nearby states [365], which could account, at least in part,
for the Λ𝑐(2595). This interpretation is discussed in Ref. [366] and elaborated
further in Ref. [367]. Additional evidence comes from coupled-channel studies of

1This corresponds to an 𝑆𝑈(6)lsf × 𝐻𝑄𝑆𝑆 extension of the Weinberg–Tomozawa 𝜋𝑁
interaction, where“lsf”denotes light quark spin–flavor symmetry and HQSS stands for heavy-
quark spin symmetry.
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pseudoscalar-baryon and vector-baryon systems. In Ref. [368], the two sectors
were coupled through pion exchange, while each sector was described via vector
exchange. Tensor exchange was found to be negligible both in SU(2) [369] and
SU(3) [370], and likewise in extensions to the charm sector [371]. With suitable
choices of cutoff parameters, this approach successfully reproduces the Λ𝑐(2595)
(1/2−) and Λ𝑐(2625) (3/2−). However, when the same parameters are applied
to hidden-charm systems [372], the predicted masses lie significantly below the
experimentally observed 𝑃𝑐 states [137]. This indicates that the large cutoff
values needed to accommodate Λ𝑐(2595) and Λ𝑐(2625) as molecular states are
incompatible with the spectroscopy of the 𝑃𝑐 states. Conversely, adopting
cutoffs consistent with the 𝑃𝑐 sector suggests that Λ𝑐(2595) and Λ𝑐(2625)
cannot be understood as pure molecular states.

More realistic intermediate scenarios have been put forward. For instance,
Ref. [341] proposes that the Λ𝑐(2940) could be interpreted as a 𝐷∗𝑁 molecular
state, in line with earlier suggestions [373–378]. A recent work [379] highlights
the newly reported Λ𝑐(2910) from the Belle Collaboration and suggests that
the Λ𝑐(2940) and Λ𝑐(2910) may correspond to the 3/2− and 1/2− 𝐷∗𝑁 states
(or vice versa). In this chapter we adopt the same perspective. Based on the
analysis of Ref. [368] for Λ∗

𝑐 states and Ref. [380] for the 𝑃𝑐(4440) (3/2−) and
𝑃𝑐(4457) (1/2−), we favor the assignment Λ𝑐(2940) (1/2−) and Λ𝑐(2910) (3/2−).
An alternative interpretation is proposed in the pionless theory of Ref. [381],
where the spin-parities of 𝑃𝑐(4440) and 𝑃𝑐(4457) are reversed. While we prefer
the first assignment, results for both scenarios will be discussed. Finally, heavy-
quark symmetry arguments imply the existence of a 𝐷𝑁 bound state at a mass
around

2940 + 2910
2

− 𝑀𝐷∗ + 𝑀𝐷 ≃ 2783 MeV.

Interestingly, there is indeed a Λ∗
𝑐 resonance near this energy, the Λ𝑐(2765), with

currently unknown spin and parity. We interpret this state as the heavy-quark
spin partner of Λ𝑐(2940) and Λ𝑐(2910), corresponding to a 𝐷𝑁 bound state
with 𝐽𝑃 = 1/2−.

Form of the two–body scattering amplitudes

To describe the various two–body interactions required in this work, we adopt a
simplified model in which each scattering amplitude is dominated by the most
relevant resonance in the corresponding channel. Accordingly, the amplitudes
are parametrized by a single Breit–Wigner distribution, which provides an
adequate description in the energy region around the resonance. In addition,
we neglect isovector contributions and restrict our analysis to the dominant
isoscalar amplitudes.
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In more detail, for the 𝐷𝐷∗ interaction we take the following amplitude:

𝑡𝐼=0
𝐷𝐷∗(𝑠) = (𝑔𝐼=0

𝐷𝐷∗)2

𝑠 − 𝑀2
𝑇𝑐𝑐

+ 𝑖𝑀𝑇𝑐𝑐
Γ𝑇𝑐𝑐

, (5.1)

for which we take the experimental values of 𝑀𝑇𝑐𝑐
and Γ𝑇𝑐𝑐

of Ref. [45]:2

𝑀𝑇𝑐𝑐
= 𝑀𝐷0𝐷∗+ − 360 keV, Γ𝑇𝑐𝑐

= 48 keV. (5.2)

We obtain the coupling to the isoscalar 𝐷𝐷∗ channel from the analysis of
Ref. [47]. However, in this reference, only the couplings to the physical channels
𝐷∗0𝐷+ and 𝐷∗+𝐷0 are given. Therefore, we need to perform a change of basis
to the isospin states. This is done as described in the following.

The isoscalar combination is taken as3

|𝐷𝐷∗, 𝐼 = 0⟩ = − 1√
2

(|𝐷+𝐷∗0⟩ − |𝐷0𝐷∗+⟩) . (5.3)

From here, we obtain

⟨𝐷𝐷∗, 𝐼 = 0|𝑡|𝐷𝐷∗, 𝐼 = 0⟩ = 1
2

(𝑡11 − 𝑡12 − 𝑡21 + 𝑡22) , (5.4)

where the subscripts 1 and 2 in the 𝑡 amplitudes stand for the particle-basis
states 𝐷+𝐷∗0 and 𝐷0𝐷∗+, respectively, so that

𝑡12 ≡ ⟨𝐷+𝐷∗0|𝑡|𝐷0𝐷∗+⟩, (5.5)

and similarly for the remaining matrix elements. By writing the amplitudes in
the particle basis as

𝑡𝑖𝑗 =
𝑔𝑖𝑔𝑗

𝑠 − 𝑀2
𝑇𝑐𝑐

+ 𝑖𝑀𝑇𝑐𝑐
Γ𝑇𝑐𝑐

, (5.6)

the coupling to the isoscalar channel of Eq. (5.1) results in the following
expression:

(𝑔𝐼=0
𝐷𝐷∗)2 = 1

2
(𝑔2

𝐷+𝐷∗0 + 𝑔2
𝐷0𝐷∗+ − 2𝑔𝐷+𝐷∗0𝑔𝐷0𝐷∗+) = (𝑔𝐷+𝐷∗0 − 𝑔𝐷0𝐷∗+√

2
)

2

.

(5.7)
2Since we treat the resonance width as constant, the amplitude does not strictly satisfy

elastic unitarity. Our FCA approach of Eq. (5.21) nevertheless relies on the assumption that
the underlying two–body amplitudes are unitary. We expect the resulting deviation to be
small compared to other sources of uncertainty in our approach, especially when studying the
sub-threshold region.

3Note that this definition is consistent with the (𝐷+, −𝐷0), (𝐷∗+, −𝐷∗0) isospin doublet
convention, which is the same used in the analysis of Sect. 2.5.1, cf. Eq. (2.133).
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Using now the values from Ref. [47]:

𝑔𝐷+𝐷∗0 = −3921 MeV, 𝑔𝐷0𝐷∗+ = 3658 MeV, (5.8)

one finds
𝑔𝐼=0

𝐷𝐷∗ = 5359 MeV . (5.9)

With this, the amplitude of Eq. (5.1) is completely defined.
We deal next with the 𝐷𝑁 interaction, which we parametrize as

𝑡𝐼=0
𝐷𝑁(𝑠) = 𝑔2

𝐷𝑁√
𝑠 − 𝑀Λ𝑐(2765) + 𝑖ΓΛ𝑐(2765)/2

, (5.10)

with 𝑀Λ𝑐(2765) and ΓΛ𝑐(2765) corresponding to Λ𝑐(2765) as listed in the PDG
[18],

𝑀Λ𝑐(2765) = 2766.6 MeV, ΓΛ𝑐(2765) = 50 MeV. (5.11)

Contrary to the case of the 𝑇𝑐𝑐, we do not rely on any previous model
calculations for the coupling of the Λ𝑐(2765) to the isoscalar 𝐷𝑁 channel.
Instead, we determine 𝑔𝐷𝑁 through Weinberg’s compositeness condition [209],
assuming a fully molecular Λ𝑐(2765).4 Specifically, we use the expression of
Eq. (59) in Ref. [226], adapted in Appendix D to the normalization of Eq. (5.10).
This leads to

𝑔2
𝐷𝑁 =

𝑀Λ∗
𝑐

4𝑀𝑁𝜇
16𝜋𝛾, 𝛾 = √2𝜇𝐵Λ∗

𝑐
. (5.12)

Applied to the case at hand, 𝜇 denotes the 𝐷𝑁 reduced mass, 𝑀Λ∗
𝑐

is the mass
of the Λ𝑐(2765) resonance and 𝐵 its binding energy with respect to the 𝐷𝑁
threshold. Numerically, we obtain

𝑔𝐷𝑁 = 3.70, (5.13)

a value consistent with the couplings reported for the Λ∗
𝑐 states in Ref. [368].

It is worth noting that the corresponding scattering length predicted within
this model is

𝑎 = (1.25 − 𝑖 0.73) fm.

The real part agrees, within uncertainties, with the result of Ref. [382],
obtained from the analysis of the 𝑝𝐷0 mass distribution near threshold in the
Λ𝑏 → 𝜋−𝑝𝐷0 decay, after accounting for the opposite sign convention of 𝑎 (the
imaginary part is not quoted in Ref. [382]).

4This resonance may also contain a molecular Σ𝑐𝜋 component, as discussed in Ref. [367].
In the present exploratory study, however, we do not consider this possibility, nor do we
include the potential contribution from the quark-model radial 2𝑆 excitation.
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For the 𝐷∗𝑁 interaction, two spin channels are possible: 𝑆𝑃 = 1/2− and
3/2−. We assume these to be dominated by the Λ𝑐(2940) and Λ𝑐(2910) reso-
nances, respectively, as discussed at the beginning of this section. Accordingly,
we model the scattering amplitudes as

𝑡𝐼=0, 𝑆=1/2
𝐷∗𝑁 (𝑠) =

(𝑔𝑆=1/2
𝐷∗𝑁 )2

√
𝑠 − 𝑀Λ𝑐(2940) + 𝑖ΓΛ𝑐(2940)/2

, (5.14)

𝑡𝐼=0, 𝑆=3/2
𝐷∗𝑁 (𝑠) =

(𝑔𝑆=3/2
𝐷∗𝑁 )2

√
𝑠 − 𝑀Λ𝑐(2910) + 𝑖ΓΛ𝑐(2910)/2

. (5.15)

The mass and width parameters of the resonances in these previous expressions
are taken from the PDG [18].

𝑀Λ𝑐(2940) = 2939.6 MeV , ΓΛ𝑐(2940) = 20 MeV , (5.16)
𝑀Λ𝑐(2910) = 2914 MeV , ΓΛ𝑐(2910) = 52 MeV . (5.17)

The couplings of the 𝐷∗𝑁 pair to the corresponding Λ∗
𝑐 states are again

obtained using Eq. (5.12), taking now into account the mass and binding of
the corresponding Λ∗

𝑐 resonance and the reduced mass of the 𝐷∗𝑁 system. This
yields the following coupling constants.

𝑔𝑆=1/2
𝐷∗𝑁 = 2.63, 𝑔𝑆=3/2

𝐷∗𝑁 = 3.71. (5.18)

These values are consistent with those reported in Ref. [368]. A summary table
with the resonance parameters used in our model is presented in Tab. 5.1.

System 𝐼(𝐽𝑃) Resonance 𝐵 [MeV] Γ [MeV] 𝑔

𝐷𝐷∗ 0(1+) 𝑇𝑐𝑐(3875)+ 1 0.048 5359 MeV

𝐷𝑁 0 (1
2

−) Λ𝑐(2765)+ 40 50 3.70

𝐷∗𝑁
0 (1

2
−) Λ𝑐(2940)+ 8 20 2.63

0(3
2

−) Λ𝑐 (2910)+ 33 52 3.71

Table 5.1: Summary of the resonances taken into account in the different
two–body amplitudes. 𝐵 represents their binding energy with respect to the
threshold of the considered channel, in the isospin limit. Γ and 𝑔 represent their
width and coupling, respectively.

Before proceeding any further, however, a discussion on the applicability of
Eq. (5.12) for the determination of the couplings of the different Λ∗

𝑐 resonances
is appropriate. The coupling of Eq. (5.12) was derived in Ref. [226] under the
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assumption of a bound state generated by an energy-independent potential in
the limit of small binding energy. The precise meaning of “small binding” is,
however, somewhat ambiguous. In the present case the binding energies of the
different Λ∗

𝑐 resonances considered range from 8 to 40 MeV, corresponding to
𝛾 = 100 ∼ 220 MeV. It is usually assumed that the approximation holds when
𝛾 ≪ 𝑚𝜋, which is clearly not satisfied for all the cases under consideration here.
Nevertheless, the formula appears to remain accurate even at binding energies
larger than naively expected.

A useful comparison can be made with the 𝐷∗
𝑠0(2317), which is predomi-

nantly a 𝐾𝐷 bound state in 𝐼 = 0, with a binding energy of about 45 MeV
relative to the 𝐾𝐷 threshold. Applying Eq. (5.12) directly to this system
yields 𝑔𝐷𝐾 = 12.57 GeV. This value is essentially identical to the result
𝑔𝐷𝐾 = 12.6 GeV obtained in Ref. [383] using lattice QCD input, and is also
consistent with the determination of Ref. [207] from 𝐾+𝐷0, 𝐾0𝐷+ correlation
functions computed within the local hidden gauge approach [27, 28, 32, 384],
which was tuned to reproduce the correct binding energy of the state and yields
𝑔𝐾𝐷 = 10.5 ± 3.3 GeV. Another illustrative case is the 𝑓2(1270), commonly
interpreted as a 𝜌𝜌 bound state in 𝐼 = 0, 𝐽 = 2, with an even larger binding
energy of about 270 MeV relative to the nominal 𝜌𝜌 threshold (ignoring the 𝜌
width). For this system, the coupling obtained using the formalism of Ref. [226]
(for meson–meson interactions) agrees very well with the more sophisticated
treatment of Ref. [385], as discussed in Ref. [371].

Once all the two–body interactions and dominant states have been pre-
sented, we examine in the next section the three–body formalism, based on the
FCA.

5.2.2 The fixed center approximation

In this section, we summarize the main features of the FCA. Consider three
particles, 𝐴, 𝐵, and 𝐶. The FCA assumes that two of them (say, 𝐴 and 𝐵) in-
teract strongly and form a (quasi-)bound cluster, denoted by Λ∗, whose internal
dynamics are encoded in its wave function (or form factor).5 The third particle,
𝐶, can undergo successive scatterings with the constituents of the cluster.
Representative contributions to the total amplitude are shown in Fig. 5.1. We
denote by 𝑡1 ≡ 𝑡𝐶𝐴 and 𝑡2 ≡ 𝑡𝐶𝐵 the two–body scattering amplitudes of 𝐶 with
𝐴 and 𝐵, respectively. Panels a) and b) display single–scattering processes off 𝐴
and 𝐵, while c) illustrates a typical multiple–scattering sequence of 𝐶 between
the two constituents. By contrast, diagrams with two consecutive scatterings
from the same constituent [panel d)] are not included explicitly: their effect is

5Throughout this chapter, the term “bound” is used in a loose sense, referring to narrow
near-threshold states. In practice, the cluster is a resonance with a finite width.
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𝑡1

𝑎)

𝑡2

𝑏) 𝑐) 𝑑)

Figure 5.1: Representative FCA diagrams, with increasing time in the upward
direction. a) Single scattering of 𝐶 from 𝐴 (𝑡1). b) Single scattering of 𝐶 from 𝐵
(𝑡2). c) Multiple 𝐶 scatterings alternating between 𝐴 and 𝐵. d) Two consecutive
scatterings from the same constituent (double counting of the two–body 𝑡1 and
thus omitted in the FCA series).

assumed to be already summed in the corresponding two–body amplitude 𝑡1
or 𝑡2, and adding them would double count the 𝐶𝐴 or 𝐶𝐵 dynamics.6 The
interaction between 𝐴 and 𝐵 inside the cluster does not appear as an explicit
vertex in these graphs; instead, it enters through the cluster wave function/form
factor that weights each 𝐶-cluster collision in momentum space.

Next, we present how to perform the resummation of all diagrams within
the FCA. Two partition amplitudes, 𝑇1 and 𝑇2, are defined, each accounting for
every sequence of interactions that begins with the external particle 𝐶 scattering
off particle 𝐴 or 𝐵, respectively, of the compound system. Therefore, the sum
of these two partition amplitudes results in the full amplitude for the process,
𝑇. Diagrammatically, one can write

𝑇1 = + + + ⋯ , (5.19a)

𝑇2 = + + + ⋯ , (5.19b)

6In the present approach, we assume that the 𝑡1 and 𝑡2 amplitudes are approximately
unitary. If unitarity is not fulfilled, additional contributions from diagrams of the type shown
in panel d) must be included. However, as discussed in Refs. [386, 387], this effect is most
relevant above threshold.
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𝑇 = 𝑇1 + 𝑇2. (5.19c)

Translating now the previous diagrams into mathematical expressions (employ-
ing the usual on-shell factorization), we can write

𝑇1 = 𝑡1 + 𝑡1𝐺𝑡2 + 𝑡1𝐺𝑡2𝐺𝑡1 + ⋯ = 𝑡1 + 𝑡1𝐺𝑇2, (5.20a)

𝑇2 = 𝑡2 + 𝑡2𝐺𝑡1 + 𝑡2𝐺𝑡1𝐺𝑡2 + ⋯ = 𝑡2 + 𝑡2𝐺𝑇1, (5.20b)

𝑇 = 𝑇1 + 𝑇2, (5.20c)

where 𝐺 is the 𝐶 particle propagator weighted by the cluster form factor (we
shall show this in Sect. 5.2.3). With this, we have obtained a coupled system
of algebraic equations, whose solution,

𝑇 = 𝑡1 + 𝑡2 + 2𝑡1𝐺𝑡2
1 − 𝑡1𝐺𝑡2𝐺

, (5.21)

presents an approximation to the three–body transition matrix 𝑇.
It should be noted that the normalization of the two–body amplitudes 𝑡1

and 𝑡2 does not, in general, coincide with that of the three–body amplitude
𝑇. To ensure the consistency of Eq. (5.21), we introduce properly normalized
quantities ̃𝑡1, ̃𝑡2, and ̃𝐺, a point that will be discussed in detail in Sect. 5.2.5.

Another important point concerns the kinematic dependence of the ampli-
tudes. While the full three–body amplitude 𝑇 depends on the invariant mass
of the entire system, 𝑠, the two–body amplitudes 𝑡1 and 𝑡2 involve instead
the invariant masses of the subsystems 𝐶𝐴 and 𝐶𝐵, respectively. In our
approach, these are evaluated approximately in the rest frame of the Λ∗ cluster
by neglecting the internal momentum of 𝐴 and 𝐵, leading to

𝑠1 = (𝑝𝐶 + 𝑝𝐴)2 ≃ 𝑀2
𝐶 + (𝜉𝑀𝐴)2 + 2𝑝0

𝐶(𝜉𝑀𝐴), (5.22a)
𝑠2 = (𝑝𝐶 + 𝑝𝐵)2 ≃ 𝑀2

𝐶 + (𝜉𝑀𝐵)2 + 2𝑝0
𝐶(𝜉𝑀𝐵), (5.22b)

where
𝑝0

𝐶 =
𝑠 − 𝑀2

𝐶 − 𝑀2
Λ∗

2𝑀Λ∗
(5.23)

denotes the energy of particle 𝐶 in this frame. We include a correction factor
𝜉 = 𝑀Λ∗/(𝑀𝐴 + 𝑀𝐵) for the masses of the 𝐴 and 𝐵 particles inside the Λ∗

cluster, in order to account for their off-shellness.7 With this factor, the effective
(off-shell) masses satisfy the natural condition that their sum equals the cluster
mass:

𝜉𝑀𝐴 + 𝜉𝑀𝐵 = 𝑀Λ∗ . (5.24)
7The expressions for 𝑠1 and 𝑠2 differ slightly from those used in Refs. [329, 333], but

become exactly equivalent in the limit 𝜉 → 1.
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Up to this point, we have introduced the main equation governing the
three–body amplitude within the FCA formalism [Eq. (5.21)], together with
the relations connecting the two–body invariant masses 𝑠1 and 𝑠2—which enter
the factorized two–body amplitudes—to the total three–body invariant mass 𝑠.
We now turn to the discussion of the loop function 𝐺 appearing in Eq. (5.21).
For this purpose, we will define the cluster form factor.

5.2.3 The loop function and form factor of the cluster

In order to illustrate how the form factor of the cluster weights the 𝐶 propagator,
in this section we compute the 𝑆–matrix elements corresponding to the diagrams
of a single and double scattering, following the reasoning of Ref. [328]. In doing
this, we will obtain an expression for the 𝐺 factor appearing in Eqs. (5.20).

Single scattering contribution

p𝐴

p′
𝐴

p𝐵

p′
𝐵

k

k′

𝑡1

Figure 5.2: Single-scattering diagram where particle 𝐶 (four momentum k)
interacts with particle 𝐴 (four momentum p𝐴), described by the amplitude 𝑡1.

