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Resumen

Ha pasado casi un siglo desde que Wolfgang Pauli postulara la existencia
de neutrinos por primera vez, en su carta a la conferencia de Tubingen en
1930. Esta partícula, que fue propuesta como una medida desesperada para
resolver el problema de la conservación de la energía en la desintegración β,
se ha convertido en un campo de estudio muy importante, tanto de la física
teórica como de la experimental. Siendo una partícula que solo interacciona
débilmente, su detección presenta un gran desafío. De hecho, pasaron más
de 20 años hasta que se detectó por primera vez en el experimento de Cowan
y Reines en 1956.

Con la detección de los neutrinos solares apareció un nuevo problema,
debido a que se detectaban menos neutrinos de los que se predecían. La
solución a esta cuestión vino de la teoría de oscilaciones de Pontecorvo. En
esta teoría los neutrinos serían partículas capaces de oscilar entre sus estados
de sabor. Este fenómeno implicaría que los neutrinos tendrían masa, en
contradicción con las conclusiones de Fermi y Perrin en 1933. La solución
completa al problema de los neutrinos solares fue la combinación de esta
teoría con el efecto Mikheyev-Smirnov-Wolfenstein, que describe cómo se ve
afectado el patrón de oscilaciones debido a la interacción con la materia.

Hoy en día, los neutrinos tienen un papel fundamental en la descripción
de los procesos débiles, englobados en la teoría del Modelo Estándar, que
es capaz de dar una buena descripción de las partículas fundamentales y
sus interacciones. Sin embargo, en esta teoría los neutrinos aparecen como
partículas sin masa, en contradicción con la evidencia experimental de las
oscilaciones de sabor. Durante las últimas décadas han aparecido numerosas
teorías, que incluyen términos de masa para los neutrinos, como extensiones
del Modelo Estándar, y los experimentos todavía no son capaces de excluir
algunos de ellos. Para extraer los parámetros de oscilación de las medidas
experimentales, los análisis dependen de modelos de interacción entre neu-
trinos y núcleos. Por lo tanto, la comprensión teórica de los efectos nucleares
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es esencial para la interpretación de los datos. Solo con medidas precisas y
modelos bien probados es posible minimizar las incertidumbres sistemáticas
en los flujos de neutrinos, fondos y respuestas de los detectores.

A lo largo de esta tesis abordamos la interacción de neutrinos con nu-
cleones y núcleos, en diferentes escenarios. En el rango entre 0.1-20 GeV,
los procesos entre neutrinos y núcleos se pueden dividir en tres categorías
principales [1]: cuasielásticos (QE), producción de resonancias y dispersión
profundamente inelástica (DIS). Estos tres tipos de procesos se pueden dar
tanto por corrientes cargadas (CCs), mediadas por un bosón W , como por
corrientes neutras, donde el mediador es el bosón Z, Fig. 1.1.

Los procesos QE, Fig. 1.1a, es el mecanismo principal para neutrinos de
energías de hasta 1 GeV. La denominación cuasiélastica se refiere al hecho
de que el neutrino cambia su identidad por un leptón cargado. Si el leptón
saliente sigue siendo un neutrino, la reacción es elástica, pero es conveniente
agrupar los dos tipos de interacción juntos.

Los procesos de producción de resonancias, Fig. 1.1b, son parte impor-
tante en las interacciones de neutrinos con energías en el rango 0.5-3 GeV.
En esta región, los grados de libertad efectivos que se escogen son bariones
y mesones; un nucleón tiene una transición a un estado excitado (N∗ o ∆).
Aunque la desintegración a un pión es el proceso más importante, las reso-
nancias también pueden desintegrarse emitiendo múltiples piones, kaones y
fotones.

A energías mayores, la sección eficaz está dominada por el DIS, Fig. 1.1c,
donde las funciones de estructura del nucleón se pueden escribir en términos
de las funciones de distribución de partones (PDFs) para quarks, antiquarks
y gluones. La habilidad única de las corrientes débiles de “probar” sabores
aislados de quarks, mejora significativamente el estudio de las PDFs. Los
estudios con alta estadística de la estructura de partones de los nucleones,
usando neutrinos, complementan los estudios con sondas electromagnéticas.

Una situación análoga se da cuando la interacción tiene lugar en el núcleo
atómico. En este caso, sin embargo, las dinámicas internas de los nucleones
constituyentes complican en gran medida su descripción. La sección eficaz de
la dispersión de neutrinos en núcleos es sensible a la misma estructura interna
determinada por la cromodinámica cuántica, que también ha sido probada
en procesos electromagnéticos, como la dispersión de leptones cargados en
núcleos.

En el Capítulo 2 se discuten de forma general los principales conceptos
sobre interacciones de neutrinos. El Capítulo 3 presenta en más detalle la
dispersión QE de neutrinos en nucleones y núcleos, utilizada a lo largo de la
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Resumen

tesis.
Durante las últimas décadas se han llevado a cabo una serie de experi-

mentos de neutrinos. Gracias a ellos se han realizado medidas de precisión
de los ángulos de mezcla y la diferencia de masas al cuadrado de los tres
sabores de neutrinos del Modelo Estándar. En la realización de este tipo
de medidas se han utilizando diferentes fuentes de neutrinos, como son los
solares, los atmosféricos o los procedentes de aceleradores. Ejemplos de ex-
perimentos que han sido importantes en esta tarea son K2K, T2K, MINOS
o SNO.

Sin embargo, durante el desarrollo de algunos experimentos de oscila-
ciones de neutrinos aparecieron anomalías cuya explicación podría implicar
nueva física. Una de estas discrepancias se observó en el detector LSND (Li-
quid Scintillator Neutrino Detector) construido en el Laboratorio Nacional
de Los Álamos. En este experimento se producían antineutrinos muónicos
de baja energía, de 0 a 53 MeV, a partir de la desintegración de piones en
reposo, que se detectaban en el LNSD a 31 m del blanco [2]. Se observó un
exceso de antineutrinos electrónicos de 3.8 σ, que se interpretó como una
oscilación en la región de diferencias de masa al cuadrado en torno a 1 eV2

en el marco de una conjetura de oscilaciones de neutrinos con un modelo
simplificado con solo dos sabores.

Para estudiar en mayor detalle la señal detectada por LSND, se diseñó
MiniBooNE (Mini Booster Neutrino Experiment) en Fermilab (Fermi Na-
tional Accelerator Laboratory). En este nuevo experimento la energía del haz
de neutrinos era un orden de magnitud mayor, lo que implica errores sis-
temáticos muy diferentes, aunque para reproducir unas condiciones similares
se mantuvo aproximadamente la misma relación entre distancia al detector
y energía del flujo de neutrinos. Al aumentar la distancia de forma propor-
cional, las dos posibilidades eran: que las medidas fueran consistentes con
las de LSND, lo que confirmaría el modelo de dos sabores como buena apro-
ximación para la explicación del efecto; o que no se detectara señal, lo que
descartaría la hipótesis hecha en LSND. Una vez sustraído el fondo, tanto
en modo neutrino como antineutrino se encontró un exceso de neutrinos
electrónicos similar al de LSND, pero no totalmente compatible.

Actualmente la anomalía de MiniBooNE es difícil de explicar en el marco
de las oscilaciones de neutrinos de tres sabores, bien establecido por otros
experimentos. Han aparecido muchas teorías para intentar resolver este
problema. Análisis recientes descartan la posibilidad de que este exceso se
deba a una, dos o tres familias de neutrinos estériles Esto apunta a una
nueva explicación, que no involucre oscilaciones. Otras maneras de explicar
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la anomalía pasan por estudios más profundos de las señales de fondo, como
por ejemplo en la Ref. [3] aunque de momento no se ha propuesto ninguna
explicación convincente de este tipo.

En el Capítulo 4 analizamos una propuesta para explicar el exceso de
eventos en el experimento MiniBooNE, desarrollada en la Ref. [4] y basada
en un modelo propuesto en la Ref. [5]. En este modelo tenemos un neu-
trino pesado, con una masa en torno a los 50 GeV, que se produciría en la
interacción entre el neutrino ligero incidente y el propio material del detec-
tor. Después, este neutrino pesado se desintegraría emitiendo un fotón y
un neutrino ligero. Los detectores de tipo Cherenkov, como MiniBooNE,
no son capaces de distinguir entre la señal producida por un fotón de la de
un electrón. Por este motivo este modelo podría ser capaz de explicar la
anomalía.

En nuestro análisis, hemos mejorado el cálculo de las interacciones de
neutrinos con nucleones y núcleos del modelo de neutrinos pesados, tanto
para los canales coherentes como para los incoherentes. Nuestros resultados
incluyen la producción de neutrinos pesados en procesos electromagnéticos
y también de interacción débil. Hemos considerado la propagación de esta
partícula en el interior del detector, antes de su desintegración. Los resulta-
dos que hemos obtenido se encuentran en desacuerdo con los datos del exceso
de MiniBooNE. Al añadir la eficiencia de detección del detector al cálculo,
los resultados se acercan un poco más a los datos, pero aún así no tenemos
un buen acuerdo entre ambos. La mayor discrepancia entre la teoría y los
datos está en las distribuciones angulares de fotones. Con los parámetros
originales del modelo, la contribución incoherente está muy suprimida, lo
que resulta en distribuciones angulares con picos muy pronunciados para
ángulos muy pequeños, lejos de las observaciones experimentales. A conti-
nuación, realizamos un ajuste de los parámetros a los datos, respetando de
los rangos permitidos por otros experimentos. Con el nuevo set de valores,
la influencia de los canales de producción incoherentes es mayor que la de los
canales coherentes, resultando en distribuciones angulares más anchas. En
lo referente a las distribuciones de energía de los fotones, los nuevos cálcu-
los también se encuentran más cerca de los datos experimentales. Asimismo
hemos realizado un segundo ajuste de los parámetros, considerando las cotas
más restrictivas de la Ref. [6], con resultados que, aunque se alejan más que
nuestro primer ajuste de los datos, siguen siendo mejores que los cálculos con
los parámetros originales. A pesar de obtener un mejor acuerdo, los resulta-
dos todavía no son capaces de hacer una descripción completa del exceso en
ninguno de los casos que hemos considerado. Las cotas de los parámetros
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Resumen

no permiten realizar un ajuste que resulte en una mejor descripción de los
datos. Aún así, no podemos descartar este modelo como una fuente de señal
en el detector.

El Short-Baseline Neutrino Program de Fermilab cuenta con una nueva
generación de detectores para hacer un estudio más profundo de las oscila-
ciones de neutrinos. Estos detectores utilizan la tecnología de LArTPCs para
detectar neutrinos provenientes del haz de neutrinos producido en FNAL.
Este tipo de detectores son capaces de distinguir la señal de un fotón de la
de un electrón y, por lo tanto, comprobar la validez del modelo de neutrinos
pesados. Siguiendo el mismo procedimiento que para el caso de MiniBooNE,
hemos hecho predicciones de las distribuciones de fotones para los tres de-
tectores del programa. Estos cálculos preliminares deberán ser mejorados
en un futuro, teniendo en cuenta los flujos reales de los detectores, así como
su eficiencia de detección. También hemos mostrado como la comparación
de las distribuciones de la señal de fotones del modelo de neutrinos pesados
con otras puede ser utilizada para distinguir su causa.

En el Capítulo 5 hacemos un análisis del factor de forma axial del nucleón
que, siendo una propiedad fundamental del nucleón es además una fuente
de incertidumbre en las amplitudes de las interacciones entre neutrinos y
núcleos y, por lo tanto, en su sección eficaz, que es el ingrediente clave en los
modelos de interacción. La parametrización más utilizada en la literatura
es la función dipolar, que depende de un solo parámetro, MA, y que no
tiene un fundamento teórico sólido. Asimismo, esta parametrización se ha
utilizado comúnmente para describir los factores de forma electromagnéticos
del nucleón, aunque se han observado desviaciones de este comportamiento.
En la Ref. [7] se muestra un análisis completo sobre este tema. Así pues,
parece natural esperar desviaciones similares en el factor de forma axial.

Las parametrizaciones empíricas se ajustan a partir de datos experimen-
tales de dispersión de leptones en nucleones. Como las interacciones electro-
magnéticas no ven la parte axial de la corriente, en el caso del factor de forma
axial esta información se debe extraer de interacciones débiles. La reacción
νln → l−p es un proceso bastante simple y particularmente sensible a este
factor de forma. Sin embargo, las medidas modernas de la sección eficaz se
realizan en núcleos atómicos (principalmente 12C), donde la determinación
del factor de forma axial es difícil, debido a la presencia de correcciones
nucleares, que tienen incertidumbres, y a la dificultad de aislar el canal de
cuasielástico de una manera independiente de modelo. Una discusión más
detallada se puede encontrar, por ejemplo, en la Sec. III de la Ref. [8]. Una
determinación más directa y, en principio, menos dependiente del modelo
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de determinar el factor de forma axial recae en los datos experimentales
sobre deuterio de cámaras de niebla. Bodek y sus colaboradores realizaron
un análisis globales de los datos de ANL, Refs. [9–11], BNL, Refs. [12, 13],
FNAL, Ref. [14], y el CERN, Ref. [15], con actualizaciones de los factores de
forma vectoriales, basadas en datos modernos de dispersión de electrones.
En la Ref. [16] se obtuvo el valor de referencia de MA = 1.016± 0.026 GeV,
con un error del 2.5%.

Por otro lado, recientemente se ha realizado un nuevo análisis del factor
de forma axial basado en la expansión-z. Esta función solo está acotada
por la estructura analítica y el comportamiento asintótico dictado por la
cromodinámica cuántica. Los resultados se muestran en la Ref. [17] y son
consistentes con la parametrización dipolar, pero con una incertidumbre
mucho mayor. En particular el radio axial que obtienen es r2

A = 0.46 ±
0.22 fm2, que es compatible con el extraído de la parametrización dipolar,
r2
A = 12/M2

A, pero con un error ∼ 20 veces mayor. Este radio axial también
puede ser extraido de la captura de muones en protones. Un análisis reciente,
Ref. [18], que utiliza la expansión-z obtuvo el resultado, r2

A = 0.43±0.24 fm2,
compatible con los resultados de dispersión de neutrinos.

Una prometedora fuente de información sobre el factor de forma axial
es la simulación de la cromodinámica cuántica en el retículo ( lattice QCD).
Aunque el valor experimental del acoplamiento axial, gA, ha sido repeti-
damente infravalorado en sus predicciones, el uso de mejores algoritmos ha
llevado recientemente a resultados consistentes. Un análisis global de la
zona de bajos Q2 y dependencia en las masas de los quarks ligeros, de los
resultados de las Refs. [19–21], utilizando teoría quiral perturbativa de bar-
iones, ha encontrado gA = 1.237 ± 0.074 y r2

A = 0.263 ± 0.038, Ref. [22].
El valor central de r2

A es considerablemente menor que los correspondientes
de las determinaciones empíricas, pero al considerar las grandes barras de
incertidumbre de la expansión-z resultan compatibles.

La elección de una forma funcional para el factor de forma axial puede
alterar los resultados del análisis. Además, la elección de la cantidad de
parámetros de una paramaterización dada es una cuestión delicada. Muy
pocos parámetros resultan en poca versatilidad del modelo. A medida que
el número de parámetros aumenta, el valor de χ2 de los ajustes se reduce,
pero llegado a cierto punto el ajuste tiende a reproducir las fluctuaciones
estadísticas de los datos experimentales [23]. Utilizando métodos de redes
neuronales se pueden obtener resultados con una menor dependencia del
modelo. Este enfoque se ha utilizado en la colaboración neural network par-
ton distribution function (NNPDF) para obtener funciones de distribución

x



Resumen

de partones en nucleones a partir de datos de DIS, en la Ref. [24].
En nuestro análisis demostramos que se puede extraer información del

factor de forma axial de forma independiente del modelo, a partir de los
datos de dispersión de neutrinos en deuterio. En contraste con los métodos
paramétricos, donde se adopta una parametrización concreta de la función,
en base a argumentos físicos, el análisis semi-paramétrico permite construir
un modelo estadístico, en términos de densidades de probabilidad, que son
utilizadas para la inferencia estadística. Al estar basada en motivaciones
físicas, el resultado obtenido no es extrapolable más allá de la región donde
el ajuste es válido. Por otro lado, los resultados pueden contener nueva
física, fuera de las suposiciones de un modelo específico y tampoco se ven
afectados por un posible modelo erróneo o deficiencias en el conjunto de
datos experimentales.

Para realizar el análisis, hemos utilizado redes neuronales feed forward,
que constituyen un conjunto de funciones con habilidades adaptativas ili-
mitadas [25]. Con esta elección se puede eliminar cualquier prejuicio en
los resultados, introducidos por la elección de una forma funcional concreta
de la función para realizar el ajuste. Dependiendo del número de pará-
metros adaptativos, se pueden obtener diferentes variantes del modelo es-
tadístico. En este contexto, la estadística bayesiana ha probado ser una
herramienta muy efectiva [26]. Sus métodos permiten hacer comparaciones
entre diferentes modelos y controlar el número de parámetros en los ajustes.
Nosotros utilizamos el marco de referencia para redes neuronales formulado
por MacKay en la Ref. [27]. Éste se adaptó anteriormente para modelar los
factores de forma eléctrico y magnético en la Ref. [28].

Nuestros resultados con el set completo de datos de ANL muestran un
factor de forma axial con una pendiente positiva a Q2 = 0, y un máximo lo-
cal a bajo Q2. La inclusión de las correcciones nucleares del deuterón reduce
el pico del factor de forma. Al eliminar del ajuste los datos de la zona por
debajo de Q2 = 0.10 GeV2, obtenemos un valor del radio axial consistente
con las determinaciones previamente disponibles. Esto en principio sugiere
que las correcciones del deuterón juegan un papel crucial a bajos Q2, pero
también podría ocurrir que los errores en los datos experimentales de esta
región hubieran sido subestimados. Los análisis eliminando los datos corres-
pondientes a bajos Q2, si bien no muestran desviaciones significativas de
las parametrizaciones previas, se caracterizan por tener unas incertidumbres
menores que en el caso de la parametrización dipolar. En este punto se ha-
cen necesarias nuevas medidas experimentales en hidrógeno y deuterio para
mejorar nuestra comprensión de la estructura axial del nucleón. Técnicas
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como las que hemos utilizado se presentan como una valiosa opción a tener
en cuenta en futuros estudios.

Con las mejoras en los detectores de neutrinos se abren la posibilidad
de explorar nuevos procesos con secciones eficaces más pequeñas. Este es
el caso de la producción de kaones en la dispersión entre neutrinos y nucle-
ones. La producción de kaones cargados (νµCH → µ−K+X) se ha medido
recientemente en el experimento MINERνA, lo que abre una nueva ventana
al estudio en más detalle de los mecanismos de producción de extrañeza.
Los procesos débiles con kaones en el estado final pueden ser iniciados, bien
por mecanismos que conservan extrañeza (∆S = 0), o bien por los que la
cambian (∆S = 1). A pesar de que los procesos con cambio de extrañeza
(1K) están suprimidos por el ángulo de Cabibbo, comparados con los que la
conservan (Y K), estos últimos involucran la producción masiva de hiperones
(Y ), lo que impulsa la cota de la reacción a mayores energías del neutrino
incidente. Por lo tanto, para neutrinos por debajo de 2 GeV, las reacciones
1K están favorecidas [29, 30]. En núcleos, las interacciones en los estados
finales de los kaones producidos no son muy fuertes, debido a la ausencia de
resonancias bariónicas. Sin embargo, los kaones también se pueden producir
en colisiones secundarias, aumentando en gran medida la dificultad de la
extracción de información sobre procesos elementales de producción 1K, en
experimentos con blancos nucleares.

En el Capítulo 6 estudiamos el modelo propuesto en la Ref. [30] para
reacciones del tipo νlN → l−KN . Este modelo está basado en diagramas
de tipo árbol, por lo que la unitariedad de la matriz S no se respeta. Nosotros
hemos modificado el modelo, restaurando parcialmente la unitariedad. Esto
se ha hecho imponiendo el teorema de Watson a la parte dominante de las
contribuciones vectorial y axial, en el sector de los números cuánticos apropi-
ados de momento e isospín. Este método se basa en el modelo desarrollado
en la Ref. [31], que incluye el cálculo de las fases de Olsson para la am-
plitud del término dominante, en nuestro caso el de contacto. Estas fases
toman los valores requeridos para que se cumpla el teorema de Watson. En
última instancia, los datos experimentales deben discriminar entre las dos
soluciones matemáticas que se obtienen para las fases de Olsson, pero una
de ellas es una firme candidata a ser una solución no física, debido a que
produce grandes cambios en los observables, que son poco probables debido
a que la interacción KN es relativamente débil. En su lugar, la solución
alternativa produce correcciones pequeñas en la sección eficaz, que entrarían
en las incertidumbres del modelo. Esto le daría validez al modelo de dia-
gramas tipo árbol, construido a partir del orden dominante del Lagrangiano

xii



Resumen

quiral en la región cinemática que consideramos. También hemos estudiado
el comportamiento de las funciones de estructura que caracterizan la depen-
dencia en el ángulo azimutal de la sección eficaz, encontrando también una
clara diferencia entre ambas soluciones. El impacto de la unitarización es
visible en el hecho de que las funciones de estructura de los términos que
violan paridad no se cancelan.

En el Capítulo 7 abordamos un interesante proceso coherente que re-
sulta relevante actualmente: la emisión coherente de fotones mediada por
corrientes neutras. Como los detectores de tipo Cherenkov tienen una señal
fondo que proviene de los fotones producidos mediante este tipo de proce-
sos, entre neutrinos y el propio material del detector, una buena estimación
del número de eventos resulta importante. Existen modelos anteriores de
interacción, basados en la conservación parcial de la corriente axial, que son
capaces de realizar predicciones simples de la señal, pero los experimentos
modernos, que tienen una mejor precisión, requieren mejores estimaciones.
En las Refs. [32–34], la reacción coherente de producción de fotones por
corrientes neutras se ha estudiado utilizando modelos microscópicos, que
incluyen tanto contribuciones no resonantes, como la excitación de la reso-
nancia ∆(1232)3/2+ y su posterior desintegración radiativa.En la Ref. [34] se
incluyen también las resonancias bariónicas N∗(1440)1/2+, N∗(1520)3/2−

y N∗(1535)1/2−.
En el Capítulo 7 presentamos una extensión del modelo de la Ref. [34],

incluyendo resonancias bariónicas más pesadas, lo que amplía su validez a un
mayor rango de energías, como las utilizadas en el experimento MINERνA.
Además hemos realizado un tratamiento simplificado de las modificaciones
de la ∆(1232)3/2+ debidas al medio nuclear, que permite factorizar el fac-
tor de forma nuclear, comprobando la validez de los resultados obtenidos.
De esta manera hemos acelerado significativamente los cálculos computa-
cionales, haciendo posible la implementación del modelo en GENIE. Actual-
mente, en los generadores de eventos no hay ningún modelo para la emisión
de fotones en procesos coherentes de corrientes neutras, por lo que la imple-
mentación de este modelo facilitará el trabajo experimental en el estudio de
esta reacción en MINERνA, así como en los detectores del programa SBND.

Estimamos un rango de de validez de nuestros resultados para fotones
con una energía de hasta 2.5 GeV aproximadamente. Hemos verificado que,
para neutrinos incidentes con una energía por debajo de 1 GeV, el impacto
en los resultados de la adición de resonancias más pesadas no es apreciable.
El proceso mediado por la resonancia ∆(1232)3/2+ se presenta como la con-
tribución dominante para neutrinos incidente de cualquier energía. Hemos
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calculado las distribuciones de energía y angulares de los fotones emitidos
en la dispersión coherente de neutrinos con núcleos, tanto para el caso de
interacciones con neutrinos como con antineutrinos. La dependencia en la
masa del blanco también ha sido explorada.

Los resultados que obtenemos predicen una señal fuerte para fotones
emitidos en torno a 0.3 GeV, debida a la ∆(1232)3/2+, seguida por una cola
donde también contribuyen de las resonancias N(1520)3/2−, ∆(1700)3/2− y
∆(1950)7/2+. Esta cola resulta en una señal de fotones en la que predominan
ángulos pequeños. Para estimar la incertidumbre en el conocimiento actual
sobre las propiedades de las resonancias bariónicas, incluyendo sus excita-
ciones electromagnéticas, hemos realizado los cálculos usando dos conjuntos
de parámetros, con dos parametrizaciones diferentes de la dependencia en la
masa invariante de la anchura de cada resonancia. Como era de esperar, la
contribución de la ∆(1232)3/2+, de la que se conocen bien sus parámetros,
es independiente de estos cambios, mientras que varios de los demás estados
muestran una alta sensibilidad a las modificaciones en la masa, anchura, pro-
porción del canal πN (del que el acoplamiento axial dominante se obtiene)
y, particularmente, los acoplamientos de helicidad.

Por último en la Parte III se resumen los principales resultados y con-
clusiones obtenidos a lo largo de esta tesis.
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Chapter 1

Introduction

Almost a century has passed since Wolfgang Pauli postulated for the first
time the existence of neutrinos, in his letter to the Tübingen conference in
1930. This particle, which at that time was proposed as a desperate measure
to restore energy conservation in nuclear β decay, has become the epicenter
of a very active field of research in both theoretical and experimental physics.
Being a particle which can only interact weakly, its detection becomes a very
hard challenge. Indeed, its first confirmed signal took more than 20 years to
appear, in the Cowan and Reines experiment at 1956.

With the solar neutrino detection, a new problem arose, as the number
of detected neutrinos was smaller than the predicted one. The solution to
this question was the Pontecorvo oscillation theory. In this theory, neu-
trinos would be particles able to oscillate between their flavor states. This
phenomenon implies that neutrinos have masses, in contradiction to the sug-
gestion by Fermi and Perrin in 1933. The full solution to the neutrino solar
problem was the combination of this theory with the Mikheyev-Smirnov-
Wolfenstein effect, which describes how the interaction with matter changes
the oscillation pattern.

Nowadays neutrinos play a fundamental role in the description of weak
processes, encompassed inside the Standard Model (SM) theory, which pro-
vides a comprehensive description of all the known fundamental particles and
their interactions. However, in this theory neutrinos appear as massless par-
ticles, in contradiction with the experimental evidence of flavor oscillations.
At present there are many alternative models to generate neutrino masses
and to extend the SM, and the experiments are not yet able to exclude some
of them. To extract the oscillation parameters from the measured particle
yields, the experimental analyses have to rely on models for the neutrino-
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nucleus interaction. Thus, the theoretical understanding of nuclear effects is
essential for the interpretation of the data and represents both a challenge
and an opportunity. Only with precise and well-tested models it is possi-
ble to minimize the systematic uncertainties in neutrino fluxes, backgrounds
and detector responses.

Along this thesis we address the interaction of neutrinos with nucleons
and nuclei, in different scenarios. In the range between 0.1 − 20 GeV there
are three main neutrino-nucleon scattering categories [1]: quasi-elastic (QE)
processes, resonance production and Deep Inelastic Scattering (DIS). These
three kinds of processes can proceed by both, charged-currents (CCs), me-
diated by a W boson, and neutral-currents (NCs), where the mediator is a
Z boson, Fig. 1.1.

ν l ; ν

N N ′

W ;Z

(a)

ν l ; ν

N R

W ;Z

(b)

ν l ; ν

N

X

W ;Z

(c)

Figure 1.1: Diagrams of QE process (a), resonance excitation (b) and DIS
between a neutrino and a nucleon.

QE, Fig. 1.1a, scattering is the main interaction mechanism for neutrinos
with energies up to about 1 GeV. The term QE refers to the fact that the
neutrino changes its identity to a charged lepton. If the outgoing lepton is
still a neutrino, the reaction is denoted as elastic, but it is convenient to
group them together.

Resonance excitation, Fig. 1.1b, is a large part of the response for neu-
trinos of energy in the range 0.5-3 GeV. In this region, the effective degrees
of freedom are chosen to be baryons and mesons; a nucleon has a transition
to an excited state (N∗ or ∆). Although decay to single pion is most im-
portant, resonances also decay with emission of multiple pions, kaons, and
photons.

At higher energies, the cross section is dominated by DIS, Fig. 1.1c,
where the nucleon structure functions can be written in terms of Parton
Distribution Functions (PDFs) for quarks, antiquarks and gluons. The weak
current’s unique ability to “taste” only particular quark flavors significantly
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1. Introduction

enhances the study of PDFs. High-statistics measurement of the nucleon’s
partonic structure, using neutrinos, will complement studies with electro-
magnetic probes.

An analogous situation occurs when the interaction takes place on a nu-
cleus. In this case, however, the underlying dynamics of the constituent
nucleons makes the description more demanding. The cross section for neu-
trino scattering from nuclei is sensitive to the same underlying structure
determined by QCD, and as probed with pure electromagnetic processes,
such as charged lepton scattering from nucleons and nuclei.

In Chapter 2 the main general concepts of neutrino interactions are dis-
cussed. Chapter 3 presents in more detail the QE scattering of neutrinos on
nucleons and nuclei, which are used along the whole thesis.

The paradigm of three mixing flavors of neutrinos emerges from oscilla-
tion experiments with solar, atmospheric, reactor and accelerator neutrinos
in which the square-mass differences and mixing angles have been deter-
mined with ever growing precision. However, some oscillations experiments
reported anomalies which can imply new physics. One of them was re-
ported by the MiniBooNE experiment at Fermilab. It has found an excess
of electron-like events over the predicted background in both neutrino and
antineutrino modes. Many theories have been proposed trying to explain
this problem. Recent analyses discard the possibility that this excess is due
to one, two or three families of sterile neutrinos [35]. This points out to
a new explanation not involving oscillations. Other paths to explain the
anomaly go through deeper studies about the background signal, for exam-
ple in Ref. [3].

In Chapter 4 we critically analyze a proposal to explain the excess of
events in the MiniBooNE experiment, developed in Ref. [4] and based in
a model proposed in Ref. [5]. In this model we have a heavy neutrino,
with a mass around 50 GeV, which would be produced in the interaction
between the incoming light neutrino and the detector material. Then this
heavy neutrino would decay emitting a light neutrino and a photon. The
Cherenkov detectors, like MiniBooNE which are unable to distinguish a
photon signal from an electron one. For this reason this model would be
able to explain the anomaly.

In our work we describe in detail the different processes of heavy neutrino
production, improving and expanding the models used before to calculate
the interaction of the neutrino with nucleons and nuclei. We then analyze
the propagation of the heavy neutrino inside the detector and its decay.
Taking into account the detector parameters we make an estimation of the
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signal that would be produced in MiniBooNE and we compare it with the
excess.

The Short-Baseline Neutino Program (SBN) program at Fermilab incor-
porates a new generation of detectors to make a further study of neutrino
oscillations. These experiments shall be able to confirm or discard the Mini-
BooNE signal. We have also predicted the signal from the heavy neutrino
decays, for all the SBN detectors.

In Chapter 5 we analyze the nucleon axial form factor (FF), FA, which
is not only a fundamental nucleon property but also a source of uncertainty
in the amplitudes of the interactions between neutrinos and nucleons and,
therefore, in the cross sections, which are the key ingredient of the interaction
models and simulations. The most common parametrization used in the
literature is the dipole ansatz which depends only on a single parameter,
MA, and is not theoretically well founded. Bubble chamber experiments of
neutrino scattering on deuterium collected a data set for the QE process,
from which FA can be extracted. For this purpose we have performed a semi-
parametric analysis and obtained model-independent information about FA
from the ANL experimental data. For the analysis we have used feed-forward
neural networks in a multilayer perceptron (MLP) configuration. The tool
that allows us to choose between all the different results given by the neural
networks is Bayesian statistics [26]. This framework has been applied to the
extraction of electromagnetic FF from electron scattering data [28].

With the improvements in neutrino detection, new processes with smaller
cross sections can be explored. This is the case of kaon production in
neutrino-nucleon scattering. In Chapter 6 we study the model proposed
in Ref. [30] for this kind of reactions. In this tree-level model, the unitarity
of the S matrix is not respected. We have modified this model, by partially
restoring unitarity. This has been done by imposing Watson’s theorem to
the dominant vector and axial-vector contributions in appropriate angular
momentum and isospin quantum number sectors.

Chapter 7 presents a deep insight into another relevant and interesting
coherent process: coherent photon emission mediated by NCs. As Cherenkov
detectors have a background which comes from the signal of photons pro-
duced in this type of process between neutrinos and the detector material, a
good estimate of the number of events is important. While previous interac-
tion models based on partial conservation of the axial current (PCAC) [36]
are obtain simplified predictions of the signal, more accurate experiments
require better models. The microscopic model of Ref. [34] considers the
neutrino interactions with a nucleon, taking into account the most relevant
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processes at neutrino energies around 1 GeV. Then a coherent sum over all
the nucleons in the nucleus is performed, including the nuclear effects form
the medium. The main contributions to this reaction come from resonance
excitation of the nucleons, with the ∆(1232) as the dominant interaction.
In the original model three more resonances are considered, the N(1440),
N(1520) and N(1535).

While there are experiments with high energy fluxes as MINERνA, were
the peak of the medium energy flux is at 6 GeV approximately, the range
of validity of the microscopic model is insufficient. To extend this range,
we added heavier resonances with invariant masses up to 2 GeV to the cal-
culation, making the model useful for this type of fluxes. We have also
performed and validated several approximations to speed up the compu-
tations, facilitating the implementation of the model in event generators.
Indeed, its implementation in GENIE, where no description for this process
is available, is currently under way.