Let us examine the single-scattering diagram entering the 𝑇1 contribution of
Eq. (5.19a), shown in Fig. 5.2. The wave functions of the incoming (outgoing)
𝐶 particle are taken as plane waves with four-momentum k (k′),8 normalized
in a box of volume 𝒱. The internal wave functions of the 𝐴 and 𝐵 particles are
denoted 𝜑𝐴 and 𝜑𝐵, respectively. For normalization, 𝐴 and 𝐶 are treated as
mesons, while 𝐵 is treated as a baryon, in analogy with the 𝐷𝑁𝐷∗ system. At
the same time, some generality is preserved, as we will also allow for clusters
formed by either 𝐷𝑁 or 𝐷∗𝑁 pairs. Under these definitions, the 𝑆–matrix
element for single scattering takes the form

8In this chapter, as in the rest of the thesis, we adopt the following notation: four-vectors
are written in bold (k), three-vectors with the usual vector notation (𝑘⃗), and the magnitude
of a three-vector without additional markings (𝑘).
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𝑆(1) = ∫ 𝑑4x 1
√2𝜔𝑘𝒱

𝑒−𝑖kx 1
√2𝜔𝑘′𝒱

𝑒𝑖k′x

× 1
√2𝜔𝑝𝐴

𝑒−𝑖𝑝0
𝐴𝑥0 𝜑𝐴( ⃗𝑥) 1

√2𝜔𝑝′
𝐴

𝑒𝑖𝑝′0
𝐴 𝑥0 𝜑∗

𝐴( ⃗𝑥) (−𝑖𝑡1). (5.25)

The momentum labels used here are shown schematically in Fig. 5.2, and the
asterisk denotes the complex conjugation of the wave function. We also assume
that the 𝐵 particle in the cluster acts as a spectator, so that 𝑝0

𝐵 = 𝑝′0
𝐵 (impulse

approximation). Integrating now over the time component 𝑥0 imposes energy
conservation at the interaction point x:

∫ 𝑑𝑥0𝑒−𝑖𝑘0𝑥0𝑒𝑖𝑘′0𝑥0𝑒−𝑖𝑝0
𝐴𝑥0𝑒𝑖𝑝′0

𝐴 𝑥0 = 2𝜋 𝛿(𝑘0 + 𝑝0
𝐴 − 𝑘′0 − 𝑝′0

𝐴 )

= 2𝜋 𝛿(𝑘0 + 𝐸Λ∗ − 𝑘′0 − 𝐸′
Λ∗). (5.26)

Given the normalization condition of the 𝐵 particle wave function, we can
multiply the expression of Eq. (5.25) by

∫ 𝑑3𝑥′𝜑𝐵( ⃗𝑥′)𝜑∗
𝐵( ⃗𝑥′) = 1, (5.27)

and then perform a change of variables to the center-of-mass and relative
coordinates,

𝑅⃗ = 𝑀𝐴 ⃗𝑥 + 𝑀𝐵 ⃗𝑥′

𝑀𝐴 + 𝑀𝐵
, ⃗𝑟 = ⃗𝑥 − ⃗𝑥′. (5.28)

With this, it is customary to the write the product of 𝐴 and 𝐵 wave functions
as the product of the center-of-mass wave function—described by a plane wave
due to its free motion—and the relative wave function ΨΛ∗ :

𝜑𝐴( ⃗𝑥)𝜑𝐵( ⃗𝑥′) = 1√
𝒱

𝑒𝑖𝐾⃗Λ∗ ⋅𝑅⃗ΨΛ∗( ⃗𝑟), (5.29a)

𝜑∗
𝐴( ⃗𝑥)𝜑∗

𝐵( ⃗𝑥′) = 1√
𝒱

𝑒−𝑖𝐾⃗′
Λ∗ ⋅𝑅⃗Ψ∗

Λ∗( ⃗𝑟). (5.29b)

Here, 𝐾⃗Λ∗ (𝐾⃗′
Λ∗) denotes the incoming (outgoing) three-momentum of the

cluster. Carrying out the integral over the center-of-mass coordinate gives total
three-momentum conservation:

∫ 𝑑3𝑅 𝑒𝑖𝑘⃗⋅𝑅⃗𝑒−𝑖𝑘⃗′⋅𝑅⃗𝑒𝑖𝐾⃗Λ∗ ⋅𝑅⃗𝑒−𝑖𝐾⃗′
Λ∗ ⋅𝑅⃗ = (2𝜋)3 𝛿3 (𝑘⃗ + 𝐾⃗Λ∗ − 𝑘⃗′ − 𝐾⃗′

Λ∗) . (5.30)

Likewise, integrating over the relative coordinate yields

∫ 𝑑3𝑟 𝑒𝑖
𝑀𝐵
𝑀 𝑘⃗⋅ ⃗𝑟𝑒−𝑖

𝑀𝐵
𝑀 𝑘⃗′⋅ ⃗𝑟ΨΛ∗( ⃗𝑟)Ψ∗

Λ∗( ⃗𝑟) = 𝐹Λ∗ [𝑀𝐵
𝑀

(𝑘⃗′ − 𝑘⃗)] , (5.31)
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where 𝑀 = 𝑀𝐴 + 𝑀𝐵. This expression—the Fourier transform of the spatial
probability density of the cluster—defines the cluster form factor 𝐹Λ∗ . It is
customary to approximate the momentum of the external particle 𝐶 as nearly
unchanged, so that

𝑘⃗ ≃ 𝑘⃗′ → 𝐹Λ∗ [𝑀𝐵
𝑀

(𝑘⃗′ − 𝑘⃗)] ≃ 𝐹Λ∗ [ ⃗0] = 1, (5.32)

with the form factor normalized to unity at the origin due to the normalization
of the ΨΛ∗( ⃗𝑟) wave function. Finally, the 𝑆–matrix element for the diagram of
Fig. 5.2 takes the form

𝑆(1) = −𝑖𝑡1
1

𝒱2
1

√2𝜔𝑘

1
√2𝜔𝑘′

1
√2𝜔𝑝𝐴

1

√2𝜔𝑝′
𝐴

× (2𝜋)4𝛿4 (k + KΛ∗ − k′ − K′
Λ∗) . (5.33)

One can proceed similarly for the single scattering diagram involving 𝑡2 and
find an analogous result.

Double scattering contribution

p𝐴

p′
𝐴

p𝐵

p′
𝐵

k

q

k′

𝑡1 𝑡2

Figure 5.3: Double-scattering of the external particle 𝐶 (momentum k) with
particles 𝐴 (p𝐴) and 𝐵 (p𝐵) inside the cluster.

Next, we evaluate the amplitude of the double–scattering contribution,
shown in the second diagram of Eq. (5.19a) and depicted in Fig. 5.3. The
corresponding 𝑆–matrix element is

𝑆(2) = ∫ 𝑑4x ∫ 𝑑4x′ 1
√2𝜔𝑝𝐴

𝑒−𝑖𝑝0
𝐴𝑥0𝜑𝐴( ⃗𝑥) 1

√2𝜔𝑝′
𝐴

𝑒𝑖𝑝′0
𝐴 𝑥0𝜑∗

𝐴( ⃗𝑥)
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× √
𝑀𝐵
𝐸𝑝𝐵

𝑒−𝑖𝑝0
𝐵𝑥′0𝜑𝐵( ⃗𝑥′)√

𝑀𝐵
𝐸𝑝′

𝐵

𝑒𝑖𝑝′0
𝐵 𝑥′0𝜑∗

𝐵( ⃗𝑥′)

× 1
√2𝜔𝑘𝒱

𝑒−𝑖kx 1
√2𝜔𝑘′𝒱

𝑒𝑖k′x′

× 𝑖 ∫ 𝑑4q
(2𝜋)4

𝑒𝑖q(x−x′)

q2 − 𝑀2
𝐶 + 𝑖𝜀

(−𝑖𝑡1)(−𝑖𝑡2). (5.34)

As in the single-scattering case, integration over the time components of x and
x′ enforces energy conservation at each interaction point:

∫ 𝑑𝑥0 𝑒−𝑖𝑝0
𝐴𝑥0𝑒𝑖𝑝′0

𝐴 𝑥0𝑒−𝑖𝑘0𝑥0𝑒𝑖𝑞0𝑥0 = 2𝜋 𝛿(𝑝0
𝐴 + 𝑘0 − 𝑝′0

𝐴 − 𝑞0) , (5.35)

∫ 𝑑𝑥′0 𝑒−𝑖𝑝0
𝐵𝑥′0𝑒𝑖𝑝′0

𝐵 𝑥′0𝑒𝑖𝑘0𝑥′0𝑒−𝑖𝑞0𝑥′0 = 2𝜋 𝛿(𝑝0
𝐵 + 𝑞0 − 𝑝′0

𝐵 − 𝑘′0) . (5.36)

Implementing the change of variables of Eq. (5.28), the integral over the center-
of-mass coordinate yields overall three-momentum conservation, identical to
Eq. (5.30). The remaining integral over the relative coordinate gives

∫ 𝑑3𝑟 ΨΛ∗( ⃗𝑟)Ψ∗
Λ∗( ⃗𝑟)𝑒𝑖

𝑀𝐵
𝑀 𝑘⃗⋅ ⃗𝑟𝑒𝑖

𝑀𝐴
𝑀 𝑘⃗′⋅ ⃗𝑟𝑒−𝑖 ⃗𝑞⋅ ⃗𝑟 = 𝐹Λ∗( ⃗𝑞 − 𝑀𝐵𝑘⃗ + 𝑀𝐴𝑘⃗′

𝑀
) . (5.37)

Altogether, the double-scattering 𝑆–matrix element becomes

𝑆(2) = −𝑖(2𝜋)4 𝛿4(k + KΛ∗ − k′ − K′
Λ∗)

× 1
𝒱2

1
√2𝜔𝑘

1
√2𝜔𝑘′

1
√2𝜔𝑝𝐴

1

√2𝜔𝑝′
𝐴

√
𝑀𝐵
𝐸𝑝𝐵

√
𝑀𝐵
𝐸𝑝′

𝐵

× ∫ 𝑑3𝑞
(2𝜋)3 𝐹Λ∗(𝑞) 1

(𝑞0)2 − ⃗𝑞2 − 𝑀2
𝐶 + 𝑖𝜀

𝑡1𝑡2. (5.38)

Factoring out the two–body amplitudes 𝑡1 and 𝑡2 (on-shell approximation) and
comparing with Eq. (5.20a), the loop function 𝐺 can be identified, up to a
normalization, as

𝐺 = ∫ 𝑑3𝑞
(2𝜋)3

𝐹Λ∗(𝑞)
(𝑞0)2 − ⃗𝑞2 − 𝑀2

𝐶 + 𝑖𝜀
, (5.39)

that is, the propagator of the exchanged particle 𝐶 weighted by the form factor
of the Λ∗ cluster.



168 5. THREE–BODY BOUND STATES: THE 𝐷𝑁𝐷∗ SYSTEM

Two remarks are in order in these previous two expressions. First, we shall
evaluate 𝑞0 in the Λ∗ rest frame, so that

𝑞0(𝑠) =
𝑠 − 𝑀2

𝐶 − 𝑀2
Λ∗

2𝑀2
Λ∗

, (5.40)

where 𝑠 represents the total invariant mass 𝑠 = (k + KΛ∗)2, and we have
considered 𝑝0

𝐴 = 𝑝′0
𝐴 and 𝑝0

𝐵 = 𝑝′0
𝐵 , which is true on average. Second, we have

neglected
𝑀𝐵𝑘⃗ + 𝑀𝐴𝑘⃗′

𝑀
≃ ⃗0 (5.41)

in the argument of the form factor, which is also true on average.

Evaluation of the form factor

We now turn to the evaluation of the form factor that first appeared in
Eq. (5.37). For this purpose, we follow the approach of Ref. [226], also adopted
in Ref. [328]. The formalism of Ref. [226] was already introduced in Sect. 2.4.2 in
connection with the concept of compositeness (or molecular probability). Here,
we make use of it to obtain the explicit expression of the bound-state wave
function in momentum space, which provides the basis for the form factor.

In Ref. [226], a separable potential of the form

𝑉 ( ⃗𝑞, ⃗𝑞′) = 𝑣 𝜃(𝑞max − 𝑞) 𝜃(𝑞max − 𝑞′) (5.42)

was employed, where 𝜃 denotes the Heaviside step function and 𝑞max is a three-
momentum cutoff. This choice reduces the standard integral equation for the
scattering matrix to a simple algebraic relation. In this thesis, we consistently
adopt the on-shell prescription, which achieves the same simplification.

Starting from the time-independent Schrödinger equation governing the
relative motion of the 𝐴𝐵 system, with the cluster state |ΨΛ∗⟩ as an eigenstate
of energy 𝐸Λ∗ ,

𝐻̂|ΨΛ∗⟩ = 𝐸Λ∗ |ΨΛ∗⟩, (5.43)

we separate the Hamiltonian into a free part, 𝐻̂0, and an interaction part, ̂𝑉,
so that

(𝐻̂0 + ̂𝑉 )|ΨΛ∗⟩ = 𝐸Λ∗ |ΨΛ∗⟩, (5.44)

|ΨΛ∗⟩ =
̂𝑉

𝐸Λ∗ − 𝐻̂0
|ΨΛ∗⟩. (5.45)

Inserting two complete sets of momentum states, the wave function in momen-
tum space can be written as
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⟨ ⃗𝑝|ΨΛ∗⟩ = ∫ 𝑑3𝑞
(2𝜋)3 ∫ 𝑑3𝑞′

(2𝜋)3 ⟨ ⃗𝑝| 1
𝐸Λ∗ − 𝐻̂0

| ⃗𝑞⟩ ⟨ ⃗𝑞| ̂𝑉 | ⃗𝑞′⟩ ⟨ ⃗𝑞′|ΨΛ∗⟩

= 𝑣 𝜃(𝑞max − 𝑝)
𝐸Λ∗ − 𝜔𝐴(𝑝) − 𝜔𝐵(𝑝)

∫ 𝑑3𝑞′

(2𝜋)3 ⟨ ⃗𝑞′|ΨΛ∗⟩. (5.46)

Given that the quantity

𝑣 ∫ 𝑑3𝑞′

(2𝜋)3 ⟨ ⃗𝑞′|ΨΛ∗⟩ = 𝑔 (5.47)

is a constant, the momentum-space wave function of the bound state takes the
form

⟨ ⃗𝑝|ΨΛ∗⟩ = 𝜃(𝑞max − 𝑝) 𝑔
𝑀Λ∗ − 𝜔𝐴(𝑝) − 𝜔𝐵(𝑝)

. (5.48)

Since |ΨΛ∗⟩ is an eigenstate of the relative-motion Hamiltonian of the 𝐴𝐵
system, the above expression is written in the rest frame of the Λ∗ cluster.
There, ⃗𝑝 denotes the relative momentum, 𝑀Λ∗ the cluster mass, and 𝑔 the
coupling constant, while 𝜔𝐴(𝐵) are the relativistic energies of particles 𝐴 and
𝐵. The coordinate-space wave function then follows as the Fourier transform:

⟨ ⃗𝑟|ΨΛ∗⟩ = ∫ 𝑑3𝑝
(2𝜋)3 𝑒𝑖𝑝⃗⋅ ⃗𝑟 ⟨ ⃗𝑝|ΨΛ∗⟩. (5.49)

We now compute the Λ∗ cluster form factor from its definition in Eq. (5.31),
using the coordinate-space cluster wave function. This gives

̃𝐹Λ∗(𝑞) = ∫ 𝑑3𝑟 𝑒−𝑖 ⃗𝑞⋅ ⃗𝑟

× ∫ 𝑑3𝑝
(2𝜋)3 𝑒𝑖𝑝⃗⋅ ⃗𝑟 𝜃(𝑞max − 𝑝) 1

𝑀Λ∗ − 𝜔𝐴(𝑝) − 𝜔𝐵(𝑝)

× ∫ 𝑑3𝑝′

(2𝜋)3 𝑒𝑖𝑝⃗′⋅ ⃗𝑟 𝜃(𝑞max − 𝑝′) 1
𝑀Λ∗ − 𝜔𝐴(𝑝′) − 𝜔𝐵(𝑝′)

= ∫ 𝑑3𝑝
(2𝜋)3 𝜃(𝑞max − 𝑝) 𝜃(𝑞max − | ⃗𝑞 − ⃗𝑝|)

× 1
𝑀Λ∗ − 𝜔𝐴(𝑝) − 𝜔𝐵(𝑝)

1
𝑀Λ∗ − 𝜔𝐴(| ⃗𝑞 − ⃗𝑝|) − 𝜔𝐵(| ⃗𝑞 − ⃗𝑝|)

. (5.50)

Finally, we normalize the form factor so that it equals unity at the origin:

𝐹Λ∗(𝑞) =
̃𝐹Λ∗(𝑞)
̃𝐹Λ∗(0)

. (5.51)
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Figure 5.4: Form factors of the considered Λ∗
𝑐 states as a function of the three-

momentum.

For the evaluation of Eq. (5.50), we adopt a cutoff of 𝑞max = 600 MeV. This
value is of natural size and was also found suitable for reproducing the 𝑃𝑐𝑠
states in Ref. [388]. In what follows, we consider three possible clusters. The
𝐷𝑁 system is associated with the Λ𝑐(2765) resonance, while the 𝐷∗𝑁 system
may correspond either to the Λ𝑐(2940) or to the Λ𝑐(2910), depending on its spin
assignment. Figure 5.4 displays the form factors obtained for each of these three
resonances, which serve as input for the subsequent calculations. It is apparent
that the Λ𝑐(2940) form factor is significantly narrower than those of the other
states. This behavior reflects its relatively shallow binding: a less bound state
exhibits a broader wave function in coordinate space, which translates into a
narrower distribution in momentum space.

Once the form factors are determined, the 𝐺 function of Eq. (5.39) can
be directly evaluated. It should be emphasized that, unlike the standard
loop functions discussed in previous chapters, 𝐺 does not require any explicit
regularization. This is because the loop integral remains finite: the cluster
form factor suppresses contributions from large momenta and vanishes in the
high-momentum limit.

In the following sections, two additional aspects must be addressed in order
to complete the formalism. On the one hand, it is necessary to carefully account
for the spin and isospin structure of the amplitudes. On the other hand, the
normalization of these amplitudes also requires attention.
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5.2.4 Isospin and spin considerations

In this section we analyze the isospin and spin structure of the two–body
amplitudes 𝑡1 and 𝑡2, which enter the three–body amplitude through Eq. (5.21)
within the FCA. Two cluster configurations are considered: one where the 𝑁𝐷∗

pair forms the cluster, denoted 𝐷(𝑁𝐷∗), and another where the 𝑁𝐷 pair forms
the cluster, denoted 𝐷∗(𝑁𝐷).

𝐷(𝑁𝐷∗) configuration

𝑁

𝑁

𝐷∗

𝐷∗

𝐷

𝐷

𝑡1

Figure 5.5: FCA single-scattering diagram with an external 𝐷 meson scattering
off a nucleon within the 𝑁𝐷∗ cluster, corresponding to the configuration we
shall refer to as 𝐷(𝑁𝐷∗).

We begin by examining the isospin structure of the two–body amplitudes,
focusing first on the case where the 𝑁𝐷∗ pair forms either the Λ𝑐(2940) or the
Λ𝑐(2910), both of which are isoscalar resonances. In the FCA framework, the
external 𝐷 meson interacts with one of the cluster constituents. As a starting
point, we consider the case where the 𝐷 meson interacts with the nucleon (see
Fig. 5.5). The relevant isospin doublets are

𝑁 = (𝑝
𝑛) , 𝐷(∗) = ( 𝐷(∗)+

−𝐷(∗)0) , (5.52)

where 𝑝 and 𝑛 denote the proton and neutron, and the standard isospin
convention is adopted for the 𝐷(∗) mesons.

Take for example the case of an external 𝐷+ meson (the particular choice
of the third component of isospin is irrelevant owing to the Wigner–Eckart
theorem). Since the 𝑁𝐷∗ system is coupled in an isoscalar state, the full three–
body state will have isospin 1/2. We may write it as
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𝐷+

|1
2 , +1

2⟩ ⊗
𝑁𝐷∗

|0, 0⟩ =
𝐷+

|1
2 , +1

2⟩ ⊗ 1√
2

[
𝑝

|1
2 , +1

2⟩ ⊗
−𝐷∗0

|1
2 , −1

2⟩ −
𝑛

|1
2 , −1

2⟩ ⊗
𝐷∗+

|1
2 , +1

2⟩]

= 1√
2

{
𝐷𝑁

|1, 1⟩ ⊗
−𝐷∗0

|1
2 , −1

2⟩ − 1√
2

(
𝐷𝑁

|1, 0⟩ +
𝐷𝑁

|0, 0⟩) ⊗
𝐷∗+

|1
2 , +1

2⟩} . (5.53)

The corresponding 𝑇–matrix element is

𝑡𝐼=1/2
1 =

𝐷+

⟨1
2 , +1

2 | ⊗
𝑁𝐷∗

⟨0, 0|𝑡𝐷𝑁

𝐷+

|1
2 , +1

2⟩ ⊗
𝑁𝐷∗

|0, 0⟩

= 1
2

{𝑡𝐼=1
𝐷𝑁 + 1

2
(𝑡𝐼=1

𝐷𝑁 + 𝑡𝐼=0
𝐷𝑁)} = 1

4 𝑡𝐼=0
𝐷𝑁 + 3

4 𝑡𝐼=1
𝐷𝑁 . (5.54)

A similar analysis applies when the external 𝐷 meson interacts with the 𝐷∗

inside the cluster, leading to

𝑡𝐼=1/2
2 = 1

4 𝑡𝐼=0
𝐷𝐷∗ + 3

4 𝑡𝐼=1
𝐷𝐷∗ . (5.55)

Following Refs. [328, 333, 389], and as already noted in Sect. 5.2.1, we assume
that the dominant contribution arises from the isoscalar channel,

𝑡𝐼=1/2
1 ≃ 1

4 𝑡𝐼=0
𝐷𝑁 , (5.56a)

𝑡𝐼=1/2
2 ≃ 1

4 𝑡𝐼=0
𝐷𝐷∗ . (5.56b)

The validity of this assumption will be reassessed when discussing our results.
Next, we deal with the spin structure of the amplitudes. Now, the structure

depends on whether the 𝑁𝐷∗ system is clustered together in either the Λ𝑐(2940)
or the Λ𝑐(2910), which we take to be spin 1/2 and 3/2, respectively. Let us
focus firstly on the spin 1/2 case, where an external 𝐷 meson interacts with the
nucleon within the cluster. We take the system in the following state

𝐷
|0, 0⟩ ⊗

𝑁𝐷∗

|1
2 , +1

2⟩ =
𝐷

|0, 0⟩ ⊗ [ 1√
3

𝑁
|1
2 , +1

2⟩ ⊗
𝐷∗

|1, 0⟩ − √2
3

𝑁
|1
2 , −1

2⟩ ⊗
𝐷∗

|1, +1⟩]

= 1√
3

𝐷𝑁
|1
2 , +1

2⟩ ⊗
𝐷∗

|1, 0⟩ − √2
3

𝐷𝑁
|1
2 , −1

2⟩ ⊗
𝐷∗

|1, +1⟩. (5.57)

With this, the 𝐷𝑁 𝑇–matrix element is found to have the following decompo-
sition:

𝑡𝐽=1/2
1 =

𝐷
⟨0, 0| ⊗

𝑁𝐷∗

⟨1
2 , +1

2 |𝑡𝐷𝑁

𝐷
|0, 0⟩ ⊗

𝑁𝐷∗

|1
2 , +1

2⟩

= 1
3

𝑡𝑆=1/2
𝐷𝑁 + 2

3
𝑡𝑆=1/2
𝐷𝑁 = 𝑡𝑆=1/2

𝐷𝑁 . (5.58)
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Since the 𝐷 meson is a scalar particle and the nucleon has spin 1/2, the 𝐷𝑁
amplitude can only be spin 1/2. We can perform a similar reasoning for the
𝐷𝐷∗ amplitude and readily find

𝑡𝐽=1/2
2 = 𝑡𝑆=1

𝐷𝐷∗ . (5.59)

If we now consider the 𝑁𝐷∗ cluster to have spin 3/2, the state of the system
being

𝐷
|0, 0⟩ ⊗

𝑁𝐷∗

|3
2 , +3

2⟩ =
𝐷

|0, 0⟩ ⊗
𝑁

|1
2 , +1

2⟩ ⊗
𝐷∗

|1, +1⟩, (5.60)

we similarly find

𝑡𝐽=3/2
1 = 𝑡𝑆=1/2

𝐷𝑁 , (5.61)

𝑡𝐽=3/2
2 = 𝑡𝑆=1

𝐷𝐷∗ . (5.62)

In summary, bringing together all the previous results on spin and isospin,
we have two possible channels:

𝐼(𝐽𝑃) = 1
2(1

2
+), 𝑁𝐷∗ bound into Λ𝑐(2940),

⎧{
⎨{⎩

𝑡𝐼=1/2,𝐽=1/2
1 = 1

4
𝑡𝐼=0, 𝑆=1/2
𝐷𝑁

𝑡𝐼=1/2,𝐽=1/2
2 = 1

4
𝑡𝐼=0, 𝑆=1
𝐷𝐷∗

,

(5.63a)

𝐼(𝐽𝑃) = 1
2(3

2
+), 𝑁𝐷∗ bound into Λ𝑐(2910),

⎧{
⎨{⎩

𝑡𝐼=1/2,𝐽=3/2
1 = 1

4
𝑡𝐼=0, 𝑆=1/2
𝐷𝑁

𝑡𝐼=1/2,𝐽=3/2
2 = 1

4
𝑡𝐼=0, 𝑆=1
𝐷𝐷∗

.

(5.63b)

As we can see, the amplitudes 𝑡1 and 𝑡2 are the same in both total spin scenarios.
This is due to the fact that the 𝐷 meson carries no spin, so the total spin is
solely determined by the spin of the 𝑁𝐷∗ pair, whether they are bound into the
Λ𝑐(2940) or the Λ𝑐(2910). Therefore, total spin dependence will enter through
the form factor within the loop function 𝐺, not through the amplitudes 𝑡1 and
𝑡2. In the alternate configuration studied in the following subsection, this will
not be the case.

𝐷∗(𝑁𝐷) configuration

Alternatively, one may assume the cluster to be composed of the 𝐷 and the
nucleon, with the 𝐷∗ as the external particle, see Fig. 5.6. We denote this
configuration as 𝐷∗(𝑁𝐷). From the isospin point of view, this case is fully
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𝑁

𝑁

𝐷

𝐷

𝐷∗

𝐷∗

𝑡1

Figure 5.6: FCA single-scattering diagram with an external 𝐷∗ meson interact-
ing with the nucleon inside the 𝑁𝐷 cluster, corresponding to the configuration
𝐷∗(𝑁𝐷).

equivalent to the 𝐷(𝑁𝐷∗), since all particles are isodoublets and combine in
the same way, leading to

𝑡𝐼=1/2
1 ≃ 1

4 𝑡𝐼=0
𝐷∗𝑁, (5.64a)

𝑡𝐼=1/2
2 ≃ 1

4 𝑡𝐼=0
𝐷𝐷∗ . (5.64b)

With respect to the spin structure, the 𝑁𝐷 cluster only has one spin
possibility: 𝑆 = 1

2 , corresponding to the Λ𝑐(2765). Depending on how the
external 𝐷∗ spin adds up to the spin of the cluster, we can have total spin
𝐽 = 1

2 and 3
2 . Starting with the first possibility, we may write the state of the

system as
𝐷∗𝑁𝐷
|1
2 , 1

2⟩ = √2
3

𝐷∗

|1, +1⟩ ⊗
𝑁𝐷

|1
2 , −1

2⟩ − 1√
3

𝐷∗

|1, 0⟩ ⊗
𝑁𝐷

|1
2 , +1

2⟩ =
𝐷∗𝑁

|1
2 , 1

2⟩ ⊗
𝐷

|0, 0⟩. (5.65)

Thus, for the 𝐷∗𝑁 interaction we have

𝑡𝐽=1/2
1 = 𝑡𝑆=1/2

𝐷∗𝑁 , (5.66)

since the total spin is determined by the 𝐷∗𝑁 pair, the 𝐷 being a scalar meson.
With respect to the 𝐷∗𝐷 interaction, we can easily find

𝑡𝐽=1/2
2 = 𝑡𝑆=1

𝐷∗𝐷, (5.67)

since there is no other possibility for the combination of the scalar 𝐷 with the
vector 𝐷∗.

Turning now to the total spin 𝐽 = 3/2 case, an analogous argument leads
to the amplitudes

𝑡𝐽=3/2
1 = 𝑡𝑆=3/2

𝐷∗𝑁 , (5.68)
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𝑡𝐽=3/2
2 = 𝑡𝑆=1

𝐷∗𝑁. (5.69)

In summary, taking together the isospin and spin decompositions previously
shown, in this scenario we have the following:

𝐼(𝐽𝑃) = 1
2(1

2
+), 𝑁𝐷 bound into Λ𝑐(2765),

⎧{
⎨{⎩

𝑡𝐼=1/2,𝐽=1/2
1 = 1

4
𝑡𝐼=0, 𝑆=1/2
𝐷∗𝑁

𝑡𝐼=1/2,𝐽=1/2
2 = 1

4
𝑡𝐼=0, 𝑆=1
𝐷𝐷∗

,

(5.70a)

𝐼(𝐽𝑃) = 1
2(3

2
+), 𝑁𝐷 bound into Λ𝑐(2765),

⎧{
⎨{⎩

𝑡𝐼=1/2,𝐽=3/2
1 = 1

4
𝑡𝐼=0, 𝑆=3/2
𝐷∗𝑁

𝑡𝐼=1/2,𝐽=3/2
2 = 1

4
𝑡𝐼=0, 𝑆=1
𝐷𝐷∗

.

(5.70b)

With respect to the 𝐷(𝑁𝐷∗) configuration diagrammatically reviewed in
Eq. (5.63), the spin dependence is contained in the 𝑡1 amplitudes, while the
form factor is the same in both spin scenarios. The 𝑡2 amplitude, corresponding
to 𝐷𝐷∗, is the same in both approaches. Note that, in all scenarios, a universal
factor of 1/4 multiplies the isoscalar amplitudes. While this reduces the overall
strength of the total 𝑇–matrix, it does not significantly affect the position of
the generated peaks. This completes our discussion of the isospin structure.

5.2.5 Some considerations on the normalizations

Next, we deal with the important issue of the normalization of the different
𝑇–matrix elements and loops. As one can see from the FCA equations for
the three–body amplitude, Eq. (5.20), the amplitude 𝑇 must share the same
normalization as the different terms 𝑡1, 𝑡2, 𝑡1𝐺𝑡2, and so on. Actually, analyzing
these three first terms is sufficient to impose the correct normalization on all
the terms of the perturbative resummation. We will refer to the correctly
normalized amplitudes as ̃𝑡1 and ̃𝑡2, and similarly for the loop function ̃𝐺.

We impose that the total 𝑇–matrix is normalized as a two–body 𝐶Λ∗

scattering, with 𝐶 the external particle and Λ∗ the cluster. Let us apply this for
the 𝐷(𝑁𝐷∗) scenario, where the 𝑁𝐷∗ system is bound into either the Λ𝑐(2940)
or the Λ𝑐(2910) depending on the spin. The 𝑆–matrix element corresponding
to the full amplitude will be written as

𝑆 = −𝑖(2𝜋)4𝛿4 (⋯) × 1
𝒱2

1
√2𝜔𝐷

1
√2𝜔′

𝐷
√𝑀Λ∗

𝐸Λ∗
√𝑀Λ∗

𝐸′
Λ∗

𝑇 . (5.71)
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where the 𝛿4(⋯) denotes the total energy-momentum conservation delta, and
the subscript Λ∗ denotes the Λ∗

𝑐(2940)/Λ∗
𝑐(2910) state. Turning now to the 𝐷𝑁

𝑆–matrix, we may write it as

𝑆(1) = −𝑖(2𝜋)4𝛿4 (⋯) × 1
𝒱2

1
√2𝜔𝐷

1
√2𝜔′

𝐷
√𝑀𝑁

𝐸𝑁
√𝑀𝑁

𝐸′
𝑁

𝑡1, (5.72)

while for 𝐷𝐷∗ we have

𝑆(2) = −𝑖(2𝜋)4𝛿4 (⋯) × 1
𝒱2

1
√2𝜔𝐷

1
√2𝜔′

𝐷

1
√2𝜔𝐷∗

1
√2𝜔′

𝐷∗

𝑡2. (5.73)

Imposing now that both ̃𝑡1 and ̃𝑡2 have the same normalization as 𝑇, we have

√𝑀Λ∗

𝐸Λ∗
√𝑀Λ∗

𝐸′
Λ∗

̃𝑡1 = √𝑀𝑁
𝐸𝑁

√𝑀𝑁
𝐸′

𝑁
𝑡1 ⇒ ̃𝑡1 = 𝑡1, (5.74)

√𝑀Λ∗

𝐸Λ∗
√𝑀Λ∗

𝐸′
Λ∗

̃𝑡2 = 1
√2𝜔𝐷∗

1
√2𝜔′

𝐷∗

𝑡2 ⇒ ̃𝑡2 = 1
2𝑀𝐷∗

𝑡2. (5.75)

In these relations, we have approximated the different energies by their values
at zero three-momentum. Note that these relations do not depend on whether
we consider the 𝑁𝐷∗ system to be bound into the Λ𝑐(2940) or the Λ𝑐(2910).

We also need to pay attention to the normalization of the loop function
first presented in Eq. (5.39). For that, we analyze the normalization of the
double-scattering contribution to the 𝑆–matrix. In the normalization of the
full amplitude of Eq. (5.71), we would have

𝑆(2) = −𝑖(2𝜋)4𝛿4 (⋯) × 1
𝒱2

1
√2𝜔𝐷

1
√2𝜔′

𝐷
√𝑀Λ∗

𝐸Λ∗
√𝑀Λ∗

𝐸′
Λ∗

̃𝑡1
̃𝐺 ̃𝑡2. (5.76)

However, as seen in Eq. (5.38), we actually obtained

𝑆(2) = −𝑖(2𝜋)4 𝛿4(⋯) 1
𝒱2

1
√2𝜔𝐷

1
√2𝜔′

𝐷

1
√2𝜔𝐷∗

1

√2𝜔′
𝐷∗

√𝑀𝑁
𝐸𝑁

√𝑀𝑁
𝐸′

𝑁
𝑡1𝐺𝑡2.

(5.77)
Therefore, we need to impose the following normalization for the ̃𝐺 function:

√𝑀Λ∗

𝐸Λ∗
√𝑀Λ∗

𝐸′
Λ∗

̃𝑡1
̃𝐺 ̃𝑡2 = 1

√2𝜔𝐷∗

1

√2𝜔′
𝐷∗

√𝑀𝑁
𝐸𝑁

√𝑀𝑁
𝐸′

𝑁
𝑡1𝐺𝑡2

⇒ ̃𝑡1
̃𝐺 ̃𝑡2 = 1

2𝑀𝐷∗
𝑡1𝐺𝑡2. (5.78)
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Configuration 𝐼(𝐽𝑃) ̃𝑡1 ̃𝑡2
̃𝐺

𝐷(𝑁𝐷∗)
1
2(1

2
+) 1

4 𝑡𝐼=0,𝑆=1/2
𝐷𝑁

1
8𝑀𝐷∗

𝑡𝐼=0,𝑆=1
𝐷𝐷∗ ∫ 𝑑3𝑞

(2𝜋)3
𝐹Λ𝑐(2940)(𝑞)

(𝑞0)2− ⃗𝑞2−𝑀2
𝐷

1
2(3

2
+) idem idem ∫ 𝑑3𝑞

(2𝜋)3
𝐹Λ𝑐(2910)(𝑞)

(𝑞0)2− ⃗𝑞2−𝑀2
𝐷

𝐷∗(𝑁𝐷)
1
2(1

2
+) 1

4 𝑡𝐼=0,𝑆=1/2
𝐷∗𝑁

1
8𝑀𝐷

𝑡𝐼=0,𝑆=1
𝐷𝐷∗ ∫ 𝑑3𝑞

(2𝜋)3
𝐹Λ𝑐(2765)(𝑞)

(𝑞0)2− ⃗𝑞2−𝑀2
𝐷∗

1
2(3

2
+) 1

4 𝑡𝐼=0,𝑆=3/2
𝐷∗𝑁 idem idem

Table 5.2: Values of ̃𝑡1, ̃𝑡2 and ̃𝐺 entering the FCA equation for the three–body
amplitude in each possible spin channel, for the two cluster configurations
considered. The notation idem indicates that the corresponding entry is
identical to the one in the row immediately above.

Given the normalization of ̃𝑡1 and ̃𝑡2, this previous relation is trivially fulfilled
for

̃𝐺 = 𝐺. (5.79)

In the 𝐷∗(𝑁𝐷) configuration, the results are completely equivalent, pro-
vided we exchange the 𝐷 and 𝐷∗ mesons. Therefore, the correct normalization
of the amplitudes and loop function reads in this case

̃𝑡1 = 𝑡1, (5.80a)

̃𝑡2 = 1
2𝑀𝐷

𝑡2, (5.80b)

̃𝐺 = 𝐺. (5.80c)

In Table 5.2 we present a summary detailing the different normalizations
discussed here, as well as the spin-isospin structure of the amplitudes that
was presented in Sect, 5.2.4.

Having presented the FCA formalism and its application to the 𝐷𝑁𝐷∗

three–body system, we show in the next section our results for the 𝐷𝑁𝐷∗

amplitude.

5.3 Results for the three–body 𝐷𝑁𝐷∗ 𝑇–matrix
In Fig. 5.7 we present the squared amplitude |𝑇 |2 for the configuration 𝐷(𝑁𝐷∗),
where the 𝑁𝐷∗ subsystem is bound into either the Λ𝑐(2940) or the Λ𝑐(2910).
We assume 𝐽𝑃 = 1/2− for the Λ𝑐(2940) and 𝐽𝑃 = 3/2− for the Λ𝑐(2910).
Two prominent states are generated: one with total 𝐽𝑃 = 1/2+ and another
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Figure 5.7: |𝑇 |2 as a function of the total three–body energy
√

𝑠 for 𝑞max =
600 MeV, assuming the 𝑁𝐷∗ cluster to be bound into the Λ𝑐(2940) and Λ𝑐(2910)
with spins 1/2 and 3/2, respectively. The vertical dashed lines indicate the
thresholds of the Λ𝑐(2940)𝐷 and Λ𝑐(2910)𝐷 channels, while the vertical solid
line marks the position of the genuine three–body threshold (which, however,
has no impact on the calculation within the FCA).

with 𝐽𝑃 = 3/2+. With respect to the corresponding thresholds, 𝑀Λ𝑐(2940) +
𝑀𝐷 = 4807 MeV and 𝑀Λ𝑐(2910) + 𝑀𝐷 = 4781 MeV, the binding energies are
approximately 70 and 50 MeV, respectively. The resulting |𝑇 |2 distributions
exhibit clear peaks, whose widths—of the order of 90 MeV—reflect those of
the three–body system. Reversing the spin assignments of the Λ𝑐(2940) and
Λ𝑐(2910) states leads to equivalent results, with the 𝐽𝑃 assignments exchanged
(red solid line ↔ blue dashed line in Fig. 5.7). The position and width of the
states listed here are extracted from the inspection of |𝑇 |2. This extraction
is done in this way since it is not evident how to analytically continue the
amplitudes to unphysical Riemann sheets within the FCA framework, nor how
to relate possible pole structures to the physical properties observed on the real
energy axis.

It is interesting to discuss the origin of the structures observed in Fig. 5.7.
The peaks are largely driven by ̃𝑡1 (the 𝐷𝑁 amplitude of Eq. (5.10)) and
̃𝑡2 (corresponding to the 𝐷𝐷∗ amplitude, Eq. (5.1)) in Eq. (5.21), the latter

however playing a minor role. This follows from the relative strengths of the
underlying interactions: the 𝐷𝑁 system binds the Λ𝑐(2765) by about 40 MeV,
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Figure 5.8: Squared modulus of the amplitude 𝑇 (𝑠) in the 𝐷(𝑁𝐷∗) configura-
tion for the 𝐽𝑃 = 3

2
+ scenario, compared with the single-scattering amplitudes

̃𝑡1(𝑠1) and ̃𝑡2(𝑠2). As one can see, the features of the full amplitude basically
arise from the single-scattering amplitudes.

whereas the 𝐷𝐷∗ system forms the 𝑇𝑐𝑐 with only 360 keV of binding. Thus,
the 𝐷𝑁 force is far stronger than the 𝐷𝐷∗ one, yielding a physical picture in
which the nucleon acts as the glue binding both 𝐷 and 𝐷∗, with the direct 𝐷𝐷∗

interaction playing a negligible role.
This situation is illustrated in Fig. 5.8, where we present the squared

modulus of the three–body amplitude together with that of ̃𝑡1 and ̃𝑡2. Recall
that the single-scattering two–body amplitudes are taken as a function of the
invariant mass of the considered pair, which in turn depends on the total
invariant mass 𝑠, as defined in Eqs. (5.22). As shown in the figure, the narrow
peak observed in the 𝐽𝑃 = 3/2+ channel between thresholds originates from the
𝑇𝑐𝑐 amplitude. Additional structures appear near the thresholds, particularly
in the 𝐽𝑃 = 1/2+ channel, which may be interpreted as threshold effects or,
potentially, as less bound excited states of the system. Similar features have
been reported in the 𝐷∗𝐷∗𝐷∗ system [389], where they were identified as excited
states above the ground three–body configuration within ladder-resummed
amplitudes [390–392] and connected to the Efimov effect [393].

As an alternative, we also studied the configuration 𝐷∗(𝑁𝐷), where the
𝑁𝐷 pair forms the Λ𝑐(2765) (𝐽𝑃 = 1/2−) and the external particle is a 𝐷∗.
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Figure 5.9: |𝑇 |2 as a function of the total three–body energy
√

𝑠 for 𝑞max =
600 MeV, assuming the 𝑁𝐷 subsystem is bound into the Λ𝑐(2765). The vertical
lines indicate the thresholds of the relevant two- and three–body channels in
this scenario. This figure is modified with respect to Fig. 3 of Ref. [4]: the
results reported there had the offshellness factor 𝜉 appearing in Eqs. (5.22) set
to one.

The corresponding results are shown in Fig. 5.9. In this case, we find the 3/2+

state to be bound by about 70 MeV with respect to the 2765 MeV + 𝑀𝐷∗

threshold, while the 1/2+ state has likely become a virtual state, producing
a cusp at the Λ𝑐(2765)𝐷 threshold. Compared to Fig. 5.7, the most notable
change occurs for the 𝐽𝑃 = 1/2+ amplitude, where this cusp structure has
arisen. This reflects the smaller binding energy of the 1/2+ state relative to
the Λ𝑐(2765)𝐷∗ threshold. In this scenario, we also observe a secondary peak
between the Λ𝑐(2765)𝐷 threshold and the true three–body threshold, produced
again by the 𝑇𝑐𝑐 amplitude.

Note that the plot in Fig. 5.9 differs from Fig. 3 of Ref. [4]. The discrepancy
arises because, in that reference, the offshellness factor 𝜉 in the evaluation
of the two–body invariant masses (5.22) was set to unity, thereby neglecting
offshell effects on the cluster constituents. A comparison between the present
results and those of Ref. [4] thus illustrates how different approximations for
the invariant masses impact the resulting lineshapes, offering an estimate of the
associated uncertainties.