Finally, in Chapter III we present an outlook of the thesis and our main
conclusions.
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Theoretical background
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Chapter 2

Electroweak interactions in the
Standard Model

In this chapter a brief description of the basic principles that rule the interac-
tion between leptons and hadrons in the SM of Particle Physics is presented.
The objective here is to clarify the conventions and notation used through-
out the thesis, not giving a full description of the SM, that can be found in
Quantum Field Theory (QFT) textbooks, e.g. Refs [37, 38].

2.1 Electroweak interaction Lagrangian

The electromagnetic (EM) and weak interactions are unified in the SM by
the electroweak SU(2)L × U(1)Y theory of Glashow-Weinberg-Salam. Weak
processes are divided in CC and NC interactions, where the mediators are
the W± and Z massive bosons, respectively. The photons are responsible
for EM interactions. In contrast to the latter, in the case of NC interactions,
the coupling of left-handed chiral components of the fermionic fields to the
Z boson differs to right-handed ones.1. In CC mediated reactions, only
left-handed fermionic fields are involved.

The weak isospin (T ) is the symmetry group SU(2)L of the SM. Under
this symmetry, fermionic fields with left-handed chirality are grouped in
doublets, while right-handed fermionic fields are singlets [39]. For only one
generation of leptons and quarks the weak isospin doublets are:

LL =

(
νeL
eL

)
, QL =

(
uL
dL

)
. (2.1)

1The chirality projection matrices for the Dirac fields are given in Appendix A.1
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2.2. Leptonic currents

Singlets are the right handed fields eR, uR and dR, since there are no right-
handed components for neutrinos in the SM. The value of the third compo-
nent of T is presented in Table 2.1. The generalization to three generations
of fermions is straight forward adding analogous doublets and singlets for
each family.

Table 2.1: Eigenvalues of the weak isospin T , and its third component T3,
for one generation of fermions.

νL eL eR uL dL uR dR
T 1/2 0 1/2 0 0
T3 1/2 -1/2 0 1/2 -1/2 0 0

The Lagrangian density, which describes electroweak interactions in the
SM in terms of the electromagnetic, neutral and charged currents coupled
to the corresponding gauge bosons, is given by

Lint = −eJµEMAµ −
g

2 cos θW
JµNCZµ −

g

2
√

2

(
JµCCW

†
µ + h.c.

)
, (2.2)

where Aµ is the photon while Zµ and Wµ stand for the fields of the massive
bosons. The coupling for the EM term is the electron charge, e. The weak
angle θW defines the ratio of the vector boson masses and also relates the
strength of the EM interaction with the weak coupling, g,

cos θW =
MW

MZ
, sin θW =

e

g
. (2.3)

This coupling is also connected to the Fermi constant, GF , by

GF√
2

=
g2

8M2
W

. (2.4)

2.2 Leptonic currents

The lepton sector includes the interaction between the gauge bosons and
electron, muon, tau leptons and the three flavors of neutrinos, Fig. 2.1. Al-
though there is experimental evidence that neutrinos are massive particles,
see e.g. Sec. 14 of Ref. [40], these masses are too small to be relevant in com-
parison with the energies at the scale of 1 GeV, that we consider throughout
this thesis, therefore we only take into account left-handed massless neutri-
nos and the corresponding antineutrinos.
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2. Electroweak interactions in the Standard Model
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Figure 2.1: Diagram of the interaction vertex between a lepton and a vector
boson for (a) electromagnetic, (b) charge current and (c) neutral current
interactions.

The EM current is a Lorentz vector which couples to the photon field
and reads,

jµEM = lγµl . (2.5)

The relevant properties of the Dirac matrices γµ are discussed in
Appendix A.1.

Even though the interaction between a lepton and a W± boson does not
change the leptonic flavor, it turns a charged lepton into a neutrino or vice
versa. The CC interaction has a V−A structure given by

jµCC = νlγ
µ (1− γ5) l . (2.6)

The NC, as the EM interactions, does not change the identity of the
lepton, but its structure is V−A like in the CC case,

jµNC =
1

2
νlγ

µ (1− γ5) νl +
1

2
lγµ (gV − gAγ5) l ,

gV = −1 + 4 sin2 θW , gA = −1 .
(2.7)

In the above expressions for the currents, a sum over all the three leptonic
flavors is implicitly understood.

2.3 Quark currents

Before considering nucleons or other hadrons, it is important to understand
some properties of their constituents, the quarks. Although there are six
flavors of quarks, we restrict our discussion to the light sector, which contains
only u, d and s quarks. They form a triplet field in flavor space under the
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2.3. Quark currents

symmetry of the unitary group SU(3). If we define qf as a quark field of
flavor f , for the triplet we have

q =




qu
qd
qs


 . (2.8)

We have dropped the color labels as electroweak interactions are color blind
and the corresponding currents have a trace over color. This symmetry is
exactly fulfilled if the quark masses are equal. For further details see for
example Refs. [41, 42]. Under SU(3) there are eight conserved currents,

V µ
a = qγµ

λa
2
q , ∂µV

µ
a = 0 , a = 1− 8 , (2.9)

with λa the Gell-Mann matrices, that are summarised in Appendix A.4. If
we consider the difference between quark masses , flavor currents are not
conserved; instead, one has that

∂µV
µ
a = q

[
m,

λa
2

]
q , m = diag (mu,md,ms) . (2.10)

We will explore the conservation of currents later in this section.
Notice that if we restrict to only two flavors, with u and d quarks, the

corresponding symmetry is the isospin SU(2) group. Under this symmetry,
the u and d quarks form a doublet where the eigenvalue of the isopin operator
is I = 1/2. The action of its third component on the quark isospin states is

I3

(
qu
qd

)
=

1

2

(
qu
−qd

)
. (2.11)

In this case, with only two quarks, Eq. (2.10) is reduced to

∂µV
µ
a = q

[
m,

τa
2

]
q , a = 1− 3 , q =

(
qu
qd

)
. (2.12)

where m = diag (mu,md), and τ1−3 are the Pauli matrices described in
Appendix A. Given the mass difference between quarks, isospin symmetry
is more accurate than the SU(3) flavor one.

Since nucleons can be described as combinations of u and d quarks,
isospin symmetry is inherited by the nucleon. Its consequences for nucleon
electroweak currents are discussed in Sec. 3.2.
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2. Electroweak interactions in the Standard Model

2.3.1 Electromagnetic quark currents

In the case of quarks, charges are different than for leptons, and, conse-
quently, the coupling of the EM interaction in Eq. 2.2 shall be modified by a
charge factor. The electric charge of the quarks, in units of e, are Qu = 2/3
and Qd = Qs = −1/3. In matrix form in the SU(3) flavor space we have

Q =




2/3 0 0
0 −1/3 0
0 0 −1/3


 . (2.13)

The charge operator can also be written in terms of the hypercharge and
the third component of the isospin as

Q =
Y

2
+ I3 , (2.14)

where the third component of isospin is a generalization of the SU(2) sub-
group, given by

I3 =
λ3

2
=




1/2 0 0
0 1/2 0
0 0 0


 . (2.15)

The hypercharge is defined as the sum of the baryon number and the
strangeness, Y = B+S. The number of quarks, nq, and antiquarks, nq, de-
termine the baryon number, B = 1

3 (nq − nq). The strangeness depends on
the number of s quarks and antiquarks, S = − (ns − ns). The hypercharge
can also be expressed using the Gell-Mann matrix λ8,

Y =
λ8√

3
=




1/3 0 0
0 1/3 0
0 0 −2/3


 . (2.16)

As quarks are Dirac elementary particles, the structure of the electro-
magnetic current is given by,

jµEM = Qqγµq =
2

3
quγ

µqu −
1

3
(qdγ

µqd + qsγ
µqs) . (2.17)

If we substitute Eqs. (2.14-2.16) in (2.17),

jµEM =
1

2
q
λ8√

3
γµq + q

λ3

2
γµq =

1

2
VY + V3 , (2.18)

where we have defined the hypercharge current, VY , and the isospin current,
V3.

13



2.3. Quark currents

2.3.2 Weak quark currents

In NC interactions flavor is conserved. The expression for the current reads,

jµNC =
∑

f=u,d,s

qfγ
µ
[(
T3 −Qf sin2 θW

)
(1− γ5)−Qf sin2 θW (1 + γ5)

]
qf ,

(2.19)
in terms of the third component of T and the electric charge. Explicitly for
the three flavors of quarks, we have

jµNC = quγ
µ

[
1

2
−
(

2

3

)
2 sin2 θW −

1

2
γ5

]
qu

+ qdγ
µ

[
−1

2
−
(
−1

3

)
2 sin2 θW +

1

2
γ5

]
qd

+ qsγ
µ

[
−1

2
−
(
−1

3

)
2 sin2 θW +

1

2
γ5

]
qs

=V µ
NC −A

µ
NC .

(2.20)

The expression for the NC shows the V−A structure. We can use Eqs. (2.14-
2.16) in Eq. (2.20) to rewrite the vector part as

V µ
NC =

(
1− 2 sin2 θW

)
V µ

3 − 2 sin2 θW
1

2
V µ
Y −

1

2
V µ
S , (2.21)

with
V µ
S = qsγ

µqs . (2.22)

For the axial part of the current we can write

AµNC = Aµ3 −
1

2
AµS , (2.23)

where we have defined

Aµa = qγµγ5
λa
2
q , (2.24)

and
AµS = qsγ

µγ5qs . (2.25)

While the NC is diagonal in flavor, in the CC the initial and final quarks
are different flavor states. Besides,the states with T3 = −1/2 are not the
weak eigenstates, instead, they are mixed. For three generations of fermions,

14



2. Electroweak interactions in the Standard Model

the unitary transformation that connects both sets of states is the Cabibbo-
Kobayashi-Masakawa (CKM) matrix, U , given in Appendix A.3. The gen-
eral expression for the CC reads,

jµCC = (quqcqt) γ
µ (1− γ5)U




qd
qs
qb


 . (2.26)

In our case, with only three flavors, the corresponding 2 × 2 section of the
CKM matrix can be expressed in terms of the Cabibbo angle,

jµCC = quγ
µ (1− γ5)

(
cos θC sin θC
− sin θC cos θC

)(
qd
qs

)
. (2.27)

With this mixing, Eq. (2.26) reduces to

jµCC = quγ
µ (1− γ5) (qd cos θC + qs sin θC) = V µ

CC −A
µ
CC . (2.28)

For the vector part of Eq. (2.28) we can write

V µ
CC = quγ

µ (qd cos θC + qs sin θC) = V µ
1 + V µ

4 + i (V µ
2 + V µ

5 ) , (2.29)

where we have used that

quγ
µqd = qγµ

λ1 + iλ2

2
q = V µ

1 + iV µ
2 ,

quγ
µqs = qγµ

λ4 + iλ5

2
q = V µ

4 + iV µ
5 .

(2.30)

Similarly, for the axial part we have

AµCC = quγ
µγ5 (qd cos θC + qs sin θC) = Aµ1 +Aµ4 + i (Aµ2 +Aµ5 ) , (2.31)

since
quγ

µγ5qd = qγµγ5
λ1 + iλ2

2
q = Aµ1 + iAµ2 ,

quγ
µγ5qs = qγµγ5

λ4 + iλ5

2
q = Aµ4 + iAµ5 .

(2.32)

2.3.3 Chiral symmetry and current conservation

When electromagnetically and weakly interacting leptons collide with mat-
ter, strong processes are triggered. The fundamental theory of strong in-
teractions, Quantum Chromodynamics (QCD), is a gauge theory for quarks
and gluons with local SU(3) color symmetry. Its Lagrangian reads

LQCD = q (iγµDµ −mq) q −
1

4
GaµνG

µν
a , a = 1− 8 . (2.33)
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2.3. Quark currents

with
Dµ q =

(
∂µ − ig

λa
2
Aaµ

)
q . (2.34)

The gluon tensor field is given by

Gµνa = ∂µAνa − ∂νAµa + gfabcA
µ
bA

ν
c . (2.35)

In the massless quark limit, i.e. mu = md = ms = 0, in terms of left and
right handed quark fields,2, we have

LQCD = −1

4
GaµνG

µν
a + iqLγ

µDµqL + iqRγ
µDµqR . (2.36)

In this scenario, the Lagrangian is symmetric under SU(3)L × SU(3)R trans-
formations, which is known as chiral symmetry. The corresponding Noether
conserved currents are

Rµa = qRγ
µλa

2
qR , (2.37)

Lµa = qLγ
µλa

2
qL . (2.38)

The combination of Eqs. (2.37,2.38) give as result the already introduced
vector and axial currents, Eqs. (2.9, 2.24).

V µ
a = Rµa + Lµa = qγµ

λa
2
q , (2.39)

Aµa = Rµa − Lµa = qγµγ5
λa
2
q . (2.40)

As quarks are massive particles, chiral symmetry is explicitly broken. The
divergence of the vector current is given in Eq. (2.10) and for the axial one
we have

∂µA
µ
a = iq

{
m,

λa
2

}
γ5q . (2.41)

In contrast to the vector currents, in the case of axial currents the divergence
does not vanish for quarks with the same mass. The axial current is only
conserved when quark masses are neglected, which is known as PCAC. The
equivalent of Eq. (2.41) for SU(2), where we only consider u and d quarks,
is

∂µA
µ
a = iq

{
m,

τa
2

}
γ5q . (2.42)

In the following section we explore some aspects of chiral symmetry and
current conservation at the hadronic level.

2A brief description of the chiral projections of the fields is given in the Appendix A.1
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2. Electroweak interactions in the Standard Model

2.4 Hadronic currents

Hadrons are strongly interacting states made of quarks and gluons. In the
previous section the QCD Lagrangian was presented, Eq. (2.33) and its
approximate chiral symmetry was introduced. This Lagrangian is also sym-
metric under U(1)V transformations, which results in the baryon number
conservation, and leads to a classification of hadrons into mesons (B = 0)
and baryons (B = 1). Besides, all hadrons are singlets in color space, which
means that the sum of color charges of their constituent quarks is always
zero. To meet these conditions, mesons must be composed by a quark and
an anti-quark and baryons must be states made up of three quarks.

2.4.1 Chiral Lagrangians for mesons

Besides its explicit breaking by quark masses, the chiral symmetry of QCD is
also spontaneously broken. The hadron spectrum is not chirally symmetric
even in the presence of only u and d quarks, for which the explicit breaking
is small. For example, chiral partners such as the vector meson ρ and the
axial a1 have very different masses (mρ = 770 MeV 6= ma1 = 1230 MeV)
rather than being degenerate as chiral symmetry would dictate. Indeed
SU(3)L×SU(3)R is spontaneously broken down to SU(3)V . Then, accord-
ing to the Goldstone theorem,3 this spontaneous symmetry breaking (SSB)
implies the existence of eight pseudoscalar Nambu-Goldstone bosons. The
effect of the SU(3)L×SU(3)R SSB is reflected by a gap in the hadron spec-
trum between the vector mesons (ρ, ω, φ) and the light pseudoscalar mesons
(π,K, η), which are the Nambu-Goldstone bosons of the symmetry breaking
and, as such, would be massless if it was not for the explicit breaking driven
by the quark masses. The eight fields corresponding to these bosons can be
collected in a 3 × 3 unitary matrix, that under chiral rotations transforms
as

U(x)→ R̂ U(x)L̂† , (2.43)

with R̂ and L̂ the operators of the SU(3)R,L rotations. The explicit repre-
sentation of U(x) in terms of the octet of pseudoscalar Nambu-Goldstone
boson fields, πa(x), is

U(x) = e
i
φ(x)
f , (2.44)

3See e.g. Refs. [37, 41] for a full description of this topic.
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2.4. Hadronic currents

where

φ(x) =
8∑

a=1

λaπa =




π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K̄0 − 2√

3
η


 . (2.45)

The pattern of spontaneous chiral symmetry breaking is a crucial in-
gredient in the formulation of effective models of neutrino interactions with
hadrons (and, in general, of interactions of hadrons among themselves and
with external probes). The fact that Goldstone bosons interact weakly (for
strong interactions) at low energies allows to use perturbative methods. Such
a framework is known as chiral perturbation theory (ChPT). In this section
we present a very brief description of some elements of this effective theory
that will be used along this thesis. A detailed introduction for both meson
and baryon sectors can be found e.g. in Ref.[41].

The basic idea of ChPT is to describe the dynamics by an effective
Lagrangian, Leff, incorporating all relevant symmetries of the underlying
fundamental theory. In this case, we replace the QCD Lagrangian by Leff
which involves the field U(x) and its derivatives. At low energy, an expansion
in powers of the meson momenta is equivalent to an expansion of Leff in
powers of the derivatives ∂µU . Lorentz invariance restricts this series to
terms with even numbers of derivatives, see Ref. [42]. The leading order
Lagrangian that fulfills all these conditions is given by

L(2)
M =

f2

4
Tr
[
DµU (DµU)†

]
. (2.46)

where DµU is the covariant derivative. In the presence of external right and
left-handed fields, rµ and lµ, it reads

DµU ≡ ∂µU − irµU + iUlµ . (2.47)

These external fields allows us to incorporate the electromagnetic and
semileptonic weak interactions [41, 43]. In terms of vector and axial ex-
ternal fields, vµ and aµ respectively, we can write

rµ ≡ vµ + aµ ,

lµ ≡ vµ − aµ .
(2.48)

The explicit expressions in the case of an electromagnetic interaction are
given by

lEMµ = rEMµ = eQAµ , (2.49)
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2. Electroweak interactions in the Standard Model

where Q is the diagonal matrix defined in Eq. (2.13). In the case of weak
CC interactions, the external fields are

rCCµ = 0, lCCµ = − g√
2

(
W †µT+ +WµT−

)
, (2.50)

with

T+ =




0 Vud Vus
0 0 0
0 0 0


 ; T− =




0 0 0
Vud 0 0
Vus 0 0


 , (2.51)

where Vud and Vus are elements of the CKM matrix introduced in Eq. 2.26.
Finally for NC interactions we have

lNCµ =

(
− g

2 cos θW

)(
2 cos2 θW

)
QZµ ,

rNCµ =

(
− g

2 cos θW

)(
−2 sin2 θW

)
QZµ .

(2.52)

Introducing the explicit symmetry breaking term, linear in the quark
masses, we have

L(2)
M =

f2

4
Tr
[
DµU (DµU)†

]
+
f2

4
Tr
(
χU † + Uχ†

)
(2.53)

with χ = 2B0m, which is proportional to quark mass matrix m, Eq. (2.10).
The quantity B0 is related to the scalar singlet quark condensate through
3f2B0 = −〈0| qq |0〉, and its value is a measure of the dynamical breaking
of chiral symmetry, Ref. [41]. By expanding U and U † and identifying the
quadratic terms in φ one obtains the meson masses at leading order in terms
of B0 and the quark masses (Gell-Mann, Oakes, Renner relations):

m2
π = 2B0m̂ ; m2

K = B0(m̂+ms) ; m2
η =

2

3
B0(m̂+ 2ms) , (2.54)

in the isospin limit mu = md = m̂. Furthermore, in this limit χ =
diag(m2

π,m
2
π, 2m

2
K −m2

π)
Let us consider now infinitesimal left and right transformations given by

R̂ = e−iθaR
λa
2 ' 1− iθaR

λa
2
, (2.55)

L̂ = e−iθaL
λa
2 ' 1− iθaL

λa
2
. (2.56)

19



2.4. Hadronic currents

Here we promote the global symmetry to a local one, following the method
of Ref.[44] to identify the Noether currents (see also Ref.[41]), where the
variation of the Lagrangian reads

δL = θa∂µJ
µ
a + ∂µθ

aJµa . (2.57)

Taking θaR = 0 and using that U †U = 1, the effective Lagrangian of Eq. (2.46)
transforms as

L(2)
M → L

(2)
M + δLM , (2.58)

with

δLM =
f2

4
i∂µθ

a
LTr

[
λa

(
∂µU †

)
U
]
. (2.59)

Therefore, comparing with Eq. (2.57) we can identify the current

L(M)µ
a = i

f2

4
Tr
[
λa∂

µU †U
]
, (2.60)

and its divergence,
∂µL

(M)µ
a = 0 , (2.61)

proving that the current is conserved in the chiral limit.
Proceeding analogously for θaL = 0, we find that the conserved Noether

current now is

R(M)µ
a = −i

f2

4
Tr
[
λaU∂

µU †
]
. (2.62)

Using these results we can write the vector and axial currents,

V (M)µ
a = R(M)µ

a + L(M)µ
a = −i

f2

4
Tr
[
λa

[
U, ∂µU †

]]
,

A(M)µ
a = R(M)µ

a − L(M)µ
a = −i

f2

4
Tr
[
λa

{
U, ∂µU †

}]
.

(2.63)

which, because of the symmetry of L(2)
M under SU(3)L×SU(3)R, are both

conserved in the chiral limit.
Applying the same method to the symmetry breaking term of the ef-

fective Lagrangian, corresponding to the second term in Eq. (2.53), taking
θaR = 0 we find

δL(2)
SB = −iθaL

f2

4
B0Tr

[
λaU

†m−mUλa

]
, (2.64)

and then

∂µL
(SB)µ
a = −i

f2

4
B0Tr

[
λa

(
U †m−mU

)]
. (2.65)

20



2. Electroweak interactions in the Standard Model

Analogously, for θaL = 0 we obtain

δL(2)
SB = −iθaR

f2

4
B0Tr

[
λaUm−mU †λa

]
, (2.66)

and

∂µR
(SB)µ
a = −i

f2

4
B0Tr

[
λa

(
Um−mU †

)]
. (2.67)

In this case, for the vector current we have that

∂µV
µ
a = ∂µV

(SB)µ
a = −i

f2

4
B0Tr

[
[m, λa]

(
U + U †

)]
, (2.68)

which is conserved only in the SU(3) flavor-symmetric limit, where mu =
md = ms. In the same way, for the axial current of the symmetry breaking
we find that

∂µA
µ
a = ∂µA

(SB)µ
a = −i

f2

4
B0Tr

[
{m, λa}

(
U − U †

)]
, (2.69)

showing that the axial current is not conserved in presence of non-zero quark
masses. Equations (2.68) and (2.69) are the effective-theory realizations of
the QCD identities (2.10) and (2.41) for mesons at leading order.

Expanding the meson field up to the linear term in φ

U ' 1 +
i

f
λaπa (2.70)

we can write
∂µA

(SB)µ
a =

f

2
B0Tr [{m, λa}λb]πb . (2.71)

Applying the properties of the Gell-Mann matrices, described in
Appendix. A.4, in the trace of Eq. (2.71), we find

Tr [{m, λa}λb] = Tr [m {λa, λb}] =
4

3
δab

√
2

3
3m0 + 4dab3m3 + 4dab8m8 ,

(2.72)
where we have written m as

m =

√
2

3
m0I +m3λ3 +m8λ8 , (2.73)

with
m0 =

mu +md +ms√
6

,

m3 =
mu −md

2
,

m8 =
mu +md − 2ms

2
√

3
.

(2.74)
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2.4. Hadronic currents

The totally antisymmetric SU(3) symbols dabc = 1/4Tr [{λa, λb}λc].
In the isospin limit, mu = md = m̂, using Eqs. 2.54 one finds for the

divergence of the axial current that

∂µ(A1 ± iA2)µ =
√

2fm2
ππ
∓ ,

∂µA
µ
3 = fm2

ππ
0 ,

∂µ(A4 ± iA5)µ =
√

2fm2
KK

∓ ,

∂µ(A6 ± iA7)µ =
√

2fm2
KK̄

0 ,

∂µA
µ
8 = fm2

ηη ,

(2.75)

where the only contribution comes from the symmetry breaking term. The
axial current in the first row couples to the W± fields leading to the pion
decay π± → µ±νµ from where the parameter f can be experimentally fixed:
f = fπ = 92.4 MeV.

2.4.2 Chiral Lagrangians for baryons

We incorporate now the ground state SU(3) baryon octet, represented by a
Dirac spinor field given by the matrix

ΨB(x) =

8∑

a=1

1√
2
λaΨ

a
B =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 .

(2.76)
The lowest order Lagrangian for baryons in the presence of external currents
is

L(1)
MB =Tr

[
ΨB

(
i /D −M

)
ΨB

]
− D

2
Tr
[

ΨBγ
µγ5 {uµ,ΨB}

]

− F

2
Tr
[

ΨBγ
µγ5 [uµ,ΨB]

]
,

(2.77)

where M is the mass of the baryon octet, and the parameters D = 0.804
and F = 0.463 can be determined from the baryon semileptonic decays,
Ref. [45]. In this case, the covariant derivative is given by

DµΨB = ∂µΨB + [Γµ,ΨB]− iTr
[
v0
µ

]
ΨB , (2.78)

with
Γµ =

1

2

[
u† (∂µ − irµ)u+ u (∂µ − ilµ)u†

]
. (2.79)
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2. Electroweak interactions in the Standard Model

The meson fields appear thought u2 = U and

uµ = i

[
u† (∂µ − irµ)u− u (∂µ − ilµ)u†

]
. (2.80)

The singlet external vector field is present only for NC interactions 4:

v0
µ =

(
− g

2 cos θW

)(
−1

6

)
Zµ . (2.81)

From the next order meson baryon Lagrangian we include only the terms
relevant to this thesis,5 corresponding to weak magnetism

L(2)
MB = d5Tr

[
ΨB

[
f+
µν , σ

µνΨB

]]
+ d4Tr

[
ΨB

{
f+
µν , σ

µνΨB

}]
+ . . . , (2.82)

where, in this case, the tensor f+
µν can be reduced to

f+
µν = ∂µlν − ∂ν lµ − i [lµ, lν ] . (2.83)

The coupling constants d4,5 are fully determined by the proton and neutron
anomalous magnetic moments. The same approximation has also been used
in calculations of single pion production induced by neutrinos, Ref. [47].

4We have omitted the coupling to the singlet axial current which has an anomaly.
5As it will be shown in Chapter 6, where we make reference to the results of Ref. [46].

23



2.4. Hadronic currents

24



Chapter 3

Lepton-hadron quasi-elastic
scattering

In this chapter we explore the hadrons and scalar nuclei using elastic and
QE processes. For elastic scattering, we consider the cases where all the
interacting particles keep their identities,

l± +A→ l± +A ,

ν (ν) +A→ ν (ν) +A .
(3.1)

In these reactions A stands for any scalar nucleus. Analogous interactions
can be written replacing the scalar nucleus by a nucleon, N . While any of
these reactions can be mediated by NCs, only charged leptons have non-
negligible EM interactions in the Standard Model.

In the case of QE scattering on nucleons one understands one of the
following reactions:

ν + n→ l− + p ,

ν + p→ l+ + n ,
(3.2)

mediated by CC. QE scattering can occur in nuclei leading to a modification
of the target composition.

3.1 Lepton-hadron inclusive scattering

In the first place, we address the general case of a lepton interacting with
an hadronic target, given as result a lepton in any allowed final state. For
inclusive processes in which a sum over all allowed final hadronic states is
performed, the differential cross section can be written in terms of structure
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3.1. Lepton-hadron inclusive scattering

functions that encode information about the hadronic structure. Once we
have the general expression for the cross section, we can particularise for the
specific cases of interest.

l(k) l′(k′)

N(p)

γ;Z;W

X(p′)

Figure 3.1: Diagram of the scattering between a lepton, with momentum k,
and an hadron, with momentum p. The sum of all the hadronic final-state
momenta is p′ and the momentum of the outgoing lepton is k′.

In the process of Fig. 3.1,

l(k) +N(p)→ l′(k′) +X(p′) , (3.3)

there is a sum over all the final states. We define the momenta of the
incoming particles, pµ ≡ (E, ~p) and kµ ≡ (k0,~k), and the outgoing ones,
p′µ ≡ (E′, ~p′) =

∑
f

p′µf and k′µ ≡ (k′0, ~k′). The momentum transfer is

kµ−k′µ = p′µ−pµ ≡ qµ = (ω, ~q). In the Born approximation, the amplitude
for a generic lepton-hadron interaction will be given in terms of the leptonic
and hadronic currents, jµ and Jµ,

iM = λ2Dµν 〈l′|jµ(0)|l〉 〈X|Jν(0)|N〉 , (3.4)

where Dµν is the propagator of the virtual mediator.1 λ stands for the
coupling in the two vertices, which is taken off from the currents for conve-
nience.2 For the squared modulus of the amplitude we can write

∣∣M
∣∣2 = λ4Dµν (Dαβ)† LµαHνβ , (3.5)

1Translational invariance has been used to factorize the dependence of the currents
on the four-vector x. The resulting exponential leads to the Dirac delta of momentum
conservation in the cross section. We will omit the argument of the currents in the rest
of this thesis to simplify the notation.

2The specific expressions for the coupling and the propagator depend on the exchanged
particle in the interaction.
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3. Lepton-hadron quasi-elastic scattering

where we define the leptonic tensor, Lµν , and the tensor Hµν as

Lµν =
∑
〈l′|jµ|l〉∗ 〈l′|jν |l〉 ,

Hµν =
∑
〈X|Jµ|N〉∗ 〈X|Jν |N〉 ,

(3.6)

with
∑

, the average over the initial polarizations and the sum over the final
ones.

For this general process with a lepton as one of the final state particles,
we can write the differential cross section (see Appendix C.2) as

dσ =
1

4
[
(k · p)2 −m2

lM
2
] d3k′

(2π)32k′0


∏

f

d3p′f
(2π)32E′f




× (2π)4δ(4)
(
p′ + k′ − p− k

) ∣∣M
∣∣2 ,

(3.7)

with ml and M the masses of the incoming lepton and hadron respectively.
In spherical coordinates we can write d3k′ = |~k′|2d|~k′|dΩ, in terms of the

momentum of the outgoing lepton and the solid angle between the directions
of the momenta of the outgoing and incoming leptons, dΩ = d cos θdφ. Using
the relation (k′0)2 = |~k′|2 +m2

l′ , where ml′ is the mass of the outgoing lepton,
we obtain

dσ =
1

8M(2π)3

|~k′|
|~k|

dk′0dΩ


∏

f

d3p′f
(2π)32E′f




× (2π)4δ(4)
(
p′ + k′ − p− k

) ∣∣M
∣∣2 ,

(3.8)

in the laboratory frame, where ~p = 0 and E = M . Using (3.5) in (3.8) we
can write the differential cross section in terms of the leptonic and hadronic
tensors

dσ

dk′0dΩ
=

1

4(2π)2

|~k′|
|~k|

λ4Dµν (Dαβ)† LµαW νβ . (3.9)

The hadronic tensor is given by

Wµν ≡ 1

2M

∫ 
∏

f

d3p′f
(2π)32E′f


 (2π)3δ(4)

(
p′ + k′ − p− k

)
Hµν . (3.10)

Structure functions

We now consider the structure of the hadronic tensor for an inclusive pro-
cess, where all the possible final states are summed. As the final hadronic
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3.1. Lepton-hadron inclusive scattering

momentum is not an independent variable, p′ = p + q, the most general
tensor that can be built is

Wµν =−W1g
µν +W2

pµpν

M2
+W3 i ε

µναβ pαqβ
2M2

+W4
qµqν

M2

+W5
pµqν + qµpν

M2
+W6

pµqν − qµpν
M2

,

(3.11)

where the structure functions,Wi, are function of all the independent scalars,
which can be written in terms of q2 and (q · p). There can not be any
dependence on the individual p′f as this is an inclusive process. In the
laboratory frame (q · p = Mω), therefore Wi

(
ω, q2

)
.

In the case of an EM interaction, current conservation, qµJ
µ
EM = 0,

implies that
qµW

µν
EM = Wµν

EMqν = 0 . (3.12)

The resolution of the system of equations derived from Eq. (3.12) leads
to the cancellation of W6 and gives relations between the rest of structure
functions. A detailed derivation can be found, for example, in Ref. [48].
With these conditions, Eq. 3.11 is reduced to

Wµν
EM = W1

(
qµqν

q2
− gµν

)
+
W2

M2

(
pµ − p · q

q2
qµ
)(

pν − p · q
q2

qν
)
. (3.13)

3.1.1 Electron-hadron interaction

In this section, we provide an specific example of the lepton-hadron scatter-
ing. Indeed, we particularise now the inclusive process general expressions
of the lepton-hadron EM interaction for the case where the lepton is an elec-
tron. This interaction is described by the diagram of Fig. 3.1 with a photon
as the mediator of the reaction. In this case, the incoming and outgoing
particles in the leptonic current are electrons, hence3

〈
e (k′)

∣∣ jµEM |e (k)〉 = u(k′)γµu(k) . (3.14)

The leptonic tensor is then,

Lµν =
1

2
Tr
[(
/k′ +me

)
γµ (/k +me) γν

]

= 2
[
k′µ kν + k′ν kµ − gµν

(
(k′ · k)−m2

e

)]
,

(3.15)

with me the electron mass.
3The normalization of Dirac spinors is given in Appendix A.1.

28



3. Lepton-hadron quasi-elastic scattering

Taking the hadronic tensor of Eq. (3.13), the contraction with the lep-
tonic tensor reads

LµνW
µν =2W1

[
2

(k · q)2

q2
− 2m2

e − 3(k · q)
]

+
2W2

M2
N

[
2(k · p)2 +M2

N(k · q)− (p · q)
q2

(4(k · p)(k · q)

+ 2(p · q)(k · q)− (p · q)
q2

(
2(k · q)2 + q2(k · q)

))]
.