For completeness, the absolute masses extracted from the peak positions in
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𝐷(𝑁𝐷∗)

𝑞max [MeV] 𝐽𝑃 mass [MeV] width [MeV]

600
1/2+ 4738.6 91.4

3/2+ 4726.5 93.3

650
1/2+ 4738.6 91.9

3/2+ 4726.6 92.3

𝐷∗(𝑁𝐷)

𝑞max [MeV] 𝐽𝑃 mass [MeV] width [MeV]

600
1/2+ cusp —

3/2+ 4706.8 98.3

650
1/2+ cusp —

3/2+ 4706.9 97.6

Table 5.3: Masses and widths of the 𝐷𝑁𝐷∗ bound states (in MeV). The table
on the top shows the results obtained when assuming the 𝑁𝐷∗ pair to be bound,
while the table on the bottom corresponds to the case where the 𝑁𝐷 pair is
taken as the bound cluster.

both configurations, as well as the full widths at half maximum, are compiled
in Table 5.3. As seen in this table, the masses obtained for the 𝐽𝑃 = 3/2+ state
in both cluster configurations differ by about 20 MeV, which we interpret as
an estimate of the theoretical uncertainty inherent to the FCA approach. On
the other hand, while the width of the 3/2+ state remains nearly unchanged
across the two scenarios, the shape and possibly the nature of the 1/2+ state is
quite distinct when comparing both scenarios, a consequence of its proximity to
the Λ𝑐(2765)𝐷∗ threshold. Variations of the cutoff parameter 𝑞max induce only
negligible shifts in the peak positions and overall lineshapes. However, some of
the threshold-related structures are sensitive to the cutoff. In particular, the
narrow peak seen in the 3/2+ amplitude in Fig. 5.7—or in both amplitudes in
Fig. 5.9—between thresholds is strongly reduced for larger values of the cutoff
and for 𝑞max = 700 MeV we see that it nearly disappears. This behavior parallels
the findings of Ref. [393], where analogous excited states in the 𝐷∗𝐷∗𝐷∗ system
were suppressed when larger cutoffs were employed.
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Figure 5.10: |𝑡𝐷𝑁|2 from Eq. (5.10) as a function of √𝑠1 or as a function of√
𝑠, substituting 𝑠1 by Eq. (5.22) with 𝑞0 from Eq. (5.23). Figure taken from

Ref. [4].

At this point, an important observation is in order. Consider, for instance,
the case of 𝐷(𝑁𝐷∗) presented in Fig. 5.7, where we argued that the 𝐷𝑁 am-
plitude ̃𝑡1 largely drives the results. In the FCA approach, the system involves
explicitly both 𝐷𝑁 and 𝐷𝐷∗ interactions. The 𝐷𝑁 channel is dominated in
our model by the Λ𝑐(2765), which has a width of about 50 MeV, while in the
𝐷𝐷∗ channel the 𝑇𝑐𝑐 contributes only about 48 keV. Nevertheless, the resulting
width of the three–body system is around 90 MeV. Although this may appear
surprising, the explanation lies in the fact that the three–body amplitude is
expressed in terms of the total invariant mass

√
𝑠 of the system rather than

the two–body invariant mass √𝑠1. To illustrate this point, in Fig. 5.10 we
plot |𝑡𝐷𝑁|2 from Eq. (5.10) as a function of √𝑠1, treating 𝑠1 as an independent
variable. We also show it as a function of

√
𝑠, where 𝑠1 and 𝑠 are related through

Eq. (5.22), with 𝑞0 given by Eq. (5.23). Since the relation between 𝑠1 and 𝑠 is
linear, the use of

√
𝑠 as the variable effectively broadens the |𝑡𝐷𝑁|2 distribution.

Further discussion of this effect is given in Appendix E, where we also provide
a general derivation of the apparent width enhancement in many-body systems
and illustrate it with both the present case and the analogous situation of
nucleon–nucleus scattering in the limit of negligible nuclear binding energy.



5.3. RESULTS FOR THE THREE–BODY 𝐷𝑁𝐷∗ 𝑇–MATRIX 183

5.3.1 Consideration of 𝐷𝑁 isospin 𝐼 = 1

4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85 4.9
0

0.01

0.02

0.03

0.04

0.05

√
s [MeV]

|T
|2

[ M
eV

−
2
]

D(ND∗)

JP = 1
2

+

JP = 3
2

+

MΛc(2940) +MD

MΛc(2910) +MD

MN +MD∗ +MD

Figure 5.11: Same as Fig. 5.7, now including the 𝐷𝑁 𝐼 = 1 amplitude of
Eq. (5.54). Figure taken from Ref. [4].

We now return to our preferred configuration of a 𝐷 meson scattering
off the 𝑁𝐷∗ cluster. In Eq. (5.54), the amplitude 𝑡1 contained both 𝐼 = 0
and 𝐼 = 1 contributions, but only the isoscalar part was retained under the
assumption of its dominance. This assumption is well motivated: in most
molecular approaches, the 𝐷𝑁 interaction is considerably stronger in 𝐼 = 0
than in 𝐼 = 1. Nevertheless, many studies also predict the existence of an 𝐼 = 1
state, which is much less bound than its 𝐼 = 0 counterpart (see, e.g., Refs. [281,
368]). This has led to the interpretation of the Σ𝑐(2800), located near the 𝐷𝑁
threshold, as a dynamically generated 𝐷𝑁 state in the 𝐼 = 1 channel [341, 382].
Following this perspective, we describe the 𝐷𝑁 𝐼 = 1 amplitude as

𝑡𝐼=1
𝐷𝑁 = (𝑔𝐼=1

𝐷𝑁 )2
√𝑠1 − 𝑀Σ𝑐(2800) + 𝑖ΓΣ𝑐(2800)/2

, (5.81)

with the mass and width taken as

𝑀Σ𝑐(2800) = 2800 MeV, (5.82a)
ΓΣ𝑐(2800) = 75 MeV, (5.82b)
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in agreement with [18]. The coupling 𝑔𝐼=1
𝐷𝑁 , determined from Eq. (5.12), is found

to be 𝑔𝐼=1
𝐷𝑁 = 2.51. From this, we obtain the 𝐷𝑁 scattering length,

𝑎 = (0.20 − 𝑖 0.84) fm. (5.83)

The imaginary part is consistent with Ref. [382], while the real part, although
smaller in magnitude, has the same sign and is closer to the results of Refs. [220,
361].

In this analysis, we employ the full 𝑡1 amplitude of Eq. (5.54), rather than
the 𝐼 = 0 truncated form of Eq. (5.56). The resulting |𝑇 |2 distribution is
displayed in Fig. 5.11. The main peaks already present in Fig. 5.7 remain
essentially unchanged, but a new enhancement emerges between the two Λ∗𝐷
thresholds, most pronounced in the 𝐽𝑃 = 1/2+ channel. At the same time,
the smaller contribution from the 𝐷𝐷∗ amplitude and the threshold effects
seen in Fig. 5.7 vanish, replaced by the new isovector structure. Despite this
additional contribution, the overall |𝑇 |2 lineshape continues to be dominated
by the isoscalar 𝐷𝑁 amplitude of Eq. (5.10).

5.3.2 Uncertainties in our results and three–body decay chan-
nels

There remains the question of the uncertainties in our predictions, which we
now address using the Monte Carlo resampling method [194, 394, 395]. We
focus again on the case of 𝐷 scattering with the 𝑁𝐷∗ cluster, neglecting
the contribution of the isovector 𝑁𝐷 amplitude considered in the previous
subsection. The experimental uncertainties in the input masses and widths of
the two–body amplitudes are taken into account. For the Λ𝑐(2765), the PDG
[18] and the original measurement [396] quote a width of 50 MeV but provide
no error estimate. We therefore assign a conservative 20% uncertainty, treating
it as 50 ± 10 MeV. For the masses of the Λ𝑐(2765), Λ𝑐(2940), and Λ𝑐(2910), we
adopt the PDG values and errors,

𝑀Λ𝑐(2765) = 2766.6 ± 2.4 MeV, (5.84)
𝑀Λ𝑐(2940) = 2939.6 ± 1.5 MeV, (5.85)
𝑀Λ𝑐(2910) = 2914 ± 7 MeV, (5.86)

and for the Λ𝑐(2765) → 𝐷𝑁 coupling, we assume a 10% uncertainty, i.e., 𝑔𝐷𝑁 =
3.70 ± 0.37.

We then perform multiple runs, generating Gaussian-distributed random
values for these parameters within their quoted uncertainties,9 and extract the

9We neglect possible correlations of these values, since we do not have any experimental
indication of them.
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Figure 5.12: Same as Fig. 5.7, but now showing the mean values of the
𝐽𝑃 = 1/2+ and 3/2+ amplitudes, computed using Monte Carlo resam-
pling (solid lines). The transparent bands indicate the corresponding one–
standard–deviation uncertainties.

average peak position and width together with their standard deviations. For
the 𝐽𝑃 = 3/2+ channel (with similar results found for 𝐽𝑃 = 1/2+), we obtain

𝑀 = 4733 ± 7 MeV, Γ = 87 ± 13 MeV. (5.87)

In addition, and mirroring the results of Fig. 5.7, we show in Fig. 5.12 the
mean values obtained for the squared modulus of the amplitude in both spin
channels, together with the associated error bands, defined as the mean value
plus or minus one standard deviation.

Systematic uncertainties, stemming from the limitations of the FCA in
describing such systems, are harder to quantify. A reasonable estimate can be
inferred from the spread of results obtained with different cluster configurations
(see Table 5.3), which exceed the statistical errors of Eq. (5.87). Nevertheless,
even when these systematic differences are included, the predicted binding
and moderate widths strongly support the existence of these states and their
potential experimental observation.

Finally, let us address the origin of the widths of the predicted states, as this
is directly linked to their possible experimental observation. These widths arise
from the imaginary parts of the two–body amplitudes entering our calculation,
which themselves reflect the finite widths of the 𝑇𝑐𝑐 [Eq. (5.1)], the Λ𝑐(2765)
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[Eq. (5.10)], and the Λ𝑐(2940) and Λ𝑐(2910) [Eqs. (5.14)–(5.15)]. Since the
𝑇𝑐𝑐 width is extremely small, the dominant contributions come from the decay
channels of the Λ∗

𝑐 states. According to the PDG, their main decay modes are
Λ𝑐𝜋𝜋 and Σ𝑐𝜋. Thus, depending on the choice of cluster, the relevant decay
channels would be Σ𝑐𝜋𝐷∗ or Σ𝑐𝜋𝐷, with 𝐷𝑁𝐷 also kinematically allowed
in the 𝐷∗(𝑁𝐷) configuration. The experimental identification of possible
𝐷𝑁𝐷∗ three–body bound states therefore involves analyzing the invariant mass
distributions of these three-particle channels.

5.4 Conclusions
We have investigated the possible bound states of the 𝐷𝑁𝐷∗ system within
the FCA, which allows us to evaluate the three–body scattering amplitude
by selecting a bound two–body cluster and letting the third particle scatter
from its constituents. As the cluster, we first considered the 𝑁𝐷∗ system,
with the external particle being a 𝐷 meson. The discovery of the Λ𝑐(2940) and
Λ𝑐(2910), located near the 𝐷∗𝑁 threshold, has motivated their interpretation as
𝐷∗𝑁 molecular states with 𝐽𝑃 = 1/2− and 3/2−, respectively. The proximity
of such states to meson–baryon thresholds strongly supports their molecular
nature [143, 147], though alternative explanations exist [245, 246, 397], which
typically require unnaturally small scattering lengths and large effective ranges.
Through heavy-quark symmetry, we further associate the Λ𝑐(2765) with the
analogous 𝐷𝑁 bound state. As an alternative configuration, we also studied
the case where the 𝑁𝐷 system forms the cluster and the 𝐷∗ interacts with it.

In both pictures, bound states with 𝐽𝑃 = 1/2+ and 3/2+ are obtained,
relative to the Λ𝑐(2765)𝐷 or Λ𝑐(2765)𝐷∗ thresholds, with qualitatively similar
features. Moreover, the inclusion of the 𝐷𝑁 isovector amplitude in addition
to the isoscalar one generates an additional structure between the two Λ∗𝐷
thresholds, while leaving the 𝐼 = 0 peaks essentially unchanged.

Although our preferred configuration is 𝐷(𝑁𝐷∗), the modest differences
between the results of the two scenarios can be regarded as an estimate of the
theoretical uncertainties of the FCA approach. Within these assumptions, our
analysis points to the existence of such bound states, driven mainly by the
attractive 𝐷𝑁 and 𝐷∗𝑁 forces. Their experimental observation would provide
valuable insight into the nature of the 𝐷𝑁 and 𝐷∗𝑁 interactions and help clarify
the role of molecular dynamics in the Λ∗

𝑐 spectrum.
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Conclusions

Over the past two decades, hadron spectroscopy has been transformed by the
discovery of a rich spectrum of exotic states that cannot be easily accommodated
within the conventional constituent quark model. This progress has been driven
by the notable increase in heavy-hadron production in 𝐵-factories such as Belle
II, BES III, and LHCb, as well as at heavy-ion colliders. In particular, the
charmonium-like sector—the so-called 𝑋𝑌 𝑍 family—has undergone decisive
advances since the pioneering observation of the 𝜒𝑐1(3872). These findings
have triggered intense debate over the nature of such states, with competing
interpretations ranging from compact multiquark configurations (tetraquarks
and pentaquarks) and hadro-quarkonium to loosely bound hadronic molecules,
kinematical cusps, or hybrids of these pictures. While no consensus has been
reached regarding their internal structure, it is universally recognized that their
study provides valuable insight into the non-perturbative dynamics of QCD at
low energies.

A complementary venue to probe QCD is the study of strongly interacting
matter under extreme density or temperature conditions. Mapping out the
QCD phase diagram remains one of the central challenges in contemporary
hadron physics, involving significant efforts not only within the hadronic com-
munity but also across neighboring fields such as astrophysics, general relativity,
and mathematical physics. In this thesis, we have brought together these two
lines of research—exotic hadrons and matter under extreme conditions—with
the purpose of shedding light on the internal structure of the 𝑇𝑐𝑐 and the 𝐷∗

𝑠0,
two prominent tetraquark-like candidates.

At its core, this thesis presents a systematic study of hadronic molecular
states of two (or three) hadrons containing charmed mesons. Starting from
Chap. 2, we have studied the nuclear-medium behavior of the 𝑇𝑐𝑐, the 𝐷∗

𝑠0 and
their HQSS siblings, paying also attention to their charge-conjugated partners,
treating them as dynamically generated states in unitarized 𝑆-wave meson–

187
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meson amplitudes. We have shown that different HQSS-consistent interactions,
with distinct analytic structures, allow one to tune the molecular probability of
the generated states, and to follow the density- and compositeness-governed
pole trajectories in the complex energy plane. Medium effects have been
incorporated through the two-meson loop functions, where the dressing of the
constituent mesons by the surrounding nucleons has been taken into account.
We have found that the response of these states to the nuclear-medium density
depends strongly on both their molecular content and the different strengths of
the meson–nucleon versus anti-meson–nucleon interactions. In particular, the
𝑇 +

𝑐𝑐 broadens and shifts upward, while its antiparticle is moderately affected and
moves downward. As for the strange–charm 𝐷∗±

𝑠0 states, they exhibit an even
more pronounced particle–antiparticle asymmetry driven by the kaon–antikaon
dynamics. These results highlight how the study of density-dependent mass and
width modifications can provide valuable insight into the internal structure of
these exotic candidates.

Having established the density-dependent modifications to the 𝑇𝑐𝑐 and the
𝐷∗

𝑠0 states, Chapter 3 then tackled the key question of how to experimentally
access these nuclear medium modifications. Through the transparency ratio
technique, we have shown that this method is well suited to determine the
in-medium widths of the charmed constituents of 𝑇𝑐𝑐 and the 𝐷∗

𝑠0 states,
providing essential input for future experiments. In particular, we have explored
the feasibility of probing the in-medium width of 𝐷 mesons through nuclear
transparency measurements in the reaction 𝛾𝐴 → 𝐷+𝐷−𝐴′, where 𝐴 and 𝐴′

represent the initial and final nuclei. Using an estimate for the imaginary part
of the 𝐷–meson self–energy motivated by previous studies, and restricting to
a photon–nucleus c.m. energy of about 10 GeV—where the fraction of emitted
low–momentum 𝐷 mesons in the LAB frame is maximal—we find that the
transparency ratio decreases markedly with nuclear mass number, reaching
values around 0.6 for heavy nuclei relative to 12C. This level of suppression
should be experimentally accessible at forthcoming facilities such as the EIC,
EicC, or an upgraded GlueX. Although our calculation relied on simplifying
assumptions and was carried out under optimal kinematic conditions to maxi-
mize the reliability of the available in-medium 𝐷-meson self-energies, it clearly
demonstrates the feasibility of such measurements.

In Chap. 4, we have shifted our focus from the density to the temperature
axis of the QCD phase diagram, studying the thermal behavior of the exotic
𝑇𝑐𝑐 and its HQSS partner using thermal field theory in the ITF. We have used
the same EFT 𝑆–wave approach for their description as in the finite-density
case of Chap. 2, parameterized in terms of the compositeness of these states.
The thermal medium effects have been incorporated similarly through the two-
meson loop functions, taking into account both the dressing of the constituent
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mesons by the hot bath of pions and the contribution from the Bose-Einstein
factors arising naturally within the ITF. The thermal 𝐷 and 𝐷∗ spectral
functions employed, which were already available in the literature, were found
to induce significant modifications in the 𝐷(∗)𝐷∗ scattering amplitudes already
at 𝑇 ≃ 80 MeV. With increasing temperature, the unitarity cut is softened and
shifted to lower energies, the cusp at the threshold is smoothed out, and the
widths of the 𝑇𝑐𝑐 and the 𝑇 ∗

𝑐𝑐 states grow rapidly, leading to their dissolution
above 𝑇 ≃ 100 ∼ 120 MeV. The sensitivity of these effects to the molecular
probability of the states has been demonstrated. Similarly to the finite-density
case, large molecular components result in stronger thermal modifications,
whereas compact-like configurations remain more stable. These results suggest
that experimental determinations of 𝐷(∗)𝐷∗ scattering amplitudes in heavy-ion
collisions at RHIC or LHC could provide decisive information on the internal
structure of the 𝑇𝑐𝑐 family. Combined with future measurements in dense
matter at FAIR, such studies would offer a powerful tool to constrain the degree
of molecular compositeness of these exotic states.

Finally, Chap. 5 has shifted the focus from many-body systems to few-
body dynamics, exploring the possibility of forming genuine three-body bound
states. In particular, we have investigated the 𝐷𝑁𝐷∗ system using the fixed-
center approximation (FCA). Two cluster configurations have been considered:
𝐷(𝑁𝐷∗), motivated by the interpretation of the Λ𝑐(2940) and Λ𝑐(2910) as
𝐷∗𝑁 molecules, and 𝐷∗(𝑁𝐷), where the Λ𝑐(2765) was linked by HQSS to be a
𝐷𝑁 bound state. In both scenarios, states with 𝐽𝑃 = 1/2+ and 3/2+ have been
found near the corresponding Λ∗

𝑐𝐷(∗) thresholds. The overall similarity between
the two cluster choices indicates moderate theoretical uncertainties within the
FCA framework, but consistently points to the existence of such bound states,
driven by the attractive 𝐷𝑁 and 𝐷∗𝑁 dynamics. Their eventual experimental
confirmation would shed light on the underlying meson–baryon interactions and
the molecular nature of the Λ∗

𝑐 spectrum.
Taken together, the results presented in this thesis highlight the importance

of molecular components in the description of exotic charmed hadrons, and the
crucial role that dense or hot medium effects may play in determining their
structure. The methods employed here, ranging from unitarized effective field
theories to finite-temperature or dense medium theory and three-body scatter-
ing techniques, provide a coherent framework for addressing these questions.

Looking ahead, several directions remain open. On the theoretical side,
it would be desirable to go beyond the FCA in the three-body problem,
incorporate coupled-channel effects more systematically in all the calculations,
and explore the impact of chiral symmetry restoration near the critical tem-
perature, among other possible refinements. On the experimental side, the
next generation of facilities offers unique opportunities to test the predictions
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presented here. Such progress will be essential to deepen our understanding
of the interplay between QCD symmetries, hadronic interactions, and the
formation of exotic states in the charm sector, ultimately contributing to clarify
the role of hadronic molecules in the QCD spectrum.



Appendix A

Computation of the density
loop

In this appendix, we give some additional details on how the numerical
computation of the finite-density two-meson loop function of Eq. (2.88) was
performed. However, we first give some details on the derivation of the formula
of Eq. (2.89).

Starting from the definition first given in Eq. (2.86),

Σ(𝑠; 𝜌) = 𝑖 ∫ 𝑑4𝑞
(2𝜋)4 𝑔𝑀(𝐸 − 𝑞0, ⃗𝑃 − ⃗𝑞; 𝜌)𝑔𝑀′(𝑞0, ⃗𝑞; 𝜌), (A.1)

we use the Källen-Lehmann spectral representation of the meson propagators
to write

Σ(𝑠; 𝜌) = 𝑖 ∫ 𝑑4𝑞
(2𝜋)4

× ∫
∞

0
𝑑𝜔 (𝑆𝑀(𝜔, | ⃗𝑃 − ⃗𝑞|; 𝜌)

𝐸 − 𝑞0 − 𝜔 + 𝑖𝜀
− 𝑆𝑀(𝜔, | ⃗𝑃 − ⃗𝑞|; 𝜌)

𝐸 − 𝑞0 + 𝜔 − 𝑖𝜀
)

× ∫
∞

0
𝑑𝜔′ (𝑆𝑀′(𝜔′, | ⃗𝑞|; 𝜌)

𝑞0 − 𝜔′ + 𝑖𝜀
− 𝑆𝑀′(𝜔′, | ⃗𝑞|; 𝜌)

𝑞0 + 𝜔′ − 𝑖𝜀
) . (A.2)

Now, we can perform the 𝑞0 integration. There are four poles lying on the real
axis, namely

𝑞0
1 = 𝐸 − 𝜔 + 𝑖𝜀, 𝑞0

2 = 𝐸 + 𝜔 − 𝑖𝜀,
𝑞0

3 = 𝜔′ − 𝑖𝜀, 𝑞0
4 = −𝜔′ + 𝑖𝜀.

(A.3)

Closing the integration contour in the upper half plane, as shown in Fig. A.1,
the integral over the infinite-radius semi-circumference vanishes, and we sum
the residues coming from the poles 𝑞0

1 and 𝑞0
4 to obtain
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Re 𝑞0

Im 𝑞0

×
−𝜔′ + 𝑖𝜀

×
𝜔′ − 𝑖𝜀

×
𝐸 − 𝜔 + 𝑖𝜀

×
𝐸 + 𝜔 − 𝑖𝜀

Figure A.1: Representation of the integration contour used for the 𝑞0 integral
of Eq. (A.2). The position of the four poles of the integrand are represented
with the × symbols.

Σ(𝑠; 𝜌) = 𝑖 ∫ 𝑑3𝑞
(2𝜋)4 2𝜋𝑖 ∫

∞

0
𝑑𝜔 ∫

∞

0
𝑑𝜔′{

[−𝑆𝑀(𝜔, | ⃗𝑃 − ⃗𝑞|; 𝜌)] ( 𝑆𝑀′(𝜔′, | ⃗𝑞|; 𝜌)
𝐸 − 𝜔 − 𝜔′ + 2𝑖𝜀

− 𝑆𝑀′(𝜔′, | ⃗𝑞|; 𝜌)
𝐸 − 𝜔 + 𝜔′ )

+ (𝑆𝑀(𝜔, | ⃗𝑃 − ⃗𝑞|; 𝜌)
𝐸 + 𝜔′ − 𝜔

− 𝑆𝑀(𝜔, | ⃗𝑃 − ⃗𝑞|; 𝜌)
𝐸 + 𝜔′ + 𝜔 − 2𝑖𝜀

) [−𝑆𝑀′(𝜔′, | ⃗𝑞|; 𝜌)] }. (A.4)

The second and third terms cancel out, and one obtains the expression given
in Eq. (2.88),

Σ(𝑠; 𝜌) = ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔 ∫

∞

0
𝑑𝜔′ (𝑆𝑀(𝜔, | ⃗𝑃 − ⃗𝑞|; 𝜌)𝑆𝑀′(𝜔′, | ⃗𝑞|; 𝜌)

𝐸 − 𝜔 − 𝜔′ + 𝑖𝜀

− 𝑆𝑀(𝜔, | ⃗𝑃 − ⃗𝑞|; 𝜌)𝑆𝑀′(𝜔′, | ⃗𝑞|; 𝜌)
𝐸 + 𝜔 + 𝜔′ − 𝑖𝜀

) . (A.5)

In order to perform the integration over the 𝜔 and 𝜔′ variables, it is useful
to define the following change of variables:

Ω = 𝜔 + 𝜔′ Ω′ = 𝜔′. (A.6)
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The Jacobian matrix and determinant of this change of variables read

𝐽 = (
𝜕Ω
𝜕𝜔

𝜕Ω
𝜕𝜔′

𝜕Ω′

𝜕𝜔
𝜕Ω′

𝜕𝜔′
) = (1 1

0 1) → det(𝐽) = 1 (A.7)

and the integration volume transforms as shown in Fig. A.2.

𝜔

𝜔′

𝜔′ = 0

𝜔 = 0 ⟶

Ω

Ω′

Ω′ = Ω

Ω′ = 0

Figure A.2: Transformation of the integration volume with the change of
variables of Eq. (A.6). The region shaded in blue represents the integration
volume in the original (left panel) and the transformed (right panel) coordi-
nates, respectively.

With this change, Eq. (A.5) is rewritten as

Σ(𝑠; 𝜌) = ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑Ω ∫

Ω

0
𝑑Ω′

× (𝑆𝑀(Ω − Ω′, | ⃗𝑃 − ⃗𝑞|; 𝜌)𝑆𝑀′(Ω′, | ⃗𝑞|; 𝜌)
𝐸 − Ω + 𝑖𝜀

− 𝑆𝑀(Ω − Ω′, | ⃗𝑃 − ⃗𝑞|; 𝜌)𝑆𝑀′(Ω′, | ⃗𝑞|; 𝜌)
𝐸 + Ω − 𝑖𝜀

) . (A.8)

Since the denominator depends only on the Ω integration variable, we can write

Σ(𝑠; 𝜌) = 1
2𝜋2 ∫

∞

0
𝑑Ω (𝑓𝑀𝑀′(Ω, | ⃗𝑃 |; 𝜌)

𝐸 − Ω + 𝑖𝜀
− 𝑓𝑀𝑀′(Ω, | ⃗𝑃 |; 𝜌)

𝐸 + Ω − 𝑖𝜀
) , (A.9)

where the auxiliary function 𝑓𝑀𝑀′ is defined as

𝑓𝑀𝑀′(Ω, | ⃗𝑃 |; 𝜌)

= ∫
Λ

0
𝑑𝑞 𝑞2 ∫

Ω

0
𝑑Ω′ 𝑆𝑀 (Ω − Ω′, | ⃗𝑃 − ⃗𝑞|; 𝜌) 𝑆𝑀′ (Ω′, | ⃗𝑞|; 𝜌) . (A.10)
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These last two formulas are given in the main text in Eqs. (2.89) and (2.90).
We have shown the derivation of this equation for the general case where the
two-meson system is moving with a center-of-mass momentum ⃗𝑃. However, we
only evaluate this function for the case where the two-meson system is at rest
in the reference frame of the nuclear medium, so that ⃗𝑃 = ⃗0.

In the free space—where both spectral functions are Dirac deltas—the 𝑓𝑀𝑀′

functions are

𝑓𝑀𝑀′(Ω; 0) ≡ 𝑓𝑀𝑀′(Ω, | ⃗0|; 𝜌 = 0)

= ∫
Λ

0
𝑑𝑞 𝑞2 ∫

Ω

0
𝑑Ω′ 𝛿 (Ω′ − 𝜔𝑀

𝑞 )
2𝜔𝑀

𝑞

𝛿 (Ω − Ω′ − 𝜔𝑀′

𝑞 )
2𝜔𝑀′

𝑞
, (A.11)

with 𝜔𝑀(′)

𝑞 the energy of the meson 𝑀 (′), dependent on the three momentum ⃗𝑞.
Performing the integration over the two Dirac deltas one obtains

𝑓𝑀𝑀′(Ω; 0) = 𝜃(Ω − 𝑚𝑀 − 𝑚𝑀′)𝜃(Λ − 𝑘) 𝑘
4Ω

. (A.12)

In this expression, the 𝜃 functions represent Heaviside (or step) functions, 𝑚𝑀
and 𝑚𝑀′ are the meson masses, and 𝑘 is the on-shell center of mass momentum,
given by

𝑘(Ω) =
√𝜆(Ω2, 𝑚2

𝑀, 𝑚2
𝑀′)

2Ω
(A.13)

with 𝜆 the Källen or triangular function.
Actually, the imaginary part of the loop function is proportional to the value

of 𝑓𝑀𝑀′ , since from Eq. (A.9) we have

Σ(𝐸 ; 𝜌) = 1
2𝜋2 {PV ∫

∞

0
𝑑Ω (𝑓𝑀𝑀′(Ω ; 𝜌)

𝐸 − Ω + 𝑖𝜀
− 𝑓𝑀𝑀′(Ω ; 𝜌)

𝐸 + Ω − 𝑖𝜀
)

− 𝑖𝜋𝑓𝑀𝑀′(𝐸 ; 𝜌)} (A.14)

where PV stands for the principal value of the integral and the imaginary part
arises from the residue of the integrand at the pole Ω = 𝐸. We check that in
vacuum

Im Σ0(𝐸) = −𝑓𝑀𝑀′(𝐸; 0)
2𝜋

= −𝜃(𝐸 − 𝑚𝑀 − 𝑚𝑀′)𝜃(Λ − 𝑘) 𝑘
8𝜋𝐸

, (A.15)

which is the same imaginary part as that arising from the analytic formula
for the vacuum loop function of Eq. (2.58). This result was also shown
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3.6 3.8 4 4.2 4.4
0

1

2

3

4

E [GeV]

1
0
2
f
D

∗
D
(E

;
ρ
)

ρ = 0

ρ = 0.1ρ0
ρ = 0.3ρ0
ρ = 0.5ρ0
ρ = 0.75ρ0
ρ = ρ0

Figure A.3: Auxiliary function 𝑓𝐷∗𝐷 for the 𝐷∗𝐷 pair as a function of the center
of mass energy 𝐸 for several values of the density (different line colors). The
cutoff is chosen to be Λ = 700 MeV.

in Eq. (2.145) (modulo the step functions). For finite density, the sharp
discontinuities of the step functions appearing in Eq. (A.15) typically get
smoothed out, as well as the general shape of the function. In Fig. A.3 we
show the behavior of the function 𝑓𝐷∗𝐷 with density for the specific case of
the 𝐷∗ and 𝐷 mesons. For the evaluation of the real part of Σ(𝐸 ; 𝜌), the
cutoff-dependent 𝑓𝐷𝐷∗ shown in the figure is used. However, when determining
the imaginary part of the loop, no such cutoff is necessary. However, in the
energy region of interest for the problem at hand (cf. Fig. 2.9), the difference
between including or not the cutoff for the evaluation of the imaginary part is
not found to be relevant.

From a numerical point of view, the determination of 𝑓𝑀𝑀′ is the more
demanding task. It is necessary to define an integration grid that is sufficiently
dense around the regions where the spectral functions peak. These regions vary
with both integration variables, namely the modulus of the three-momentum
𝑞, and the internal energy variable Ω′, as well as with the external energy Ω,
cf. Eq. (A.10). We perform this and save the computed values for 𝑓𝑀𝑀′(𝐸; 𝜌)
in a data file. Afterwards, when computing the two-meson loop function
from Eq. (A.14), we read the corresponding values of 𝑓𝑀𝑀′ from the data
file and interpolate them in the energy variable using cubic splines (we do not
interpolate in density).





Appendix B

Three-body phase space
integration

In this appendix, we aim to show the step-by-step derivation of the phase-space
integration formula of Eq. (3.24), corresponding to the process 𝛾𝑁 → 𝐷+𝐷−𝑁 ′,
starting from the following general expression.

𝜎𝑁 = 1
4𝑚𝑁𝑘lab

∫ 𝑑3𝑝
(2𝜋)3

1
2𝜔(𝑝)

∫ 𝑑3𝑝′

(2𝜋)3
1

2𝜔(𝑝′)
∫ 𝑑3𝑞

(2𝜋)3
1

2𝐸(𝑞)
× 4𝑚2

𝑁 |𝑡|2 (2𝜋)4𝛿4(k + qi − p − p′ − q), (B.1)

This expression was first shown in Eq. (3.22). We recall that k and qi represent
the four-momenta of the incident photon and the initial nucleon, respectively;
while q, p and p′ are the four-momenta associated to the 𝑁 ′, 𝐷+ and 𝐷−

particles (respectively) in the final state. Furthermore, 𝑚𝑁 is the nucleon mass.
Using the relativistic formula for the momentum of the photon in the LAB frame
(𝑘lab) in terms of the total invariant mass 𝑠, cf. (3.23), we can write

𝜎𝑁 = 4𝑚2
𝑁

2(𝑠 − 𝑚2
𝑁)

∫ 𝑑3𝑝
(2𝜋)3

1
2𝜔(𝑝)

∫ 𝑑3𝑝′

(2𝜋)3
1

2𝜔(𝑝′)
∫ 𝑑3𝑞

(2𝜋)3
1

2𝐸(𝑞)
× |𝑡|2 (2𝜋)4𝛿4(k + qi − p − p′ − q). (B.2)

Next, since the integrals

∫ 𝑑3𝑝
(2𝜋)3

1
2𝜔(𝑝)

, ∫ 𝑑3𝑝′

(2𝜋)3
1

2𝜔(𝑝′)
, ∫ 𝑑3𝑞

(2𝜋)3
1

2𝐸(𝑞)
(B.3)

are Lorentz invariant, we can choose to evaluate them in the 𝐷−𝑁 ′ rest frame,
where

⃗𝑞 + ⃗𝑝′ = ⃗0, (B.4a)
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𝑘⃗ + ⃗𝑞𝑖 − ⃗𝑝 = ⃗0, (B.4b)
𝑘 + 𝐸(𝑞𝑖) − 𝜔(𝑝) = 𝜔(𝑝′) + 𝐸(𝑞) = 𝑚inv. (B.4c)

with 𝑚inv the invariant mass of the 𝐷−𝑁 ′ pair. Now, we perform the integration
over ⃗𝑞. Leaving for the moment the first factor and the integral over ⃗𝑝 out, we
can write

∫ 𝑑3𝑝′

(2𝜋)3
1

2𝜔(𝑝′)
∫ 𝑑3𝑞

(2𝜋)3
1

2𝐸(𝑞)
|𝑡|2 (2𝜋)4𝛿4(k + qi − p − p′ − q)

= ∫ 𝑑3𝑝′

(2𝜋)3
1

2𝜔(𝑝′)
1

2𝐸(𝑝′)
|𝑡|2 (2𝜋)𝛿 [𝑘 + 𝐸(𝑞𝑖) − 𝜔(𝑝) − 𝜔(𝑝′) − 𝐸(𝑝′)] . (B.5)

We shall now perform the integration over ⃗𝑝′

∫ 𝑑3𝑝′

(2𝜋)3
1

2𝜔(𝑝′)
1

2𝐸(𝑝′)
|𝑡|2 (2𝜋)𝛿 [𝑚inv − 𝜔(𝑝′) − 𝐸(𝑝′)]

= 4𝜋
(2𝜋)3 ∫ 𝑑𝑝′(𝑝′)2 1

2𝜔(𝑝′)
1

2𝐸(𝑝′)
|𝑡|2 (2𝜋)

𝛿 [𝑝′ − 𝜆1/2(𝑚2
inv,𝑚2

𝐷,𝑚2
𝑁)

2𝑚inv
]

𝑝′

𝜔(𝑝′) + 𝑝′

𝐸(𝑝′)

= 1
𝜋

(𝑝′)2

4𝜔(𝑝′)𝐸(𝑝′)
|𝑡|2 𝜔(𝑝′)𝐸(𝑝′)

𝑝′ [𝜔(𝑝′) + 𝐸(𝑝′)]
= 1

4𝜋
𝑝′

𝑚inv
|𝑡|2. (B.6)

In this last expression, we have fixed 𝑝′ to the value given by the delta, as a
function of 𝑚inv.

Going back to the full nucleon cross section, we now have1

𝜎𝑁 = 4𝑚2
𝑁

2(𝑠 − 𝑚2
𝑁)

∫ 𝑑3𝑝
(2𝜋)3

1
2𝜔(𝑝)

1
4𝜋

𝑝′

𝑚inv
|𝑡|2

= 𝑚2
𝑁

𝑠 − 𝑚2
𝑁

1
32𝜋4 ∫

𝑝max

𝑝min

𝑑𝑝 𝑝2 ∫
2𝜋

0
𝑑𝜙 ∫

+1

−1
𝑑 cos 𝜃 1

2𝜔(𝑝)
𝑝′

𝑚inv
|𝑡|2. (B.7)

The remaining step to get to the formula shown in Eq. (3.24) is to relate the
integration over the momentum of the 𝐷+ meson (𝑝) to an integration over the
invariant mass 𝑚inv of the 𝐷−𝑁 ′ system. We can relate 𝑚inv with 𝑝 taking into
account total energy-momentum conservation:

k + qi − p = p′ + q → 𝑚2
inv = (p′ + q)2 = (k + qi − p)2 . (B.8)

In this previous equation, we have used the definition of 𝑚inv. Now, since 𝑚inv
is a Lorentz-invariant quantity, we can choose to evaluate it in any frame. In
the 𝛾𝑁 rest frame, its expression results

𝑚2
inv = (k + qi)

2 + p2 − 2 (k + qi)𝜇 p𝜇 = 𝑠 + 𝑚2
𝐷 − 2

√
𝑠 𝜔(𝑝). (B.9)

1The integration limits 𝑝min and 𝑝max depend on the frame of reference where the
integration is evaluated.
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Therefore, we obtain the following expressions for the energy and momentum
of the 𝐷+ meson in terms of the 𝐷−𝑁 ′ invariant mass:

𝜔(𝑝) = 𝑠 + 𝑚2
𝐷 − 𝑚2

inv
2
√

𝑠
, (B.10a)

𝑝 = √𝜔(𝑝)2 − 𝑚2
𝐷 =

√𝜆(𝑠, 𝑚2
𝐷, 𝑚2

inv)
2
√

𝑠
. (B.10b)

The change of variable 𝑝 → 𝑚inv in the integration will be given by

2𝑚inv𝑑𝑚inv = −2
√

𝑠𝑑𝜔(𝑝)
𝑑𝑝

𝑑𝑝 = −2
√

𝑠 𝑝
𝜔(𝑝)

𝑑𝑝

→ 𝑝𝑑𝑝 = −𝑚inv𝜔(𝑝)√
𝑠

𝑑𝑚inv (B.11)

where the integration limits are

(𝑚min
inv )2 = 𝑠 + 𝑚2

𝐷 − 2
√

𝑠 𝜔(𝑝max) = (𝑚𝐷− + 𝑚𝑁)2, (B.12a)
(𝑚max

inv )2 = 𝑠 + 𝑚2
𝐷 − 2

√
𝑠 𝜔(𝑝min = 0) = (

√
𝑠 − 𝑚𝐷)2. (B.12b)

By inserting this change into the integral of Eq. (B.7), we can finally arrive at
the expression of Eq. (3.24):

𝜎𝑁 = 𝑚2
𝑁

(𝑠 − 𝑚2
𝑁)

√
𝑠

1
32𝜋4 ∫

𝑚max
inv

𝑚min
inv

𝑝𝑝′𝑑𝑚inv ∫
1

−1
𝑑 cos 𝜃 ∫

2𝜋

0
𝑑𝜙 |𝑡|2. (B.13)





Appendix C

Numerical computation of the
thermal loop

In this appendix, we discuss the numerical evaluation of the thermal 𝐷𝐷∗ loop
function presented in Eq. (4.54):

Σ(𝐸, ⃗𝑃 = 0; 𝑇 ) = ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔 ∫

∞

0
𝑑𝜔′ 𝑆𝐷(𝜔, | ⃗𝑞|; 𝑇 ) 𝑆𝐷∗(𝜔′, | ⃗𝑞|; 𝑇 )

× { [1 + 𝑏−(𝜔; 𝑇 ) + 𝑏−(𝜔′; 𝑇 )] ( 1
𝐸 − 𝜔 − 𝜔′ + 𝑖𝜀

− 1
𝐸 + 𝜔 + 𝜔′ + 𝑖𝜀

)

+ [𝑏−(𝜔; 𝑇 ) − 𝑏−(𝜔′; 𝑇 )] ( 1
𝐸 + 𝜔 − 𝜔′ + 𝑖𝜀

− 1
𝐸 − 𝜔 + 𝜔′ + 𝑖𝜀

) }. (C.1)

This expression may be separated into two terms, namely

ΣU(𝐸, ⃗𝑃 = 0; 𝑇 ) = ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔 ∫

∞

0
𝑑𝜔′ 𝑆𝐷(𝜔, | ⃗𝑞|; 𝑇 ) 𝑆𝐷∗(𝜔′, | ⃗𝑞|; 𝑇 )

× [1 + 𝑏−(𝜔; 𝑇 ) + 𝑏−(𝜔′; 𝑇 )] ( 1
𝐸 − 𝜔 − 𝜔′ + 𝑖𝜀

− 1
𝐸 + 𝜔 + 𝜔′ + 𝑖𝜀

) (C.2)

and

ΣL(𝐸, ⃗𝑃 = 0; 𝑇 ) = ∫ 𝑑3𝑞
(2𝜋)3 ∫

∞

0
𝑑𝜔 ∫

∞

0
𝑑𝜔′ 𝑆𝐷(𝜔, | ⃗𝑞|; 𝑇 ) 𝑆𝐷∗(𝜔′, | ⃗𝑞|; 𝑇 )

× [𝑏−(𝜔; 𝑇 ) − 𝑏−(𝜔′; 𝑇 )] ( 1
𝐸 + 𝜔 − 𝜔′ + 𝑖𝜀

− 1
𝐸 − 𝜔 + 𝜔′ + 𝑖𝜀

) , (C.3)

so that
Σ = ΣU + ΣL. (C.4)
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Figure C.1: Auxiliary function 𝑓U
𝐷𝐷∗ for the 𝐷𝐷∗ pair as a function of the center

of mass energy 𝐸 for several temperatures (different line colors). The cutoff is
chosen to be Λ = 700 MeV.