(3.16)
In the case of elastic processes, where the masses of the initial and final
hadrons are the same, this expression is reduced to

LµνW
µν = 2W1

[
−2m2

e − t
]
+
W2

M2
N

[(
s−m2

e −M2
N
)2

+ t
(
s−m2

e

)]
, (3.17)

in terms of the Mandelstam variables, s = (k + p)2 and t = q2.
In the limit where we neglect the electron mass,me ' 0, in the laboratory

frame, for the Mandelstam we have

t = −4k0k′0 sin2 θ

2
,

s = M2
N + 2k0MN ,

(3.18)

where k0 is the energy on the incoming electron and θ is the scattering angle
of the outgoing electron with respect to the direction of the incoming one
in laboratory frame. In this scenario, the contraction of the leptonic and
hadronic tensors is:

LµνW
µν = 4k0k′0

(
W1 2 sin2 θ

2
+W2 cos2 θ

2

)
. (3.19)

For an EM interaction, the photon propagator is given by4

Dµν = −i
gµν

q2 + iε
, (3.20)

and the coupling is the electron charge, e =
√

4πα, with α the fine structure
constant. Substituting the result of Eq. (3.19) and the expressions for the
propagator and the coupling in the Eq. (3.9), we obtain

dσ

dk′0 dΩ
=

α2

4(k0)2 sin4 θ
2

(
W1 2 sin2 θ

2
+W2 cos2 θ

2

)
, (3.21)

4We choose the Feynman gauge for simplicity.
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3.2. Quasi-elastic scattering on the nucleon

in terms of W1(ω, q2) and W2(ω, q2), which depend on the particular target.
This expression for the cross section is general for any EM interaction, and
only the structure functions are specific of each case. In further sections we
continue the description of the electron-hadron interaction for the cases of
interest in this thesis.

3.2 Quasi-elastic scattering on the nucleon

As described in Sec. 2.4, for a lepton-nucleon scattering, Fig. 3.2, the
hadronic current in momentum space reads

〈
N ′(p′)

∣∣ Jµ |N(p)〉 = u(p′)Γµu(p) = Vµ −Aµ , (3.22)

where the 4-vector is as a sum of operators with coefficients Fi,
Γµ =

∑

i

FiOµi . These coefficients are the FFs which, in a given reaction,

describe the spatial distributions of charge, and the current inside the nu-
cleons. The FFs can be parametrized using empirical information extracted
from the scattering of leptons with nucleons.

l(k) l′(k′)

N(p) N ′(p′)

γ ;W ;Z(q)

Figure 3.2: Diagram of a lepton-nucleon scattering.

For particles which obey the Dirac equation, the most general structure
that can be written, after the use of Dirac algebra, for Γµ is given by

Γµ = γµF1+
i

2MN
σµνqνF2+

qµ

MN
FS−γµγ5FA−

i

2MN
σµνqνγ5FT−

qµ

MN
γ5FP ,

(3.23)

with MN the nucleon mass, σµν =
i

2
[γµ, γν ] and q = p′ − p. The FFs are

functions of all independent scalars in the problem. In the QE case the
condition 2(p · q) + q2 = 0 is fulfilled and Fi = Fi(q

2).
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3. Lepton-hadron quasi-elastic scattering

Some properties of the FFs can be extracted from the behaviour of the
different components of the current under the discrete symmetries of the
Dirac theory. Because the time reversal (T ) operator is antilinear, under
this transformation the hadronic current behaves as

T (uΓµu) T † =
∑

i

F ∗i u (Oi)µ u . (3.24)

The fact that the amplitude of the interaction, which is proportional to
lµuΓµu =

∑

i

FilµuOµi u, does not change, keeping T invariance, implies that

T (lµuΓµu) T † =
∑

i

F ∗i lµuOµi u , (3.25)

so the coefficients have to be real, F ∗i = Fi.
Looking now at how the different structures of Γµ transform under parity

(P ), we observe that the γµ, σµνqν and qµ terms transform as vectors, while
γµγ5, σµνqνγ5 and qµγ5 do as axial vectors. This makes possible to identify
the vector and axial vector parts of the current:

Vµ = u(p′)
[
γµF1 +

i

2MN
σµνqνF2 +

qµ

MN
FS

]
u(p) ,

Aµ = u(p′)
[
γµγ5FA +

i

2MN
σµνqνγ5FT +

qµ

MN
γ5FP

]
u(p) .

(3.26)

Making use of conservation of the vector current, qµVµ = 0, a relation
between F1 and FS can be obtained because the piece σµνqµqν vanishes by
symmetry,

qµVµ = u(p′)
[(
/p
′ − /p

)
F1 +

q2

MN
FS

]
u(p) = 0 , (3.27)

and hence

Vµ = u(p′)
[(
γµ − /qqµ

q2

)
F1 +

i

2MN
σµνqνF2

]
u(p) . (3.28)

If the masses of the two nucleons in the interaction are equal,5 as the spinors
fulfill the Dirac equation, u(p′)

(
/p′ −MN

)
=
(
/p−MN

)
u(p) = 0, the term

/qqµ/q2 in Eq. (3.28) is cancelled.

5In the case of CC interactions, this condition is satisfied in the isospin limit.
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3.2. Quasi-elastic scattering on the nucleon

The charge conjugation (C) unitary linear operator transforms a parti-
cle in its corresponding antiparticle. Hence, the action of this operator on
a fermionic field changes the sign of all of its quantum numbers, without
affecting the spin and momentum. The combination of C with a rotation
of π around the second axis of isospin space is defined as the G-parity (G),
G = Ceiπ

τ2
2 . Applying G to the currents we obtain

GVµG† = Vµ ,
GAµG† = −Aµ ,

(3.29)

except for the term proportional to FT , which transforms with the opposite
sign of the rest in the axial current.6 In absence of strong interactions,
only the terms proportional to γµ and γµγ5 are present in the vector and
axial currents respectively. As G is a symmetry of strong interactions, we
demand that all the terms in each current transform as these ones and,
hence, FT = 0.7 Then, for the nucleon current we have the well-known
result

Vµ = u(p′)
[
γµF1 +

i

2MN
σµνqνF2

]
u(p) ,

Aµ = u(p′)
[
γµγ5FA +

qµ

MN
γ5FP

]
u(p) ,

(3.30)

where we have used that the initial and final nucleons have the same mass.
The currents in Eq. (3.30) are written in terms of the Dirac (F1), Pauli (F2),
axial (FA) and pseudoscalar (FP ) FFs.

3.2.1 Isospin symmetry

In what follows, we explore the isospin symmetry for the nucleon matrix
elements and the relations between the EM and the weak FFs are deduced.
In Sec. 2.3 we described the isospin symmetry SU(2) for u and d quarks.

In the case of nucleons we assume the same SU(2) isospin symmetry. As
it happens with the u and d quarks, under this symmetry the nucleons form
a doublet with I = 1/2. The action of the isospin operators over the nucleon
isospin states is described in Appendix A.2.

6The same would apply to the FS term in the case we had not cancel it before.
7The terms of the vector and axial vector currents which transform as in Eq. (3.29) are

the first class currents and the ones which transform with the opposite sign are classified
as second class ones. From now on, we will ignore second class currents with FT 6= 0 and
FS 6= 0.
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3. Lepton-hadron quasi-elastic scattering

In Sec. 2.3 the flavor structure of electroweak currents was presented.
The nucleon transition currents can be written as

V µ
a = Vµ τa

2
, (3.31)

Aµa = Aµ τa
2
, (3.32)

in terms of the isospin operators. The hypercharge current is

V µ
Y = VµY I , (3.33)

where I is the identity matrix. In the following, we use this to describe the
flavor structure of EM and weak currents.

3.2.2 Electromagnetic form factors

The EM transitions between nucleons are given by

〈p|V µ
EM |p〉 = 〈p|V µ

3 +
1

2
V µ
Y |p〉 =

Vµ + VµY
2

≡ Vµp , (3.34)

〈n|V µ
EM |n〉 = 〈n|V µ

3 +
1

2
V µ
Y |n〉 =

−Vµ + VµY
2

≡ Vµn , (3.35)

with Vµp,n in terms of the EM FFs, Eq. 3.30. It is common to use the Sachs
electric and magnetic FFs, GE and GM , given by

GE = F1 +
q2

4M2
N
F2 ,

GM = F1 + F2 .

(3.36)

In the Breit frame,8 the three-dimensional Fourier integral of GE plays a
role analogous to the "classical" charge distribution. The Fourier transform
of GM would be interpreted as the magnetization density. See Ref. [42] for
further details.

There are different parametrizations of the EM FFs that can be found
in the literature, e.g. in Ref. [49].

8This is the frame where the incoming and the outgoing nucleons have momenta equal
in magnitude but with opposite signs. In the case of elastic electron scattering, this frame
coincides with the electron-nucleon center of mass (CM); the exchanged photon carries
momentum ~q but no energy: the four-momentum transfer is qµ = (0, ~q)
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3.2. Quasi-elastic scattering on the nucleon

EM form factors empirical parametrization

The nucleon FFs are extracted from scattering reactions of electrons on
protons or electrons on deuterium, for neutrons. Here we present as an
example the parametrization of Ref. [49]. In this functional form, the EM
FFs are writen in terms of a dipole. For the proton we have

F
(p)
1 =

[1 + τ (1 + λp)]G

(1 + τ)
,

F
(p)
2 =

λpG

(1 + τ)
,

τ =
Q2

4M2
N
,

(3.37)

with Q2 = −q2, G = (1 + 4.97τ)−2, and the anomalous momentum λp =
1.793 in units of nuclear magnetons. The neutron parametrization is given
by

F
(n)
1 =

τλn (1− η) G

(1 + τ)
,

F
(n)
2 =

λn (1 + τ η) G

(1 + τ)
.

(3.38)

In this case, the anomalous momentum is λn = −1.913 and η = (1 + 5.6τ)−1.
Both FFs, for proton and neutron, are plotted in Fig. 3.3, 3.4 as functions
of Q2.

Figure 3.3: Sachs form factors of the proton as functions of Q2.

3.2.3 Weak form factors

In the case of CC interactions the vector part of the transition of a neutron
into proton is

〈n|V µ
CC |p〉 = 〈n|V µ

1 + iV µ
2 |p〉 = Vµ = Vµp − Vµn . (3.39)
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3. Lepton-hadron quasi-elastic scattering

(a) (b)

Figure 3.4: Sachs form factors of the neutron as functions of Q2.

Eq. 3.39 shows that the vector part of the CC can be expressed in terms of
the EM one. The consequence for the CC vector FFs is the relation

F V1,2 = F
(p)
1,2 − F

(n)
1,2 , (3.40)

where F (p,n)
1,2 are the EM FFs of the proton and the neutron.

The vector part of the NC transitions is given by

〈p|V µ
NC |p〉 = 〈p|

(
1− 2 sin2 θW

)
V µ

3 − sin2 θWV
µ
Y |p〉

=

(
1

2
− sin2 θW

)
Vµ − sin2 θWVµY

=

(
1

2
− 2 sin2 θW

)
Vµp −

1

2
Vµn ,

〈n|V µ
NC |n〉 = −

(
1

2
− sin2 θW

)
Vµ − sin2 θWVµY

=

(
1

2
− 2 sin2 θW

)
Vµn −

1

2
Vµp .

(3.41)

Hence, the FFs for NC in terms of the EM ones are

F̃
(p)
1,2 =

(
1

2
− 2 sin2 θW

)
F

(p)
1,2 −

1

2
F

(n)
1,2 ,

F̃
(n)
1,2 =

(
1

2
− 2 sin2 θW

)
F

(n)
1,2 −

1

2
F

(p)
1,2 .

(3.42)

These relations between the weak vector FFs and the EM FFs, allow to
use input from electron scattering experiments in neutrino cross sections, as
consequence of isospin symmetry.
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3.2. Quasi-elastic scattering on the nucleon

For the axial part of the current there is no EM counterpart. Still we
can relate the axial part of the NC interactions with the one of the CC. For
a transition of a neutron into a proton, the axial current is

〈n|AµCC |p〉 = 〈n|Aµ1 + iAµ2 |p〉 = Aµ . (3.43)

In the case of NCs we have

〈p|AµNC |p〉 = 〈p|Aµ3 |p〉 =
1

2
Aµ ,

〈n|AµNC |n〉 = 〈n|Aµ3 |n〉 = −1

2
Aµ .

(3.44)

The consequence for the FFs is the relation

F̃
(p)
A,P =

1

2
FA,P ,

F̃
(n)
A,P = −1

2
FA,P ,

(3.45)

where FA,P
(
F̃A,P

)
are the axial and pseudoscalar FFs for CC (NC) inter-

actions. Eq. (3.45) shows that we only need one set of axial FFs to describe
both kinds of weak nucleon transitions.

Back in Sec. 2.4, the lowest order chiral Lagrangian in the meson sector,
Eq. (2.53), contains a direct coupling of the charged vector bosons to pions,

L(2)
M ⊃ LWφ =

f

2
Tr
[
lCCµ ∂µφ

]
. (3.46)

Substituting Eqs. (2.45) and (2.50),

LWφ = −f g
2

[
W †µ

(
Vud∂

µπ− + Vus∂
µK−

)

+Wµ

(
Vud∂

µπ+ + Vus∂
µK+

)]
.

(3.47)

This implies that the Feynman diagram of Fig. 3.5 defines a pion-pole con-
tribution to the axial current, Eq. (3.30),

Aµpp = u(p′)
[
−GπN (q2)

MN
/qγ5

f qµ

q2 −m2
π

]
u(p) , (3.48)

where GπN stands for the πNN FF. Writing q = p′ − p and applying the
Dirac equation,

Aµpp = u(p′)
[
−GπN (q2)

2f

q2 −m2
π

qµγ5

]
u(p) . (3.49)
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3. Lepton-hadron quasi-elastic scattering

N N ′

W,Z

π

Figure 3.5: Diagram of the pion-pole contribution to the interaction between
a vector boson and a nucleon.

Assuming that the pseudoscalar FF is dominated by the pion pole

FP =
2MNf

Q2 +m2
π

GπN (Q2) , (3.50)

with Q2 = −q2. In the chiral limit qµAµ = 0, so that

FA(Q2) =
f

MN
GπN (Q2) . (3.51)

At Q2 = 0, this is the Goldberger-Treiman (GT) relation:

gA =
f

MN
GπN (0) . (3.52)

Neglecting the corrections in Eq. (3.51) when going from the chiral limit to
the phisical point, one can express FP in terms of FA,

FP = FA
2M2

N
Q2 +m2

π

, (3.53)

See Refs. [41, 42] for further details. In the cross section FP appears in
terms proportional to (ml/M)4, which are neglected in NC interactions,
where the outgoing lepton is a neutrino. The contribution of these terms to
charged-current quasi-elastic (CCQE) scattering is also very small except for
ντ interactions. However, FP has been studied in muon capture µ−p→ νµn
and found to be consistent with pion-pole dominance [50].

For the Q2 dependence of the axial FF, the most common parametriza-
tion is the dipole ansatz,

F dipole
A (Q2) = gA

(
1 +

Q2

M2
A

)−2

, (3.54)

37



3.2. Quasi-elastic scattering on the nucleon

in terms of a single parameter, the so-called axial mass MA. The axial
coupling gA = FA(Q2 = 0) is known rather precisely from the neutron β-
decay asymmetry [40]:

gA = 1.2723± 0.0023 , (3.55)

although a more precise value can be obtained using recent measurements
of the nucleon lifetime [51]. The limitations of this ansatz and other alter-
natives are covered in Chapter 5.

3.2.4 Electron-nucleon scattering

In this section we describe the EM interaction in the elastic scattering of
an electron on a nucleon, l(k) + N(p) → l(k′) + N(p′), Fig. 3.2. The most
general hadronic current for this reaction has the expression of the vector
current in Eq. 3.30,

〈N(p′)|Jµ|N(p)〉 = u(p′)
[
γµF1 +

i

2MN
σµνqνF2

]
u(p) . (3.56)

For the hadronic part of the process we can write:

Hµν =
1

2
Tr
[(
/p′ +MN

)(
γµF1 +

F2

2MN

(
2MN γ

µ −
(
p′µ + pµ

)))

×
(
/p+MN

)(
γνF1 +

F2

2MN

(
2MN γ

ν −
(
p′ν + pν

)))]
,

(3.57)

After performing the trace we have

Hµν = 2F 2
1

[
p′µpν + p′νpµ + gµν

(
M2

N − (p′ · p)
)]

+ 2F1F2

[
p′µpν + p′νpµ − p′µp′ν − pνpµ + gµν

(
M2

N − (p′ · p)
)]

+
1

2
F 2

2

[(
p′µpν + p′νpµ

)(
1 +

(p′ · p)
M2

N

)

+
(
p′µp′ν + pνpµ

)((p′ · p)
M2

N
− 3

)
+ 4gµν

(
M2

N − (p′ · p)
)]

.

(3.58)
There is only one final hadronic state for this scattering, hence, the hadronic
tensor is given by

Wµν =
1

2MN

∫
d3p′

2E′
δ(4)

(
k + p− p′ − k′

)
Hµν

=
1

2MNE′
δ
(
k0 + E − E′ − k′0

)
Hµν .

(3.59)
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3. Lepton-hadron quasi-elastic scattering

In an EM process like this one, the general structure of the hadronic tensor
is given in Eq. (3.13). We now contract Eq. (3.59) with the metric tensor,
gµν and with pµpν ,

gµνW
µν =

1

4MNE′
δ
(
k0 + E − k′0 − E′

) [
4F 2

1

(
M2

N −
q2

2

)

+6F1F2 q
2 + F 2

2 q
2

(
2 +

q2

4M2
N

)]
,

(3.60)

pµpνW
µν =

1

4MNE′
δ
(
k0 + E − k′0 − E′

) [
4F 2

1M
2
N

(
M2

N −
q2

2

)

+2F1F2 q
2

(
M2

N −
q2

4

)
+ F 2

2

((
M2

N −
q2

4

)
q4

4M2
N

)]
.

(3.61)

Then, we do the same contractions for Eq. (3.13),

gµνW
µν = −3W1 +

W2

M2
N

(
M2

N −
q2

4

)
, (3.62)

pµpνW
µν =

(
M2

N −
q2

4

)[
−W1 +

W2

M2
N

(
M2

N −
q2

4

)]
, (3.63)

Comparing the results for both expressions of the hadronic tensor, we can
obtain the structure functions W1 and W2.

W1 =
1

4MNE′
δ
(
k0 + E − k′0 − E′

) (
−q2

)
(F1 + F2)2 . (3.64)

W2 =
1

4MNE′
δ
(
k0 + E − k′0 − E′

) (
4M2

NF
2
1 − q2F 2

2

)
. (3.65)

In terms of the Sachs FFs, Eq. (3.36), we can write

W1 =
1

4MNE′
δ
(
k0 + E − k′0 − E′

) (
−q2

)
G2
M

W2 =
1

4MNE′
δ
(
k0 + E − k′0 − E′

) 4M2
N(

1− q2

4M2
N

)
(
G2
E −

q2

4M2
N
G2
M

)
.

(3.66)
After substituting Eq. (3.66) in the expression for the differential cross

section Eq. (3.21), we integrate the delta and we have

dσ

dΩ
=

α2

4(k0)2 sin4 θ
2

cos2 θ
2

1 + 2k0

MN
sin2

(
θ
2

)
[
G2
E + τ G2

M

1 + τ
+ 2 τ G2

M tan2 θ

2

]
,

(3.67)
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3.3. Elastic scattering on a scalar nucleus

with τ = − q2

4MN
. Finally we arrived to the same expression for the cross

section that can be found in the literature, [42, 52].

3.3 Elastic scattering on a scalar nucleus

What characterizes a scalar nucleus is the value of it’s spin, J = 0. The
interest of this kind of nuclei, like 12C, 16O or 40Ar, is their extended use in
neutrino detectors. In this case, the most general structure for the current
is

〈A(p)| Jµ
∣∣A(p′)

〉
=
F1(q2)

MA
pµ +

F2(q2)

MA
qµ , (3.68)

where MA in the nucleus mass. As in the case of the QE scattering on
nucleons, the FFs only depend on q2, being the only independent scalar. The
current can not carry any other kinematic dependence because the nucleus
has spin zero and remains in its ground state after the interaction.

3.3.1 Electromagnetic form factor

The conservation of the EM current,

qµ 〈A(p)| Jµ
∣∣A(p′)

〉
=
F1(q2)

MA
(q · p) +

F2(q2)

MA
q2 = 0 , (3.69)

implies a relation between the two FFs,

F (q2) ≡ F2(q2) = −F1(q2)
(q · p)
q2

. (3.70)

As it happens in the case of the nucleon FFs, F (q2) has to be real due to
the T invariance. After substituting Eq. (3.70), the current reads

〈A(p)| Jµ
∣∣A(p′)

〉
= 2F (q2)

(
pµ − (q · p)

q2
qµ
)
, (3.71)

in terms of the FF of the scalar nucleus. In the Breit frame, the incident
lepton momentum is ~k = ~q/2 and it scatters with a nucleus which momentum
is ~p = −~q/2. The recoil of the nucleus is ~p′ = ~q/2. The virtual mediator
carries momentum but not energy: qµ = (0, ~q). For an extended nucleus in
this frame, the FF is the Fourier transform of the charge distribution, [53]

F (q2) =

∫
d3r ei~q·~rρ (~r) . (3.72)
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3. Lepton-hadron quasi-elastic scattering

In this relation, the spatial dependence has been integrated, hence the FF re-
mains only as a function of q2 once the density depends only on the absolute
value of the spacial coordinate |~r|.

We choose the normalization of the charge density to be the nucleus
electric charge, Z, ∫

d3r ρ (~r) = Z , (3.73)

hence F (0) = Z. In the case of a point-like particle F (q2) = Z, for any
q2. On the other hand, the nucleus charge density is well defined in the
laboratory frame. In the approximation where we neglect the electron mass
in comparison with the nucleus one, the Breit and the laboratory frame are
the same. In other words, we neglect the boost effect between those two
frames, for the charge density.

EM scalar nucleus form factor empirical parametrization

In the same way as for nucleons, the nuclear FFs are extracted from scat-
tering experiments. In this case the sources are the electron-nucleus scat-
tering experiments on different nuclei. In Fig. 3.6 it is shown the dipole
parametrization from Ref. [54],

F (Q2) =
Z

(1 + t/d)
, (3.74)

where A is the mass number and d = 0.164A−2/3 GeV2. This parametriza-
tion is commonly used in the literature due to its simplicity for any nucleus
and that it can be integrated analytically.
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Figure 3.6: 12C nucleus form factor, as a function of Q2.
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3.3. Elastic scattering on a scalar nucleus

More realistic descriptions for several nuclei can be obtained from the
charge density parametrizations of the Ref. [55]. In this reference the
parametrizations are classified in model-dependent and model-independent
categories. Among the latter, the one that can be written in terms of the
Bessel spherical functions allows us to obtain an analytical expression for
the FF. The charge density in this parametrization reads

ρ(r) =





N∑
ν=1

aνj0
(
νπ r

R

)
, r ≤ R

0 , r ≥ R
, (3.75)

where j0(x) =
sinx

x
is the spherical Bessel function of zeroth order. The

parameters of the charge density function are the coefficients of the series,
aν , and the radius of the nucleus, R.

After the substitution of the charge density, Eq. (3.75), in Eq. (3.72), we
perform the integral, obtaining the expression for the FF,

F (Q) = 4π
sin(Qr)

Qr

N∑

ν=1

(−1)ν+1 R3 aν
π2 ν2 −Q2R2

, (3.76)

where Q =
√
−q2. In Fig. 3.7 are shown the EM FFs for the 12C and 40Ar

nuclei.
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(a) 12C form factor
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(b) 40Ar form factor

Figure 3.7: Form factors from the model-independent analysis based on
spherical Bessel functions, as a function of Q.

In Fig. 3.8 the comparison between both parametrizations for 12C and
40Ar nuclei is shown. We observe that the parametrization based on Bessel
functions go down before the dipole one. This difference of behaviour has a
small relevance in the total cross section, because the main contribution of
the FF is the charge and, to a lesser extent, the mean square radius.
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3. Lepton-hadron quasi-elastic scattering

(a) 12C form factor (b) 40Ar form factor

Figure 3.8: Nuclear form factor as a function of Q2 = −q2. Discontinu-
ous red line shows the dipole parametrization. The blue line is the model-
independent parametrization of Ref. [55].

The mean square radius is defined as

〈
r2
〉

=
1

Z

∫
d3rρ(r)r2 . (3.77)

A power series expansion on Q2 of the FF, Eq. (3.72), shows the the relation
between the quadratic term and the mean square radius,

F (Q2) = Z

(
1− 1

6

〈
r2
〉
Q2 +O(Q4)

)
. (3.78)

The values of the mean square radius in the dipole parametrization are〈
r2
〉1/2

= 2.728 fm for 12C and
〈
r2
〉1/2

= 4.075 fm for 40Ar. In the case of
the parametrization of Eq. (3.76), the values are

〈
r2
〉1/2

= 2.463 fm for 12C
and

〈
r2
〉1/2

= 3.423 fm for 40Ar. We can see that, although the values in
the second case is smaller, there are no significant differences. In a graphic
way, the mean square radius corresponds to the slope of the curve at the
origin.

3.3.2 Weak form factor

For NC interactions, the conservation of the vector current (CVC) gives the
same relation of Eq. (3.70). Also, in the case of the scalar nucleus, Eq. (3.68)
shows that there is no axial structure in the current. Therefore, like in the
case of the EM interaction, there is only one FF for weak currents.

An atomic nucleus is composed by protons and nucleons and the weak
FF must take into account this structure. While the proton is made of two
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3.3. Elastic scattering on a scalar nucleus

up-quarks and one down-quark, the content of the neutron is one up-quark
and two down-quarks. From Eq. (2.21), we can extract the weak charge of
each quark,

V µ
NC = quγ

µ

[
1

2
−
(

2

3

)
2 sin2 θW

]
qu + qdγ

µ

[
−1

2
−
(
−1

3

)
2 sin2 θW

]
qd

+ qsγ
µ

[
−1

2
−
(
−1

3

)
2 sin2 θW

]
qs .

(3.79)
We define then,

QuW ≡
1

2
−
(

2

3

)
2 sin2 θW ,

QdW ≡ −
1

2
−
(
−1

3

)
2 sin2 θW .

(3.80)

We can do the Fourier transform of the density distribution of both kinds
of nucleons in the nucleus, obtaining

FN (q2) =

∫
d3r ei~q·~rρN (~r) , N = p, n . (3.81)

The weak FF of the whole nucleus is given as the sum of the FF of each
kind of nucleons, multiplied by their respective weak charges,

FW (q2) = Fp(q
2)
(

2QuW +QdW

)
+ Fn(q2)

(
QuW + 2QdW

)

= Fp(q
2)

(
1

2
− 2 sin2 θW

)
− 1

2
Fn(q2) .

(3.82)

A good approximation is to use the electric charge distribution as input
for the density of protons in the nucleus. Also we can approximate the
distribution of neutrons to the protons one, taking the same parametrization
for both distributions.

3.3.3 Scattering of electrons on scalar nuclei

In this section we come back to the electron-hadron scattering example.
In this case we analyse the interaction between electrons and scalar nuclei.
The hadronic current for an spinless nucleus is given in Eq. (3.71). The
correspondent tensor is then

Hµν = 4M2
A F (q2)

(
pµ − (q · p)

q2
qµ
)(

pν − (q · p)
q2

qν
)
. (3.83)
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3. Lepton-hadron quasi-elastic scattering

After substituting this expression in Eq. (3.10), the comparison with
Eq. (3.13) gives

W1(ω, q2) = 0

W2(ω, q2) =
MA

E′
δ
(
k0 + E − k′0 − E′

)
F 2(q2) .

(3.84)

In the same way than for nucleons, we substitute the expression of W2 in
Eq. (3.21) obtaining

dσ

dΩ
=

α2

4(k0)2 sin4 θ
2

cos2 θ
2

1 + 2k0

MA
sin2

(
θ
2

) F 2(q2) , (3.85)

in terms of the nuclear FF, see Sec. 3.3.
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Chapter 4

Production and radiative decay
of heavy neutrinos at the
Booster Neutrino Beam

4.1 Introduction

The paradigm of three mixing neutrino flavors emerges from oscillation
experiments with solar, atmospheric, reactor and accelerator neutrinos in
which the square-mass differences and mixing angles have been determined
with ever growing precision. Nevertheless, a number of anomalies that chal-
lenge this picture has been observed. One of them, reported by MiniBooNE,
has found an excess of electron-like events over the predicted background in
both ν and ν̄ modes [56, 57, 57, 58], Fig. 4.1. The excess is concentrated
at 200 < EQE

ν < 475 MeV, where EQE
ν is the neutrino energy reconstructed

assuming a CCQE nature of the events.
Existing analyses struggle to accommodate this result together with

world oscillation data, even in presence of one or more families of sterile
neutrinos [59]. The effect of multinucleon interactions in Eν reconstruc-
tion is insufficient to remove the tension in global analyses [60], pointing
at an explanation that does not invoke oscillations. It was suggested that
an underestimated background from photons emitted in NC interactions
could account for the excess [61]. Indeed, the MiniBooNE detector does not
distinguish between electrons and single photons. However, studies consid-
ering nuclear effects and acceptance corrections [3, 62], obtain a number of
photon-induced electron-like events which is consistent with the MiniBooNE
estimate.
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4.1. Introduction

Figure 4.1: Results of the MiniBooNE experiment [57]. The distribution of
electron-like events (oscillation candidates) as a function of the reconstructed
(anti)neutrino energy. The upper figure corresponds to antineutrino mode,
while the lower is for neutrino mode. In both modes an excess of events in
the lower energy region is observed.

A variety of ideas to explain the MiniBooNE anomaly has been put for-
ward, involving the production of heavy sterile/dark neutrinos and their
subsequent decay into non-observable particles (such as active or other ster-
ile neutrinos) and single photons or e+e− pairs [63, 64]. In one of the earlier
studies, Gninenko proposed that additional photons could originate in the
weak production of a heavy (mh ≈ 50 MeV) sterile neutrino slightly mixed
with muon neutrinos, followed by its radiative decay [65] In Ref. [4] it was
pointed out that the νh could also be electromagnetically produced, allevi-
ating tensions in the original proposal with other data such as those from
radiative muon capture measured at TRIUMF.

We have revisited the scenario presented in Ref. [4]. We compute coher-
ent and incoherent νh production using present understanding of EM and
weak interactions on nucleons and nuclei. For a more detailed analysis, we
compare to the MiniBooNE excess of events in the originally measured elec-
tron energy and angle [66] (being the photon ones in our case) rather than
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in EQE
ν . We also take into account the experimental efficiency correction

available from Ref. [66].1

Further insight on the nature of the MiniBooNE anomaly should be
brought by the SBN program with the SBND, MicroBooNE (currently ana-
lyzing data) and ICARUS detectors, capable of distinguishing between elec-
trons and photons. We have also computed the number of photon events
from νh for the target (Argon) and geometry of the SBN detectors.

We have studied νh EM and weak production in the following processes

νµ , ν̄µ(k) + N(p) → νh , ν̄h(k′) + N(p′) , (4.1)

νµ , ν̄µ(k) + A(p) → νh, ν̄h(k′) + A(p′) , (4.2)

νµ , ν̄µ(k) + A(p) → νh, ν̄h(k′) + X(p′) . (4.3)

Reaction (4.2) is coherent while (4.3) is incoherent; excited states X include
any number of knocked out nucleons but no meson production. The consid-
ered targets are N = p and A =12C for MiniBooNE (CH2),and A =40Ar for
the SBN detectors.

4.2 Electromagnetic production of heavy neutrinos

Cherenkov detectors are not able to distinguish an electron from a photon,
therefore the radiative decay of a heavy neutrino, Fig. 4.2, in such kind of
detectors, would produce a signal which would be wrongly classified as a
νe event. These heavy neutrinos would be produced by the interaction of
muonic neutrinos of the beam directed to the detector and the detector’s
own material.

νh

ν

γ

Figure 4.2: Decay of a heavy neutrino into a photon and a light neutrino.

1As we analyze both neutrino and antineutrino modes, in order to treat them on the
same ground we stick to the original MiniBooNE results of Refs. [56, 57] and do not
consider the more recent updates in antineutrino mode which are anyway consistent with
the early findings.
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4.2. Electromagnetic production of heavy neutrinos

The model presented in Ref. [4] is based on the idea proposed in Ref. [65],
where a heavy neutrino is presented as a possible common explanation for the
Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE anomalies.
The estimated mass of the νh in Ref. [4] is mh ≈ 50 MeV. It is assumed that
the left-handed component of the νh has a slight mixing with νµ. In this
section we describe the EM mechanism of νh production.

4.2.1 Electromagnetic interaction of heavy neutrinos

In the one-photon approximation, the electromagnetic interactions of a neu-
trino field ν(x) can be described by the effective interaction Hamiltonian [67]:

Heff(x) =
3∑

k,j=1

νk(x)Λkjµ νj(x)Aµ(x) , (4.4)

where Aµ(x) is the electromagnetic field. Λkjµ is a 4 × 4 matrix in spinor
space, given by [67]

Λhαµ =

(
γµ − qµ

/q

q2

)[
fhαQ (q2) + fhαA (q2)q2γ5

]

− iσµνq
ν
[
fhαM (q2) + ifhαE (q2)γ5

]
.