The first term [Eq. (C.2)] may be evaluated in the same way as the finite-
density loop of Eq. (A.5), since that expression is identical to Eq. (C.2) apart
from the presence of the Bose–Einstein factors. With the change of variables

Ω = 𝜔 + 𝜔′, Ω′ = 𝜔′, (C.5)

and following the steps of App. A, one arrives at the expression:

ΣU(𝐸; 𝑇 ) = 1
2𝜋2 ∫

∞

0
𝑑Ω 𝑓𝑈

𝐷𝐷∗(Ω; 𝑇 ) ( 1
𝐸 − Ω + 𝑖𝜀

− 1
𝐸 + Ω + 𝑖𝜀

) , (C.6)

where we are omitting the ⃗𝑃 = ⃗0 external momentum label, and where the
auxiliary function 𝑓𝑀𝑀′ is defined as

𝑓U
𝐷𝐷∗(Ω; 𝑇 ) = ∫

Λ

0
𝑑𝑞 𝑞2 ∫

Ω

0
𝑑Ω′ [1 + 𝑏−(Ω − Ω′; 𝑇 ) + 𝑏−(Ω′; 𝑇 )]

× 𝑆𝐷 (Ω − Ω′, | ⃗𝑞|; 𝑇) 𝑆𝐷∗ (Ω′, | ⃗𝑞|; 𝑇) . (C.7)

These expressions are equivalent to Eqs. (A.9) and (A.10) modulo the Bose-
Einstein factors.

Using the 𝐷 and 𝐷∗ spectral functions from Refs. [211, 316], and introducing
a three-momentum cutoff Λ = 0.7 GeV in the three-momentum integration, we
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compute the auxiliary function 𝑓U(Ω; 𝑇 ). We use a Gauss-Legendre integration
algorithm, ensuring that the sampling of the integrand around the points where
the spectral functions peak is sufficiently dense. The results are presented in
Fig. C.1. Note that, contrary to the finite density case, we no longer define a
𝑓U

𝐷𝐷∗ function. This is because the particle and antiparticle spectral functions
are the same at finite temperature, as was discussed in the main body of Chap. 4.

Regarding the cutoff dependence of 𝑓U
𝐷𝐷∗ , in Fig. C.1 we display the results

obtained with Λ = 0.7 GeV, in analogy to our finite nuclear density study
(compare with Fig. A.3). An ultraviolet cutoff is required to properly describe
the real part of the loop. In contrast, the imaginary part of the ΣU contribution,
which gives rise to the unitarity cut, does not require any regularization, as it
is directly proportional to 𝑓U

𝐷𝐷∗ :

Im ΣU(𝐸; 𝑇 ) = −𝑓U
𝐷𝐷∗(𝐸; 𝑇 )

2𝜋
. (C.8)

When analyzing the auxiliary function 𝑓𝐷∗𝐷(𝐸; 𝑇 ) in the finite-density case
(see App. A), we observed that in the region of interest near the 𝐷𝐷∗ threshold
the choice of cutoff had little impact on the overall shape of the function.
In contrast, in the present finite-temperature study the situation changes:
increasing the cutoff produces significant distortions of 𝑓U

𝐷𝐷∗(𝐸; 𝑇 ) around
threshold, especially at higher temperatures. This behavior is illustrated in
Fig. C.2.

Physically, the Λ = 0.7 GeV cutoff is not adequate for computing the
imaginary part because of the specific behavior of the charmed meson spectral
functions at finite temperature. Unlike the nuclear case, the quasi-particle
masses of the 𝐷 and 𝐷∗ mesons in a hot pion bath decrease significantly
with increasing temperature. As a consequence, cutoff effects on 𝑓U

𝐷𝐷∗ become
relevant already at lower energies. This is evident in the 𝑇 = 150 MeV case,
shown by the dashed purple line in Fig. C.2, where the function 𝑓U

𝐷𝐷∗ , which
should monotonically increase, instead starts to decrease around 𝐸 ≃ 3.95 GeV.
This occurs well below the expected onset of cutoff effects, estimated at
𝐸Λ ≃ 𝑚𝐷 + 𝑚𝐷∗ + Λ2/𝑚𝐷∗ ∼ 4.1 GeV.

Ideally, one should remove the cutoff in the evaluation of the momentum
integration within 𝑓U

𝐷𝐷∗ , and integrate over all momenta. However, this is
also not possible, as one would need complete knowledge of the 𝐷𝜋 and 𝐷∗𝜋
interactions for all energy values. More specifically, one should know the
behavior of the 𝑆𝐷 and 𝑆𝐷∗ spectral functions up to arbitrarily large momenta,
which is not possible. Therefore, one must adopt a compromise between using
a large enough cutoff value so that cutoff effects on 𝑓U

𝐷𝐷∗—and therefore on
Im ΣU—are not relevant in the region around the 𝐷𝐷∗ threshold, but small
enough so that one does not need to evaluate the involved spectral functions at
very large momentum, where the effective theory predictions clearly fall apart.
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Figure C.2: Auxiliary function 𝑓U
𝐷𝐷∗ for the 𝐷𝐷∗ pair as a function of the

center of mass energy 𝐸 for several temperatures (different line colors). Solid
lines display the results obtained using Λ = 3 GeV, while in dashed lines we
represent the original results of Fig. C.1.

Following the prescription of Ref. [161], we adopt a cutoff value of Λ = 3 GeV
for the evaluation of the imaginary part of the loop function. The resulting 𝑓𝑈

𝐷𝐷∗

with this cutoff is shown by the solid lines in Fig. C.2. Even for this relatively
moderate cutoff, some extrapolation of the spectral functions to higher energies
and momenta is required. As in Ref. [161], we employ a linear extrapolation of
the 𝐷 and 𝐷∗ self-energies. Depending on the chosen extrapolation scheme, the
results vary slightly, which we take as indicative of the uncertainties inherent
in this approach. In practice, the strongest variations of 𝑓𝑈

𝐷𝐷∗ with the cutoff
value or extrapolation method appear at 𝑇 = 150 and 𝑇 = 120 MeV, i.e., close
to the crossover region. Since our model does not explicitly incorporate critical-
temperature effects such as chiral symmetry restoration, we do not expect it to
remain quantitatively predictive at such high temperatures.

The second contribution in Eq. (C.3) can be treated in a similar manner.
Unlike the previous case, however, this term has no analogue in the finite-
density loop, so a more detailed discussion is required. Since the denominators
now involve the frequency difference 𝜔′ − 𝜔, it is convenient to introduce the
following change of variables:

Ω̃ = 𝜔′ − 𝜔, Ω̃′ = 𝜔. (C.9)

The Jacobian of this transformation is equal to 1. The corresponding transfor-
mation of the integration region is shown schematically in Fig. C.3.



205

𝜔

𝜔′

𝜔′ = 0

𝜔 = 0 ⟶

Ω̃

Ω̃′

Ω̃′ = Ω̃

Ω̃′ = 0

Figure C.3: Transformation of the integration volume with the change of vari-
ables of Eq. (C.9). The regions shaded in blue represent the integration volume
in the original (left panel) and the transformed (right panel) coordinates.

With this change, the ΣL term can be expressed as

ΣL(𝐸; 𝑇 ) = 1
2𝜋2 ∫

+∞

−∞
𝑑Ω̃ 𝑓𝐿

𝐷𝐷∗(Ω̃; 𝑇 ) ( 1
𝐸 − Ω̃ + 𝑖𝜀

− 1
𝐸 + Ω̃ + 𝑖𝜀

) , (C.10)

where the auxiliary function 𝑓L
𝐷𝐷∗ is defined as

𝑓L
𝐷𝐷∗(Ω̃; 𝑇 ) = ∫

Λ

0
𝑑𝑞 𝑞2 ∫

Ω̃′>0
Ω̃′>−Ω̃

𝑑Ω̃′ [𝑏−(Ω̃′; 𝑇 ) − 𝑏−(Ω̃′ + Ω̃; 𝑇 )]

× 𝑆𝐷 (Ω̃′, | ⃗𝑞|; 𝑇) 𝑆𝐷∗ (Ω̃′ + Ω̃, | ⃗𝑞|; 𝑇) . (C.11)

The contribution of the ΣL term to the imaginary part of the loop function
defines the Landau cut:

Im ΣL(𝐸; 𝑇 ) = −𝑓L
𝐷𝐷∗(𝐸; 𝑇 ) − 𝑓L

𝐷𝐷∗(−𝐸; 𝑇 )
2𝜋

. (C.12)

This result can be directly compared with Eq. (4.72). By construction,
𝑓L

𝐷𝐷∗(Ω̃; 𝑇 ) is positive for Ω̃ > 0 and negative for Ω̃ < 0, ensuring the correct
sign of the imaginary part. One can further show that

𝑓L
𝐷𝐷∗(−Ω̃; 𝑇 ) = −𝑓L

𝐷∗𝐷(Ω̃; 𝑇 ), (C.13)

where 𝑓L
𝐷∗𝐷 is defined as in Eq. (C.11) but with the 𝐷 and 𝐷∗ spectral functions

interchanged.
As discussed in the main body of Chap. 4, the Landau cut appearing in the

finite-temperature loop is absent in both the vacuum and finite-density cases.
Its presence reflects additional processes in which meson pairs are absorbed
from or created within the thermal bath. From the definition of 𝑓L

𝐷𝐷∗ one
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Figure C.4: Auxiliary function 𝑓L
𝐷𝐷∗ as a function of the center-of-mass energy

𝐸 of the 𝐷𝐷∗ pair for several temperatures (distinguished by line colors). Each
curve has been rescaled by a factor 𝒩, with the corresponding value indicated
in the legend next to its temperature.

can see that, in 𝐷𝐷∗ scattering, this contribution is strongly suppressed: the
Bose–Einstein factors are very small at the energies where the 𝐷 and 𝐷∗ spectral
functions peak. A plot of 𝑓L

𝐷𝐷∗ obtained with a cutoff Λ = 0.7 GeV is shown in
Fig. C.4. In this figure, a different rescaling constant 𝒩 is applied for each of
the considered temperatures, since the results span several orders of magnitude
between the highest (𝑇 = 150 MeV) and the lowest (𝑇 = 60 MeV) temperatures.
For the numerical computation, we again use a Gauss-Legendre algorithm with
a custom grid, defined in a way that it is sufficiently dense around the regions
where the spectral functions peak.

As a check, let us consider the spectral functions to be those in the free
space. In this situation, the auxiliary function 𝑓L

𝐷𝐷∗ can be written as

̃𝑓L
𝐷𝐷∗(Ω̃; 𝑇 ) = ∫

Λ

0
𝑑𝑞 𝑞2 ∫̃

Ω′>0
Ω̃′>Ω̃

𝑑Ω̃′ [𝑏−(Ω̃′; 𝑇 ) − 𝑏−(Ω̃′ + Ω̃; 𝑇 )]

×
𝛿[Ω̃′ − 𝜔𝐷(𝑞)]

2𝜔𝐷(𝑞)
𝛿[Ω̃′ + Ω̃ − 𝜔𝐷∗(𝑞)]

2𝜔𝐷∗(𝑞)
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= ∫
Λ

0
𝑑𝑞 𝑞2 [𝑏−(𝜔𝐷(𝑞); 𝑇 ) − 𝑏−(𝜔𝐷(𝑞) + Ω̃; 𝑇 )]

× 1
4𝜔𝐷(𝑞) 𝜔𝐷∗(𝑞)

𝛿[𝜔𝐷(𝑞) + Ω̃ − 𝜔𝐷∗(𝑞)]

= ∫
Λ

0
𝑑𝑞 𝑞2 [𝑏−(𝜔𝐷(𝑞); 𝑇 ) − 𝑏−(𝜔𝐷(𝑞) + Ω̃; 𝑇 )]

× 1
4𝜔𝐷(𝑞) 𝜔𝐷∗(𝑞)

𝜔𝐷∗(𝑘) 𝜔𝐷(𝑘)
[𝜔𝐷∗(𝑘) − 𝜔𝐷(𝑘)] 𝑘

𝛿[𝑞 − 𝑘(Ω̃)]

= [𝑏−(𝜔𝐷(𝑘); 𝑇 ) − 𝑏−(𝜔𝐷∗(𝑘); 𝑇 )] 𝑘
4Ω̃

𝜃(Λ − 𝑘), (C.14)

where 𝜃 is the Heaviside step function. In this derivation, the on-shell momen-
tum is defined as

𝑘 =
√𝜆[Ω̃2, 𝑚2

𝐷, 𝑚2
𝜋]

2Ω̃
, (C.15)

and we have used the property of the Dirac delta function

𝛿[𝑓(𝑥)] = 𝛿(𝑥 − 𝑥0)
|𝑓 ′(𝑥0)|

, with 𝑓(𝑥0) = 0. (C.16)

Thus, we arrive at an expression for the Landau cut equivalent to Eq. (4.93).
This result is shown in Fig. C.5.

A comparison between Figs. C.4 and C.5 is quite instructive. First, note
the different energy scales used on the lower axis of the two plots. In Fig. C.5,
the 𝐷𝐷∗ Landau cut sets in sharply at 𝐸 = 𝑚𝐷∗ − 𝑚𝐷 ∼ 141 MeV, followed
by the effect of the momentum cutoff at

𝐸Λ ≃ 𝑚𝐷∗ − 𝑚𝐷 + 1
2 ( 1

𝑚𝐷∗
− 1

𝑚𝐷
) Λ2 ∼ 𝑚𝐷∗ − 𝑚𝐷 − 9 MeV. (C.17)

On the broader energy scale of Fig. C.4, this appears as a sharp, peak-like
structure. Once the finite widths of the 𝐷 and 𝐷∗ spectral functions are
included in Eq. (C.3), this sharp peak becomes smoothed out but still remains
relatively narrow. It shows up in Fig. C.4 as the most prominent maximum,
visible across all the considered temperatures.

The function of Fig. C.4, however, exhibits more than just this narrow
enhancement. A second maximum consistently appears around 𝐸 ≃ 1.7 GeV
for all temperatures, accompanied by a minimum at the roughly symmetric
point 𝐸 ≃ −1.7 GeV.1 These structures occur far above the onset of the

1This behavior stems from the near equality of the 𝐷 and 𝐷∗ masses. In the limit of exact
mass degeneracy one finds 𝑓L

𝑀𝑀(−𝐸; 𝑇 ) = −𝑓L
𝑀𝑀(𝐸; 𝑇 ).
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Figure C.5: Same as in Fig. C.4, but considering now the function ̃𝑓L
𝐷𝐷∗ in

which the 𝐷 and 𝐷∗ spectral functions are approximated by Dirac deltas.

Landau cut for zero-width 𝐷 and 𝐷∗ mesons, located at 𝐸 ≃ 0.14 GeV, and
become increasingly pronounced at higher temperatures. They originate from
the overlap of the tail of one of the spectral functions with the maximum of
the other. Consequently, they are highly sensitive to both the extrapolation
of the spectral functions and the chosen cutoff. Following the prescription of
Ref. [161], we adopt Λ = 3 GeV and use a linear extrapolation of the 𝐷 and 𝐷∗

self-energies. Under this scheme, the broad structures in Fig. C.4 become more
prominent, with their influence extending close to the 𝐷𝐷∗ threshold. However,
within the energy scale considered in Fig. 4.10, where the thermal 𝐷𝐷∗ loop
function was first presented, their effect is hardly noticeable.

For the 𝐷∗𝐷∗ thermal loop function, employed in the study of the thermal
properties of the HQSS partner of the 𝑇𝑐𝑐(3875), analogous considerations were
applied in its evaluation.



Appendix D

The normalization of the
coupling constant

In this appendix we derive the correct normalization of the formula of Eq. (5.12)
used for computing the different couplings of the Λ∗

𝑐 states to 𝐷𝑁 or 𝐷∗𝑁 two-
body channels. We start from Eq. (59) of Ref. [226], tailored for meson–meson
scattering, which reads

𝑔𝑀𝑀 ≃ 𝑚√16𝜋𝛾/𝜇 with 𝛾 = √2𝜇𝐵. (D.1)

In this previous expression, 𝑚 denotes the mass of the bound state, while 𝐵
is its binding energy. However, we are interested in the coupling to a meson–
baryon state, 𝑔𝑀𝐵. In order to relate these two quantities, we start from their
definitions in terms of their respective 𝑇–matrices.

𝑔2
𝑀𝑀 = lim

𝑠→𝑚2
(𝑠 − 𝑚2)𝑇𝑀𝑀 (D.2)

𝑔2
𝑀𝐵 = lim√

𝑠→𝑚
(
√

𝑠 − 𝑚)𝑇𝑀𝐵 (D.3)

Furthermore, the meson–meson 𝑇–matrix 𝑇𝑀𝑀 and the meson–baryon one 𝑇𝑀𝐵
have a different normalization. This normalization can be related through the
BSE,

𝑇 = 𝑉
1 − 𝑉 𝐺

, (D.4)

where one can explicitly see that the product 𝑉 𝐺 must be independent of
normalization, and that 𝑇 and 𝑉 share the same normalization. Therefore,
by comparing the different normalization of the meson–meson loop versus the
meson–baryon loop, one can easily infer the different normalization of 𝑇𝑀𝑀
versus 𝑇𝑀𝐵.

𝐺𝑀𝐵 = 2𝑚𝐵𝐺𝑀𝑀 ⇒ 𝑉𝑀𝐵 = 1
2𝑚𝐵

𝑉𝑀𝑀 ⇒ 𝑇𝑀𝐵 = 1
2𝑚𝐵

𝑇𝑀𝑀, (D.5)
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where 𝑚𝐵 represents the mass of the baryon. Taking all these previous
considerations into account, we may write

𝑚216𝜋𝛾/𝜇 = 𝑔2
𝑀𝑀 = lim

𝑠→𝑚2
(𝑠 − 𝑚2)𝑇𝑀𝑀

= lim√
𝑠→𝑚

(
√

𝑠 + 𝑚)(
√

𝑠 − 𝑚) [2𝑚𝐵𝑇𝑀𝐵] = 2𝑚2𝑚𝐵𝑔2
𝑀𝐵. (D.6)

Therefore, we have found

𝑔2
𝑀𝐵 = 𝑚

4𝑚𝐵𝜇
16𝜋𝛾, (D.7)

which is equivalent to Eq. (5.12).



Appendix E

Apparent width in the
many-body invariant mass

In Sec. 5.3 we observed that the width of the three-body state is nearly twice
that of the Λ𝑐(2765), even though it arises primarily from the decays of this
resonance. Although this result may appear surprising at first, it reflects a
general feature of particle–cluster collisions when observables are expressed in
terms of the invariant mass √𝑠1 of the particle–particle system versus the total
invariant mass

√
𝑠 of the particle–cluster system. In this appendix, we present

a general derivation of the relation between the width of the state as seen in
the √𝑠1 variable or in the

√
𝑠 variable, before presenting an application to

nucleon-nucleus scattering.
We start by considering two particles 𝐴 and 𝐵, whose 𝑇–matrix is described

by a resonance shape in some given spin-isospin channel and in a given energy
region:

𝑡𝐴𝐵(𝑠1) = 𝑔2

𝑠1 − 𝑠0
1 + 𝑖√𝑠0

1Γ
, (E.1)

where 𝑠0
1 represents the invariant mass of the resonant state and Γ its width

at half maximum. The invariant mass at which the resonance has one half the
strength of its maximum, 𝑠Γ

1 , is defined from its width as

𝑠Γ
1 − 𝑠0

1 = √𝑠0
1Γ, √𝑠Γ

1 − √𝑠0
1 = Γ

2
. (E.2)

We consider now the 𝐵 particle to be bound in a cluster 𝒞 of several particles,
as depicted in Fig. E.1. If the 𝐵 particle is bound in the cluster with negligible
binding and internal momentum, we can approximate the invariant mass of the
𝐴𝐵 system as

𝑠1 = 𝑚2
𝐴 + (𝜉𝑚𝐵)2 + 2𝐸𝐴(𝜉𝑚𝐵), (E.3)
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Figure E.1: FCA single-scattering diagram with an external 𝐴 particle scatter-
ing off a 𝐵 particle within the 𝒞 cluster.

where again 𝜉 is a correction factor

𝜉 = 𝑚𝒞

∑ masses of
particles in 𝒞

. (E.4)

On the other hand, the invariant mass of the full system 𝐴𝒞 can be written as

𝑠 = 𝑚2
𝐴 + 𝑚2

𝒞 + 2𝐸𝐴𝑚2
𝒞. (E.5)

By equating now the energy of the external particle 𝐸𝐴 in both equations (E.3)
and (E.5), we obtain a linear relation between 𝑠1 and 𝑠.

𝑠1 − 𝑚2
𝐴 − (𝜉𝑚𝐵)2

2(𝜉𝑚𝐵)
=

𝑠 − 𝑚2
𝐴 − 𝑚2

𝒞
2𝑚𝒞

. (E.6)

Equipped with this transformation, we can deduce now the apparent width
of the state in the 𝑠 variable starting from the width of the state in 𝑠1:

Γ = 𝑠Γ
1 − 𝑠0

1
√𝑠0

1
= 1

√𝑠0
1

𝜉𝑚𝐵
𝑚𝒞

(𝑠Γ − 𝑠0) , (E.7)

where 𝑠Γ and 𝑠0 are obtained from 𝑠Γ
1 and 𝑠0

1 through Eq. (E.6). Defining now
the apparent width of the state as that obeying

𝑠Γ − 𝑠0 =
√

𝑠0Γ(app.)
√

𝑠Γ −
√

𝑠0 = Γ(app.)

2
, (E.8)

we can finally write

Γ(app.) = √𝑠0
1

𝑠0
𝑚𝒞

𝜉𝑚𝐵
Γ. (E.9)
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Applying (E.9) to the case where the external particle is a 𝐷 meson, the
interaction with the nucleon in the 𝑁𝐷∗ cluster described by the Λ𝑐(2765)
resonance, a direct evaluation of the apparent width through Eq. (E.9) yields

Γ(app.)
Λ𝑐(2765) = 1.906 × ΓΛ𝑐(2765) ≃ 95 MeV, (E.10)

result which was observed in Fig. 5.10.
We can also apply this result to the case of an external nucleon interacting

with one of the nucleons inside of a nucleus of mass number 𝐴. In this case,
neglecting the offshellness effect by setting 𝜉 = 1, we have

Γ(app.) =
𝑚2

𝐴

𝑚𝑁
√

𝑠0
Γ, (E.11)

where 𝑠0 is obtained in the zero binding energy limit from Eq. (E.6) by setting
𝑠0

1 = (2𝑚𝑁)2 as

𝑠0 = 𝑚𝐴
𝑚𝑁

((2𝑚𝑁)2 − 2𝑚2
𝑁) + 𝑚2

𝑁 + 𝑚2
𝐴 = 𝐴2𝑚2

𝑁 + 𝑚2
𝑁 + 𝐴2𝑚2

𝑁 = (𝐴 + 1)2𝑚2
𝑁.

(E.12)
Using now Eq. (E.9), we obtain

Γ(app.)

Γ
= 2𝑚𝑁

(𝐴 + 1)𝑚𝑁

𝐴𝑚𝑁
𝑚𝑁

= 2𝐴
(𝐴 + 1)

. (E.13)

We can see that for 𝐴 = 1 the two magnitudes are obviously equal, but as
𝐴 increases then Γ(app.) becomes larger than Γ, doubling it in the limit 𝐴 →
∞. Although this specific behavior with the mass number is particular to the
nuclear scenario, the apparent width increase of a two-body resonance when
studying a three or more particle system is a general result, as we have shown
here.
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Resumen extenso en
castellano

Motivación

QCD y estados exóticos

La Cromodinámica Cuántica (QCD por sus siglas en inglés: Quantum Chro-
moDynamics), teoría que describe la interacción fuerte entre quarks y gluones,
constituye uno de los pilares fundamentales del Modelo Estándar de la física de
partículas. Existen seis sabores (especies) de quarks: arriba (up), abajo (down),
extraño (strange), encanto (charm), fondo o belleza (bottom o beauty) y cima
(top). Además, tienen carga de color, que puede tomar tres valores distintos
(rojo, verde y azul), junto con sus correspondientes anti-colores. La interacción
fuerte es transmitida por los gluones, partículas vectoriales que también llevan
carga de color y, a diferencia de los fotones en la interacción electromagnética,
interactúan entre sí. Esta propiedad distintiva de QCD es la responsable de
fenómenos tan característicos como el confinamiento, que impide la existencia
de quarks libres en la naturaleza; y, complementariamente, la libertad asintótica,
que predice que a altas energías las interacciones entre quarks se debilitan,
permitiendo un tratamiento perturbativo de la teoría.

A bajas energías, sin embargo, la constante de acoplamiento de QCD crece
y el cálculo perturbativo deja de ser aplicable. Es precisamente en este régimen
no perturbativo donde se forman los hadrones (los estados ligados de quarks
y gluones que observamos experimentalmente) y donde surge la gran riqueza
del espectro hadrónico. Comprender la dinámica de QCD en este régimen
constituye uno de los retos más profundos de la física teórica contemporánea.
Un hito decisivo en el camino hacia esta comprensión fue el desarrollo del
Modelo de Quarks de Godfrey e Isgur, cuyas predicciones reprodujeron con un
éxito notable gran parte del espectro hadrónico observado. Este marco teórico
permitió organizar de forma sistemática los mesones y bariones conocidos,
estableciendo un marco de referencia que, a día de hoy, aún resulta influyente.
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No obstante, como todo modelo, presenta limitaciones inherentes y no puede
dar cuenta de todos los estados observados.

En el Modelo de Quarks clásico, los mesones se describen como estados
quark–antiquark (𝑞 ̄𝑞), mientras que los bariones se componen de tres quarks
(𝑞𝑞𝑞). Este esquema, introducido en la década de 1960, explicó de manera
elegante la existencia de los multipletes de sabor y proporcionó una imagen
intuitiva de la estructura de la materia hadrónica. Sin embargo, con el paso de
los años se hizo evidente que esta imagen no estaba completa. Existen estados
que no encajan en este marco simple o cuya descripción en términos de 𝑞 ̄𝑞 o 𝑞𝑞𝑞
resulta poco natural. Más aún, algunos estados presentan números cuánticos
imposibles de obtener en configuraciones convencionales de quarks, lo que les
otorga un carácter genuinamente exótico.

Desde el punto de vista de QCD, el único requisito fundamental para un
hadrón es que sea un singlete de color. Esto abre la puerta a una gran variedad
de configuraciones más complejas: tetraquarks (𝑞𝑞 ̄𝑞 ̄𝑞), pentaquarks (𝑞𝑞𝑞𝑞 ̄𝑞),
bolas de gluones (estados compuestos únicamente de gluones), híbridos que
incluyen gluones de valencia junto con quarks, o incluso moléculas hadrónicas
formadas por interacciones residuales entre estados singletes (sin carga) de color.
En la práctica, estas etiquetas no son absolutas, ya que configuraciones distintas
pero con los mismos números cuánticos globales pueden mezclarse, dando lugar
a estados cuya naturaleza interna es difícil de precisar.

Durante décadas, estos estados permanecieron en gran medida como hipóte-
sis teóricas sin confirmación experimental. Sin embargo, en los últimos veinte
años, la espectroscopía hadrónica ha vivido un auge extraordinario, en lo que
algunos autores han denominado la“segunda revolución de la física hadrónica”.
Algunos experimentos como Belle, BaBar, BESIII y LHCb han descubierto
un amplio abanico de estados que no se pueden describir de manera natural
en el esquema del modelo de quarks convencional. Entre ellos se incluyen
mesones cargados que no pueden ser interpretados como 𝑐 ̄𝑐 o 𝑏𝑏̄ puros, reso-
nancias extremadamente cercanas a umbrales de producción de dos hadrones,
y pentaquarks con contenido de quarks pesados.

Un ejemplo histórico de especial relevancia es el descubrimiento del
𝜒𝑐1(3872) (antiguo 𝑋(3872)) por la colaboración Belle en 2003. Este estado,
extremadamente estrecho y situado justo en el umbral 𝐷0𝐷∗0, se convirtió
rápidamente en uno de los principales candidatos a estado molecular hadrónico.
Desde entonces, se han observado numerosos estados adicionales en el sector
del charmonium que no pueden describirse como 𝑐 ̄𝑐 convencionales. Más
recientemente, la observación del 𝑇𝑐𝑐(3875)+ por LHCb ha supuesto un hito
aún mayor: al tratarse de un estado con dos unidades de charm, su composición
mínima exige cuatro quarks de valencia (𝑐𝑐𝑢̄ ̄𝑑). Su masa extremadamente
cercana al umbral 𝐷𝐷∗ y su anchura inusualmente pequeña lo convierten en uno
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de los candidatos más claros a hadrón tipo tetraquark de naturaleza molecular,
hecho que ha despertado un intenso debate teórico y ha constituído una de las
principales motivaciones de este trabajo.

En paralelo, en el sector charm–strange se descubrieron en 2003 los estados
𝐷∗

𝑠0(2317)± y 𝐷𝑠1(2460)±, cuyas masas resultaron sorprendentemente bajas
respecto a las predicciones del modelo de Godfrey e Isgur. Estas anomalías
pueden explicarse de manera natural si se interpretan como estados ligados
𝐷𝐾 y 𝐷∗𝐾, hipótesis reforzada por estudios de QCD en el retículo (Lattice
QCD, LQCD). De este modo, tanto el 𝑇𝑐𝑐(3875)+ como el 𝐷∗

𝑠0(2317) se han
consolidado como casos de referencia en el estudio de hadrones exóticos y
motivan de manera directa la investigación presentada en esta tesis.

Materia fuertemente interactuante en condiciones extremas

Una segunda gran frontera en la física hadrónica se encuentra en el compor-
tamiento de la materia fuertemente interactuante bajo condiciones extremas de
densidad bariónica y/o temperatura. El estudio de estas condiciones no es un
mero ejercicio teórico, ya que conecta de manera directa con problemas funda-
mentales en astrofísica y cosmología, así como con la búsqueda experimental de
nuevas fases de la materia en colisiones de iones pesados.

A temperaturas y densidades suficientemente altas, se espera que los
hadrones pierdan su identidad y se disocien en sus constituyentes fundamen-
tales: quarks y gluones. Bajo estas circunstancias, QCD predice la formación
de un nuevo estado de la materia conocido como plasma de quarks y gluones
(QGP, por sus siglas en inglés: Quark-Gluon Plasma). La existencia de esta fase
desconfinada fue propuesta ya a mediados de los años 70, pocos años después
de la formulación de QCD, por trabajos pioneros de Collins y Perry, y de
Cabibbo y Parisi. Estos autores plantearon que, debido a la libertad asintótica,
las interacciones entre quarks se debilitan a altas energías, lo que sugiere de
manera natural una transición desde la fase hadrónica confinada hacia un QGP
desconfinado cuando la temperatura y/o la densidad bariónica superan ciertos
valores críticos.

En la actualidad, cálculos de LQCD a densidad bariónica nula confirman
este escenario: la transición desde la materia hadrónica hacia el QGP es un
cruce suave (crossover) en torno a una temperatura crítica 𝑇𝑐 ≃ 155 MeV. Esta
transición está acompañada de la restauración aproximada de la simetría quiral
en el sector de quarks ligeros, otro de los pilares conceptuales de QCD. Dicho
resultado constituye uno de los mayores éxitos de LQCD, ya que proporciona
una predicción cuantitativa robusta que ha podido ser contrastada con los
experimentos de colisiones de iones pesados en el RHIC (Brookhaven) y el
LHC (CERN), donde se han recreado condiciones similares a las del Universo
primitivo.
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Sin embargo, a densidades bariónicas más altas la situación es mucho
más incierta. El problema fundamental es que los cálculos de LQCD se
ven seriamente limitados por el denominado problema del signo, que dificulta
enormemente la simulación numérica cuando el potencial químico bariónico es
finito. Por ello, gran parte del conocimiento actual proviene de aproximaciones
efectivas, teorías funcionales como la de los potenciales de interacción de
Nambu–Jona–Lasinio, o cálculos perturbativos en el límite de altas densidades.
Estos estudios sugieren la existencia de una transición de fase de primer orden en
el plano densidad–temperatura, que terminaría en un punto crítico al disminuir
la densidad. La localización experimental de dicho punto crítico es uno de
los objetivos prioritarios de programas actuales como el Beam Energy Scan en
RHIC o las futuras investigaciones previstas en FAIR (Darmstadt).

El diagrama de fases de QCD podría contener además otras regiones aún
más exóticas, como las fases superconductoras de color, que se predicen a
densidades asintóticamente altas y que podrían ser relevantes para describir
el interior de las estrellas de neutrones. En estas fases, los quarks cercanos
a la superficie de Fermi formarían pares de Cooper de manera análoga a
lo que sucede en la superconductividad electrónica, pero mediada aquí por
interacciones de color. El estudio detallado de estas fases sigue siendo un campo
abierto y de intensa investigación teórica.

Más allá de su interés intrínseco para la física de partículas, la materia
de QCD en condiciones extremas está ligada a cuestiones fundamentales de
la cosmología y la astrofísica. Se cree que el Universo primitivo, durante sus
primeros microsegundos tras el Big Bang, estuvo completamente compuesto por
plasma de quarks y gluones. Al expandirse y enfriarse, el QGP se transformó
gradualmente en hadrones y, posteriormente, en núcleos, dando lugar a la
materia ordinaria que observamos hoy. Por tanto, comprender la transición
de fase en QCD no solo aclara aspectos de la teoría de la interacción fuerte,
sino que también aporta piezas clave a nuestra narrativa cosmológica.

En el extremo opuesto, el régimen de altas densidades y temperaturas mod-
eradas es fundamental para la astrofísica de objetos compactos. La composición
de la materia a varias veces la densidad de saturación nuclear determina la
ecuación de estado que gobierna la relación masa–radio de las estrellas de
neutrones. Ésta, a su vez, juega un papel central en la interpretación de señales
multimensajero, como las ondas gravitacionales y la emisión electromagnética
observada en fusiones de estrellas de neutrones, registradas por LIGO/Virgo
y observatorios asociados. En este contexto, saber si la materia en el núcleo
de una estrella de neutrones está formada por nucleones, hiperones, quarks
desconfinados o grados de libertad más exóticos es un problema abierto de
primera magnitud.

En términos del contenido de esta tesis, el estudio de estados hadrónicos
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exóticos en regímenes de alta densidad y temperatura, si bien no persigue
directamente la exploración global del diagrama de fases de QCD, aprovecha
dichos entornos como una fuente adicional de información sobre su naturaleza
interna. Las modificaciones en sus masas, anchuras y funciones espectrales
(sensibles tanto al grado de composición molecular como a la disparidad
entre las interacciones de mesones y antimesones con nucleones) constituyen
magnitudes observables clave para poner a prueba las teorías efectivas de baja
energía, según los resultados aquí expuestos. De este modo, el análisis en un
medio denso o caliente ofrece una perspectiva complementaria a los estudios en
el vacío y se perfila como una herramienta esencial para discriminar entre las
diferentes posibles estructuras internas de los hadrones exóticos. En conjunto,
estos estudios contribuyen a una comprensión más profunda de la interacción
fuerte y del papel que juegan los estados exóticos en el espectro de QCD.

Metodología general
La presente tesis combina distintas herramientas teóricas y numéricas para el
estudio de estados hadrónicos exóticos en condiciones extremas de densidad y
temperatura, así como en el vacío. A continuación, se describen brevemente
las principales metodologías empleadas, antes de discutir el formalismo y los
resultados principales obtenidos en cada capítulo.

Teorías efectivas

El punto de partida lo constituye la Cromodinámica Cuántica, cuya naturaleza
fuertemente acoplada a bajas energías obliga al uso de teorías efectivas. Las
teorías de campos efectivas (Effective Field Theories, EFTs) ofrecen un marco
general para describir fenómenos en regímenes donde un tratamiento completo
de la dinámica subyacente resulta desconocido o intratable. Su idea central
consiste en identificar los grados de libertad relevantes a una cierta escala de
energía y construir con ellos el lagrangiano más general compatible con las
simetrías de la teoría fundamental. La dinámica a cortas distancias, que no se
resuelve explícitamente, se incorpora de manera sistemática en un número finito
de constantes de baja energía (Low-Energy Constants, LECs). Algunos ejemplos
de teorías efectivas especialmente relevantes en el marco de QCD son la teoría
quiral de perturbaciones (Chiral Perturbation Theory, ChPT), la teoría efectiva
de quarks pesados (Heavy-Quark Effective Theory, HQET) y su “combinación”:
la teoría quiral de perturbaciones de hadrones pesados (Heavy-Hadron ChPT,
HHChPT). Estas teorías están matemáticamente definidas por lagrangianos
efectivos consistentes con las simetrías quiral y/o de espín de quark pesado
(Heavy-Quark Spin Symmetry, HQSS) de QCD, que sirven como base para de-
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scribir las interacciones hadrónicas relevantes dentro de un contaje perturbativo
(power counting). En particular, a lo largo de esta tesis se han considerado
estas teorías para describir interacciones como 𝐷(∗)𝑁, 𝐾𝑁, 𝐷(∗)𝜋, 𝐾𝜋, 𝐷(∗)𝐷∗

y 𝐷(∗)𝐾. Estas interacciones constituyen uno de los bloques fundamentales del
formalismo de los distintos capítulos de este trabajo.

Estados en el medio y funciones espectrales

Para describir el comportamiento de hadrones inmersos en materia nuclear o
en un medio térmico se emplean las técnicas de teoría cuántica de campos
en el medio. En el caso de temperatura finita, el marco teórico está dado
por la teoría térmica de campos (thermal field theory en inglés), en particular
mediante el formalismo de tiempo imaginario (Imaginary Time Formalism,
ITF) introducido por Matsubara. El concepto central en teoría cuántica de
campos en el medio es la autoenergía, que codifica las modificaciones en las
propiedades de una partícula debidas a sus interacciones con el entorno. A
partir de ella se construyen las funciones espectrales, que proporcionan infor-
mación sobre masas efectivas, anchuras de desintegración y modos colectivos en
el medio. Herramientas como el formalismo de funciones de Green y la ecuación
de Bethe–Salpeter unitarizada desempeñan un papel esencial en este marco.

Ecuaciones de tres cuerpos y aproximación de centro fijo

El estudio de sistemas de tres hadrones requiere resolver las ecuaciones de
Faddeev, que incorporan de manera sistemática las múltiples interacciones
posibles entre los constituyentes del sistema. En este trabajo se emplea la
aproximación de centro fijo (Fixed-Center Approximation, FCA), adecuada
cuando dos de las partículas forman un estado ligado compacto que actúa como
centro de dispersión para la tercera. Este método simplifica notablemente la
dinámica manteniendo las características esenciales del problema.

Observables experimentales: transparencia nuclear

Una parte de la tesis está dedicada a explorar la viabilidad de acceder ex-
perimentalmente a las propiedades en el medio nuclear de mesones pesados.
Para ello, se estudia el observable conocido como cociente de transparencia
(transparency ratio), ya utilizado con éxito en el caso del mesón 𝜂′. Este
cociente compara la producción de mesones en distintos núcleos y permite
extraer información sobre la absorción del mesón en el medio, directamente
relacionada con la parte imaginaria de su autoenergía.
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Herramientas numéricas

El desarrollo de los cálculos ha requerido un uso intensivo de programación
científica. La evaluación de integrales y la resolución de las ecuaciones dinámicas
se han implementado principalmente en FORTRAN, aprovechando su eficiencia
en cómputo numérico. Además, se ha empleado Wolfram Mathematica como
apoyo analítico, tanto para la manipulación simbólica de expresiones como para
la verificación de resultados intermedios.

Formalismo y análisis de los resultados
A continuación se resumen tanto el formalismo como los principales resultados
obtenidos en cada uno de los capítulos de esta tesis. La organización sigue la
misma estructura que el cuerpo principal del manuscrito.

Capítulo 2: Estados exóticos en medio nuclear

El primer bloque de resultados de esta tesis se centra en el estudio del com-
portamiento de estados exóticos en un medio nuclear denso (materia nuclear).
Este medio está descrito como un mar de Fermi de nucleones no interactuantes,
caracterizado por el momento de Fermi 𝑘𝐹 y por la densidad de nucleones
𝜌. Los candidatos analizados en detalle han sido el 𝑇𝑐𝑐(3875) y el 𝐷∗

𝑠0(2317),
junto con sus compañeros de HQSS. Estos estados, entendidos como moléculas
hadrónicas formadas por 𝐷(∗)𝐷∗ y 𝐷(∗)𝐾, respectivamente, se han modelado
como estados generados dinámicamente en las correspondientes amplitudes de
dispersión mesón–mesón en onda 𝑆 unitarizadas.

El marco teórico se basa en el concepto de autoenergía, que describe la
modificación del propagador de una partícula debido a sus interacciones con el
medio. Para un mesón 𝑀 propagándose en materia nuclear, la autoenergía se
calcula como

Π𝑀(𝑝0, ⃗𝑝; 𝜌) = ∫
𝑞<𝑘𝐹

𝑑3𝑞
(2𝜋)3 𝑡𝑀𝑁 (𝑝0 + 𝐸𝑁( ⃗𝑞), ⃗𝑝 + ⃗𝑞; 𝜌) ,

donde 𝑡𝑀𝑁 es la amplitud mesón–nucleón. En la anterior expresión, (𝑝0, ⃗𝑝) es la
energía y el trimomento del mesón 𝑀, y 𝐸𝑁( ⃗𝑞) es la energía de un nucleón del
medio con trimomento ⃗𝑞. La amplitud unitarizada 𝑡𝑀𝑁 se determina mediante
la ecuación de Bethe–Salpeter:

𝑡𝑀𝑁(𝑃 0, ⃗𝑃 ; 𝜌) = 𝑣𝑀𝑁(
√

𝑠)
1 − 𝑣𝑀𝑁(

√
𝑠)𝑔𝑀𝑁(𝑃 0, ⃗𝑃 ; 𝜌)

,
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donde 𝑣𝑀𝑁 proviene de un lagrangiano efectivo con simetría SU(6)lsf × HQSS
para los mesones 𝐷(∗) (SU(6)lsf constituyendo el grupo de simetría de espín-
sabor ligero) y de la teoría quiral en el caso de los kaones. En esta expresión,
P = (𝑃 0, ⃗𝑃 ) es el cuadrimomento total del sistema 𝑀𝑁, y 𝑠 = P2 es la masa
invariante del sistema. La función de loop 𝑔𝑀𝑁(𝑃 0, ⃗𝑃 ; 𝜌) incorpora los efectos
de densidad a través de las autoenergías, por lo que el cálculo numérico de las
autoenergías se resuelve de forma autoconsistente.

Una vez determinadas las autoenergías de 𝐷(∗) y 𝐾 (tomadas de la lite-
ratura), se introdujeron en la ecuación de Bethe–Salpeter para la matriz de
transición de dos mesones. Se parte de la dinámica en el espacio libre

𝑇 (𝑠) = 𝑉 (𝑠)
1 − Σ0(𝑠)𝑉 (𝑠)

,

donde 𝑇, 𝑉 y Σ0 son, respectivamente, la matriz de transición, la interacción
efectiva y la función de loop mesón–mesón en el vacío (usamos en este caso letras
mayúsculas para evidenciar que hablamos de unas magnitudes distintas a las de
las ecuaciones anteriores), siendo 𝑠 la masa invariante del sistema mesón–mesón.
Se han utilizado dos familias de interacciones efectivas, 𝑉𝐴 (lineal en 𝑠) y 𝑉𝐵
(inversamente lineal en 𝑠), parametrizadas para que la matriz 𝑇 unitarizada en
el vacío genere un polo en 𝑠 = 𝑚2

0 con probabilidad molecular 𝑃0. Los efectos
del medio se han tenido en cuenta sustituyendo Σ0 por la función de loop en el
medio nuclear,

Σ(𝑠; 𝜌) = 𝑖 ∫ 𝑑4𝑞
(2𝜋)4 Δ𝑀(𝐸 − 𝑞0, ⃗𝑃 − ⃗𝑞; 𝜌)Δ𝑀′(𝑞0, ⃗𝑞; 𝜌),

con los propagadores de los mesones vestidos

Δ𝑀(𝑞0, ⃗𝑞; 𝜌) = 1
(𝑞0)2 − ⃗𝑞 2 − 𝑚2

𝑀 − Π𝑀(𝑞0, ⃗𝑞; 𝜌)
.