(4.5)

fQ, fM , fE and fA are the real charge, dipole magnetic and electric, and
anapole neutrino FFs. In Ref. [67] it is shown that CP is conserved if fQ,
fM and fA, are real and symmetric and fE is imaginary and antisymmetric.

In the case of an EM reaction, with an incoming light neutrino of flavor
α and an outgoing heavy neutrino, we can write,

Heff(x) = νh(x)Λhαµ να(x)Aµ(x) , (4.6)

We follow the choice of Ref. [4], where fM = −ifE = µitr/2, in terms of
the transition dipole magnetic moment for the process νh → νiγ, µitr. The
charge and anapole neutrino FFs are set to fQ = fA = 0, hence

Λhαµ = −1

2
iσµνq

νµαtr (1− γ5) . (4.7)

With these parameters, we recover the relevant terms in the effective La-
grangian used in Ref. [4],

Leff ⊃
1

2
µitr [νhσµν (1− γ5) νi + νiσµν (1 + γ5) νh] ∂µAν . (4.8)
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In this scenario, the heavy neutrinos are Dirac particles with mνi � mνh .
We proceed now in analogy to the electron-hadron scattering scenario

described in Chapter 3. We begin by calculating the cross section in terms
of the structure functions for the inclusive process νi(k) +N(p)→ νh(k′) +
X(p′), fixing them afterwards for specific cases. As we are considering an
EM interaction, mediated by a photon, its propagator is given by Eq. (3.20).
Its coupling to the hadronic and leptonic currents are proportional to the
electric charge and µitr, respectively. After substituting the couplings and
the propagator in Eq. (3.9), we obtain

dσ

dk′0 dΩ
=
α (µitr)

2

16π q4

|~k′|
|~k|

LµνW
µν , (4.9)

with dΩ = d cos θdϕ, the solid angle of the outgoing neutrino with respect
to the direction of the incoming one. The hadronic tensor in this case is the
same than in the electron-hadron interaction, Eq. (3.13), but the leptonic
tensor is different from the SM one and reads

Lµν = Tr
[
(/k
′
+mh)σδµ(1− γ5)/k σρν(1 + γ5)

]
qρqδ

= 8
[
(k′ · k)

(
(kµ + k′µ)(kν + k′ν)−m2

hg
µν
)

−2m2
hk

µkν + im2
hε
µνσρk′σkρ

]
,

(4.10)

where we have neglected the light neutrino mass. The contraction of this
tensor with the hadronic one of Eq. (3.13) is

LµνW
µν = 8W1

[
(k′ · k)

(
(k · q + k′ · q)2

q2
+ 3m2

h − (k + k′)2

)

−2m2
h

(k · q)2

q2

]

+ 8
W2

M2

[
(k′ · k)

((
(p · k + p · k′)− (p · q)

q2
q2(k + k′)

)2

−m2
h

(
p− (p · q)

q2

)2
)
− 2m2

h

(
(k · p)− (p · q)

q2
(k · q)

)2
]
.

(4.11)
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After some algebra we find that

dσ

dk′0 dt
=

α (µitr)
2

4 (k0)2 t2
{
W1

(
m2
h − t

) (
2m2

h + t
)

+
W2

4M2

[
−t
(
2s+ t−M2 −M2

X

)2 − 4m4
hM

2

−m2
h

(
3M4 − 2M2

(
M2
X + 2s+ t

)

−
(
M2
X − t

) (
M2
X − 4s− t

))]}
,

(4.12)

in terms of the Mandelstam variables s and t = q2. The mass of the hadronic
target is denoted by M while the invariant mass of the final state is MX .
As there is not a ϕ dependence in the cross section, the integration over this
variable only contributes with a factor 2π in Eq. (4.12). It is clear that due
to the photon propagator low-t interactions are favoured in EM scattering.

To obtain the angular distribution is straightforward using

dσ

dk′0 d cos θ
= 2k0|~k′|

dσ

dk′0 dt
, (4.13)

and the relation t = m2
h − 2k0

(
k′0 − |~k′| cos θ

)
.

4.2.2 Quasielastic scattering

When the initial and final hadronic states coincide, we refer to as quasielastic
scattering. In this case, Eq. (4.12) is reduced to

dσ

dk′0 dt
=
α (µitr)

2

4 (k0)2 t2
[
W1

(
m2
h − t

) (
2m2

h + t
)

+
W2

4M2

(
−t
(
2s+ t− 2M2

)2
+m2

h t (4s+ t)− 4m4
hM

2
)]

.

(4.14)
In the following, we address the specific cases of quasielastic scattering on
nucleons and scalar nuclei (coherent case).

Quasielastic scattering on nucleons

The structure functions W1,2 in this case, the same as in electron-nucleon
elastic scattering, are readily available in Eq. (3.66). Substituting them in
Eq. (4.14) we find

dσ

dk′0 dt
=

α (µitr)
2

4 (k0)2 t2
1

4MNE′
δ(k0 + E − k′0 − E′)

(
W̃1 +

W̃2

4M2
N

)
, (4.15)
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where we have defined:

W̃1 ≡− tG2
M

(
m2
h − t

) (
2m2

h + t
)

W̃2 ≡

(
G2
E − t

4M2
N
G2
M

)

1− t
4M2

N

[
−t
(
2s+ t− 2M2

N
)2

+m2
h t (4s+ t)− 4m4

hM
2
N

]
.

(4.16)
After the integration over k′0, using that 2k0MN = s−M2

N, we get

dσ

dt
=

α (µitr)
2

4
(
s−M2

N
)2
t2

1

1− t
4M2

N

(
G2
E RE −G2

M RM
)
, (4.17)

where

RE = −t
(
2s+ t− 2M2

N
)2

+m2
h t (4s+ t)− 4m4

hM
2
N

RM =
t

4M2
N

[
−4t

((
M2

N − s
)2

+ s t
)

+ 2m2
h t
(
2s+ t− 2M2

N
)

−2m4
h

(
t− 2M2

N
)]
.

(4.18)

Setting F2 = 0, GE = GM = F1 we obtain the same expression for the
differential cross section as in Ref. [4], where only one FF is used.

Coherent scattering on scalar nuclei

In this situation, the final nucleus remains in its ground state. Now the
hadronic part of the EM process νi(k)+A(p)→ νh(k′)+A(p′), on a nucleus
without spin, is the same than for processes of electrons on scalar nuclei.
Because of this, the structure functions are the same given in Eq. (3.84).
Substituting them in Eq. (4.14), we obtain

dσ

dt
=

α (µitr)
2

4
(
s−M2

A

)2
t2
F 2(q2)RE , (4.19)

where RE is given by the same expression as in Eq. (4.18) but replacing the
nucleon mass, MN, by the nucleus one, MA.

We now discuss how the choice of the parametrization for the nuclear
FF influences the QE differential cross section. Keeping in mind that Mini-
BooNE and MicroBooNE detectors are composed mainly of 12C and 40Ar
respectively, in Fig. 4.3 the coherent QE cross section is displayed for these
two nuclei using the parametrizations of Eqs. (3.74) and (3.76). It can be
seen in the plots that the distribution is very narrow in Q2 = −t and quickly
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falls as Q2 increases. In the region of Q2 where the cross section is not neg-
ligible, even the oversimplified dipole parametrization of Eq. (3.74) gives
realistic results. This is because at such a low-Q2, the cross section is only
sensitive to the nucleus charge and mean squared radius squared, which is
similar for both parametrizations. On the other hand, the model indepen-
dent parametrization of Ref. [55] is more realistic and gives more information
about the charge distribution in the nucleus.

Figure 4.3: Differential cross section for coherent QE scattering process,
Eq. (4.2) on 12C (left) and 40Ar (right) as a function of Q2 = −q2 = −t for an
incoming neutrino energy of 700 MeV. The calculations are performed with
the dipole, Eq. 3.74, (blue) and Fourier-Bessel, Eq. 3.76, (red) parametriza-
tions of the nuclear FF.
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4.2.3 Incoherent scattering on nuclei

We now study the EM production of heavy neutrinos by incoherent scatter-
ing on nuclear targets, Fig. 4.4. We model this process within the impulse
approximation, assuming that the interaction with all individual nucleons is
only quasielastic. In this way we comply with the experimental scenario at
the MiniBooNE measurement, which excludes mesons in the final state,2

νl νh

A X

γ

Figure 4.4: Incoherent process of heavy neutrino electromagnetic produc-
tion.

In this calculation we follow the many body framework (MBF) of
Refs. [68, 69] for neutrino propagation in nuclear matter adapted to
(semi)inclusive processes on finite nuclei by means of the Local Density Ap-
proximation (LDA). The optical theorem relates the imaginary part of the
self-energy, Σr(k), of a neutrino, with four-momentum k to its decay rate in
matter, Γ,

Γ(k) = − 1

k0
Im Σ(k) , (4.20)

with k0 given in the matter rest frame. Since the decay width in this context
corresponds to the interaction probability per unit of time, the cross section
per unit volume can be cast as [69]

dσ = Γ(k; ρ)dt dS = − 1

k0
Im Σ(k; ρ)dt dS = − 1

|~k|
Im Σ(k; ρ)d3r . (4.21)

In the LDA, Σ (k; ρ) = Σ (k; ρ(~r)) and

σ = − 1

k0

∫
Im Σ (k; ρ(~r)) d3r . (4.22)

2Secondary pion production in the nucleus induced by knocked-out nucleons can be
neglected at the energies of the Booster neutrinos.
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We approximate both proton and neutron density profiles by the nuclear
charge density, Eq. (3.75) re-scaled so that the normalizations are

∫
d3rρp(r) = Z ;

∫
d3rρn(r) = A− Z , (4.23)

where Z is the number of protons and A the total number of nucleons in the
nucleus.

The relevant neutrino self-energy is shown in Fig. 4.5. The corresponding
expression of the self-energy for a neutrino with helicity r is

−iΣr (k; ρ) =
i(µitr)

2

4

∫
d4q

(2π)4ur(k)
σρη (1 + γ5)

(
/k′ +mh

)
σδµ (1− γ5)

k′2 −m2
h + iε

× ur(k)
qρqδ

(q2 + iε)2 (−iΠηµ(q)) ,

(4.24)
in terms of the in-medium photon self-energy Πηµ(q). Summing over the
neutrino helicities we get

Σ (k; ρ) =
∑

r

Σr (k; ρ) =
i(µitr)

2

4

∫
d4q

(2π)4

LµηΠ
ηµ(q)

(q2 + iε)2

1(
k′2 −m2

h + iε
) ,

(4.25)
with Lµη being the leptonic tensor introduced in Eq. 4.10.

νl(k)
µ νh(k

′) η
νl(k)

α β

Παβ(q)

γ(q) γ(q)

Figure 4.5: Diagram of the self-energy of a neutrino, with flavor l = e, µ, τ ,
in nuclear matter. Παβ denotes the (virtual) photon self-energy in nuclear
matter.

The imaginary part of Σ can be obtained applying Cutkosky’s rules for
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the cut shown in Fig. 4.5. Substituting

Σ(k; ρ)→ 2i Im Σ(k; ρ)Θ(k0) ,

Ξ(k′)→ 2i Im Ξ(k′)Θ(k′0) ,

Πµν(q)→ 2i Im Πµν(q)Θ(q0) ,

(4.26)

where Θ is the Heaviside function, and

Ξ(k′) =
1

k′2 −m2
h + iε

, (4.27)

is the denominator of the heavy neutrino propagator, one obtains

Im Σ(k; ρ) =
(µitr)

2

4

∫
d3k′

(2π)3

1

2 |k′0| q4
Θ(q0) Im {ΠµνLνµ} . (4.28)

Both tensors in Eq. (4.28) can be written as a sum of symmetric and
antisymmetric components,

Lµν = L(s)
µν + iL(a)

µν , (4.29)

Πµν = Πµν
(s) + iΠµν

(a) , (4.30)

where the leptonic components, L(s,a)
µν , are real but Πµν

(s,a) can be complex.
Using that Πνµ = Πµν

(s) − iΠµν
(a) and Eq. (4.30) one has that

Πµν
(s) =

Πµν + Πνµ

2
,

iΠµν
(a) =

Πµν −Πνµ

2
.

(4.31)

The contraction can then be written then as

Im {ΠµνLνµ} =
1

2
Lµν (Im {Πµν + Πνµ}+ i Re {Πµν −Πνµ}) . (4.32)

Substituting Eqs. (4.28, 4.32) in Eq. (4.22) we find

σ = −(µitr)
2

8k0

∫
d3r

(2π)3

d3k′

2|k′0|
1

q4
Lµν (Im {Πµν + Πνµ}

+i Re {Πµν −Πνµ}) Θ(q0) .

(4.33)
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On the other hand, recalling the general expression for the cross section,
Eq. (4.9), one identifies the symmetric and asymmetric components of the
hadron tensor

Wµν
(s) = − 1

2α

∫
d3r

(2π)2 Im {Πµν + Πνµ}Θ(q0) ,

Wµν
(a) = − 1

2α

∫
d3r

(2π)2 Re {Πµν −Πνµ}Θ(q0) .

(4.34)

Since we have an EM interaction, only the symmetric part of the hadronic
tensor contributes,

Wµν = Wµν
(s) = − 1

α

∫
d3r

(2π)2 Im
{

Πµν
(s)

}
Θ(q0) , (4.35)

and hence, for the cross section we obtain

σ = −(µitr)
2

4k0

∫
d3r

(2π)3

d3k′

2|k′0|
1

q4
Lµν Im

{
Πµν

(s)

}
Θ(q0) . (4.36)

Up to the lepton couplings and the specific structure of the leptonic tensor,
this expression is general and valid for EM lepton-nucleus scattering within
the present approach.

γ(q) γ(q)

N(p+ q)

N(p)

Figure 4.6: Diagram of the 1p1h contribution to the photon self-energy.

The photon self-energy can be obtained from a many body expansion,
see Refs. [68, 69]. As pointed out earlier, we are interested in the QE contri-
bution, which is given by one particle one hole (1p1h) nuclear excitations,
Fig. 4.6.

The calculation of the 1p1h photon self-energy involves the nucleon prop-
agator in the medium:

S (p; ρ) =
(
/p+MN

)
G (p; ρ) ,

G (p; ρ) =
1

p2 −M2
N + iε

+
2πi

2E(~p)
δ
(
p0 − E(~p)

)
n(~p) ,

(4.37)
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with E(~p) =
√
M2

N + ~p2; the occupation number n(~p) = Θ (kF − |~p|) de-
pends on the local Fermi momentum, kF , which can be written as a function
of the local density of nucleons,

k
(p,n)
F (r) =

[
3π2ρ(p,n)(r)

]1/3
. (4.38)

Therefore, for the photon self-energy in nuclear matter we have

−iΠµν = −e2

∫
d4p

(2π)4G (p; ρ)G (p+ q; ρ) 2Hµν , (4.39)

with the nucleon tensor given by Eqs. (3.57 - 3.59). Applying again Cut-
kosky’s rules, after some algebra, we obtain

−i Im Πµν(q) =− ie2

∫
d4p

(2π)2 2Hµνδ
(
p0 + q0 − E (~p+ ~q)

)

× 2n(~p)n (~p+ ~q)− n(~p)− n (~p+ ~q)

4p0 (p0 + q0 + E (~p+ ~q))
Θ(p0)Θ(p0 + q0) .

(4.40)
Substituting Eq. (4.40) in Eq. (4.35),

Wµν =

∫
d3r θ(q0)

∫
d3p

(2π)3
Hµνδ

(
p0 + q0 − E (~p+ ~q)

)

× n(p) (1− n (~p+ ~q))

p0 (p0 + q0 + E(~p+ ~q))
θ(p0) .

(4.41)

With this result we can calculate the cross section, Eq. (4.9) with the help of
the integrals listed in Appendix B. Equivalently, using Eqs. (3.62) and (3.63)
one can obtain structure functions W1,2 and plug them in Eq. (4.12) to
readily obtain the cross section.

We have verified that after taking the low density limit (kF → 0) and
for the initial nucleon at rest we recover the expressions previously reported
for QE scattering on free nucleons.

4.3 Weak production of heavy neutrinos

In the previous section we described how heavy neutrinos are produced
through EM mediated scattering of light neutrinos on nucleons and nuclei.
Besides this mechanism, NC interactions also contribute to create heavy neu-
trinos. Following Refs. [4, 65], we now consider a slight mixing between the
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heavy and the light neutrino. The interaction is then given by the SM La-
grangian, Eq. (2.2), but adding the mixing between light and heavy flavors,
Ulh, to the neutrino current,

jµ =
1

2
νlγ

µ (1− γ5)Ulhνh . (4.42)

We proceed in analogy to the previous section. In the first place, we
derive a general expression for the cross section in terms of hadronic structure
functions and afterwards consider the specific cases we are interested in. The
NC interaction term in the Lagrangian is given in Eq. (2.2), while for the Z
boson propagator we adopt the static approximation

Dµν =
−gµν + qµqν/M

2
Z

q2 −M2
Z

' gµν
M2
Z

. (4.43)

Hence, for the cross section we have

dσ

dk′0 dΩ
=
|Ulh|2G2

F

32π2

|~k′|
|~k|

LµνW
µν , (4.44)

which is the standard expression for NC interactions save for the presence
of the mixing factor. The leptonic tensor is given by

Lµν = Tr
{(
/k′ +mh

)
γµ (1− γ5) /kγν (1− γ5)

}

= 8
[
k′µkν + k′νkµ −

(
k′ · k

)
gµν + iεαµβνk

′αkβ
]
,

(4.45)

with the εαµβν definition given in Appendix A.1. This is the same expression
obtained for SM light neutrinos as the tensor does not depend explicitly
on the neutrino masses. Unlike the EM case the asymmetric part of the
hadronic tensor, given in Eq. (3.11) is present. The contraction of both
tensors gives

LµνW
µν = 8

{
2W1

(
k′ · k

)
+
W2

M2

[
2
(
k′ · p

)
(k · p)−

(
k′ · k

)
M2
]

+
W4

M2

[
2
(
k′ · q

)
(k · q)− q2

(
k′ · k

)]

+
2W5

M2

[(
k′ · p

)
(k · q) +

(
k′ · q

)
(k · p)−

(
k′ · k

)
(p · q)

]

− 2W3

4M2

[
εµνσρε

µναβk′σkρpαqβ
]

+W6

[
2iεµνσρk

′σkρpµqν
]}

.

(4.46)
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The term proportional to W6 vanishes because 2iεµνσρk
′σkρpµ (kν − k′ν) =

0. The expression for the cross section is, then,

dσ

dk′0 dt
=
|Ulh|2G2

F

32π (k0)2 8

{
W1

(
m2
h − t

)
+

W2

2M2

[
M2

(
M2
X − s

)
−m2

hM
2

+s
(
s+ t−M2

X

)]
+

W4

2M2
m2
h

(
m2
h − t

)
+
W5

M2
m2
h

(
M2 − s

)

+
W3

4M2

[
t
(
2s+ t−M2 −M2

X

)
−m2

h

(
M2 −M2

X + t
)]}

.

(4.47)
In the case where the initial and final hadronic masses are equal, we can
write Eq. 4.47 as

dσ

dk′0 dt
=
|Ulh|2G2

F

4π (k0)2

{
W1

(
m2
h − t

)

+
W2

2M2

[
M4 −M2

(
m2
h + 2s

)
+ s (s+ t)

]

+
W4

2M2
m2
h

(
m2
h − t

)
+
W5

M2
m2
h

(
M2 − s

)

+
W3

4M2
t
(
2s+ t− 2M2 −m2

h

)}
.

(4.48)

Using Eq. (4.13) we can study the angular distribution. In contrast to the
EM cross section, Eq. (4.12), in the NC case there is no enhancement in
the low-Q2 region because a heavy boson is exchanged. We will explore the
impact of this difference.

4.3.1 Quasielastic scattering

As in the EM case, we address now the heavy neutrino production for identi-
cal initial and final hadronic states: quasielastic scattering on nucleons and
scalar nuclei (coherent).

Quasielastic scattering on nucleons

The nucleon current is given in Eq. (3.30) and, unlike in the EM case, we
now need both the axial and the vector parts of the current,

〈N(p′)|Jµ|N(p)〉 = u(p′)
[
γµF1 +

i

2MN
σµνqνF2 − γµγ5FA

− qµ

MN
γ5FP

]
u(p) .

(4.49)
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which is then substituted in Eq. (3.59) to obtain the hadronic tensor:

Hµν =
1

2
Tr
[(
/p′ +MN

)(
γµF1 +

i

2MN
σµαqαF2 − γµγ5FA −

qµ

MN
γ5FP

)

×
(
/p+MN

)(
γνF1 −

i

2MN
σνβqβF2 − γνγ5FA +

qν

MN
γ5FP

)]
.

(4.50)
Comparing the latter with the general expression, Eq. (3.11), the structure
functions arise, in terms of the nucleon FF:

W1 =
1

2MNE′
δ
(
k0 + E − E′ − k′0

) [
4F 2

AM
2
N − q2 (F1 + F2)2 − q2F 2

A

]
,

W2 =
1

2MNE′
δ
(
k0 + E − E′ − k′0

) [
4M2

(
F 2

1 + F 2
A

)
− q2F 2

2

]
,

W3 =
1

2MNE′
δ
(
k0 + E − E′ − k′0

) [
8FAM

2 (F1 + F2)
]
,

W4 =
−1

2MNE′
δ
(
k0 + E − E′ − k′0

) [
M2

(
2F1F2 + F 2

2 + 4FAFP
)

+
q2

4

(
F 2

2 + 4F 2
P

)]
,

W5 =
1

2MNE′
δ
(
k0 + E − E′ − k′0

) [
2M2

(
F 2

1 + F 2
A

)
− q2

2
F 2

2

]
.

(4.51)
Substituting these structure functions in the cross section, Eq. (4.48) we find

dσ

dt
=
|Uµh|2 G2

F

16πM2 k2
0

[
F 2

1 R1 + F 2
2 R2 + F1F2R1 2 + F 2

ARA + F 2
PRP

+FAF1RA 1 + FAF2RA 2 + FAFP RAP ] ,

(4.52)
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where F1,2,A,P are the NC FFs described in Chapter 3, and

R1 =−m2
h(2s+ t) + 2(M2 − s)2 + 2st+ t2 ,

R2 =
1

8M2

[
−4m4

hM
2 + t2(m2

h + 8M2 − 4s)− t(m2
h + 2M2 − 2s)2

]
,

R1 2 =2t2 −m2
h(m2

h + t) ,

RA =m2
h(4M2 − 2s− t) + 2M4 − 4M2(s+ t) + 2s2 + 2st+ t2 ,

RP =
m2
h t (t−m2

h)

2M2
,

RA 1 =RA 2 = 2t(2s+ t−m2
h − 2M2) ,

RAP =2m2
h(t−m2

h) .
(4.53)

Notice that we have kept the pseudoscalar form factor FP because the mass
of the outgoing neutrino is not negligible.

Coherent scattering on scalar nuclei

The hadronic current in the case of scattering on a scalar nucleus does not
have axial component, Eq. (3.71). Hence, the same tensor of Eq. (3.83) is
also valid for NC interactions. By comparison with Eq. (3.11) and using
current conservation, qµJµ = 0, it is easy to find that

W1 =W3 = W6 = 0 ,

W2 =
1

4MAE′
δ
(
k0 + E − E′ − k′0

)
4MAF

2 ,

W4 =
1

4MAE′
δ
(
k0 + E − E′ − k′0

)
MAF

2 ,

W5 =
1

4MAE′
δ
(
k0 + E − E′ − k′0

)
2MAF

2 ,

(4.54)

in terms of the weak nuclear FF, described in Chapter 3. Substituting this
in Eq. (4.48) we obtain

dσ

dt
=
|Uµh|2 G2

F

32πM2 k2
0

F 2
[
m4
h −m2

h (4s+ t) + 4
((
M2
A − s

)2
+ st

)]
, (4.55)

where we have performed the integral over k′0, making use of the Dirac
delta. It is worth highlighting that, in the limit of mh → 0 and Uµh → 1
one recovers the standard expression for coherent elastic neutrino-nucleus
scattering (CEνNS) experimentally discovered a few years ago [70].
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4.3.2 Incoherent scattering on nuclei

Our theoretical approach to neutrino-nucleus incoherent scattering in the
case of NC interactions is analogous to the EM one covered in Sec.4.2. The
diagrammatic representation of Fig. 4.5 still holds if one only replaces the
exchanged photon by a Z boson. In this case, the neutrino self-energy is
given by

Σ (k; ρ) =
i |Uµh|2
2M2

Z

GF√
2

∫
d4q

(2π)4

LµηΠ
ηµ(q)(

k′2 −m2
h + iε

) , (4.56)

with
Lµη = Tr

[
/k γη(1− γ5) (/k

′
+mh)γµ(1− γ5)

]
. (4.57)

After applying the Cutkosky’s rules, Eq. (4.26), we obtain

Im Σ(k; ρ) =
|Uµh|2
2M2

Z

GF√
2

∫
d3k′

(2π)3

1

2 |k′0|Θ(q0) Im {ΠµνLνµ} . (4.58)

Then, using Eq. (4.21) and the LDA one gets for the cross section

σ = − |Uµh|
2

2k0M2
Z

GF√
2

∫
d3r

(2π)3

d3k′

4|k′0|Lµν (Im {Πµν + Πνµ}

+i Re {Πµν −Πνµ}) Θ(q0) .

(4.59)

Comparing this result with Eq. (4.48) we find

Wµν
(s) = − 1√

2M2
ZGF

∫
d3r

2π
Im {Πµν + Πνµ}Θ(q0) ,

Wµν
(a) = − 1√

2M2
ZGF

∫
d3r

2π
Re {Πµν −Πνµ}Θ(q0) ,

(4.60)

which can be also written in terms of the symmetric and antisymmetric parts
of the Z boson self-energy, Eq. (4.31), as

Wµν
(s,a) = ∓

√
2

M2
ZGF

∫
d3r

2π
Im
{

Πµν
(s,a)

}
Θ(q0) . (4.61)

The contribution to the Z-boson self-energy given by 1p1h nuclear excita-
tions, Fig. 4.6, with a Z boson instead of a photon, after applying Cutkosky’s
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rules, is given by

−i Im Πµν(q) =− 2iM2
Z

GF√
2

∫
d4p

(2π)2 2Hµνδ
(
p0 + q0 − E (~p+ ~q)

)

× 2n(~p)n (~p+ ~q)− n(~p)− n (~p+ ~q)

4p0 (p0 + q0 + E (~p+ ~q))
Θ(p0)Θ(p0 + q0) ,

(4.62)
with Hµν being the nucleon tensor of Eq. (4.50). In the same way, Eq. (4.41)
also holds now with the corresponding Hµν tensor of Eq. (4.50). Finally, to
calculate the cross section we substitute this hadronic tensor in Eq. (4.44).

As in the EM case, if we consider the low density limit we recover the
expressions for QE scattering on nucleons.

4.4 Interference of EM and NC processes

The scattering of light neutrinos on hadrons to produce heavy neutrinos can
be mediated by EM or NC interactions, as we described in the previous
sections. Once the two mechanisms involve the same initial and final states
interference is present:

|M|2 = |M(EM)|2 + |M(NC)|2 +
∑

2 Re
{
M(EM) ·

(
M(NC)

)∗}
. (4.63)

The interference term of the amplitude squared is, then,

M(int) ≡
∑

2 Re
{
M(EM) ·

(
M(NC)

)∗}
= i

eµitrUihGF√
2q2

L̃µνH̃
µν , (4.64)

with

iL̃µν = 8mh

[(
k · k′

)
gµν + kµ

(
kν − k′ν

)
− iεµναβk

αk′β
]
, (4.65)

and

H̃µν =
∑
〈X| JµEM |N〉 〈X| JνNC |N〉

∗ . (4.66)

Hence, the interference part of the cross section is

dσ̃

dk′0dΩ
=

eGF

16π2
√

2q2

|~k′|
k0

Re
{
µitrU

∗
ih (iLµν) W̃µν

}
. (4.67)

67



4.4. Interference of EM and NC processes

W̃µν shares the general form with the hadronic tensor of Eq. (3.11) in
terms of W̃1−6 structure functions Then

(
iL̃µν

)
W̃µν =8mh

{
W̃1

3

2

(
t−m2

h

)

+
W̃2

4M2

[
M4 +M2

(
2m2

h −M2
X − s− t

)
+ s

(
M2
X − t

)]

− W̃3 + 2W̃6

4M2

[
M2

(
m2
h + t

)
+m2

h

(
t−M2

X

)

+t
(
M2
X − 2s− t

)]}
.

(4.68)
From Eq. (4.66) it follows that qµHµν = 0 due to EM current conservation.
This condition gives relations between the structure functions, that simplifies
Eq. (4.68). Finally,

dσ̃

dk′0dt
=

√
2παGF

16πtk2
0

µitrU
∗
ih8mh

(
W̃1

3

2

(
t−m2

h

)

+
W̃2

8M2t

[
(t−mh)

(
M4 − 2M2

(
M2
X + t

)
+
(
M2
X − t

)2)]

−W̃3 + 2W̃6

4M2

[
M2

(
m2
h + t

)
+m2

h

(
t−M2

X

)
+ t
(
M2
X − 2s− t

)]
)
.

(4.69)
This interference term is proportional to the heavy neutrino mass
(∼ 50 MeV) and therefore small. Nevertheless, in the following we show
the explicit expressions for all the cases under consideration.

4.4.1 Quasielastic scattering

Quasielastic scattering on nucleons

In the interference case, we have a mixing of both EM and NC currents.
Therefore,

H̃µν =
1

2
Tr
[(
/p′ +MN

)(
γµFEM

1 +
i

2MN
σµαqαF

EM
2

)(
/p+MN

)

×
(
γνFNC

1 − i

2MN
σνβqβF

NC
2 − γνγ5F

NC
A +

qν

MN
γ5F

NC
P

)]
,

(4.70)

where FEM
i and FNC

i , i = 1, 2, A, P are the FFs for EM and NC interactions
respectively. Using this expression in Eq. (3.59) and comparing with the
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proper contractions, see Secs. 4.2 and 4.3, we find the structure functions,

W̃1 =
1

2MNE′
δ
(
k0 + E − E′ − k′0

) [
−t
(
FEM

1 + FEM
2

) (
FNC

1 + FNC
2

)]
,

W̃2 =
1

2MNE′
δ
(
k0 + E − E′ − k′0

) [
4FEM

1 FNC
1 M2

N − tFEM
2 FNC

2

]
,

W̃3 =
1

2MNE′
δ
(
k0 + E − E′ − k′0

) [
4M2

NF
NC
A

(
FEM

1 + FEM
2

)]
,

W̃6 =0 ,
(4.71)

that can be substituted in Eq.(4.69).

Coherent scattering on scalar nuclei

The hadronic current for a scalar nucleus is given in Eq. (3.71). Both EM
and NC have the same functional form, only we have to change the nuclear
FF by the appropriate one in each case. One gets that

H̃µν = 4M2
A F

EMFNC
(
pµ − (q · p)

q2
qµ
)(

pν − (q · p)
q2

qν
)
. (4.72)

Substituting this expression in Eq. (3.10) and comparing with Eq. (3.11) we
find

W̃1 =W̃3 = W̃6 = 0 ,

W̃2 =
1

4MAE′
δ
(
k0 + E − E′ − k′0

) [
4M2

AF
EMFNC] .

(4.73)

Using this result in the Eq. (4.69), we obtain the following simple expression

dσ̃

dk′0dt
=

√
2παGF

16πtk2
0MA

mh Re
{
µitrU

∗
ih

}
FEMFNC (4M2

A − t
) (
m2
h − t

)
. (4.74)

4.4.2 Incoherent scattering on nuclei

As for the purely EM and NC contribution to the cross section, Eq. (4.41)
also holds for the interference but replacing Hµν by H̃µν given by Eq. (4.70).
Hence, we can calculate the interference part of the incoherent cross section
by plugging the resulting tensor in Eq. (4.67).
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4.5 Heavy antineutrino production

We address now the case where a light antineutrino scatters on a hadron
producing a heavy antineutrino. In this case the only difference is in the
leptonic tensor, whose antisymmetric part changes sign. In the case of EM
interactions, this change does not have any effect, because the hadronic
tensor is symmetric. In contrast, for NC now the leptonic tensor, given in
Eq. 4.45, becomes

Lµν =
[
k′µkν + k′νkµ −

(
k′ · k

)
gµν − iεαµβνk

′αkβ
]
, (4.75)

so that the cross section given by Eq. (4.47), turns into

dσ

dk′0 dt
=
|Ulh|2G2

F

32π (k0)2 8

{
W1

(
m2
h − t

)
+

W2

2M2

[
M2

(
M2
X − s

)
−m2

hM
2

+s
(
s+ t−M2

X

)]
+

W4

2M2
m2
h

(
m2
h − t

)
+
W5

M2
m2
h

(
M2 − s

)

− W3

4M2

[
t
(
2s+ t−M2 −M2

X

)
−m2

h

(
M2 −M2

X + t
)]}

,

(4.76)
where the term proportional toW3 has changed sign. While the cross section
for coherent scattering on scalar nuclei remains the same, as its hadronic
tensor is symmetric, in the case of scattering on nucleons or incoherent
scattering on nuclei the change is present, leading to a reduction in the cross
section and different energy dependence.

Finally, the leptonic tensor of the interference between the EM and the
NC interaction also change the sign of the antisymmetric term,

iL̃µν = 8mh

[
−
(
k · k′

)
gµν + kµ

(
kν − k′ν

)
− iεµναβk

αk′β
]
. (4.77)

This difference affects the expression for the contribution to the inclusive
cross section, changing the signs of terms proportional to W1, W2 and W6,

dσ̃

dk′0dt
=

√
2παGF

16πtk2
0

Re

{
µitrU

∗
ih8mh

(
−W̃1

3

2

(
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h

)

− W̃2

8M2t

[
(t−mh)

(
M4 − 2M2

(
M2
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)
+
(
M2
X − t

)2)]

− W̃3 − 2W̃6

4M2

[
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(
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)
+m2

h

(
t−M2

X

)

+ t
(
M2
X − 2s− t

)])}
,

(4.78)

which corresponds to a global change of sign plus a change in the W3 term,
with respect to Eq. (4.69).
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4.6 Photon event distributions in a detector

The radiative decay of a heavy neutrino would produce a photon, which, in
a Cherenkov detector, could be misidentified as an electron. In this section
we describe how to obtain the number of such events. In first place we
study the radiative decay of the heavy neutrino. Afterwards, we calculate
the probability that the neutrino decays inside the detector. Finally, we
obtain the photon energy and angular distributions in the detector.

4.6.1 Radiative decay of heavy neutrinos

The general expression for a decay width is given in Eq. (C.2). For the
process νh → νl + γ it reads

dΓ =
1

2mh
(2π)4 δ(4)

(
k′ + q − k

) d3k′

(2π)3 2k′0

d3q

(2π)3 2q0

|M|2 . (4.79)

The amplitude of this process is

iM = i
µitr
2
u(k′)σµν (1 + γ5) qµu(k)εν(q) , (4.80)

and

|M|2 =

(
µitr
)2

4
Tr
{
/k′σµν (1 + γ5)

1

2
(1 + γ5/n) (/k +mh)σβα (1− γ5)

}

× qµqβgνα ,
(4.81)

where the projector, 1
2 (1 + γ5/n), has been introduced to take into account

the heavy neutrino polarization. If we define θγ as the angle of the photon
with respect to the heavy neutrino spin direction, we get

|M|2 =
(
µitr
)2
m4
h (1∓ cos θγ) , (4.82)

where the negative (positive) sign corresponds to the decay of left (right)-
handed heavy neutrino. Then, for the decay width

dΓ

d cos θγ
=

(
µitr
)2
m3
h

32π
(1∓ cos θγ) . (4.83)
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From this equation it is easy to see that, in the rest frame of the heavy neu-
trino, photons produced by left-handed heavy neutrinos are emitted prefer-
ably in the backward direction. On the contrary, right-handed heavy neu-
trinos emit photons predominantly in the forward direction.

With the same procedure we obtain for antineutrinos

dΓ

d cos θγ
(νh → νl + γ) =

(
µitr
)2
m3
h

32π
(1± cos θγ) . (4.84)

In this case, photons produced by left and right-handed antineutrinos are
emitted in the forward and backward directions, respectively.

Using the left and right chiral projectors, given in Appendix A.1, we can
write the EM interaction Lagrangian, Eq. 4.8 in terms of left and right fields

Leff = µitr [νhσµνPLνi + νiσµνPRνh] ∂µAν

= µitr [νh,Rσµννi,L + νi,Lσµννh,R] ∂µAν .
(4.85)

Although heavy neutrinos are massive particles, their mass is quite small
compared to the energies of the order of 1 GeV of accelerator neutrinos at
the Booster beam in Fermilab. This allows to approximate their helicity by
their chirality. From this Lagrangian it is apparent that the EM interaction
flips chirality. Hence, the heavy neutrinos (antineutrinos) produced by this
type of scattering would be right(left)-handed particles. If we do the same
exercise for the NC interaction, from Eqs. (2.2, 4.42) we can write

LI =− g

2 cos θW

(
1

2
νlγ

µ (1− γ5)Ulhνh

)
Zµ

= − g

2 cos θW
Ulh (νl,Lγ

µνh,L)Zµ .

(4.86)

Therefore, NC interactions preserve chirality so that heavy neutrinos or
antineutrinos produced by this interaction would have the same polarization
as the light ones.

4.6.2 Number of photons emitted inside the detector

In neutrino experiments, a flux of light neutrinos illuminates the detector.
The neutrino flux directed to the detector would produce the heavy neu-
trinos, which decay emitting photons, as described previously. We intend
to determine how many of these photons are generated inside the detector.
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For this purpose we first calculate the total number of heavy neutrinos pro-
duced in the detector, Nh. For a given flux, φ(k0), normalized to a number
of protons on target (POT),3 NPOT, directed to a detector with mass, MD,

Nh = NPOTMDNA

∑

i

fi

∫
dk0φ(k0)

×
∫
dk′0d cos dθhdϕh

dσ (k0, k
′
0, cos θh, ϕh)

dk′0d cos dθhdϕh
,

(4.87)

where the number of hadronic targets per unit of mass is given by the Avo-
gadro constant, NA, and the fraction, fi. This quantity is the ratio between
the specific target, i, and the molecular mass of the detector material. The
scattering angles of the heavy neutrino with respect to the light neutrino
are θh and ϕh.

After a heavy neutrino is produced, it can decay emitting photon. This
means that their number decreases exponentially with time:

Nh(t) = Nh,0e
−t/τ , (4.88)

where τ is the mean lifetime. In terms of the distance the heavy neutrino
can travel inside the detector, ∆l,

Nh(t) = Nh,0e
−∆l/λ , (4.89)

with λ = τv, a function of the mean lifetime and the velocity of the particle,
v, in the laboratory frame. The functional form of ∆l, which depends on
the specific geometry of each detector, is a function of the interaction point,
characterized by position vector ~r with angles θ and ϕ. Then, the probability
of a photon to be emitted inside the detector can be cast as

P
(
k′0, r, θ, ϕ, θh, ϕh

)
= 1− e−∆l/λ (4.90)

In terms of the mean lifetime in the rest frame of the heavy neutrino, τ0

λ =
τ0√

1− v2
v = τ0

k′0
mh

√
1− m2

h

(k′0)2 , (4.91)

In the νh rest frame the mean lifetime is given by its decay width,

τ0 =
1

Γ
, (4.92)

3The normalization comes from the primary proton beam in the accelerator. In next
sections some details about the neutrino flux are provided.
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derived above.
The number of photons inside the detector depends, then, on the number

of heavy neutrinos produced and the probability they emit photons,

Nγ =
MD

V
NPOTNA

∑

i

fi

∫
dk0φ(k0)

∫
dk′0d cos dθhdϕh

× dσ (k0, k
′
0, cos θh, ϕh)

dk′0d cos dθhdϕh

∫
d3rP

(
k′0, r, θ, ϕ, θh, ϕh

)
,

(4.93)

where V is the active volume in the detector. We define now a factor which
contains the information about the detector geometry,

A
(
k′0, r, θ, ϕ, θh, ϕh

)
≡ 1− 1

V

∫
d3re−∆l/λ , (4.94)

to rewrite Eq. (4.93) as

Nγ =MDNPOTNA

∑

i

fi

∫
dk0φ(k0)

∫
dk′0d cos dθhdϕh

× dσ (k0, k
′
0, cos θh, ϕh)

dk′0d cos dθhdϕh
A
(
k′0, r, θ, ϕ, θh, ϕh

)
.

(4.95)

4.6.3 Photon distributions

We now calculate the energy and angular distributions of the emitted pho-
tons inside the detector. They can be obtained from the information of the
heavy neutrino decay in its rest frame by performing a boost to the labora-
tory frame. From the decay width, Eq. (4.83), we can obtain the probability
of a photon to be emitted with an angle cos θCMγ , in the heavy neutrino rest
frame, with respect to the direction of its spin,

P
(
cos θCMγ

)
=

1

Γ

dΓ

d cos θCMγ
=

1∓ cos θCMγ
2

. (4.96)

Boost to laboratory frame

In the laboratory frame we choose the incoming light neutrino as the
z-direction. Then, the heavy neutrino spin direction, ~l, which we can ap-
proximated to the one of its momentum, is

~l = (sin θh cosϕh, sin θh sinϕh, cos θh) . (4.97)
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If we define the scattering plane choosing ϕh = 0,

~l = (sin θh, 0, cos θh) . (4.98)

In the laboratory frame, we can define a new coordinate system as a rotation
of the scattering one, OR. This system is a rotation by angle θh over the
y-axis, where ~l = (0, 0, 1), Fig. 4.7.

x

y

z

νh(~k′)

~l

θh

x′

y′

z′

Figure 4.7: Diagram of the reference systems in the laboratory frame. Axes
in black correspond to the scattering plane. The axes of the rotated coordi-
nate system, OR, are in blue.

The emitted photon has a momentum in any direction in the heavy
neutrino rest frame,

~pCMγ = |~pCMγ |
(
sin θCMγ cosϕCM

γ , sin θCMγ sinϕCM
γ , cos θCMγ

)
, (4.99)

where |~pCMγ | = ECM
γ = mh/2. The boost to the laboratory frame, in the ~l

direction, is a function of the heavy neutrino velocity, ~v. After the Lorentz
transformation, in the OR coordinate system, the energy and momentum of
the photon are

Elab
γ =

k′0
2

(
1 +
|~k′|
k′0

cos θCMγ

)
, (4.100)

(
~p labγ

)
‖ =

k′0
2

(
|~k′|
k′0

+ cos θCMγ

)
, (4.101)

where (~pγ)‖ denotes the momentum component in the ~l direction. The
momentum components orthogonal to this direction are not affected by the
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boost. Hence, in the laboratory frame with the coordinate system defined
by the scattering plane the momentum component in the z-direction is

(
~p labγ

)
z

= −mh

2
sin θCMγ cosϕCM

γ sin θh +
k′0
2

(
|~k′|
k′0

+ cos θCMγ

)
cos θh ,

(4.102)
and, then,

cos θlabγ =

(
~p labγ

)
z

Elab
γ

=

(
|~k′|+ k′0 cos θCMγ

)
cos θh −mh sin θCMγ cosϕCM

γ sin θh

k′0 + |~k′| cos θCMγ
.

(4.103)

Energy and angular distributions

With the information about the energy and momentum of photons in labo-
ratory frame, we can write the differential number of photons as

dNγ

dEγ d cos θγ
=

∫
dk0

dNγ

dk0

∫
d cos θCMγ dϕCM

γ

1∓ cos θCMγ
2

1

2π

× δ
(
Eγ − Elab

γ

)
δ
(
cos θγ − cos θlabγ

)
,

(4.104)

where Elab
γ and cos θlabγ are given in Eqs. (4.100) and (4.103) respectively.

The expression for dNγ
dk0

is given in Eq. (4.95).
To obtain the energy distribution of photons we use the relation of

Eq. (4.100) to integrate the energy δ-function in Eq. (4.104) getting

dNγ

dEγ
=MDNPOTNA

∑

i

fi

∫
dk0φ(k0)

∫
dk′0d cos dθhdϕh

× dσ (k0, k
′
0, cos θh, ϕh)

dk′0d cos dθhdϕh
A
(
k′0, r, θ, ϕ, θh, ϕh

)

×

√
(k′0)2 −m2

h − 2Eγ + k′0

(k′0)2 −m2
h

.

(4.105)

To calculate the angular distribution of photons we have to invert
Eq. (4.103), and use it to integrate over cos θCMγ . Squaring this equation
introduces spurious solutions that are non-physical. To avoid this problem,
we can find some bounds from the limit cases. The angular δ-function in
Eq. (4.104) gives the restriction

cos θγ − cos θlabγ = 0 . (4.106)
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From this condition we find that if cosϕCM
γ = 0,

cos θCMγ = ζ , (4.107)

where, we have defined

ζ ≡ k′0 cos θγ − |~k′| cos θh

k′0 cos θh − |~k′| cos θγ
. (4.108)

In the case of cosϕCM
γ > 0, we can distinguish two situations:

k′0 cos θh − |~k′| cos θγ ≥ 0 → cos θCMγ ≥ ζ , (4.109)

k′0 cos θh − |~k′| cos θγ ≤ 0 → cos θCMγ ≤ ζ . (4.110)

And for cosϕCM
γ < 0, we have:

k′0 cos θh − |~k′| cos θγ ≥ 0 → cos θCMγ ≤ ζ , (4.111)

k′0 cos θh − |~k′| cos θγ ≤ 0 → cos θCMγ ≥ ζ . (4.112)

Finally, for the angular distribution of photons we use Eq. (4.103) to
integrate the angular δ-function and get

dNγ

d cos θγ
= MDNPOTNA

∑

i

fi

∫
dk0φ(k0)

∫
dk′0d cos dθhdϕh

× dσ (k0, k
′
0, cos θh, ϕh)

dk′0d cos dθhdϕh
A
(
k′0, r, θ, ϕ, θh, ϕh

)

×
∫
dϕCM

γ

1∓ cos θ
CM,(0)
γ

4π

×

∣∣∣∣∣∣∣
k′0 + |~k′| cos θ

CM,(0)
γ

k′0 cos θh +mh cosϕCM
γ sin θh

cos θ
CM,(0)
γ

sin θ
CM,(0)
γ

− |~k′| cos θγ

∣∣∣∣∣∣∣
,

(4.113)
where

cos θCM,(0)
γ =

(
k′0 cos θh − |~k′| cos θγ

)(
k′0 cos θγ − |~k′| cos θh

)
+ ∆±

(
k′0 cos θh − |~k′| cos θγ

)2
+m2

h sin2 θh cos2 ϕCM
γ

,

(4.114)
with

∆± ≡ ±m2
h

∣∣sin θh cosϕCM
γ

∣∣
√

cos2 θh − cos2 θγ + sin2 θh cos2 ϕCM
γ . (4.115)

The sign of ∆± depends on each of the cases given in Eqs. (4.107 - 4.112).
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4.7 Event estimation for MiniBooNE

4.7.1 MiniBooNE

The MiniBooNE experiment [71] at Fermilab, was designed to detect elec-
tron (anti)neutrinos in a muon (anti)neutrino beam with the goal of test-
ing an earlier result by the LSND experiment, that could be attributed to
short baseline neutrino oscillations [72]. MiniBooNE is a 12.2 m diameter
Cherenkov spherical detector filled with 806 tons of mineral oil, CH2. Two
separate regions can be distinguished: the inner one with 1280 photomulti-
plier tubes (PMTs) of 8 inches each, which collects the light of the processes
inside the detector, and the outer region, with 240 PMTs, that is the veto
zone. This last one, is used to identify cosmic rays.

The neutrino flux directed to MiniBooNE is produced from a proton
8 GeV beam, generated in the Fermi National Accelerator Laboratory (FNAL),
which is 149 m diameter synchrotron. The proton beam is directed to a
beryllium target, where the secondary meson beam is produced. Using mag-
netic fields, one of the components of the meson beam can be selected to
obtain a beam of predominantly neutrinos or antineutrinos. For example, by
keeping the π+ muonic neutrinos as favored by their decay, π+ → µ+ + νµ..
The distance between the beryllium target and the detector is 541 m length.
In Fig. 4.8 is schematically represented. MiniBooNE collected data for
6.46× 1020 POT, which is the number of protons directed to the beryllium
target, in neutrino mode. In antineutrino mode it took data for 11.27×1020

POT4 The largest, νµ and ν̄µ components of the fluxes at the MiniBooNE

4Data has been further collected collected in antineutrino mode [57, 58] confirming the
original results.

Figure 4.8: The MiniBooNE experiment [71].
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detector in both neutrino and antineutrino modes, are shown in Fig. 4.9.
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(a) Flux in neutrino mode.
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(b) Flux in antineutrino mode.

Figure 4.9: Fluxes used in MiniBooNE experiment [73].

Another critical and often forgotten factor to consider is the detection
efficiency. As there are technical limitations for any machine, not every
event in the detector produces a signal. Figure 4.10 shows a plot of the
MiniBooNE detector efficiency. It can be seen that it is rather low, being
at its maximum about 14%, and strongly energy dependent. This efficiency
should be taken into account in order to predict a signal in the detector.

Figure 4.10: MiniBooNE detection efficiency as a function of the produced
electron-like particle energy [66].

4.7.2 Heavy neutrino propagation inside MiniBooNE

In Sec. 4.6 it was described how we compute the photon energy and angular
distributions of photons in a detector. It was pointed out that only the
photons produced inside the detector would produce a signal, Fig. 4.11.
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νµ νh

νµ νh

Detector

γ

νi

γ
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Figure 4.11: Heavy neutrinos decaying inside and outside the detector. Only
the photon produced in the detector would produce a signal.

The path length that the heavy neutrino can travel inside the detector, ∆l,
is contained in the A factor, Eq. (4.94) in Eqs. (4.95, 4.105 and 4.113). In
the case of MiniBooNE we have an spherical geometry, where we choose the
center of coordinates to be in the sphere’s geometrical center, Fig. 4.12. We
take the z-axis parallel to the incoming light neutrino momentum. Each of
the heavy neutrinos can be produced at any point inside the detector, and
the scattering plane would have a different orientation in each case. the path
length can be written as

∆l =
√
R2 − r2 (1− α2)− rα . (4.116)

where R is the radius of the detector, and

α = sin θh sin θ cosϕh + cos θh cos θ . (4.117)

4.7.3 Results

Our model includes the production of heavy neutrinos through EM and NC
processes, followed by their EM decay, leading to photons. It is determined
by four parameters: the heavy neutrino mass, mh; the mixing angle between
the light and heavy neutrino, Ulh; the heavy neutrino mean lifetime, τh,
which determines the magnetic dipole moment through Eqs. (4.83, 4.92);
and the branching ratio of the νh decay to a light neutrino of flavor i, which
depends on the corresponding transition magnetic moments,

BRi =

(
µitr
)2

∑
i

(
µitr
)2 . (4.118)
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Figure 4.12: Diagram of the geometry at the MiniBooNE detector. The
incoming neutrino momentum is parallel to the z-axis. The angles of the
position vector of the interaction point are shown in red. The scattering
angles of the produced heavy neutrino appear in blue.

The choice for these parameters adopted in Ref. [4] is

mh = 50MeV ,

|Uµh|2 = 3× 10−3 ,

τh = 5× 10−9 s ,

BRµ = 10−2 .

(4.119)

The main difference between the EM and NC types of νh production
is how coherent and incoherent scattering contribute in each case. Our
results for the integrated cross sections on protons and 12C, obtained with
the parameters of Eq. (4.119), are given in Fig. 4.13. The EM cross section
on 12C is dominated by the coherent mechanism while the incoherent one is
suppressed by Pauli blocking at low q2, where it is enhanced by the photon
propagator Eq. (4.9). On the contrary, the incoherent reaction is the largest
contribution to the weak cross section. Similar features are observed for
40Ar target and also for antineutrino beams.

The resulting event distributions at the MiniBooNE detector, ignoring
the detection efficiency, are shown in Fig. 4.14. The contribution from the
two protons in the CH2 target, coherent and incoherent scattering on 12C
are separately shown. We observe in this plot that the calculated number
of events is much higher than the measured excess of events, Ref. [66].
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Figure 4.13: Integrated cross sections for νh production in νµ-nucleus scat-
tering by EM (left) and weak (right) interactions as a function of the incident
neutrino energy.
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Figure 4.14: Photon events from radiative decay of νh, νh at the MiniBooNE
detector in neutrino mode (top) and antineutrino mode (bottom). Theoret-
ical results, obtained with the νh properties of Ref. [4], Eq. (4.119), without
taking detector efficiency into account, are compared to the MiniBooNE
excess, Ref. [66].
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Being the detector efficiency energy dependent and low, Fig. 4.10, its impact
on the number of events is significant. The results we obtained when the
efficiency is incorporated to the calculation are shown in Fig. 4.15. Although
these results are much closer than the previous ones to the MiniBooNE
excess and the agreement is good in ν-mode, discrepancies clearly show up.
The number of low energy events is underestimated in ν-mode while the
predominantly EM coherent contribution is strongly forward peaked.This
leads to a very narrow angular distribution not observed in the experiment.
This result is in line with the findings of Ref.[74]. The combined χ2/DoF =
127/54 is too high to consider this scenario, with the parameter values chosen
in Ref. [4], as a valid explanation of the MiniBooNE excess5.
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Figure 4.15: Photon events from radiative decay of νh, νh at the MiniBooNE
detector in neutrino mode (top) and antineutrino mode (bottom). Theoreti-
cal results, obtained with the νh properties of Ref. [4], taking into account the
efficiency of the detector, are compared to the MiniBooNE excess, Ref. [66].

Fitted parameters

In Ref. [5] the author estimates the limits for the model parameters that are
compatible with the LSND anomaly and other constrains. For the heavy

5Although we are ignoring correlations in the data set.
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neutrino mass there is a lower bound of 40 MeV from the KArlsruhe Ruther-
ford Medium Energy Neutrino experiment (KARMEN) experiment, which
did not observed the same anomaly as MiniBooNE. As the flux in this ex-
periment is lower than 40 MeV, a heavy neutrino with a mass lower than
this bound would be observed in this experiment. On the other hand, for a
νh mass higher than 80 MeV the production in LSND is suppressed by the
phase space factor, resulting in an upper bound for this mass. Furthermore,
for the mentioned range of masses, the estimate for the mixing is in the
range [5]

10−3 . |Uµh|2 . 10−2 . (4.120)

The lifetime is restricted to τh . 10−8, to be compatible with the LSND
results [5].

We have performed a fit of the signal predicted by the model to the
MiniBooNE excess of events, respecting the given bounds. After the mini-
mization, we obtain a χ2/DoF = 102/54, corresponding to the values

mh = 70+10
−30 MeV ,

|Uµh|2 = 10−2 ,

τh = 2.5+0.6
−1.2 × 10−9 s ,

BRµ = 9+31
−9 × 10−4 .

(4.121)

Although we found a minimum value for the mass, changing this parameter
in the given range does not seem to have any significant effect in the results.
As consequence, the error covers the entire allowed range. This is illustrated
in Fig. 4.16, where the distributions in neutrino mode are shown for three
different values covering the allowed range while fixing the rest of the pa-
rameters to the best-fit values. Similar results are observed in antineutrino
mode. In the light of these results, from now on we treat mh as a constant
parameter, not propagating its uncertainty. We also notice that the best
agreement of the theoretical distribution to the experimental data occurs
when the mixing |Uµh|2 value is set to its upper limit. The minimization
process clearly reveals that this limit prevents from obtaining a more satis-
factory description of the data. For this reason, we have fixed this parameter
to its maximum allowed value, without error bars. Besides, the quality of
the data, with large error bars is reflected in the large uncertainty in the
determination of the remaining parameters.

The MiniBooNE excess of events is now better described, particularly
the angular distributions, as can be seen in Fig. 4.18. The better agreement
is obtained at the price of reducing the EM strength, while increasing the NC
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Figure 4.16: Photon events from radiative decay of νh, νh at the MiniBooNE
detector in neutrino mode. The results are obtained for different values of
the νh mass, with the fitted values of Eq. (4.121) for the rest of parameters.

one by setting |Uµh|2 to its maximal allowed value, as mentioned above. This
can be clearly perceived from Fig. 4.18, where the different contributions are
explicitly given, taking the central values for all the parameters.

Fitted parameters with radiative muon capture bounds

On the other hand, there are other bounds for the mixing, Uµh. In particular,
according to the study of Ref. [6] a more restrictive constraint than the
one in Eq. (4.120) emerges from radiative muon capture: µ− p → n ν γ,
experimentally investigated at TRIUMF. The mixing upper bound from
Ref. [6] is a decreasing function of mh in the range under consideration (see
Fig. 4 of Ref. [6]). Once the fit results are largely independent on the mass
and improve for larger values of Uµh, we have fixed the mass to its allowed
minimum of 40 MeV in order to have a larger upper bound in the mixing.
The fit with this new restriction gives a value of χ2/DoF = 104/54, only
slightly above the previous one, for the set of parameters:

mh = 40MeV ,

|Uµh|2 = 8.4× 10−3 ,

τh = 9.1+1.1
−1.5 × 10−10 s ,

BRµ = 1.7+2.4
−1.4 × 10−5 .

(4.122)

Still, these results describe better the MiniBooNE excess than the calcula-
tions done with the parameters of Ref. [4]. The different contributions to
heavy neutrino production, taking the central value for the parameters, are
plotted in Fig. 4.20. It can be noticed that the EM drive coherent mechanism
is further reduced in comparison to the previous fits.
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Figure 4.17: Photon events from radiative decay of νh, νh at the MiniBooNE
detector in neutrino mode (top) and antineutrino mode (bottom). Theoret-
ical results, obtained with the fitted νh properties, Eq. (4.121), taking into
account the efficiency of the detector, are compared to the MiniBooNE ex-
cess, Ref. [66].
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Figure 4.18: Photon events from radiative decay of νh, νh at the MiniBooNE
detector in neutrino mode (top) and antineutrino mode (bottom). Theoreti-
cal results, obtained with the fitted νh properties, Eq. (4.121), are compared
to the MiniBooNE excess, Ref. [66]. The contributions from different νh
production mechanisms are shown.
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Figure 4.19: Photon events from radiative decay of νh, νh at the MiniBooNE
detector in neutrino mode (top) and antineutrino mode (bottom). The the-
oretical results take into account the radiative muon capture restrictions of
Ref. [6], Eq. (4.122).
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Figure 4.20: Photon events from radiative decay of νh, νh at the Mini-
BooNE detector in neutrino mode (top) and antineutrino mode (bottom).
The theoretical results take into account radiative muon capture restrictions,
Eq. (4.122). The contributions of different νh production mechanisms are
shown.
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The present study shows that the hypothesis of Refs. [4, 65] cannot
satisfactorily explain the MiniBooNE anomaly. In particular, we have shown
that there are clear difficulties to simultaneously describe the energy and
the angular distributions of the electron-like events. Nevertheless, based
on MiniBooNE data, radiative decay of heavy neutrinos cannot be fully
excluded at least as a partial source of the excess. It is worth studying it
further in the new generation of experiments at the Booster Neutrino Beam,
which should be able to distinguish photons from electrons. In the next
sections we show the signal predictions at MicroBooNE, SBND and Icarus
detectors.
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4.8 Event estimation for SBN

The SBN program at Fermilab consists of three collaborations in a large
project dedicated to the experimental study of neutrino oscillations. This
project was designed to address the possible existence of 1 eV mass-scale
sterile neutrinos, motivated by the LSND and MiniBooNE anomalies. The
idea is to use three different detectors, located in the same beam line at
different lengths, to perform sensitive searches for νe appearance and νµ
disappearance in the Booster Neutrino Beam, see Fig. 4.21. The detectors

Figure 4.21: SBN program outline [75].

of this program are three liquid argon time projection chambers (LArTPCs),
named as SBND, MicroBooNE and ICARUS. Additional details about this
program can be found in its proposal, Ref. [75].

4.8.1 Heavy neutrino propagation inside the detectors

As done in the previous section for MiniBooNE, in order to obtain the num-
ber of photon events, we need the path length that the heavy neutrino travels
inside the detector as a function of the production point. In this case, all
three detectors, SBND, MicroBooNE and ICARUS have a square cuboid
parallelepiped geometry. The only differences we consider between them are
their dimension of length, a, width, b, and height, c. In Fig. 4.22 a detector
with this geometry is diagrammatically depicted. We define ~r0 = (x0, y0, z0),
as the position where the heavy neutrino is produced. Its momentum direc-
tion is given by Eq. (4.97). Then, the equation of the line which defines the
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x
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Figure 4.22: Diagram of a parallelepiped geometry detector. The light neu-
trino momentum is parallel to the z-axis of the detector.

trajectory of the particle can be cast as

~r =





x0 + ∆l sin θh cosϕh
y0 + ∆l sin θh sinϕh

z0 + ∆l cos θh

. (4.123)

As we integrate over ~r, we obtain the value of ∆l at each point, given the νh
scattering angles, in order to calculate the probability that it decays inside
the detector; ∆l to obtain the photon distributions as previously described.

4.8.2 MicroBooNE

MicroBooNE was the first of the SBN detectors to be operative. One of its
advantages over MiniBooNE is that it is able to distinguish electron signals
from the photon ones, which will help to establish the origin of the Mini-
BooNE anomaly. For this reason, it was constructed with the approximate
same L/E than MiniBooNE, trying to recreate its conditions. This detector
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is placed at 470 m of the beryllium target. MicroBooNE is a cylindrical tank
which contains 170 tons of liquid argon, Fig. 4.23. Inside the tank there is
a 2.3 m × 2.6 m × 10.4 m time projection chamber (TPC).

Figure 4.23: Transverse section of MicroBooNE detector [76].

As in the case of MiniBooNE, the neutrino flux for the SBN is generated
by the FNAL synchrotron, using the same technology. The predicted flux of
MicroBooNE, in neutrino mode, is shown in Fig. 4.24. This experiment has
a run plan of 6.6× 1020 POT. In this case we do not have any information
about the flux in antineutrino mode, neither about its detection efficiency.
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Figure 4.24: Predicted flux for MicroBooNE experiment, provided by [77].

In the case of MicroBooNE, and the rest of the SBN detectors, we have
studied the neutrino interactions with the scalar nucleus 40Ar. In Fig. 4.25
we show our results for the predicted number of events in the MicroBooNE
detector. This plot has been produced using the parameters of Ref. [4],
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Eq. (4.119). For the sake of the estimate, we have assumed that the flux in
antineutrino mode corresponds to the one in neutrino one.
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Figure 4.25: Prediction of photon events from radiative decay of νh, νh at
the MicroBooNE detector in neutrino mode (top) and antineutrino mode
(bottom). Theoretical results obtained with the parameters of Ref. [4].

In this case, as for MiniBooNE, with the parameters of Ref. [4], the
coherent EM contribution clearly dominates the distributions. Because of
this, the angular distribution is very forward peaked. Instead, if we use our
fitted parameters, Eq. (4.121), we obtain a wider distribution, Fig. 4.26. The
individual contribution of the different channels is shown in Fig.4.27.

The results for the fit done with the restrictions imposed by Ref. [6] are
shown in Fig. 4.28. The contributions from different mechanisms are given
in Fig.4.29.

These distributions can be compared with predictions made for other
mechanisms of photon production in MicroBooNE. For example, in Ref. [3]
the photon emission from the process ∆(1232)→ nγ was calculated. Their
results are shown in Fig. 4.30. The number of events and the shape of
these distributions are different than our predictions, for any combination
of parameters. This would make possible to distinguish the origin of the
photon signal in the detector.
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Figure 4.26: Prediction of photon events from radiative decay of νh, νh at the
MicroBooNE detector in neutrino mode (top) and antineutrino mode (bot-
tom). Theoretical results obtained with the fitted parameters of Eq. (4.121).
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Figure 4.27: Prediction of photon events from radiative decay of νh, νh at the
MicroBooNE detector in neutrino mode (top) and antineutrino mode (bot-
tom). Theoretical results obtained with the fitted parameters of Eq. (4.121).
The contributions from different νh production mechanisms are shown.
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Figure 4.28: Photon events prediction from radiative decay of νh, νh at
the MicroBooNE detector in neutrino mode (top) and antineutrino mode
(bottom). Theoretical results obtained using the muon capture restrictions
of Ref. [6], Eq. (4.122).
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Figure 4.29: prediction of photon events from radiative decay of νh, νh at
the MicroBooNE detector in neutrino mode (top) and antineutrino mode
(bottom). Theoretical results obtained using the muon capture restrictions
of Ref. [6], Eq. (4.122).

Figure 4.30: Prediction for SM predominant photon emission from
∆(1232)→ nγ, Ref. [3].
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4.8.3 SBND

SBND is the closest detector to the source of the beam of the SBN program.
In this case, the dimensions of the TPC are 5 m × 4 m × 4 m, containing
an active mass of 112 tons. With the same run plan than MicroBooNE, the
flux is plotted in Fig. 4.31.
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Figure 4.31: Predicted flux for SBND experiment, provided by [77].

Our results with the Ref. [4] parameters are shown if Fig. 4.32. Like in
the previous cases we obtain a narrow angular distribution peaked in the
forward direction. The angular distribution with the fitted parameters of
Eq. (4.121), Fig. 4.33, is wider, as expected. In Fig.4.34 the contribution
from all mechanisms is shown.

The predictions for the more restrictive fit of Eq. (4.122) is given in
Fig. 4.35, while the contribution of each νh production mechanism is dis-
played in Fig. 4.36.

As one would have easily guessed the shapes of the event distributions
and relative contributions from different reaction mechanisms are essentially
the same as in MicroBooNE. The distinctive feature apparent in all plots is
the very large statistics achievable with this detector, which shall be par-
ticularly helpful to study processes with small cross sections as the present
one.
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Figure 4.32: Prediction of photon events from radiative decay of νh, νh at
the SBND detector in neutrino mode (top) and antineutrino mode (bottom).
Theoretical results obtained with the parameters of Ref. [4].
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Figure 4.33: Prediction of photon events from radiative decay of νh, νh at
the SBND detector in neutrino mode (top) and antineutrino mode (bottom).
Theoretical results obtained with the fitted parameters of Eq. (4.121).
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Figure 4.34: Photon events prediction from radiative decay of νh, νh at the
SBND detector in neutrino mode (top) and antineutrino mode (bottom).
Theoretical results obtained with the fitted parameters of Eq. (4.121). The
contributions of different νh production mechanism are shown.
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Figure 4.35: Prediction of photon events prediction from radiative decay of
νh, νh at the SBND detector in neutrino mode (top) and antineutrino mode
(bottom). Theoretical results obtained using the muon capture restrictions
of Ref. [6], Eq. (4.122).