Los resultados obtenidos han mostrado un comportamiento muy distinto
entre partículas y antipartículas, debido a la presencia del medio nuclear, que
rompe la simetría de conjugación de carga. En el caso del 𝑇𝑐𝑐(3875)+ y su
antipartícula 𝑇 ̄𝑐 ̄𝑐(3875)−, cuando domina la componente molecular, el primer
estado exótico se ensancha de manera notable y su polo se desplaza hacia
energías más altas, mientras que el segundo sufre un ensanchamiento moderado
y un desplazamiento hacia energías más bajas. Esta asimetría refleja la fuerte
diferencia entre la interacción atractiva 𝐷(∗)𝑁 y la mucho más débil 𝐷(∗)𝑁.
Haciendo uso de HQSS se ha extendido el estudio a los compañeros 𝑇 ∗

𝑐𝑐(4016)+ y
𝑇 ∗

̄𝑐 ̄𝑐(4016)− generados en la matriz de dispersión 𝐷∗𝐷∗ y 𝐷∗𝐷∗, respectivamente.
Se ha encontrado que la interacción 𝐷∗𝑁, que en el modelo SU(6)lsf × HQSS
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es más atractiva que 𝐷𝑁, amplifica las modificaciones obtenidas para estos
estados, manteniendo no obstante una asimetría partícula–antipartícula similar.

Un patrón análogo, pero aún más marcado, se ha observado en los estados
charm–strange 𝐷∗

𝑠0(2317)± y 𝐷𝑠1(2460)±. En este caso, las autoenergías de
kaones y antikaones muestran un gran contraste entre la fuerte atracción en el
canal 𝐾𝑁 y la débil repulsión en 𝐾𝑁. Como consecuencia, incluso a la mitad
de la densidad de saturación nuclear, el 𝐷∗

𝑠0(2317)+ se desplaza a energías
superiores y se estrecha, mientras que su antipartícula migra hacia energías
menores con un perfil Breit–Wigner mucho más ancho (hasta el punto de que
ambas amplitudes apenas se solapan para altas probabilidades moleculares). En
los compañeros 𝐷𝑠1(2460)± aparece la misma tendencia, aunque con anchuras
globalmente mayores debido a la intensidad de las interacciones 𝐷∗𝑁 y 𝐷∗𝑁.
En cualquier caso, las diferencias entre las dinámicas del kaón y el antikaón en
el medio nuclear constituyen el motor principal de la asimetría de conjugación
de carga tan acusada que hemos encontrado en nuestro estudio.

En conjunto, estos resultados han mostrado que la magnitud (e incluso el
signo) de los desplazamientos de masa y anchura inducidos por la densidad
dependen críticamente de dos factores: la probabilidad molecular del estado y
la diferencia entre las interacciones mesón–nucleón y antimesón–nucleón. Por
ello, si se realizaran medidas de las funciones espectrales en un medio denso
de las familias 𝑇𝑐𝑐(3875) y 𝐷∗

𝑠0(2317) (por ejemplo, en colisiones relativistas de
iones pesados en CBM/FAIR o en experimentos de blanco fijo con antiprotones
en PANDA), se obtendría una prueba experimental directa de su estructura
interna. La confirmación de los desplazamientos y ensanchamientos predichos
respaldaría la interpretación molecular, mientras que un comportamiento más
tenue o distinto apoyaría el escenario de tetraquarks compactos. Además, tales
observaciones aportarían restricciones valiosas sobre las autoenergías (aún poco
conocidas) de kaones, antikaones y mesones con charm en materia nuclear
densa.

Capítulo 3: Transparencia nuclear

Tras haber caracterizado las modificaciones en medio de los estados 𝑇𝑐𝑐(3875) y
𝐷∗

𝑠0(2317), se ha abordado la cuestión clave de cómo acceder experimentalmente
a estas propiedades. En particular, se ha tratado el problema de la determi-
nación experimental de la anchura en el medio del mesón 𝐷, que constituye
uno de los componentes básicos de los estados estudiados anteriormente. Para
ello, se ha analizado el observable conocido como cociente de transparencia
(transparency ratio), que mide la probabilidad relativa de que un mesón pesado
atraviese un núcleo sin ser absorbido en comparación con un núcleo ligero de
referencia (normalmente 12C). Este observable ya ha demostrado ser eficaz en
el caso del mesón 𝜂′, permitiendo extraer su anchura en el medio nuclear.
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El análisis se ha basado en la reacción de fotoproducción 𝛾𝐴 → 𝐷+𝐷−𝐴′,
donde 𝐴 y 𝐴′ denotan el núcleo inicial y final (𝐴 también representa el número
másico). El observable de interés se define como

𝑇𝐴 = 𝜎(𝛾𝐴 → 𝐷+𝐷−𝐴′)
𝜎(𝛾 12C → 𝐷+𝐷− 12C′)

12
𝐴

,

cociente que cuantifica la reducción de la sección eficaz debida a la absorción
de los mesones 𝐷 en el interior nuclear. En esta expresión, 𝜎 denota la sección
eficaz de la reacción de fotoproducción en el núcleo de interés. Esta cantidad
se calcula en el sistema laboratorio, en el que el núcleo inicial está en reposo,
como

𝜎(𝛾𝐴 → 𝐷+𝐷−𝐴′) =

= 1
4𝑚𝑁𝑝𝛾

∫
espacio
fásico

∫
volumen
núcleo

𝑑3𝑟 𝜌( ⃗𝑟) |𝑡|2 exp [∫
⃗𝑟′

Im Π (𝐸𝐷, 𝑝𝐷; 𝜌( ⃗𝑟′))
𝑝𝐷

𝑑 ⃗𝑟′] ,

donde 𝜌( ⃗𝑟) representa la densidad numérica de nucleones en el punto ⃗𝑟, |𝑡|2 es
la amplitud diferencial del proceso de fotoproducción en un nucleón dentro del
núcleo, y la exponencial final constituye el factor de atenuación que describe la
probabilidad de supervivencia del mesón 𝐷 en su trayecto de salida del núcleo
(parametrizado por ⃗𝑟′). Este factor depende de manera directa de la parte
imaginaria de su autoenergía en el medio. Para evaluar la sección eficaz se
ha empleado una estimación de dicha parte imaginaria, inspirada en estudios
previos, y se ha restringido la energía total del sistema en el centro de masas
fotón–núcleo a unos 10 GeV, región donde la emisión de mesones 𝐷 de bajo
momento en el sistema laboratorio resulta máxima.

Inicialmente, se han adoptado dos aproximaciones para simplificar los cálcu-
los: se ha considerado una amplitud diferencial |𝑡|2 constante y se ha modelado
la densidad nuclear 𝜌 mediante una distribución esférica uniforme (modelo de
esfera dura). Posteriormente, ambas partes del modelo han sido refinadas,
incorporando la dependencia dominante de |𝑡|2 con la energía, motivada por
estudios anteriores, y empleando distribuciones de densidad más realistas,
basadas en funciones de oscilador armónico y de tipo Fermi. Estas mejoras
han permitido comprobar la robustez de las predicciones iniciales y reducir las
incertidumbres asociadas al cálculo.

Los resultados numéricos han mostrado que el cociente de transparencia
decrece de forma marcada con el número másico nuclear: en núcleos pesados se
alcanzan valores en torno a 0.6 relativos al caso de 12C. Esta reducción refleja
directamente el ensanchamiento en el medio de los mesones 𝐷, y constituye una
vía experimental accesible para determinar su autoenergía.
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En conjunto, este estudio ha propuesto el cociente de transparencia como
una vía experimental para explorar las propiedades en el medio del mesón 𝐷,
mostrando su alta sensibilidad a la absorción teóricamente estimada para este
mesón. Aunque en el cálculo se han utilizado ciertas simplificaciones, se han
establecido las condiciones cinemáticas óptimas para maximizar la sensibilidad
a los efectos del medio, y se ha mostrado que el nivel de supresión predicho
debería ser accesible en futuras instalaciones como el EIC, el EicC o una mejora
de GlueX.

Capítulo 4: Estados exóticos a temperatura finita

En el Cap. 4 se ha analizado el comportamiento térmico del 𝑇𝑐𝑐(3875)+ y de su
compañero de HQSS, el 𝑇 ∗

𝑐𝑐(4016)+, a temperatura finita. El objetivo ha sido
explorar cómo un baño térmico de piones modifica las propiedades de estos
estados exóticos, descritos como moléculas 𝐷(∗)𝐷∗ generadas dinámicamente
en amplitudes de dispersión unitarizadas en onda 𝑆, de manera análoga al
estudio del Cap. 2. Para ello, se ha propuesto de nuevo una matriz de transición
unitarizada a través de la ecuación de Bethe–Salpeter, utilizando las familias de
potenciales 𝑉𝐴 y 𝑉𝐵, parametrizadas en términos de la probabilidad molecular
de estos estados.

El marco teórico empleado para describir un medio térmico poblado por
piones ha sido la teoría de campos térmica en el formalismo del tiempo
imaginario (ITF). De nuevo, los efectos del entorno se han incorporado mediante
las funciones de loop de dos mesones, modificadas ahora por la presencia
de la distribución de Bose–Einstein y por la renormalización de los mesones
constituyentes a través de sus autoenergías dependientes de la temperatura. Su
expresión explícita en términos de las funciones espectrales de los mesones (𝑆𝑀)
es

Σ𝑀𝑀′(𝑃 0, ⃗𝑃 ; 𝑇 ) = ∫ 𝑑3𝑞
(2𝜋)3 ∫ 𝑑𝜔1 ∫ 𝑑𝜔2

× [1 + 𝑏−(𝜔1; 𝑇 ) + 𝑏−(𝜔2; 𝑇 )] 𝑆𝑀(𝜔1, ⃗𝑞; 𝑇 ) 𝑆𝑀′(𝜔2, ⃗𝑃 − ⃗𝑞); 𝑇
𝑃 0 − 𝜔1 − 𝜔2 + sign(𝑝0) 𝑖𝜀

,

donde las funciones 𝑏−(𝜔𝑖; 𝑇 ) representan distribuciones de Bose–Einstein,
dependientes de la temperatura 𝑇. La función espectral 𝑆𝑀 se relaciona con la
autoenergía mediante

𝑆𝑀(𝑝0, ⃗𝑝; 𝑇 ) = − 1
𝜋

Im Δ𝑀(𝑝0, ⃗𝑝; 𝑇 ),

siendo Δ𝑀 el propagador del mesón en el medio, que con la incorporación de
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su autoenergía se escribe como

Δ𝑀(𝑝0, ⃗𝑝; 𝑇 ) = 1
(𝑝0)2 − ⃗𝑝2 − 𝑚2

𝑀 − Π(𝑖𝜔𝑛, ⃗𝑝; 𝑇 )
.

Tras realizar la suma sobre las frecuencias de Matsubara y una rotación de
Wick del eje temporal imaginario al real, la autoenergía dependiente de la
temperatura se puede expresar de la siguiente manera:

Π(𝑝0, ⃗𝑝; 𝑇 ) = − 1
𝜋

∫ 𝑑3𝑞
(2𝜋)3 ∫

+∞

−∞
𝑑𝜔1 ∫

+∞

−∞
𝑑𝜔2

× [𝑏−(𝜔1) − 𝑏−(𝜔2)]
̃𝑆𝜋(𝜔1, ⃗𝑞) Im 𝑡𝑀𝜋(𝜔2, ⃗𝑞 + ⃗𝑝; 𝑇 )
𝑝0 − 𝜔2 + 𝜔1 + sign(𝑝0)𝑖𝜀

,

donde 𝑡𝑀𝜋 es la matriz de transición mesón-pión a temperatura finita, calculada
de forma autoconsistente a través de la ecuación de Bethe-Salpeter.

En este trabajo se han utilizado resultados previos para las funciones
espectrales dependientes de la temperatura de los mesones 𝐷 y 𝐷∗ inmersos
en un baño térmico de piones, con el fin de evaluar la función de loop del par
𝐷𝐷∗ y describir así las modificaciones en la matriz de transición 𝐷𝐷∗. Esta
última se definió en el vacío de forma idéntica a como se presentó en el Cap. 2.

Los resultados numéricos han mostrado que, ya a temperaturas moderadas
(𝑇 ≃ 80 MeV), las amplitudes 𝐷(∗)𝐷∗ se ven significativamente modificadas: el
corte de unitariedad se suaviza y se desplaza hacia energías más bajas, mientras
que el pico en el umbral se atenúa. Con el incremento de la temperatura, los
estados 𝑇𝑐𝑐 y 𝑇 ∗

𝑐𝑐 experimentan un rápido ensanchamiento de sus funciones
espectrales, que desemboca en la disolución de ambas resonancias en torno a
𝑇 ≃ 100–120 MeV.

Un aspecto clave de estas modificaciones es su sensibilidad a la probabilidad
molecular de los estados. En configuraciones dominadas por componentes
moleculares, los efectos térmicos han resultado mucho más pronunciados, mien-
tras que las estructuras más compactas han mostrado una notable estabilidad
frente al aumento de temperatura, además de una mayor dependencia respecto
a la forma específica de la familia de potenciales escogida.

En conjunto, el análisis ha demostrado que la evolución térmica del
𝑇𝑐𝑐(3875)+ y de su compañero de HQSS ofrece una vía novedosa para ex-
plorar su estructura interna. Medidas experimentales de amplitudes 𝐷(∗)𝐷∗

en colisiones de iones pesados en instalaciones como RHIC o LHC podrían
proporcionar información decisiva sobre la naturaleza de estos estados. Combi-
nadas con futuros estudios en materia densa en FAIR, estas medidas abrirían
la posibilidad de imponer mayores restricciones sobre la probabilidad molecular
de estos hadrones exóticos con doble charm.
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Capítulo 5: Estados ligados de tres cuerpos

En el Cap. 5 se ha trasladado el análisis desde los sistemas de dos cuerpos hacia
la dinámica de tres hadrones, con el objetivo de explorar la posible formación
de estados ligados genuinos. El sistema estudiado ha sido 𝐷𝑁𝐷∗, compuesto
por dos mesones con charm y un nucleón. La motivación para este análisis se
basa en la interpretación molecular de varios bariones en el sector charm, como
el Λ𝑐(2940) y el Λ𝑐(2910), propuestos como estados ligados 𝐷∗𝑁, y el Λ𝑐(2765),
que se puede relacionar mediante argumentos de HQSS con un estado 𝐷𝑁.
La existencia de estos candidatos sugiere que configuraciones de tres cuerpos
podrían dar lugar a nuevos estados ligados.

El tratamiento de este problema se ha abordado mediante la aproximación
de centro fijo (FCA, por sus siglas en inglés). En esta aproximación, dos de las
partículas forman un par (cluster) ligado relativamente compacto, que actúa
como centro de dispersión para la tercera. De esta manera, las ecuaciones de
Faddeev se simplifican en un sistema de ecuaciones integrales acopladas para
las amplitudes 𝑇1 y 𝑇2:

𝑇1 = 𝑡1 + 𝑡1 𝐺0 𝑇2,
𝑇2 = 𝑡2 + 𝑡2 𝐺0 𝑇1,

donde 𝑡1,2 son las amplitudes de dispersión dos a dos (por ejemplo, si el cluster
está formado por 𝐷∗𝑁, corresponden a las interacciones 𝐷𝐷∗ y 𝐷𝑁 con la
partícula externa), y 𝐺0 es la función de propagación de la partícula externa
dentro del cluster. La amplitud total se obtiene como 𝑇 = 𝑇1+𝑇2. Este esquema
captura de manera controlada los efectos más relevantes de la dinámica de tres
cuerpos cuando uno de los subsistemas forma un estado ligado robusto.

Se han considerado dos posibles configuraciones de cluster :

• 𝐷(𝑁𝐷∗), motivada por la interpretación molecular de los estados
Λ𝑐(2940) y Λ𝑐(2910) como sistemas 𝐷∗𝑁.

• 𝐷∗(𝑁𝐷), en la que el cluster 𝐷𝑁 se relaciona con la resonancia Λ𝑐(2765).

En el primer caso, se ha supuesto que los estados Λ𝑐(2940) y Λ𝑐(2910) tienen
espín 𝐽 = 1/2 y 3/2, respectivamente (aunque también se considera la asig-
nación contraria). El espín de estas resonancias determina el momento angular
total del sistema de tres cuerpos. En el segundo caso, el momento angular total
del sistema lo fija la interacción del mesón 𝐷∗ con los constituyentes del cluster
𝐷𝑁.

Los resultados numéricos obtenidos han mostrado la aparición de dos
estados ligados con números cuánticos 𝐽𝑃 = 1/2+ y 3/2+, localizados cerca de
los correspondientes umbrales Λ∗

𝑐𝐷(∗). La similitud de los espectros obtenidos
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en las dos configuraciones indica que las incertidumbres teóricas introducidas
por la elección del cluster son moderadas y que la predicción de estados ligados
es robusta dentro de este marco. En todos los casos, se ha identificado la
atracción en los canales 𝐷𝑁 y 𝐷∗𝑁 como el mecanismo principal responsable
de la formación de estos estados de tres cuerpos.

En conjunto, el estudio ha demostrado que el sistema 𝐷𝑁𝐷∗ constituye
un sistema natural para albergar estados ligados de tres partículas, impulsados
por las interacciones atractivas 𝐷(∗)𝑁. Su eventual confirmación experimental
proporcionaría información valiosa sobre la naturaleza molecular de los bariones
Λ∗

𝑐 y sobre el papel de las interacciones 𝐷𝑁 y 𝐷∗𝑁 en la espectroscopía en el
sector charm. Además, extender este tipo de análisis a otros sistemas de tres
cuerpos podría abrir nuevas direcciones en la exploración de hadrones exóticos
más allá del esquema convencional.

Conclusiones generales
En conjunto, los resultados de esta tesis han mostrado cómo los estados
hadrónicos exóticos con charm, en particular el 𝑇𝑐𝑐(3875) y el 𝐷∗

𝑠0(2317),
constituyen sistemas privilegiados para investigar la dinámica no perturbativa
de QCD a bajas energías. Se ha puesto de manifiesto que sus propiedades
no son estáticas, sino que dependen de manera sensible del entorno nuclear y
térmico en el que se encuentren. La fuerte correlación entre la probabilidad
molecular de los estados y la magnitud de las modificaciones inducidas, estas
últimas marcadas por la diferente respuesta de partículas y antipartículas frente
a los efectos del medio nuclear, ha destacado el papel central de la probabilidad
molecular en la espectroscopía de hadrones exóticos.

El estudio del cociente de transparencia ha mostrado que la medida de este
observable es realista y podrá realizarse en instalaciones de próxima generación,
permitiendo extraer la anchura en medio de los mesones 𝐷. Se trataría de la
primera determinación experimental de esta magnitud, ampliamente analizada
desde el punto de vista teórico y con implicaciones notables para las propiedades
en medio nuclear de estados exóticos como el 𝑇𝑐𝑐 y el 𝐷∗

𝑠0.
Asimismo, el análisis térmico ha revelado que un baño térmico de piones a

temperaturas moderadas es suficiente para modificar de manera sustancial las
amplitudes de dispersión 𝐷(∗)𝐷∗, conduciendo a la disolución de los estados 𝑇𝑐𝑐
y 𝑇 ∗

𝑐𝑐 en torno a 𝑇 ≃ 100–120 MeV. Este resultado sugiere que los experimentos
en colisiones de iones pesados podrían aportar información clave sobre la
naturaleza molecular de estos estados, en sinergia con los estudios en materia
densa previstos en FAIR.

Finalmente, la exploración del sistema de tres cuerpos 𝐷𝑁𝐷∗ ha evidenciado
la posibilidad de formar estados ligados de tres cuerpos impulsados por las
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interacciones atractivas 𝐷𝑁 y 𝐷∗𝑁. La predicción de estos candidatos amplía
el horizonte de la espectroscopía con charm, conectando de manera natural con
los bariones Λ∗

𝑐 ya observados.
En perspectiva, los avances teóricos aquí presentados constituyen un marco

coherente y sistemático para abordar la física de hadrones exóticos en condi-
ciones extremas. No obstante, los cálculos aquí contenidos admiten futuros
refinamientos. Por ejemplo, se podrían extender los cálculos de la dinámica de
tres cuerpos más allá de la FCA, incorporar sistemáticamente canales acoplados
en todas las amplitudes consideradas, o estudiar los efectos de la restauración
de la simetría quiral en las amplitudes 𝐷𝐷∗ a temperatura finita. Del lado
experimental, la próxima generación de instalaciones (EIC, EicC, PANDA y
las mejoras en RHIC y LHC) ofrece oportunidades únicas para comprobar las
predicciones de este trabajo.

El progreso conjunto, tanto en el frente teórico como en el experimental,
será esencial para aclarar el papel de las moléculas hadrónicas en el espectro de
QCD y, en última instancia, para avanzar en la comprensión de cómo emergen
los estados ligados a partir de las simetrías y dinámicas fundamentales de la
interacción fuerte.
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