4.8.4 ICARUS

The farthest to the beam source and largest detector in the SBN program
is ICARUS. It has a 3 m × 2 m × 18 m TPC, with an active mass of 238
tons. The neutrino flux at its position is plotted in Fig. 4.37.

In the same way as in the previous cases, the predicted distributions
with the Ref. [4] parameters, Fig. 4.38, exhibit a forward peaked angular
distribution. For the fitted parameters of Eq. (4.121) we found a wider dis-
tribution, as before, ig. 4.39. The different contributions to the distributions
are shown in Fig.4.40.

Finally, the distributions using the more restrictive fit of Eq. (4.122)
are plotted in Fig. 4.41. Fig. 4.42 shows the contribution of each different
channel.

102



4. Production and radiative decay of heavy neutrinos at the Booster
Neutrino Beam

Total

Coherent on
40

Ar

Incoherent on
40

Ar

0.0 0.5 1.0 1.5

0

500

1000

1500

2000

2500

3000

0.0 0.5 1.0 1.5

0

500

1000

1500

2000

2500

3000

Eγ(GeV)

d
N

d
E
γ

[E
v
e

n
ts
/(

0
.1

G
e

V
)]

Total

Coherent on
40

Ar

Incoherent on
40

Ar

-1.0 -0.5 0.0 0.5 1.0

0

1000

2000

3000

4000

-1.0 -0.5 0.0 0.5 1.0

0

1000

2000

3000

4000

Cos(θγ)

d
N

d
C

o
s
(θ

γ
)
(E

v
e

n
ts
/0

.2
)

Total

Coherent on
40

Ar

Incoherent on
40

Ar

0.0 0.5 1.0 1.5

0

200

400

600

800

1000

1200

0.0 0.5 1.0 1.5

0

200

400

600

800

1000

1200

Eγ(GeV)

d
N

d
E
γ

[E
v
e

n
ts
/(

0
.1

G
e

V
)]

Total

Coherent on
40

Ar

Incoherent on
40

Ar

-1.0 -0.5 0.0 0.5 1.0

0

500

1000

1500

2000

2500

3000

-1.0 -0.5 0.0 0.5 1.0

0

500

1000

1500

2000

2500

3000

Cos(θγ)

d
N

d
C

o
s
(θ

γ
)
(E

v
e

n
ts
/0

.2
)

Figure 4.36: Prediction of photon events from radiative decay of νh, νh at
the SBND detector in neutrino mode (top) and antineutrino mode (bottom).
Theoretical results obtained using the muon capture restrictions of Ref. [6],
Eq. (4.122). The contributions of different νh production mechanism are
shown.
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Figure 4.37: Predicted flux for ICARUS experiment, provided by [77].
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Figure 4.38: Prediction of photon events from radiative decay of νh, νh at the
ICARUS detector in neutrino mode (top) and antineutrino mode (bottom).
Theoretical results obtained with the parameters of Ref. [4].
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Figure 4.39: Photon events prediction from radiative decay of νh, νh at the
ICARUS detector in neutrino mode (top) and antineutrino mode (bottom).
Theoretical results obtained with the fitted parameters of Eq. (4.121).
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Figure 4.40: Prediction of photon events from radiative decay of νh, νh at the
ICARUS detector in neutrino mode (top) and antineutrino mode (bottom).
Theoretical results obtained with the fitted parameters of Eq. (4.121). The
contributions of the different νh production mechanisms are shown.
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Figure 4.41: Prediction of photon events prediction from radiative decay of
νh, νh at the ICARUS detector in neutrino mode (top) and antineutrino
mode (bottom). Theoretical results obtained using the muon capture re-
strictions of Ref. [6], Eq. (4.122).
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Figure 4.42: Prediction of photon events prediction from radiative decay
of νh, νh at the ICARUS detector in neutrino mode (top) and antineu-
trino mode (bottom). Theoretical results obtained using the muon capture
restrictions of Ref. [6], Eq. (4.122). The contributions of the different νh
production mechanisms are shown.
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4.9 Summary

The answer to the question about the origin of the neutrino excess at Mini-
BooNE is not yet clear. Different possibilities range from bad modeling of
backgrounds to Beyond Standard Model (BSM) theories. Among all these
hypotheses, in this work we have studied an idea that implies the exis-
tence of a new family of heavy sterile neutrinos. In addition, it incorporates
the electromagnetic interaction for neutrinos, induced by a magnetic dipole
transition moment.

In order to determine the number of events at MiniBooNE, we have
calculated the cross section of the processes given by this model with heavy
neutrinos. We have done it for their production through the interaction of
light neutrinos with the components of the detectors, including coherent and
incoherent reactions on nuclear targets. We have taken into account both the
EM and the weak production mediated by NC of these heavy neutrinos. We
considered then the decay of a heavy neutrino inside the detector, taking into
account its geometry. With these expressions, using the flux and detection
efficiency in the MiniBooNE detector as input, we were able to calculate
the corresponding energy and angular theoretical distributions of photons.
We compared these distributions to the excess, showing that this model,
as presented in Ref. [4], is not able to provide a good description of the
data. We have changed the values of the model parameters, minimizing
them in a fit to the experimental data, respecting the constrains given in
Ref. [5]. The results of the model with these fitted parameters provide
a much better description of the data but they are not yet able to fully
explain the MiniBooNE excess. In particular, the model is hardly able to
describe the energy and angular distributions of the electron-like events.
When we consider the more restrictive limits of Ref. [6] from radiative muon
capture the description slightly worsen but is still better than the one with
the original set of parameters of Ref. [4]. All in all, at the moment this model
can not be fully discarded as a sizable partial contribution to the excess.

The SBN is the natural successor of the MiniBooNE experiment. The
three detectors of the program, with a different detection technology, are able
to distinguish photons from electrons. This will allow the scrutiny of this
model in the future. Following the same procedure than for MiniBooNE, we
have made predictions of the photon distributions for all the three detectors.
We have seen that the comparison of the number of events and the shape
of the distributions with the standard single-photon production would allow
to distinguish the heavy neutrino radiative decay mechanism.
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Chapter 5

Extraction of the nucleon axial
form factor from neutrino
scattering data

5.1 Introduction

In this chapter, based on the work done in Ref. [78], we resume the discussion
about the axial FF, introduced in Chapter 3. This quantity is a source of un-
certainty in the neutrino scattering amplitudes and the corresponding cross
sections. As previously mentioned, the dipole parametrization, Eq. 3.54, is
commonly used in the literature. This parametrization has been utilized to
describe also the electric and magnetic FFs of the nucleon. In the Breit frame
and for small momenta, this Q2 dependence implies that the axial-charge
distribution is an exponentially decreasing function of the radial coordinate.
This can be seen performing a Fourier transform of the dipole expression of
the axial FF. Both the electric and the magnetic FFs of the nucleon deviate
from the dipole parametrization, for a review see Ref. [7]. It seems then
natural to expect similar deviations for the axial one.

In Chapter 3 it is explained that empirical parametrizations are obtained
from data of lepton scattering on nucleons. As EM interactions are blind to
the axial part of the current, in the case of the axial FF, FA, the information
must be extracted from weak interactions. The CCQE reaction, νl n→ l− p
is a rather simple process which is particularly sensitive to FA. However,
modern neutrino cross-section measurements have been performed on heavy
nuclear targets (mostly 12C) where the determination of FA becomes unreli-
able due to the presence of not well-constrained nuclear corrections and the
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difficulties in isolating the CCQE channel in a model-independent way. A
detailed discussion of this problem can be found, for instance, in Sec. III of
Ref. [8]. A more direct and, in principle, less model dependent determina-
tion of FA relies on bubble-chamber data on deuterium. Global analyses of
the Argonne National Laboratory (ANL), Refs. [9–11], Brookhaven National
Laboratory (BNL), Refs. [12, 13], FNAL, Ref. [14], and European Organi-
zation for Nuclear Research (CERN), Ref. [15], data with updated vector
from factors based on modern electron-scattering data have been performed
by Bodek and collaborators. A reference value of MA = 1.016± 0.026 GeV
with a small (2.5%) error has been obtained in Ref. [16].

On the other hand, as pointed out in Refs. [79, 80], the anzatz of
Eq. (3.54) is not theoretically well founded. A new extraction of FA has
been recently undertaken using a functional representation of the FF based
on conformal mapping (z expansion), Ref. [17]. The function is only con-
strained by the analytic structure and asymptotic behavior dictated by QCD.
The resulting FF is consistent with the dipole one but with a much larger
error, Fig. 7 of Ref. [17]. In particular, the axial radius, 1

r2
A ≡ −

6

gA

dFA
dQ2

∣∣∣∣
Q2=0

, (5.1)

obtained is r2
A = 0.46 ± 0.22 fm2, which agrees with the dipole one, r2

A =
12/M2

A, but with an ∼ 20 times larger error. This result might have impli-
cations for oscillation studies and calls for a new measurement of neutrino-
nucleon cross sections, which is in any case desirable. The axial radius can
also be extracted from muon capture by protons. A recent analysis, Ref. [18],
using the z expansion obtains r2

A = 0.43 ± 0.24 fm2, in agreement with the
neutrino-scattering result.

A promising source of information about FA(Q2) is lattice QCD. Al-
though the experimental value of gA has been recurrently underpredicted
in lattice QCD studies, the use of improved algorithms has recently lead to
consistent results, Refs. [19–21, 81, 82]. A global analysis of the low-Q2 and
light-quark mass dependence of the results of Refs. [19–21] using baryon chi-
ral perturbation theory has found gA = 1.237±0.074 and r2

A = 0.263±0.038,
Ref. [22]. The central value of r2

A is considerably lower than those from em-
pirical determinations but within the (large) error bars of the z expansion
results.

The choice of a specific functional form of FA may bias the results of
the analysis. Moreover, the choice of the number of parameters within a

1See also Eq. (3.78).
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given parametrization is a delicate question. Too few parameters may not
give enough versatility. As the number of parameters increase, the χ2 value
of the fits can be reduced, but at some point the fit tends to reproduce
statistical fluctuations of the experimental data , see Ref. [23]. A reduction
of the model-dependence of the results can be obtained within the methods
of neural networks. This approach has been used to obtain nucleon par-
ton distribution functions from deep-inelastic scattering data by the neural
network parton distribution function (NNPDF) collaboration in Ref. [24].

In this chapter, we demonstrate that model-independent information
about FA can be obtained from a semi-parametric analysis of ν-deuteron
scattering data2. In contrast to the parametric approach in which a partic-
ular parametrization of FA is adopted based on physics assumptions, semi-
parametric ones are not motivated by physics; they allow to construct a
statistical model in terms of an ensemble of probability densities that are
used to do statistical inference i.e. to determine the quantities of interest
and their uncertainties (see Chapter 2 of Ref. [83]). The lack of physics
motivation may prevent the results from being extrapolated outside the fit
region (positive Q2 in our case). On the other hand, given the generality
of the approach, the results may contain new physics beyond the underly-
ing assumptions of a given model or be affected by theoretical mismodeling
and/or deficiencies in a data set.

To perform this semiparametric analysis, we make use of feed-forward
neural networks,3 a class of functions with unlimited adaptive abilities [25].
With this choice, we can eliminate any bias in the result introduced by the
functional form of the fit function. Depending on the number of adaptive
parameters, one can get different variants of the statistical model (fit). In
this context, Bayesian statistics has proved to be a very effective tool, see
Ref. [26]. Its methods allow to make comparisons between different mod-
els and control the number of parameters in the fit. Bayesian methods are
successfully used in different branches of physics. For instance, in hadron
and nuclear physics, they have been applied to the study of the resonance
content of the p(γ,K+)Λ reaction, Ref. [84], and to constrain the nuclear
energy-density functional from nuclear-mass measurements, Ref. [85]. We
consider the Bayesian framework for neural networks formulated by MacKay
in Ref. [27]. It has been adapted to model electric and magnetic form fac-

2See Sec. 5.2 for more detailed descriptions of parametric and semiparametric tech-
niques.

3Semiparametric analyses of experimental data can also rely on other families of func-
tions, such as polynomials or radial-basis functions [83].
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tors in Ref. [28]. It was also used in the investigation of the two-photon
exchange phenomenon in elastic electron-proton scattering, Refs. [86–88].
Furthermore, this approach has proved valuable to gain insight into the
proton radius puzzle and, in particular, to study the model dependence
in the extraction of the proton radius from the electron-scattering data,
Refs. [23, 89].

5.2 Neural networks

Our aim is to obtain a statistical model which has the ability to generate
FA(Q2) values together with uncertainties. In practice, to construct such a
model, a number of probability densities must be estimated. This can be
achieved within three general methods, Ref. [83]: (i) non-parametric, (ii)
parametric, and (iii) semiparametric. In the first approach, no particular
functional model is assumed, and the probabilities are determined only by
the data. However, if the size of the data is large, the method requires
introduction of many internal parameters. Additionally, this approach is
computationally expensive. In the parametric method, a specific functional
form of the model is assumed. In this case, it is relatively easy to find the
optimal configuration of the model parameters. However, a particular choice
of the parametrization limits the ability of the model for an accurate descrip-
tion of the data.4 In this case, the uncertainties for the model prediction are
either overestimated or underestimated. The semiparametric method takes
the best features from both (i) and (ii) approaches. In this method, instead
of a single specific functional model, a broad class of functions is considered.
The optimal model is chosen among them. The neural-network approach
is a realization of the semiparametric method. In particular, the feedfor-
ward neutral networks form a class of functions with unlimited adaptative
abilities.

5.2.1 Perceptron

Within the field of artificial intelligence we find neural networks, which en-
compass a family of algorithms designed to emulate intelligent behavior.
Inspired by their biological counterparts, these networks are made up of
small, linked processing units called single neurons or perceptrons. This
unit receives n different inputs, xn, and returns an output, y. One of the

4Fitting the axial FF with the dipole parametrization is an example of the parametric
approach.

112



5. Extraction of the nucleon axial form factor from neutrino scattering data

simplest functions that can be used in a perceptron to process the inputs is
a linear map,

y = w0 +
n∑

i=1

wixi , (5.2)

where the wi coefficients are the weights of the input signals and w0 is the
bias. In this case we can fit our parameters to a dataset, using a linear
regression algorithm. By doing so we would be able to perform a basic
linear description of the dataset, and predict the values of the function for
new inputs, not included in the original dataset.

With a neuron defined, we can think of linking several perceptrons in
a neural network, to do more complex work. The problem here is that it
can be proved that the sum of linear fits its equivalent to a single one. The
solution to this problem is to modify the function of each perceptron in
a non-linear way. Using the weighted sum of inputs as the argument of an
activation function would introduce the non-linear distortion we need. There
are different activation functions that can be used in a neuron, being the
simplest one the step function, which returns 0 if the value of its argument is
negative and 1 otherwise. One of the problems with the step function is that
it has 0 gradient everywhere except 0, which does not allow to use gradient
descent to minimize the parameters. Instead, there are several alternatives
for the activation function that have a better behaviour and are easily found
in the literature. As it is explained below, between them we will focus on
the sigmoid function given by

f(x) =
1

1 + e−x
, (5.3)

which has a smooth gradient. Fig. 5.1 shows a plot of this function.

-6 -4 -2 0 2 4 6
0

0.5

1

0

0.5

1

x

f(
x
)

Figure 5.1: Sigmoid function
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5.2.2 Multilayer perceptron

The concept of multilayer perceptron (MLP) comes from neuroscience, see
Ref. [90]. A given MLP is a nonlinear map from the input space of dimension
ni to the output space of dimension no,

N : Rni 7→ Rno . (5.4)

The MLP map can be represented by a graph which consists of several layers
of units: the input layer with ni units, one or more hidden layers with hidden
units, and the output layer which has no units. In the input and in every
hidden layer, there is an additional bias unit. The units from the consecutive
layers are all connected, but the bias unit is connected only to the following
layer. As an example, the graphical representation of the MLP: N : R 7→ R
is given in Fig. 5.2. Every edge (connection line) in the graph represents one
parameter of the function, called latter a weight.

Q2

N

Hidden
layerInput layer Output

layer

Figure 5.2: Feedforward neural network in an MLP configuration, N : R 7→
R. It consists of: (i) an input layer with one input unit Q2 (open square);
(ii) one hidden layer with three hidden M = 3 units (filled blue circles);
(iii) an output layer consisting of one output unit (black square). Each line
denotes a weight parameter wj . The bias weights are denoted by dashed
lines, whereas the bias units are represented by open blue circles.

To every unit (blue circles in Fig. 5.2), a real single-valued activation
function, f , is associated; its argument is the weighted sum of the activation
function values received from the connected units. In the feedforward case,
the ith unit in the kth layer is given in terms of the input from the (k−1)th
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layer by

yi,k = f i,k


 ∑

u∈previous layer

wi,ku yu,k−1


 . (5.5)

A graphical representation of the above function is given in Fig. 5.3. The
weights wi,ku are real parameters. Their optimal values are established by
the network training for which we adopt the Bayesian framework explained
below.

fi,k

∑n
u=0

...
...

wi,k
n

yn,k−1

wi,k
01

wi,k
2

y2,k−1

wi,k
1

y1,k−1

inputs weights

Figure 5.3: The ith unit in the kth layer, Eq. (5.5).

Note that for the bias unit f i,k(x) = 1. Furthermore, it is assumed that
in the output layer the activation functions are linear f(x) = x. In order
to simplify and speed up the performance of the numerical analyses MLPs
with only one hidden layer of units are considered. In Fig. 5.2, there is an
example of such an MLP with M = 3 hidden units.

Let us introduce the MLP NM : R 7→ R, with a single hidden layer and
M units, which has the following functional form:

NM (Q2; {wj}) =
M∑

n=1

w2M+n f

(
wn

Q2

Q2
0

+ wM+n

)
+ w3M+1 , (5.6)

where Q2
0 ≡ 1 GeV2. This function depends on W = 3M + 1 weights and

Q2.
It has been proved (Cybenko theorem), Refs. [25, 91–96], that, if M

is sufficiently large, feedforward neural networks with sigmoidal and linear
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activation functions in the (single) hidden and output layers, respectively,
form a dense subset in the set of continuous functions. This implies that a
map of the form of Eq. (5.6) can approximate arbitrarily well any continuous
function and its derivative. As required by the theorem, in our numerical
analysis, the activation functions in the hidden layer are given by sigmoids,
Eq. (5.3).

5.2.3 Axial form factor

We seek for a model-independent parametrization of FA that best represents
the available data without any input from theory. It should be quite general
but, nonetheless, constrained by the following general properties:

(I) FA(Q2) is assumed to be a continuous function of Q2 in its validity
domain;

(II) the domain of FA is restricted to the Q2 ∈ (0, 3) GeV2 where the ANL
data are present;

(III) FA(Q2 = 0) is constrained by the gA experimental value, Eq. 3.55;

(IV) as FA(Q2) is bounded, there must be a C > 1: FA(Q2) < CF dipole
A (Q2)

in the whole Q2 interval of (0, 3) GeV2.

The feedforward neural network of Eq. (5.6) can fulfill these properties;
for a more detailed discussion see Sec. 5.3.1. In order to speed up the
numerical computations, we rescale the output of the MLP, Eq. (5.6), by
normalizing it to the dipole ansatz. As the result, the axial FF is represented
by

FA(Q2) = F dipole
A (Q2)× NM (Q2; {wi}) , (5.7)

where F dipole
A is given in Eq. (3.54) with MA = 1 GeV. In this way, the

neural-network response gives the deviation of the axial FFr from the dipole
parametrization. The value of gA is allowed to change within the Particle
Data Group (PDG) uncertainty Eq. (3.55).

5.3 Bayesian framework for neural networks

As described above, a MLP is a nonlinear map defined by some number
of the adaptive parameters. The increase in the number of hidden units
improves MLP’s ability to reproduce the data. However, when the number
of units (weights) is too large, the model tends to overfit the data, and it
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reproduces the statistical noise. As a result, its predictive power is lost. On
the other hand, if the network is too small, then the data are underfitted.
This competition between two extreme cases is know in statistics as the bias-
variance trade-off, Ref. [97]. Certainly, the optimal model is a compromise
between both extreme situations.

Bayesian statistics provides methods to face the bias-variance trade-off
dilemma. Indeed, the Bayesian approach naturally embodies Occam’s razor,
see for example Refs. [26, 27, 98, 99], i.e. complex models, defined by a large
number of parameters, are naturally penalized, whereas simple fits with a
small number of parameters, are preferred. Moreover, the Bayesian approach
allows one to make comparisons between different statistical descriptions of
the data and to indicate the model which is favored by the measurements.
An example of such analysis can be found in Ref. [23] where a large number of
different fits of the electric and magnetic FFs were obtained from electron-
proton scattering data. For each model, the value of the proton radius
rEp has been calculated. It turned out that, depending on the model, rEp
ranges from 0.8 to 1.0 fm. A considerable fraction of the results agreed
with the muonic-atom measurement rEp = 0.84184(67) fm, Ref. [100], but
the Bayesian algorithm preferred a model with rEp = 0.899 ± 0.003 fm,
which is in contradiction with the muonic-atom result but in agreement
with some other non-Bayesian ep scattering data analysis. A critical review
of various approaches to proton radius extraction can be found in Ref. [101]
and references therein.

We adopt the Bayesian framework for the feedforward neural network
formulated by MacKay in Ref. [102, 103]. This section reviews this approach
and its adaptation to the problem of the extraction of the nucleon axial FF
that best represents a given set of data. The proposed framework is quite
general: it does not rely on physics assumptions about the functional form
of FA(Q2) and is independent of the experimental conditions from which the
data originate. In this way, the present approach not only complements those
based on physically motivated parametrizations, but also has the potential to
disclose new physics effects as well as deficiencies in the theoretical modeling
or in the data.

The general idea is the following: given a data set a statistical model
is built. The model is characterized by a number of probability densities,
which are obtained using feed-forward neural networks. A detailed account
of the different ingredients of the approach is given in this section. The
specific application to ANL CCQE neutrino-deuteron scattering data is left
for the subsequent sections.
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5.3.1 Bayesian framework for multilayer perceptron

Given two different events, e.g. in an experiment, we define their respec-
tive probabilities to occur as P(A) and P(B). Bayes’ theorem is a di-
rect consequence of the symmetry of the combined probability of A and
B, P(A ∩ B) = P(B ∩ A), which implies the following relation between
conditional probabilities (see Appendix. D)

P(A | B) =
P(B | A)P(A)

P(B)
, (5.8)

with P (B) 6= 0.
Let us consider a group of M models, NW with W = 1, . . . , N , where

the model NW containsW parameters, ~w = (w1, . . . , wW ), and a set of data
D. In this case, for a specific model, Eq. (5.8) reads

P(N | D) =
P(D | N )P(N )

P(D)
, (5.9)

where P (D) is the normalization constant. We dropped the index W to
simplify the notation.

In our case the models correspond to the set of neural networks,

N1, N2, . . . , NM , (5.10)

where M denotes the number of units in the hidden layer. To each of the
models N , one associates a prior probability denoted P(N ). Our task is to
obtain two posterior conditional probabilities: P(N | D) and P(ρ | D,N ); ρ
denotes the set of model parameters, which encompasses the neural network
weights ρ = {{wj}, . . . }. The first probability density allows us to choose
among many network types the one which is favorable by the data, whereas
the second one is necessary to make model predictions.

If one assumes, at the beginning of the analysis, that all MLP configura-
tions are equally suited for describing the data, then the following relations
between prior probabilities hold

P(N1) = P(N2) = · · · = P(NM ) , (5.11)

therefore
P(N | D) ∼ P(D | N ) , (5.12)

and P (D | N ) can be used to distinguish between models: the larger
P (D | N ) the better.
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On the other hand, the posterior probability for the weights of a given
MLP reads

P(ρ | D,N ) =
P(D | ρ,N )P(ρ | N )

P(D | N )
, (5.13)

where P(D | ρ,N ) is the likelihood whereas the density P(ρ | N ) is the prior
describing the initial assumptions about the parameters. If the posterior is
properly normalized,

∫
dρP(ρ | D,N ) = 1, by integrating both sides of

Eq. (5.13), one gets the evidence for the model,

P(D | N ) =

∫
dρP(D | ρ,N )P(ρ | N ) . (5.14)

Occasionally, one can be interested in integrating out some variables of the
model to determine the marginal contribution of another, sometimes this is
called ‘integrating out the nuisance variables’. For example, for a model with
dependence on the set of parameters given by ρ = (α, ~w), we can integrate
all but the α parameter,

P(D | α,N ) =

∫
d~wP(D | ρ,N )P(ρ | N ) . (5.15)

In what follows we apply these results derived from Bayes’ theorem to the
case of models given by the MLP.

Likelihood

In order to calculate the posterior we assume that the likelihood is given in
terms of the χ2 function,

P(D | {wj},N ) =
1

NL
exp(−χ2) , (5.16)

whereNL is the normalization constant, which does not depend on the model
parameters. The general expression for the χ2 function is

χ2({wj}) =
N∑

i=1

(δi − fi({wj}))2

σ2
i

, (5.17)

where δi ± σi are the experimental points in the dataset and fi(~w) are the
predicted values for the model at each point.5

5While the specific expression for the χ2 function for the present work is defined in
Sec. 5.4.2 [see Eq. (5.50)], we make use of this general form below when describing the
evidence approximation.
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Prior distributions

It is assumed that the initial values of the weights are Gaussian distributed

P({wj},N ) =
( α

2π

)W/2
e−αEw({wj}) , (5.18)

where α is a positive hyperparameter (regularizer) introduced to deal with
the overfitting problem and

Ew({wj}) =
1

2

W∑

i=1

w2
i . (5.19)

The regularizer α plays a crucial role in model optimization and should be
properly determined. Indeed, if α is large then the term of Eq. (5.19) domi-
nates in the posterior Eq. (5.13), so it is very likely that the model underfits
the data. On the contrary, if α is too small, the likelihood dominates, and
the model tends to overfit the data. Note that α is another parameter of
the model, hence, ρ = {{wj}, α}.

The prior distribution of the weights, Eqs. (5.18 and 5.19), is justified by
the following properties of the adopted feed-forward neural network in the
MLP configuration and of the problem under study:

(P1) internal symmetry: the exchange of any two units in the hidden layer
does not change the functional form of the network and its output
values;

(P2) the sigmoid activation function f(x) Eq. (5.3) saturates and can be
effectively assumed to be constant outside the interval −a ≤ x ≤ a
with a ∼ 10;

(P3) f(−x) = 1− f(x);

(P4) the ANL data are concentrated in the region Q2 ∈ (0, 3) GeV2 – con-
straint (II) in Sec. 5.2.3;

(P5) FA(Q2)/F dipole
A (Q2) < C, where C > 1 – constraint (IV) in Sec. 5.2.3.

Properties (P4) and (P2) constrain the weights w1, ..., w2M in function
of Eq. (5.6). Indeed, from (P2) one sees that for a full performance of the
activation function f(x) in Eq. (5.6) it is enough to have x ∈ (−a, a). Let
us consider then the function f(wiQ

2 + wM+i), i = 1 . . . ,M , which is one
of the elements of the sum in Eq. (5.6). To efficiently cover all possible
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outputs, achieving a good performance of the network, it is enough that the
arguments of f(...) belong to (−a, a) for all values of Q2 under consideration.
Then, one gets limits for the weights, namely, |wM+i| < a 6 from which one
also gets the constraint |wi| < 2/3a < a for Q2 ∈ (0, 3) GeV2.

Note that both negative and positive values of weights wi and wM+i are
equally possible according to (P3). Therefore, without losing generality, the
prior density should be symmetric in weights w1-2M and cover the hypercube
(−a, a)2M .

The limits for the weights in the linear layer are less obvious. Property
(P5) provides a constraint on the weights in the linear output layer w2M+i,
i = 1, . . . ,M + 1, namely,

∣∣∣∣∣
M∑

i=1

w2M+if(. . . ) + w3M+1

∣∣∣∣∣ < C . (5.20)

The main role of the weights in the linear layer is to control the range of
the neural-network output. In our case, at any Q2, the absolute value of
the output should be smaller than C. Hence, for a reliable performance
of the network, it is enough to assume that the weights in the linear layer
are |w2M+i| < C ∼ a, i = 1, · · · ,M + 1. In analogy to the reasoning in
the paragraph above, one can argue that these weights could equally take
positive and negative values.

We, therefore, conclude that the prior density for the weights should
cover the hypercube (−a, a)3M+1 and be symmetric in wi. This is a rough
estimate of the bounds for the model parameters, but the functional form
of the prior densities is still arbitrary. In the present analysis, we have con-
sidered the Gaussian distribution, Eq. (5.18). Such a density profile maxi-
mizes the entropy of the system, see Ref. [104]. However, our choice is also
supported by further arguments from neural-network computations. In par-
ticular, as we describe below, prior , Eq.(5.18), modifies the error function,
Eq.(5.45), through the contribution of Eq. (5.19). Such a penalty term has
been considered in non-Bayesian approaches, Ref. [105], to the feed forward
neural networks. Bayesian statistics provides a probabilistic justification for
Eq. (5.19). Moreover, the Bayesian approach allows to consistently obtain
the optimal value of the α. We recall that in the numerical analysis, the
initial value of α is set to α0 = 0.001. Then, the prior Gaussian distribution
has a width of

√
1/α ≈ 30, which fully covers the region of the parameter

space allowed by the constraints.
6At Q2 = 0 we have f(wM+i), so it is enough that |wM+i| < a.
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Eventually, let us remark that the most general Gaussian prior has the
form

P ({wi} | N ) = e
−

3M+1∑

i=1

αi
2
w2
i

, (5.21)

where every weight wi has its own regularizer αi. However, the internal
symmetry of the network (P1) allows to reduce the number of regularizers
to only four – each for every class of parameters (wi, wM+i, w2M+i, w3M+1)
with i = 1−M . In Ref. [28], it was verified that the inclusion of more regu-
larizers has a negligible impact on the results but slows down the numerical
procedures. Hence, in the present analysis, we consider the simplest and
practically very effective scenario.

Evidence approximation

In principle, to get the evidence P(D | N ) on which model discrimination
is based, the integration in Eq. (5.14) over the whole space of parameters ρ
should be performed.

P(D | N ) =
1

NL

∫
dρ
( α

2π

)W/2
e−χ

2({wj})−αEw({wj}) . (5.22)

This is, however, numerically difficult to perform. Therefore, in our analysis,
we consider another method, the so-called evidence approximation [102, 103].

The evidence framework divides the inference into distinct levels [102]:

• Infer the parameters {wj} for a given value of α,

P ({wj} | D,α,N ) =
P (D | {wj}, α,N )P ({wj} | α,N )

P (D | α,N )
. (5.23)

• Infer α,

P (α | D,N ) =
P (D | α,N )P (α | N )

P (D | N )
. (5.24)

• Compare models by their evidence, P (D | N ), see Eqs. (5.9, 5.12).

Eqs. (5.23, 5.24) are the posterior probabilities for the weights and the reg-
ularizer respectively, see Eq. (5.13).

In the adopted approach it is assumed that the posterior distributions
have a Gaussian shape. Hence, to get the necessary information about
Eq. (5.13), it is enough to obtain the configuration of the parameters ρMP =
({wj}MP,αMP) at which the posterior distribution is at its maximum and the
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covariance matrix for the model.7 The latter is necessary to provide the un-
certainties for the model predictions. Within the present approximation, the
evidence for a given model can be obtained in an analytical form. For this
purpose, the exponent of the posterior, given in Eq. (5.22), is first expanded
around ~wMP = {wj}MP up to quadratic terms

χ2({wj}) + αEw({wj}) ' χ2 ({wj}MP) + αEw({wj}MP)

+
1

2

W∑

k,l

(
∂2χ2

∂wk∂wl

∣∣∣∣
~w=~wMP

+ αδk,l

)
(wk − wMP,k) (wl − wMP,l)

=χ2 ({wj}MP) + αEw({wj}MP) +
1

2
~w T
MPAχ ~wMP +

1

2
~w T
MPB~wMP ,

(5.25)
where Aχ is the Hessian matrix of the χ2 function while the matrix elements
of B are defined as Bij ≡ α δij . Linear terms in the expansion of Eq. (5.25)
vanish because at the most probable values for the weights we are in a max-
imum of the function. Then, using the Gaussian integrals of Appendix B.1,
after the integration of Eq. (5.23) over the weights, we obtain

P(D | α,N ) =
1

NL

( α
2π

)W/2
√

(2π)W

|A| e
−χ2({wj}MP)−αEw({wj}MP) , (5.26)

where A = Aχ + B and |A| denotes the determinant of A. Taking loga-
rithms, we have

ln (P(D | α,N )) =− χ2 ({wj}MP)− αEw({wj}MP)− ln (NL)

− 1

2
ln |A|+ W

2
ln (α) .

(5.27)

Let λi be the eigenvalues of Aχ, then

ln (P(D | α,N )) =− χ2 ({wj}MP)− αEw({wj}MP)− ln (NL)

− 1

2

W∑

i=1

ln (λi + α) +
W

2
ln (α) .

(5.28)

As the first derivative of the evidence at the maximum fulfills the condition

∂

∂α
P(D | α,N )

∣∣∣∣
α=αMP

= 0 . (5.29)

7The optimal values for the parameters are stabilised in the training process. See next
section.
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we can write

∂

∂α
P(D | α,N ) =P(D | α,N )

∂

∂α
ln (P(D | α,N ))

=P(D | α,N )

[
−Ew({wj}MP)− 1

2

W∑

i=1

1

λi + α
+
W

2α

]
,

(5.30)
to find the relation

2αMPEw({wj}MP) = W − αTr
(
A−1

)
=

W∑

i=1

λi
λi + αMP

≡ γ , (5.31)

where we have used that the eigenvalues of A−1 are (λi + α)−1. This result
tacitly assumes that the eigenvalues λi do not themselves depend on α. Fur-
thermore, only for a quadratic function of the weights is this relation exact.
Otherwise it is an approximation that omits terms proportional ∂λi/∂α (see
Ref. [103]). The terms in the left part of Eq. (5.31) measure how much the
fitted parameters differ from their null value. The rank of values for γ is from
0 to W . This parameter measures the effective number of weights, whose
values are controlled by the data [83]. Equation 5.31 to get the proper αMP
is solved iteratively during the training process, i.e.

αk+1 =
γ(αk)

2Ew({wj})
, (5.32)

where k is the order of iteration. The iteration procedure fixes in the optimal
way the α parameter. In Ref. [28] it is shown that the choice of the initial
α value has a small impact on the final results.

Having found the value of α which minimizes the evidence, we can con-
struct a Gaussian approximation for the evidence P(D | lnα,N ), as a func-
tion of ln α, centered on this maximum value [28, 83, 102]. The choice of
lnα as the new variable to perform the minimization has two advantages:
it ensures that α remains positive and discourages pathological solutions
with α → 0. Performing a power expansion of ln (P(D | ln α,N )) around
ln αMP, we obtain

ln (P(D | ln α,N )) ' ln (P(D | ln αMP,N ))

+
1

2

∂2

∂ (ln α)2 ln (P(D | ln α,N ))

∣∣∣∣
ln α=ln αMP

× (ln α− ln αMP)2 .

(5.33)
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From Eq. (5.33) it follows that

P(D | ln α,N ) = P(D | ln αMP,N )e
− (ln α−ln αMP)2

2σ2
ln α . (5.34)

with
1

σ2
ln α

= −α ∂

∂α

(
α
∂

∂α
ln (P(D | ln α,N ))

)
. (5.35)

Substituting Eq. (5.28) in Eq. (5.35), we find that

1

σ2
ln α

=αEw({wj}MP) +
1

2

W∑

i=1

αλi

(α+ λi)
2 , (5.36)

and using Eq. (5.31)

1

σ2
ln α

=
γ

2
+

1

2

W∑

i=1

αλi

(α+ λi)
2 . (5.37)

If λi � α the terms in the sum reduce to λi/α � 1, while if λi � α they
reduce to α/λi � 1. Significant contributions arise only if λi ' α. Since
there will typically be few such eigenvalues, we see that the second term in
Eq. (5.37) can be neglected. Therefore, following Ref. [83] we adopt

1

σ2
ln α

=
γ

2
. (5.38)

With the approximation of Eq. (5.33), we then obtain

P(D | α,N ) =
1

NL
e−χ

2({wj}MP)−αMP Ew({wj}MP)− 1
2

ln|A|+W
2

ln(αMP)

× e
− (ln α−ln αMP)2

2σ2
ln α .

(5.39)

We substitute now Eq. (5.39) in Eq. (5.24). At this point we need to define
a prior, P (α | N ), in order to perform the integral. As we do not have
information about the value of α, we should choose a prior which in some
sense gives the same weights to all possible values. Such priors are called non-
informative and often have the characteristic that they cannot be normalized
since the integral of the prior diverges, in this case they are called improper.
For scale parameters as our regularizer, α, this kind of priors are generally
chosen to be uniform on a logarithmic scale. Further discussion on this topic
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can be found in Ref. [83]. Hence, the prior P (α | N ) should be expressed
in logarithmic scale. Thus, we can choose an improper prior of the form
P (lnα | N ) = 1, which imply

P (α | N ) =
1

α
. (5.40)

The integral over α in Eq. (5.24) leads to an analytic result

P(D | N ) =

√
2πσln α

NL
e−χ

2({wj}MP)−αMP Ew({wj}MP)− 1
2

ln|A|+W
2

ln(αMP) .

(5.41)
Taking logarithms we can write

ln (P(D | N )) =− χ2 ({wj}MP)− αMPEw({wj}MP)− 1

2
ln |A|

+
W

2
ln (αMP) +

1

2
ln (2π) +

1

2
ln
(
σ2

ln α

)
− ln (NL) .

(5.42)

On the other hand, we should keep in mind that the models are neu-
ral networks with a hidden layer containing M units, given by Eq. (5.6).
Each unit has a sigmoid, Eq. (5.3), as activation function. By the symmetry
of these kind of activation functions, it can be shown that for M hidden
units any given weight vector will be one of a set 2M equivalent weight vec-
tors. This is proved in Ref.[83] from the results of Ref. [106] with activation
functions of the kind f(x) = tanh(x). In Ref. [107], it is shown that these
results can be generalized to the sigmoid functions used in our calculations,
Eq. (5.3).

We have a set of weights and a bias corresponding to each unit in the
hidden layer of the neural network. As all units have the same activation
function, there would not be any change in the final output after the inter-
change of the sets of values for two of these units. Given this symmetry, for
M hidden units, any given weight vector will haveM ! equivalent weight vec-
tors, corresponding to the different orderings of the hidden units [83, 106].
The network will therefore have an overall weight-space symmetry factor
of M ! 2M , thus we must include this extra factor in Eq. (5.42). Finally,
omitting normalization factors common to all models, the logarithm of the
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evidence reads

ln (P(D | N )) ≈− χ2 ({wj}MP)− αMPEw({wj}MP) (5.43)

− 1

2
ln |A|+ W

2
ln (αMP)− 1

2
ln
γ(αMP )

2

+ ln (M !) +M ln (2) , (5.44)

where Eq. (5.38) has been used.
The evidence contains two contributions: Occam’s factor [Eq. (5.44)

plus the αMPEw term of Eq. (5.43)], which is large for models with many
parameters and the misfit [χ2 term in Eq. (5.43)], which could be large if the
model is too simple. Therefore, the model which maximizes the evidence is
the one which solves the bias-variance dilemma. As an illustration from the
present analysis (details can be found in the following section), in Fig. 5.4
we plot the values of the error,

E = χ2 + αEw, (5.45)

and the evidence for MLP fits. The best model with the highest evidence is
not the one which has the smallest value of the error function E , in variance
with more conventional approaches based on the minimization of the χ2 per
degree of freedom.

5.4 Analysis of ANL neutrino-deuteron scattering
data

5.4.1 Theoretical framework

The neutrino-induced CCQE,

νµ(k) + n(p)→ µ−(k′) + p(p′) , (5.46)

differential cross section, in terms of the standard Mandelstam variables
s = (k + p)2, u = (p− k′)2, and t = (k − k′)2 = −Q2, can be cast as [108]

dσ

dQ2
=
G2
Fm

2
N

8πE2
ν

[
A(Q2) +B(Q2)

(s− u)

m2
N

+ C(Q2)
(s− u)2

m4
N

]
, (5.47)
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Figure 5.4: The error Eq. (5.45) as a function of the logarithm of the evidence
Eqs. ((5.43) and 5.44). Each point denotes the result obtained for one MLP
fit to the BIN1 data, including deuteron corrections (see Sec. 5.4 for details).
The fits with a logarithm of the evidence smaller than −100 are not shown
in the figure.

where

A =
(m2 +Q2)

M2

[
(1 + η)F 2

A − (1− η)F 2
1 + η (1− η)F 2

2 + 4ηF1F2

− m2

4M2

(
(F1 + F2)2 + (FA + 2FP )2 −

(
Q2

M2
+ 4

)
F 2
P

)]
,

B =
Q2

M2
FA(F1 + F2) ,

C =
1

4

(
F 2
A + F 2

1 + ηF 2
2

)
,

(5.48)

in terms of the nucleon FF and η = Q2/(4M2).8 In the present chapter we
have taken these electromagnetic FFs from Refs. [49, 69]. With this simple
choice we disregard deviations from the dipole shape because the accuracy of
the neutrino-deuteron data is insufficient to be sensitive to them, particularly
at the rather low Q2 . 1 GeV2 probed in the ANL experiment.

Deuterium-filled bubble-chamber experiments actually measured νµ +
d→ µ−+p+p. The cross section for this process differs from the one on free

8See Chapter 3 for complete description of FF.
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neutrons due to the momentum distribution of the neutron in the nucleus,
Pauli principle, final-state interactions, and meson-exchange currents. In the
literature, it has been commonly assumed that Eq. (5.47) can be corrected
for these effects by a multiplicative function of Q2 alone R(Q2) and such
that R → 1 at large Q2. For the present calculation, we adopt R(Q2) from
the Ref. [109], Fig. 5.5.

0 0.05 0.1 0.15 0.2

0.6

0.8

1

Q2 (GeV2)

R(Q2)

Figure 5.5: Estimation of the deuteron correction effect on the differential
cross section, including meson exchange currents, at Eν = 1 GeV, Ref. [109].

5.4.2 χ2 function for the ANL experiment

In the ANL experiment, the interactions of muon neutrinos in a 12-ft bubble
chamber filled with liquid deuterium were studied, Refs. [9–11, 110]. The
neutrino flux peaked at Eν ∼ 0.5 GeV and has fallen by an order of magni-
tude at Eν = 2 GeV, Refs. [10, 11]. For the statistical analysis, we consider
the Q2 distribution of CCQE events. Some of the originally published bins
were combined together to have a number of events larger than five in every
bin. Therefore, the number of bins is nANL = 25, where bins from 1 to
23 have a width of 0.05 GeV2, whereas bins 24 and 25 have widths of 0.65
GeV2. The total number of measured two- and three-prong events adds to
NANL = 1792, Ref. [11]. One-prong events were not included in the ANL
selection. To account for their loss, the region of Q2 = 0.05 GeV2 was
excluded.

The predicted number of events in each bin is calculated similarly as in
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Ref. [17],

N th
i = p

∫ ∞

0
dEν

dσ

dQ2
(Eν , FA, Q

2
i )

σ(Eν , FA)

dN

dEν
, (5.49)

where p(dN/dEν)/σ(Eν , FA) is the neutrino energy flux, given in terms of
the experimental energy distribution of observed events dN/dEν taken from
Ref. [110].

As stated in the previous section, the likelihood, Eq. (5.16), is built using
the χ2 function, which we cast as

χ2 = χ2
ANL + χ2

gA
, (5.50)

where χ2
gA

is introduced to constrain the value of the axial FF at Q2 = 0,

χ2
gA

=

(
FA(0)− gA

∆gA

)2

; (5.51)

gA and ∆gA are fixed by the present PDG central value and its uncertainty,
respectively, Eq. (3.55). For χ2

ANL, we take

χ2
ANL =

nANL∑

i=k

(
Ni −N th

i

)2

Ni
+

(
1− p
∆p

)2

, (5.52)

where Ni denotes the number of events in the bin. The last term takes
into account the systematic uncertainty in the total number of events, in-
herited from the flux-normalization uncertainty, Ref. [111]. Similarly as in
the analysis of single pion production data of Ref. [112], it is assumed that
∆p = 0.20.9 At the beginning of the analysis, p = 1 is set. Then, during the
training of the network, p is iteratively updated. This algorithm is described
in Ref. [86].

It is known that the low-Q2 data are characterized by a lower efficiency
(see, for instance, Fig. 1 of Ref. [11]). Moreover, in this kinematic domain
deuteron structure corrections must be carefully discussed. In order to study
this problem we consider three variants of the ANL data:

(i) χ2
ANL → χ2

BIN0: All ANL bins included;

(ii) χ2
ANL → χ2

BINk: where k = 1 or k = 2: ANL bins without the first k
bins.

Additionally, for each data set, we consider the cross-section model both
with and without [R(Q2) ≡ 1] deuteron corrections.

9This is a more conservative value of the flux-normalization uncertainty than the ANL
estimate of 15% [11].
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5.4.3 Numerical algorithm

We consider a MLP with M = 1 − 4 hidden units in a single hidden layer.
For M > 4, the number of parameters in the fit starts to be comparable
with number of bins. The numerical algorithm for getting the optimal fit is
summarized by the following list of steps:

(i) Consider a MLP with a fixed number of hidden units M = 1;

(ii) using the Bayesian learning algorithm, perform the network training
and find the optimal values for the weights and the regularizer α;

• set the initial value of α ≡ α0 = 0.001;

• initialize randomly the values of the weights;

• perform training until the maximum of the posterior is reached;
at each iteration step update the values of weights and α.

(iii) Calculate the evidence for each of the obtained MLP fits;

(iv) repeat steps (i) (iii) for various initial configurations of {wj};

(v) among all registered fits choose the best one according to the evidence;

(vi) repeat steps (i) (iv) for M = 2− 4;

(vii) among the best fits, obtained for N1−4 MLPs, choose the model with
the highest evidence.

The optimal configuration of parameters is obtained using the Levenberg-
Marquardt algorithm, described in Refs. [113, 114].

5.5 Numerical results

The analysis of the BIN0, BIN1, and BIN2 data sets has been indepen-
dently performed. For each set, both cross-section models with and with-
out deuteron corrections have been studied. For the default analyses, ∆gA
has been taken from the PDG as in Eq. (3.55), but the impact of a larger
uncertainty ∆gA/gA = 10% has been investigated and is discussed below.
We have also performed analyses with normalization uncertainties smaller
(∆p = 0.10) and larger (∆p = 0.30) than the default ∆p = 0.20, but it
turned out that decreasing or increasing ∆p does not significantly affect the
final results. All in all, about 17000 fits have been collected. Among them,
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5.5. Numerical results

for each type of analysis, the best model has been chosen according to the
objective Bayesian criterion described in Sec. 5.3.

In order to compare quantitatively different analyses, one needs to take
into account the relative data normalization P(D). This density is not eval-
uated within the adopted approach. Hence, we can not quantitatively com-
pare the results of, e.g., BIN0 and BIN1 analyses. Nonetheless, for a given
data set, quantitative comparisons between the results obtained with the
two versions of the cross-section model can be made.

As described in Sec. 5.4.3 for each type of analysis (data set plus cross
section model), to find the optimal fit, MLPs with: M = 1, 2, 3 and 4, hidden
units have been trained. The best model within each MLP type is the one
with the maximal value of the evidence, Eqs. (5.43 and 5.44).
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Figure 5.6: The dependence of r2
A, defined in Eq. (5.1), on the logarithm of

the evidence, Eqs. (5.43 and 5.44). Results for the MLP fits to BIN1 data
(without the deuteron correction). The MLPs consist of M = 1− 4 hidden
units.

In order to illustrate the performance of the training algorithm, in
Fig. 5.6 we present the dependence of the resulting axial-radius squared,
r2
A, values on the evidence for the BIN1 data set. The best fit with the
highest evidence, obtained with M = 4, gives r2

A ≈ 0.464 fm2.
Note that all the best models within each MLP type reproduce well the

ANL data. This is illustrated in Fig. 5.7, which presents the distribution of
the ANL events and the best fits.

Our main results, i.e., the best fits to BIN0, BIN1, and BIN2 data for the
model with and without the deuteron correction with ∆gA from Eq. (3.55)

132



5. Extraction of the nucleon axial form factor from neutrino scattering data

 0

 50

 100

 150

 200

 250

 0  0.5  1  1.5  2  2.5

n
u
m

b
e
r 

o
f 
e
v
e
n
ts

Q
2
 (GeV

2
)

the best model: M=4
ANL data

best in: M=1, ev=-35.69
best in: M=2, ev=-35.10
best in: M=3, ev=-34.41
best in: M=4, ev=-33.91

Figure 5.7: Distribution of the ANL number of events and the best fits
obtained for MLPs with M = 1 − 4 hidden units. The figure shows the
results of the analysis of BIN0 data (deuteron corrections included). For
each fit, the value of the logarithm of evidence (ev) is given.

are summarized in Table 5.1. The corresponding FA(Q2) functions and their
error bands are shown in Fig. 5.8.

Deuteron M lnP(D,N ) χ2 p E r2
A (fm2)

BIN0
No 4 −34.72 11.97 1.1 14.14 −0.394± 0.278
Yes 4 −33.91 11.73 1.08 13.95 −0.161± 0.240

BIN1
No 4 −30.57 24.84 1.16 25.41 0.464± 0.014
Yes 3 −29.6 22.90 1.12 23.43 0.471± 0.015

BIN2
No 2 −30.15 22.62 1.18 23.16 0.476± 0.017
Yes 4 −27.67 21.94 1.13 22.62 0.478± 0.017

Table 5.1: The best MLP fits, obtained for the analysis of the BIN0, BIN1
and BIN2 data with and without deuteron corrections; ∆gA is taken from
Eq. (3.55).

Both fits for the BIN0 data set, which contains all the data from the
original ANL measurement, with and without deuteron corrections show a
Q2 behavior of FA with a rapid increase followed by a decrease after a local
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Figure 5.8: Best fits of the axial form factor obtained from the analysis
of the BIN0, BIN1 and BIN2 data sets. The top (bottom) panel presents
the results obtained without (with) deuteron corrections. The shaded areas
denote 1σ uncertainties. Additionally, the relative uncertainty ∆FA/FA is
plotted.

maximum. As a result, r2
A has a negative sign,10 which is at odds with all

available determinations. We also observe that the Q2 dependence of the FF
disagrees with the one obtained from the same data set using the z expansion
{the coefficients from the ANL fit are given in Eq. (19) of Ref. [17]}. We have
obtained the z expansion coefficients for the BIN0 best fit, finding that their
values grow with the expansion order to values that are too large compared
to phenomenological expectations, Ref. [79]. This is an indication that the
fit that best represents BIN0 data is inconsistent with the QCD assumptions
implicit in the z expansion.

The height of the FA maximum is reduced once the deuteron correction
is included in the analysis, and it disappears when the first bin is removed
from the ANL data (BIN1 data set).11 Hence, the presence of the local
maximum of FA appears to be caused by low-Q2 effects. Furthermore, the
coefficients of the z expansion for the fits to BIN1 and BIN2 data sets are
fully consistent with the expectations from QCD.

There are several possible sources of this unexpected behavior of the
fits to the BIN0 set, namely, (i) an improper description of the nuclear
corrections; (ii) a low quality of the measurements at low-Q2 due to low and

10Although the large uncertainty does not exclude positive values.
11It is worth mentioning that fits with a negative slope of FA at low Q2, resembling the

best result for BIN0 data, have also been obtained in this case, but they are not preferred
by the Bayesian algorithm.
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5. Extraction of the nucleon axial form factor from neutrino scattering data

not well understood efficiency; (iii) constraints coming from the uncertainty
of gA; (iv) because of the lack of very low-Q2 data, the actual value of
r2
A might not be properly estimated: For instance, if FA has first a local
minimum and then a local maximum.12 In the later scenario, the ANL data
(and the available bubble-chamber data, in general) are not precise enough
to reveal this behavior.

In the low-Q2 kinematic domain, deuteron effects are sizable and may
play a crucial role. On the other hand the inclusion of deuteron corrections
in the analysis of the BIN1 and BIN2 data sets has a minor impact on
the functional dependence of the final results, i.e., there is small difference
between FA(Q2) obtained with and without deuteron corrections as can be
seen in Fig. 5.9. It is also interesting to highlight that the inclusion of the
deuteron-structure corrections in the cross-section model increases the value
of the evidence for each type of the analysis, see Table 5.1.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

F
A

(a)

BIN0, deuteron
BIN0, no deuteron

BIN1, deuteron
BIN1, no deuteron

BIN2, deuteron
BIN2, no deuteron

0.0

5.0

10.0

15.0

20.0

0.0 0.5 1.0 1.5 2.0 2.5

∆
 F

A
 (

%
)

Q
2
 (GeV

2
)

(b)

Figure 5.9: Impact of the deuteron corrections on the axial form factor fits.
Results of the best fits to the BIN0, BIN1, and BIN2 data sets with and
without the deuteron correction together with relative uncertainties. All
curves for the BIN1 and BIN2 cases nearly overlap.

In Fig. 5.10, we plot values of r2
A against the evidence. It is clearly seen

that the fits including deuteron corrections are favored by the ANL data.
The impact of the sensitivity of the results on the deuteron structure revealed
in the present chapter calls for a more accurate account of this ingredient

12The magnetic FFs of the nucleon at very low-Q2 (about 0.01 GeV2) when normalized
to a dipole have an oscillatory Q2 dependence, Ref.[28].
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of the cross section models, beyond the R(Q2) function from Ref. [109] em-
ployed so far. Recent studies of CC νd scattering in the QE regime (without
pions in the final state) include the non-relativistic calculation of the inclu-
sive cross section, incorporating two-body amplitudes, of Ref. [115]. For the
kinematics of the ANL and other bubble-chamber experiments, it is impor-
tant to employ a relativistic framework as in Ref. [116]. Furthermore, the
consideration of the semi-inclusive rather than the inclusive cross section
will allow taking into account the detection threshold for outgoing protons,
which, in the ANL case, is 100 MeV, Ref. [10]. One should nonetheless bear
in mind that even with the best model for the deuteron there is no guarantee
that the low-Q2 region is successfully described because of the difficulties in
the measurement and with efficiency estimates at this kinematics.
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Figure 5.10: Dependence of r2
A on the evidence. Open and full triangles

denote (the best) fits to the BIN0 data without and with the deuteron cor-
rections, respectively. Analogously, the fits to the BIN1 and BIN2 data are
denoted by circles and squares, respectively.

The impact of ∆gA on the results can be easily investigated. Indeed if
one increases the ∆gA uncertainty from ∆gA/gA ≈ 0.1%, as in Eq. (3.55) to
10%, then the local maximum of FA disappears. However, the fit uncertainty
rapidly grows from ∆FA/FA lower than 0.01% to ∆FA/FA ≈ 7% at Q2 = 0.
This analysis is shown in Fig. 5.11.

In order to compare the Bayesian neural-network results with the tradi-
tional approach, we have performed a conventional analysis of the ANL data
assuming the dipole parametrization for the axial FF Eq. (3.54). The best
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Figure 5.11: Impact of the ∆gA uncertainty on the extraction of the axial
form factor. The best fits to BIN0, BIN1 and BIN2 data (with deuteron cor-
rection). The thin lines denote results obtained assuming a 10% uncertainty
for gA, whereas the thick lines denote fits with the PDG uncertainty.

fit minimizes the χ2
ANL function, Eq. (5.52).13 These results are summarized

in Table 5.2, whereas the comparison between dipole fits and neural-network
analyses are displayed in Fig. 5.12.

Let us stress that the r2
A and normalization parameter p for the fits of

BIN0 data are comparable to the z expansion results, Ref. [17], even though
in the latter case, a different error function was utilized. Certainly, with
a dipole fit to BIN0 data one can not obtain the local maximum of FA at
low Q2. On the other hand, the dipole fits to the BIN1 and the BIN2 data
have very similar functional Q2 dependence as the best MLP fits. For these
data sets, the evidence, which contains Occam’s factor penalizing overfit-
ting parametrizations with large error bars, establishes the preference for a
rather structureless neural network that departs very little from the normal-

13For these analyses, the MINUIT package of ROOT has been utilized.
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χ2 analyses
χ2 p MA (MeV) r2

A (fm2)

BIN0
No deuteron 33.3 1.12 ± 0.03 1110 ± 60 0.38 ± 0.04
Deuteron 28.0 1.09 ± 0.03 1050 ± 60 0.43 ± 0.05

BIN1
χ2 p MA (MeV) r2

A (fm2)

No deuteron 24.4 1.17 ± 0.03 1000 ± 70 0.47 ± 0.07
Deuteron 22.3 1.13 ± 0.03 950 ± 70 0.52 ± 0.08

BIN2
χ2 p MA (MeV) r2

A (fm2)

No deuteron 20.8 1.22 ± 0.05 890 ± 100 0.59 ± 0.13
Deuteron 19.8 1.18 ± 0.05 850 ± 110 0.65 ± 0.16

Table 5.2: Fits of the dipole axial form factor, Eq. (3.54), to the BIN0, BIN1
and BIN2 data sets.

0.0

0.2

0.5

0.8

1.0

1.2

1.5

F
A

BIN0, deuteron

network
dipole fit

0.0

5.0

10.0

15.0

∆
F

A
(%

)

0.0 0.5 1.0 1.5 2.0 2.5

Q
2
 (GeV

2
)

0.0

0.2

0.5

0.8

1.0

1.2

1.5

F
A

BIN0, deuteron

network
dipole fit

0.0

5.0

10.0

15.0

∆
F

A
(%

)

0.0

0.2

0.5

0.8

1.0

1.2

1.5

F
A

BIN1, deuteron

network
dipole fit

0.0
5.0

10.0
15.0
20.0
25.0

0.0 0.5 1.0 1.5 2.0 2.5

∆
F

A
(%

)

Q
2
 (GeV

2
)

Figure 5.12: Comparison of the dipole with the neural network fits to the
BIN0 and BIN1 data, the deuteron corrections included. The shaded areas
denote 1σ uncertainties of FA.

ization values, given by Eq. (3.54) with MA = 1 GeV, and has small errors.
Furthermore, the uncertainties in the neural-network fits are systematically
smaller than in the dipole χ2 ones. In Appendix. E are given the explicit
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5. Extraction of the nucleon axial form factor from neutrino scattering data

numerical results for the BIN0 and BIN1 fits, as well as the correspondent
covariance matrices.

5.6 Summary

The first Bayesian neural-network analysis of the neutrino-deuteron scatter-
ing data has been performed. The reported study has been oriented to the
extraction of the axial FF from the ANL CCQE data, searching for devia-
tions from the dipole form. With the full ANL data set, the analysis leads
to an axial FF which has a positive slope at Q2 = 0 and a local maximum
at low Q2. The inclusion of the deuteron correction reduces the peak in FA.
Only after removing the lowest available Q2 region (0.05 < Q2 < 0.10 GeV2)
from the data, a value of the axial radius consistent with available determi-
nations could be obtained. This suggests that corrections from the deuteron
structure play a crucial role at low Q2 but it could also be the case that the
experimental errors in this kinematic region were underestimated. Analyses
without the low-Q2 data do not show any significant deviation from previous
determinations. Furthermore, our neural-network fits are characterized by
smaller uncertainties than the dipole ones.

New more precise measurements of the neutrino cross sections on hydro-
gen and deuterium are needed to unravel the axial structure of the nucleon.
Techniques, such as the one applied in the present chapter will prove valuable
in such a scenario.
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Chapter 6

Weak Kaon Production off the
nucleon and Watson’s theorem

6.1 Introduction

When pursuing the goal of reducing systematic uncertainties in oscillation
experiments, much attention has been paid to quasi-elastic scattering and
weak pion production. On the other hand, with better statistics and higher
precision goals, other, largely unexplored, processes with smaller cross sec-
tions may play a significant role. Kaon and strangeness production in general
belongs to this category.

The charged-kaon production (νµCH → µ−K+X) measurement at
MINERνA [29] experiment opens a new window to study the weak
strangeness production mechanisms in detail. The weak processes that
could lead to kaons in the final state are either initiated by strangeness
conserving (∆S = 0) or strangeness changing (∆S = 1) mechanisms. Al-
though the ∆S = 1 reactions (1K) are Cabibbo suppressed compared to
∆S = 0 ones (Y K), the latter involve the production of massive strange
hyperons (Y ), which pushes the reaction thresholds higher in neutrino ener-
gies. Therefore, below 2 GeV of incoming neutrino energies, the 1K reaction
is favoured [29, 30]. In nuclei, final state interactions of the produced kaon
are not very strong because of the absence of baryon resonances. However,
kaons can also be produced in secondary collisions, rendering the extraction
of information about the elementary 1K-production amplitudes in experi-
ments with nuclear targets rather difficult [117].

Theoretical work on weak production of meson-baryon pairs with open
and hidden strangeness was performed in the early days of neutrino
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6.2. Single kaon production model

physics [118–121], and resumed only recently with studies in the
∆S = 0 [122, 123], ∆S = −1 [124, 125] and ∆S = 1 [30] sectors. The
first calculation of the νlN → l−KN ′ amplitudes using leading-order SU(3)
ChPT was performed by Alam et. al. [30]. The threshold cross section was
predicted in a model independent way in terms of only three precisely-known
quantities fπ, D and F . To extend the validity of the study to higher en-
ergies, the hadronic currents were multiplied by a phenomenological global
dipole FF. However, as it is based on tree-level diagrams, this model neither
respects the unitarity of the S matrix, nor it satisfies the related Watson’s
theorem [126],1 according to which, the phase of the amplitude is determined
by the strong meson-baryon interaction (KN in this case).

In this chapter, we address this issue and partially restore unitarity, by
imposing Watson’s theorem. This is achieved by introducing relative phases
in the amplitudes derived in Ref. [30], as suggested by Olsson in [127] for pion
photoproduction. In Refs. [31, 128], the same strategy has been successfully
applied to the weak pion production model of Ref. [129].

In the next sections we present the model for ∆S = 1 K-production, de-
rive Watson’s theorem and present Watson’s prescription to approximately
restore unitarity. Then, we discuss the impact of this improvement on ob-
servable quantities.

6.2 Single kaon production model

The allowed neutrino-induced ∆S = 1 single-kaon production reaction chan-
nels on nucleons are

νl + p→ l− + p+K+ ,

νl + n→ l− + p+K0 ,

νl + n→ l− + n+K+ .

(6.1)

The differential cross section for the processes of Eq. (6.1) is given by

dσ

dW dQ2dΩ∗K
=

|~p ∗K |
64(2π)4E2

νM
2
N
|M|2 , (6.2)

in terms of the squared modulus of the amplitude of the interaction.2 W =√
s is the invariant mass of the outgoing kaon-nucleon pair. As in previous

chapters, Q2 = −q2 stands for minus the square of the four momentum
1A consequence of unitarity of S−matrix and time reversal symmetry.
2The cross section expression can be obtained from Eq.(3.8), for the specific case of

three outgoing particles.
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transfer q = k−k′, with k and k′ the four momenta of the incoming neutrino
and outgoing lepton respectively. We fix the lepton kinematics and target
nucleon the Laboratory frame, in which Eν denotes the incoming neutrino
energy (Eν = k0). The outgoing KN system is treated in the rest frame of
the pair, referred as the hadronic center-of-mass (HCM) frame. We represent
HCM quantities with a ‘∗’ superscript. In Eq. 6.2, the kaon momentum (~p ∗K)
and solid-angle (Ω∗K) are indeed in the HCM frame.

Given the coupling of CC interactions, Eq. (2.2), and the W± boson
propagator,

Dµν =
−gµν + qµqν/M

2
W

q2 −M2
W

' gµν
M2
W

, (6.3)

for the squared modulus of the amplitude, Eq. (3.5), we have

|M|2 =
1

2
G2
F |Vus|2LµνHµν , (6.4)

where Lµν (Hµν) is the leptonic (hadronic) tensor. The numerical values of
the Fermi coupling constant (GF ) and the CKM matrix element, |Vus|, are
given in Appendix. A.3. The leptonic tensor may be written as,3

Lµν = 8
[
k′µ kν + k′ν kµ − gµν(k′ · k) + iεµνσρk′σkρ

]
. (6.5)

The tensor Hµν can be expressed in terms of the WN → KN ′ hadronic
current Jµ as

Hµν =
∑

spins

Jµ (Jν)† , (6.6)

where the sum is performed over the spin projections of the incoming and
outgoing nucleons.

The complete set of diagrams that contribute to Jµ for the processes
in Eq. (6.1) are shown in Fig. 6.1. The hadronic current is obtained from
the expansion of the SU(3) chiral Lagrangian at its lowest order, plus next-
to-leading contributions to weak magnetism, described in Sec. 2.4. The

3Note that the leptonic tensor in these processes has the same functional form than
the one presented in Eq. (4.45) of Chapter 4, in terms of the momenta of the incoming
and outgoing leptons.
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corresponding contributions to the hadronic current are

Jµ
∣∣
CT = −iACTVus

√
2

2fπ
N̄(p′)(γµ + γµγ5BCT)N(p) ,

Jµ
∣∣
CrΣ

= iACrΣVus

√
2

2fπ
N̄(p′)

(
γµ + i

µp + 2µn
2MN

σµνqν

+(D − F )(γµ − qµ

q2 −M2
k
/q)γ

5

)
/p− /pk +MΣ

(p− pk)2 −M2
Σ
/pkγ

5N(p) ,

Jµ
∣∣
CrΛ

= iACrΛVus

√
2

4fπ
N̄(p′)

(
γµ + i

µp
2MN

σµνqν

−D + 3F

3
(γµ − qµ

q2 −M2
k
/q)γ

5

)
/p− /pk +MΛ

(p− pk)2 −M2
Λ
/pkγ

5N(p) ,

Jµ
∣∣
KP = iAKPVus

√
2

4fπ
N̄(p′)(/q + /pk)N(p)

1

q2 −M2
k

qµ ,

Jµ
∣∣
π

= iAπPVus(D + F )

√
2

2fπ

MN

(q − pk)2 −M2
π

N̄(p′)γ5.(qµ − 2pk
µ)N(p) ,

Jµ
∣∣
η

= iAηPVus(D − 3F )

√
2

2fπ

MN

(q − pk)2 −M2
η

N̄(p′)γ5.(qµ − 2pk
µ)N(p) .

(6.7)
The values of Ai, where i labels the corresponding diagram in Fig. 6.1,
depend on the reaction channel and are listed in Table 6.1. Finally, to
extend the kinematic range of the calculation, a global dipole FF has been
introduced, with a dipole mass of 1 ± 0.1 GeV, accounting for the finite
hadronic structure and its uncertainty.

Process ACT BCT ACrΣ ACrΛ AKP AπP AηP
νn→ lKn 1 D − F − (D − F ) 0 1 1 1
νp→ lKp 2 −F − (D − F ) /2 (D + 3F ) 2 -1 1
νn→ lKp 1 −D − F (D − F ) /2 (D + 3F ) 1 -2 0

Table 6.1: List of the hadronic current parameter values for each process [30].
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Figure 6.1: Feynman diagrams for the hadronic current W+N → KN ′.
From the upper left corner in clockwise order: contact (CT), kaon pole
(KP), π and η in flight (πP, ηP) and u-channel hyperon exchange (CrΣ,
CrΛ) terms.

6.3 Center of Mass two-particle helicity states

In preparation for our goal of imposing constrains from Watson’s theorem
on weak kaon production observables, we introduce the formalism of two-
particle helicity states following closely Ref. [130]. In the first place we define
the helicity state of a single particle. The state of such a particle, with mass
m, momentum ~p and spin j, can be represented by

|m, j; ~p, λ〉 = R (θ, φ)Zp |m, j; ~p = 0, λ〉 , (6.8)

where Zp is a boost along the positive direction of the z-axis and p = |~p|.
The rotation R (θ, φ) brings this axis into the direction of the momentum;
it is defined as

R (θ, φ) ≡ R (φ, θ,−φ) = e−iφJze−iθJyeiφJz , (6.9)

in terms of the polar angles of ~p, (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π). The three di-
mensional rotation group generators are Ji, i = 1, 2, 3. The eigenvalue of
J3 is denoted by λ, the spin Then, λ is the component of spin along the
z-direction in the rest frame of the particle. As λ is not affected neither by
a Zp boost nor by a rotation, it can be interpreted as the spin component
along the direction of motion and, hence, the helicity of the particle. The
normalization of the states is given by

〈m, j; ~p, λ | m, j; ~p ′, λ′〉 = (2π)3 2E (~p) δ(3)
(
~p− ~p ′

)
δλλ′ , (6.10)

145



6.3. Center of Mass two-particle helicity states

with E (~p) =
√
m2 + ~p 2.

The state of two non-interacting particles can be cast as

|m1, j1; ~p1, λ1〉 ⊗ |m2, j2; ~p2, λ2〉 ≡ |~p1, ~p2, λ1, λ2; γ〉 , (6.11)

where γ includes all other quantum numbers of the system. In the CM
frame, ~p1 = −~p2 ≡ ~p so that the invariant mass is given by

W =
√
m2

1 + p2 +
√
m2

2 + p2 . (6.12)

In this frame, we use the vector |m1, j1; ~p1, λ1〉, with the structure given by
Eq. (6.8), to represent the state of the particle with momentum ~p. Then, for
the particle with momentum −~p, we can use the same rotation operator,

|m2, j2;−~p, λ2〉 = R (θ, φ) |m2, j2;−pz, λ2〉 , (6.13)

where pz is the component of the momentum in the z-direction. The bar
state is defined as

|m2, j2;−pz, λ2〉 = (−1)j2−λ2 R(π, 0) |m2, j2; pz, λ2〉 , (6.14)

with
|m2, j2; pz, λ2〉 = Zp |m2, j2; ~p = 0, λ2〉 . (6.15)

The phase factor (−1)j2−λ2 is introduced so that as pz → 0

|m2, j2;−pz = 0, λ2〉 = |m2, j2; ~p = 0,−λ2〉 . (6.16)

An equivalent definition for two particle CM states can be written as

|p, 0, 0;λ1, λ2; γ〉 = |m1, j1; pz, λ1〉 ⊗ |m2, j2;−pz, λ2〉 , (6.17)

and
|p, θ, φ;λ1, λ2; γ〉 = R (θ, φ) |p, 0, 0;λ1, λ2; γ〉 . (6.18)

One can define two different vectors, corresponding to two particle he-
licity states in an arbitrary frame,

|I〉 =
∣∣p′1, p′2;λ′1, λ

′
2; γ′

〉
,

|F 〉 = |p1, p2;λ1, λ2; γ〉 . (6.19)

The normalization is given then by

〈F | I〉 = (2π)6 2E12E2δ
(3)
(
~p ′1 − ~p1

)
δ(3)

(
~p ′2 − ~p2

)
δλ′1λ1

δλ′2λ2
δγ′γ . (6.20)
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6. Weak Kaon Production off the nucleon and Watson’s theorem

These states are eigenstates of the total four-momentum of the system, Pµ =
pµ1 + pµ2 . Thus, we can write

|I〉 = |Pµ〉 ⊗ |α〉 ,
|F 〉 =

∣∣P ′µ
〉
⊗
∣∣α′
〉
,

(6.21)

and
〈P ′µ | Pµ〉 = (2π)4 δ(4)

(
P ′µ − Pµ

)
. (6.22)

In the CM frame ~P = 0 and P 0 = W ; it then follows that

〈α′ | α〉 = (2π)2 4W

p
δ
(
Ω′ − Ω

)
δλ′1λ1

δλ′2λ2
δγ′γ , (6.23)

with dΩ = d cos θdφ. To remove the dependence on Pµ of |α〉, we introduce
the vectors

|θ, φ;λ1, λ2; γ〉 =

√
p

4W
|α〉 , (6.24)

with normalization given by

〈θ′, φ′;λ′1, λ′2; γ′ | θ, φ;λ1, λ2; γ〉 = δ
(
Ω′ − Ω

)
δλ′1λ1

δλ′2λ2
δγ′γ . (6.25)

Hence the CM state vectors of Eq. (6.18) can be written as

|p, θ, φ;λ1, λ2; γ〉 =

√
4W

p
|Pµ〉 ⊗ |θ, φ;λ1, λ2; γ〉 . (6.26)

On the other hand, the CM states can be expressed in terms of states
with well-defined total angular momentum J ,

|p, J,M ;λ1, λ2; γ〉 =

√
4W

p
|Pµ〉 ⊗ |J,M ;λ1, λ2; γ〉 , (6.27)

where M is the eigenvalue the third component of J and

〈J ′,M ′;λ′1, λ′2; γ′ | J,M ;λ1, λ2; γ〉 = δJJ ′δMM ′δλ′1λ1
δλ′2λ2

δγ′γ . (6.28)

The transformation properties of these vectors under a rotation R (α, β, γ)
are

|p, J,M ;λ1, λ2; γ〉 → D(J)
MM ′ (α, β, γ) |p, J,M ;λ1, λ2; γ〉 , (6.29)
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6.3. Center of Mass two-particle helicity states

where D(J)
MM ′ (α, β, γ) is the matrix representation of a rotation operator

R (α, β, γ) in an irreducible representation of the rotation group labeled by
J ,

D(J)
MM ′ (α, β, γ) ≡

〈
JM ′

∣∣R (α, β, γ) |JM〉 . (6.30)

We can write

D(J)
MM ′ (α, β, γ) = e−iαM ′dJM ′M (β)e−iγM ,

dJM ′M (β) =
〈
J,M ′

∣∣ e−iβJy |J,M〉 .
(6.31)

This matrices fulfils the orthogonality relations [130]
∫
dΩD(J)∗

M1M2
(φ, θ,−φ)D(J ′)

M ′1M
′
2

(φ, θ,−φ) =
4π

2J + 1
δJJ ′δM1M ′1

δM2M ′2
.

(6.32)
The vectors of Eq. (6.26) can be written as an expansion in the base

given by the vectors of Eq.(6.27),

|p, θ, φ;λ1, λ2; γ〉 =
∑

J,M

CJM (p, θ, φ;λ1, λ2; γ) |p, J,M ;λ1, λ2; γ〉 , (6.33)

with coefficients CJM . The state |p, 0, 0;λ1, λ2; γ〉 is an eigenstate of Jz with
eigenvalue λ = λ1 − λ2, then

|p, 0, 0;λ1, λ2; γ〉 =
∑

J

CJλ (p, 0, 0;λ1, λ2; γ) |p, J, λ;λ1, λ2; γ〉 . (6.34)

Applying the rotation R (θ, φ) in both sides of of this equation we obtain

|p, θ, φ;λ1, λ2; γ〉 =
∑

J,M

CJD(J)
Mλ (φ, θ,−φ) |p, J,M ;λ1, λ2; γ〉 , (6.35)

with CJ ≡ CJλ (p, 0, 0;λ1, λ2; γ). Substituting the result of Eq. (6.35) in
Eqs. (6.26, 6.27) and with the orthogonality relations of Eq. (6.32) we find

|J,M ;λ1, λ2; γ〉 =
2J + 1

4πCJ

∫
dΩD(J)∗

Mλ (φ, θ,−φ) |θ, φ;λ1, λ2; γ〉 . (6.36)

From this result and the normalization of the |J,M ;λ1, λ2; γ〉 states we can
determine the constant CJ ,

CJ =

√
2J + 1

4π
, (6.37)
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6. Weak Kaon Production off the nucleon and Watson’s theorem

where we have chosen the phase of CJ , which is not determined, to be zero,
taking the positive square root, and, hence,

|J,M ;λ1, λ2; γ〉 =

√
2J + 1

4π

∫
dΩD(J)∗

Mλ (φ, θ,−φ) |θ, φ;λ1, λ2; γ〉 . (6.38)

An alternative basis, with well-defined total spin, S = j1 ⊕ j2, and rela-
tive orbital angular momentum, L = J ⊕S, of the two particles, is given by
the vectors |J,M ;L, S; γ〉. These vectors can be expressed as a linear combi-
nation of states of relative angular momentum L, ML with spin components
m1,m2 along the z-axis,

|J,M ;L, S; γ〉 =
∑

m1,m2

(L, S, J |ML,MS ,M) (j1, j2, S | m1,m2,MS)

× |L,ML;m1,m2; γ〉 ,
(6.39)

where (L, S, J |ML,MS ,M) are the Clebsch-Gordan coefficients. In turn,
these states can be written in terms of plane wave states in which the particle
spins are quantized along the z-axis [130]

|L,ML;m1,m2; γ〉 =

√
2L+ 1

4π

∫
dΩD(L)∗

ML0 (φ, θ,−φ) |θ, φ;m1,m2; γ〉
(6.40)

The |J,M ;L, S; γ〉 states can be related to the helicity states
|J,M ;λ1, λ2; γ〉, by the relation, for a single particle helicity state,

|~p, λ〉 =
∑

ms

D(j)
ms,λ

(φ, θ,−φ) |~p,ms〉 , (6.41)

where ms is the spin component along the z-axis, and the property [130]

D(j1)
m′1,m1

D(j2)
m′2,m2

=
∑

J

(j1, j2, J | m1,m2,M)
(
j1, j2, J | m′1,m′2,M ′

)
D(J)
M ′M .

(6.42)
Therefore, for the helicity states we can write

|J,M ;λ1, λ2; γ〉 =
∑

L,S

√
2L+ 1

2J + 1
(L, S, J | 0, λ, λ) (j1, j2, S | λ1,−λ2, λ)

× |J,M ;L, S; γ〉 ,
(6.43)
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and

|J,M ;L, S; γ〉 =
∑

λ1,λ2

√
2L+ 1

2J + 1
(L, S, J | 0, λ, λ) (j1, j2, S | λ1,−λ2, λ)

× |J,M ;λ1, λ2; γ〉 .
(6.44)

6.4 Watson’s theorem

In this section we highlight the main points of the Watson’s theorem for-
mulation, following the derivation presented in Ref. [31]. The transition
amplitude between the asymptotically defined in and out states of definite
momentum is given in terms of the unitary operator called the S-matrix.
The structure of this operator contains two parts, the identity operator,
which corresponds to the case where the particles do not interact at all, and
the T -matrix, which is the interaction term,

S = I− iT . (6.45)

The unitarity of the S-matrix, SS† = S†S = I, implies that

S†S = I− iT + iT † + T †T = I ,

i

(
T − T †

)
= T †T ,

i

(
〈F |T |I〉 − 〈F |T † |I〉

)
= 〈F |T †T |I〉

=
∑

N

〈F |T † |N〉 〈N |T |I〉

=
∑

N

〈N |T |F 〉∗ 〈N |T |I〉 ,

(6.46)

where |I〉 and |F 〉 are the initial and final asymptotic states. On the other
hand, for a system which is invariant under time reversal, T †T †T = T , as
the T operator is antiunitary, with T 2 = ±1, we have

〈F |T † |I〉 = 〈I|T |F 〉∗ = 〈I| T †T †T |F 〉∗ = 〈IT |T † |FT 〉 = 〈FT |T |IT 〉∗ .
(6.47)

Substituting the result of Eq.(6.47) in Eq. (6.46) we find that

i (〈F |T |I〉 − 〈FT |T |IT 〉∗) =
∑

N

〈N |T |F 〉∗ 〈N |T |I〉 . (6.48)
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6. Weak Kaon Production off the nucleon and Watson’s theorem

If 〈F |T |I〉 = 〈FT |T |IT 〉 and there is only one relevant intermediate state
in the sum of Eq. (6.48), one obtains that

〈N |T |F 〉∗ 〈N |T |I〉 = −2Im 〈F |T |I〉 ∈ R , (6.49)

which is the Watson’s theorem [126] on the effect of final state interactions
on reaction cross sections.

6.4.1 Watson’s theorem for weak kaon production

Let us consider matrix elements of the transition (T ) scattering operator
between two-body states with well defined total angular momentum J and
particle helicities (λ) in the HCM frame. Following the derivation of Sec.
II.A of Ref. [31] for weak pion production, the S−matrix unitarity and time
reversal symmetry imply that

∑

λK′′λN′′

〈J,M ;λK′′ , λN ′′ |T (s)|J,M ;λK , λN ′ 〉∗

× 〈J,M ;λK′′ , λN ′′ |T (s)|J,M ;λW , λN 〉 ∈ R ,
(6.50)

for the W+N → KN ′ transition. We remind here that
√
s is the center-of-

mass energy of the kaon-nucleon pair, and we limit its range in this work
such that, the only relevant strong process in the sum over intermediate
states implicit in the derivation of Eq. (6.50) in [31], is the K ′′N ′′ → KN ′

reaction. This equation, Watson’s theorem, relates the phases of the strong
K ′′N ′′ → KN ′ amplitudes with the electroweak WN → K ′′N ′′ ones. The
later, up to a real normalization constant

〈K ′′N ′′|T |WN〉 ∝ −iJµεµ , (6.51)

in terms of the hadronic current Jµ, introduced earlier in the chapter, and
the polarization vector of theW boson. 4 TheW -boson offshellness does not
affect the present argument [31]. We consider only KN intermediate states,
restricting the validity of the approach to invariant masses of the KN pair
below the KKY threshold. We further neglect the influence of KπN inter-
mediate states. This assumption relies on the observation that in the KN
partial waves under consideration (details are given below), inelasticities are
either sharply or very close to one for invariant masses below 2.1 GeV [131].

4Notice that the gauge coupling has been factored out and absorbed in the Fermi
constant of Eq. (6.4).
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To be more specific, in Eq. (6.50) after setting the kaon helicities to zero,
we denote as r the helicity of the W gauge boson, and as λ, λ′, ρ the corre-
sponding ones of the initial, final and intermediate nucleons. Furthermore,
assigning the z direction (θ = ϕ = 0) to the WN incoming pair, one can
write

|θ = 0, ϕ = 0; r, λ〉 =
∑

J

√
2J + 1

4π
|J,M = r − λ; r λ〉 , (6.52)

which follows from Eq. (6.38). By taking into account that T is a scalar and
therefore diagonal in J , Eq. (6.50) can be cast as (M = r − λ)

∑

ρ

〈J,M ; 0, ρ︸︷︷︸
KN

|T (s)|J,M ; 0, λ′︸︷︷︸
KN

〉∗

× 〈J,M ; 0, ρ︸︷︷︸
KN

|T (s)|θ, ϕ = 0; r, λ︸︷︷︸
WN

〉 ∈ R .
(6.53)

Introducing states with well-defined orbital angular momentum L and
spin S, and using their transformation properties given in Sec. 6.3 one finds
that

∑

L

∑

ρ

2L+ 1

2J + 1
(L, 1/2, J |0,−λ′,−λ′)(L, 1/2, J |0,−ρ,−ρ)

× 〈J,M ;L, 1/2|T (s)|J,M ;L, 1/2〉∗︸ ︷︷ ︸
KN→KN

× 〈J,M ; 0, ρ|T (s)|θ, ϕ = 0; r, λ〉︸ ︷︷ ︸
WN→KN

∈ R ,

(6.54)

given that parity is conserved by the strong KN → KN amplitudes. Here
(L, S, J |ML,MS ,MJ) are Clebsch-Gordan coefficients.

Based on kaon-nucleon scattering phenomenology and the behavior of
weak kaon production amplitudes close to threshold, it is reasonable to
assume that the process under study is dominated by the s partial wave
(L = 0). This implies that S = J = 1/2, the nucleon spin. Eq. 6.54 takes
then the form

χr,λ(s)〈1/2, r − λ; 0, 1/2|T (s)|1/2, r − λ; 0, 1/2〉∗ ∈ R , (6.55)

where the shorthand notation

χr,λ(s) =
∑

ρ

〈1/2, r − λ; 0, ρ|T (s)|θ, ϕ = 0; r, λ〉 , (6.56)
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6. Weak Kaon Production off the nucleon and Watson’s theorem

has been introduced. Up to an irrelevant constant, these functions can be
written as

χr,λ(s) =
∑

ρ

∫
dΩ D(1/2)

M −ρ(ϕ, θ,−ϕ) 〈θ, ϕ; 0, ρ|T (s)|θ, ϕ = 0; r, λ〉 , (6.57)

where D(1/2)
M −ρ are Wigner D-matrices (see Eq. (6.38) in Sec. 6.3). The in-

tegral is performed over the solid angle of the outgoing kaon in the HCM
frame.

Owing to the V −A nature of the weak interaction, T in Eq. (6.56) can
be expressed as TV − TA, TV (A) being even (odd) under parity inversion.
Therefore, it is convenient to write χr,λ = χVr,λ − χAr,λ. In terms of two-
particle helicity states with well defined angular momentum J (= 1/2 in our
case)

χV,Ar,λ =
∑

ρ

〈1/2,M ; 0, ρ|T V,A |1/2,M ; r, λ〉 . (6.58)

Under parity inversion, these states are transformed as (Eq. (5.28) of
Ref. [130])

P |J,M ;µ1, µ2〉 = η1η2(−1)J−s1−s2 |J,M ;−µ1,−µ2〉 , (6.59)

in terms of the two particles’ intrinsic parities η1,2 and spins s1,2. Therefore

P |1/2,M ; r, λ〉 = ηNηW (−1)1/2−1/2−1 |1/2,M ;−r,−λ〉 ,
P |1/2,M ; 0, ρ〉 = ηNηK(−1)1/2−1/2−0 |1/2,M ;−r,−λ〉 .

(6.60)

Therefore

χV,A−r,−λ = −
∑

ρ

〈1/2,M ; 0, ρ|P−1T V,AP |1/2,M ; r, λ〉 ,

where we have taken into account that these matrix elements do not depend
on M because T is a scalar under rotations. Once P−1T V,AP = ±T V,A

χV,A−r,−λ = ∓χV,Ar,λ , (6.61)

from where
χVr,λ =

1

2
(χr,λ − χ−r,−λ) ,

χAr,λ = −1

2
(χr,λ + χ−r,−λ) .

(6.62)

153



6.4. Watson’s theorem

They allow to reduce the number of independent functions from four vector
(axial) ones to two [31] for each of the reaction channels listed in Eq. (6.1).5

Finally, we project onto states with well defined isospins (I) and intro-
duce isospin amplitudes, and hence the χ(I=0,1) functions,

χ(1) = χ(W+ p→ K+ p) ,

χ(0) = χ(W+ n→ K+ n)− χ(W+ n→ K0 p) .
(6.63)

Other indices have been dropped for simplicity. These identities let us to
write the χ for all three processes in terms of only two with I = 0, 1.

We proceed by identifying the dominant contributions to the amplitude.
From the analysis of Ref. [30] we know that contact term (CT) is the largest
one for all processes of Eq. (6.1). We find convenient to split the T matrix
as T = TCT + TB, where TCT denotes the CT term, while the rest of the
diagrams of Fig. 6.1 are included in TB. Next, we compute all the inde-
pendent χV,A (I=0,1)

r,1/2 with r = 0, 1 (eight in total), calculated from the CT

Feynman diagram. As illustrated in Fig. 6.2 for a fixed Q2, we identify χA(0)
0,1/2

and χ
V (1)
0,1/2 as dominant and select them to determine the Olsson’s phases

introduced next.
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Figure 6.2: Absolute value squared of χV,Ar,λ defined using Eqs. (6.56), (6.62)
and (6.63) as a function of the KN invariant mass (W ) for a fixed Q2 = 0.1
GeV2. Left and right panels stands for isospin I = 0 and I = 1 respectively.

In order to implement Watson’s theorem to partially restore unitarity, we
follow the prescription given by Olsson [127]. Namely, we introduce phases
ΨV,A in both vector and axial CT terms, such that the modified amplitude

5Combinations with |r − λ| = 3/2 are excluded because J = 1/2.
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reads as

〈θ, ϕ; 0, ρ|T (s)|θ, ϕ = 0; r, λ〉 = εrµT
V µ
Bλρ(θ, ϕ)− εrµTAµBλρ(θ, ϕ)

+ εrµT
V µ
CTλρ(θ, ϕ) eiΨV − εrµTAµCTλρ(θ, ϕ) eiΨA .

(6.64)
where ε(r,r′)µ, r = 0,±1, is the W−boson polarization vector. Thanks to
Watson’s theorem these unknown phases can be determined using the avail-
able experimental information aboutKN scattering phase shifts. We impose
that

Im
{
χ
V (1)
0,1/2(s) e−iδS11

}
= 0 , (6.65)

Im
{
χ
A(0)
0,1/2(s) e−iδS01

}
= 0 , (6.66)

where the KN phase shift δLI,2J are taken from the Scattering Analyses
Interactive Dialin (SAID) database of the INS Data Analysis Center [131].
The Eqs. (6.65) and (6.66) can be used to determine the Olsson phases ΨV,A,
which are two-dimension functions of W and Q2.

6.5 Results and discussion

The ΨV,A(W,Q2) solutions of Eqs. (6.65), (6.66) plugged in Eq. (6.64) correct
the relative phase between the CT term and the rest of mechanisms. As
discussed in [31], there exist two solutions for the vector Eq. (6.65) [axial
Eq. (6.66)], which correspond to χV (1)

0,1/2(s) [χA(0)
0,1/2(s)] having phases δS11 [δS01 ]

or (δS11 + π) [(δS01 + π)], since the KN phase shift is defined up to a π
factor. We label Sol.1 or Sol.2, the solutions with the smallest or largest
phases, respectively. In Fig. 6.3, the integrated cross sections obtained with
these two set of solutions are shown, together with the reference calculation
of Ref. [30], which did not include the Olsson’s phases. One immediately
notices that, while the partial unitarization with Sol.1 provides small effects,
Sol. 2 leads to large variations. For example, in νµn → µ−pK0, we find
that around Eν = 2 GeV, the cross section obtained with Sol.2 is four times
larger than that predicted in Ref. [30]. In Ref. [31], where a similar approach
was undertaken for weak pion production, the preference for small Olsson’s
phases was clearly validated by pion photoproduction data (see Fig. 2 of
that paper). In the present case, there are no equivalent electromagnetic
single kaon production data that could serve for validation purposes. Future
data for weak single kaon production at low energies obtained, for example
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with SBND [132] at Fermilab, that will collect data with high statistics, or
in a future neutrino experiment on hydrogen and/or deuterium shall have
the potential to distinguish between the two solutions. Nonetheless, given
the weakness (for strong forces) of the KN interactions, one is seriously
inclined to expect Sol.1 with small phases to be the physical one. In this
case, Olsson’s phases have a small effect, with the largest one, observed
in νµn → µ−pK0, amounting to about an 18% increase with respect to
the reference predictions of Ref. [30] at Eν = 2 GeV. It is therefore plausible
that, in the energy region in which the present model is applicable, the size of
unitarity corrections is within the model uncertainties effectively accounted
by the 10 % uncertainty assumed for the dipole mass, at least for the total
cross section.
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Figure 6.3: Total cross section σ(Eν) as a function of the muon-neutrino
energy (Eν) for the processes of Eq. (6.1). The solid curve stand for the
original results of Ref. [30], while the predictions obtained after the Watson’s
corrections are shown with dashed and dashed dotted lines for (Sol 1) and
(Sol 2) sets of Olsson’s phases, respectively.

In order to perform a more detailed analysis of the impact of unitarity
corrections we rely on the following representation of the differential cross
section, Eq. (6.2),

dσ

dW dQ2dΩ∗K
=

G2
FW

4πMN |~k|2
(A+B cosφ∗K + C cos 2φ∗K .

+D sinφ∗K + E sin 2φ∗K) ,

(6.67)

where the dependence on the HCM kaon azimuthal angle has been singled
out [129, 133, 134]. The structure functions A − E are real and depend on
the scalars Q2, p · q, pK · q and pK · p. We have obtained these structure
functions for weak kaon production for the first time. They are displayed in
Figs. 6.4, 6.5, and 6.6 for each of the possible reaction channels as a function
of cos θ∗K for fixed Eν , W and Q2. Large differences for results with Sol. 2
are apparent, while those with Sol. 1 are close to the uncorrected ones as
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6. Weak Kaon Production off the nucleon and Watson’s theorem

expected. Particularly noticeable are the larger values and stronger angular
dependence found for A in the Sol. 2 case. So is also the different sign of
the Sol. 2 prediction of B and C in νµ + n → µ− + n + K+. Remarkably,
the D and E structure functions, responsible for parity violation in kaon
production (and weak meson production in general [134]), which are zero in
the tree-level model with real amplitudes, acquire nonzero although small
values due to unitarization.

6.6 Summary

We have improved the theoretical description of single kaon production in
neutrino-nucleon collisions below the KKY threshold by partially account-
ing for unitarity. For this purpose we have introduced Olsson’s phases for
the largest (contact) term of the amplitude in the dominant vector and ax-
ial multipoles. These phases take the values required to fulfill Watson’s
theorem. Experiment should ultimately discriminate among the two math-
ematical solutions found for the Olsson’s phases but one of them is a firm
candidate to be the non-physical one due to the large changes in the observ-
ables that it drives, which are unlikely to be caused by the rather weak KN
interaction. The alternative solution, instead, leads to small corrections in
the cross section, as expected because of the absence of baryon resonances,
and which in addition are within the uncertainties of the model. This would
validate the reference tree-level model, built upon leading the order chiral
Lagrangian, in the kinematic region under consideration. Finally, we have
investigated the behavior of the structure functions that characterize the
cross-section dependence on the kaon azimuthal angle, finding also clear dif-
ference between solutions. The impact of unitarization is visible in the fact
that the parity-violating structure functions depart from zero.
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Figure 6.4: A,B,C,D,E structure functions for νµ + p → µ− + p+K+ as
a function of the cosine of the polar kaon angle in the HCM frame (θ∗K) for
fixed Eν = 2 GeV, W = 1.5 GeV, Q2 = 0.2 GeV2. Line styles are as in
Fig. 6.3.
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Figure 6.5: Same as Fig. 6.4, but for the νµ + n→ µ− + p+K0 reaction.
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Figure 6.6: Same as Fig. 6.4, but for the νµ + n→ µ− + n+K+ reaction.
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Chapter 7

Coherent photon emission in
neutral-current interactions

7.1 Introduction

Coherent scattering refers to processes in which the final-state nucleus is
left in its ground state, rather than in an excited one. Coherent produc-
tion of mesons and photons are relevant for neutrino oscillation experiments
as a source of backgrounds. For this reason, they have received special
attention both experimentally and theoretically, see Ref. [135] and refer-
ences therein. Most efforts have been devoted to coherent pion production
νlA → l∓π±A (CCπ±) and νlA → νlπ

0A (NCπ0). For some detection
techniques, NCπ0 events can mimic e± from νe CC interactions, influencing
therefore νe appearance measurements. Theoretically, PCAC allows to relate
the coherent pion production cross section to pion-nucleus elastic scattering,
Refs. [136, 137], for which some experimental data are available. Microscopic
models, which start from particle production models on nucleons and per-
form a coherent sum over all nucleonic currents, have also been extensively
developed (for example Refs. [138, 139]). In this chapter we study coherent
photon emission νlA→ νlγA (NCγ).

Although smaller than the NCπ0 one, the NCγ background remains ir-
reducible in Cherenkov detectors. Moreover, in some proposed explanations
of the anomalous excess of events observed at MiniBooNE [56–58, 140],
heavy sterile neutrinos decay to active neutrinos and single photons or e+e−

pairs [63]. Coherent NCγ production appears as a background to the pro-
posed signature, which can be tested with liquid Argon (LAr) experiments
such as MicroBooNE and SBND. Furthermore, in some experiments, single
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7.2. Coherent photon production cross section

showers induced by coherent NCγ emission can hardly be distinguished from
those coming from neutrino-electron elastic scattering, which is a reference
process in neutrino physics. At the MINERνA experiment, alongside with
the ν−e sample [141], a sizable and distinctive fraction of NCγ events might
be present, opening the possibility to identify and characterize this reaction
channel using suitable kinematic variables and energy deposition (dE/dx)
information [142].

Theoretically, PCAC has also been applied to relate the axial-vector
contribution to coherent NCγ to the π0A → γ A differential cross section,
Ref. [36], but this amounts only to the small longitudinal contribution. The
majority of the cross section has to be calculated using model assumptions.
In Refs. [32–34], the coherent NCγ reaction has been studied in microscopic
model including non-resonant contributions as well as the excitation and
subsequent radiative decay the ∆(1232)3/2+ resonance. In Ref. [34] the
lightest N∗(1440)1/2+, N∗(1520)3/2− and N∗(1535)1/2− baryonic states
were also added.

In this chapter, we present an extension of the model of Ref. [34] in-
cluding heavier baryon resonances to make it more suitable for MINERνA
energies. In addition, we perform and validate a simplified treatment of
the ∆(1232)3/2+ in-medium modification that allows to factorize the nu-
clear form factor. In this way, we succeed in speeding up significantly the
computation, making its implementation in GENIE possible.

We first briefly describe the microscopic interaction model, following
Ref. [34]. Then we present our approximations for the ∆(1232) modifica-
tion in nuclei. Next we extend the model by adding N∗ and ∆ resonances
with invariant masses up to 2 GeV. Finally, we show our results for the pho-
ton energy and angular distributions corresponding to a selected sample of
incoming neutrino energies.

7.2 Coherent photon production cross section

We begin by introducing the cross section for the photon production by the
coherent scattering of neutrinos1 on nuclei mediated by neutral currents. In
the reaction

(−)
ν (k) +A(P )→ (−)

ν (k′) +A(P ′) + γ(pγ) , (7.1)

diagrammatically illustrated in Fig. 7.1, a neutrino with four-momentum
k ≡ (Eν ,~k) interacts with a nucleus of four-momentum P ≡

(
E, ~P

)
.

1With the term neutrino we refer also to its antiparticle.
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7. Coherent photon emission in neutral-current interactions

After the interaction, the nucleus remains in the ground state, changing
only its four-momentum to P ′ ≡

(
E′, ~P

′)
, while the neutrino does to

k′ ≡ (E′ν ,~k
′
). The four-momentum of the emitted photon is pγ ≡ (Eγ , ~pγ)

and the one transferred by the neutrino is q = k−k′. In the Laboratory frame
P = (MA, 0), where MA denotes the target mass. Under the assumption
that the recoil kinetic energy of the outgoing nucleus (E′ −MA) � MA,
energy conservation implies that q0 = Eγ .

ν(k) ν(k′)

A(P )

γ(kγ)

A(P ′)

Z(q)

Figure 7.1: Diagram for coherent photon emission induced by neutral cur-
rents.

The framework adopted here closely follows Ref. [34] and is adapted from
Refs. [138, 143] for neutrino-induced coherent pion production reactions.
One has that

dσ

dEγdΩγdΩk′
=

1

8

1

(2π)5

E′νEγ
Eν
|M|2 , (7.2)

where Ωγ and Ωk′ are the solid angles of the photon and the outgoing neu-
trino with respect to the direction of the incoming neutrino. This differential
cross section is equivalent to the one presented in Eq. (6.2) with a change of
variables.2 The amplitude, Eq. (3.4), takes the form

iM =
GF√

2
〈ν| jµ |ν〉 〈Aγ| Jµcoh |A〉 , (7.3)

with the leptonic current for neutral currents, given by

〈ν| jµ |ν〉 = ν(k′)γα (1− γ5) ν(k) . (7.4)

2It can also be obtained from Eq. (3.8).
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7.2. Coherent photon production cross section

Owing to the coherence of the process, the nucleon wave function in-
side the nucleus remains unchanged. Hence, after summing the elementary
ZN → Nγ amplitudes over all nucleons, one obtains the nuclear density
distributions of protons and neutrons, ρp(r) and ρn(r) respectively. The
hadronic matrix element in Eq. (7.3) then becomes

〈Aγ| Jµcoh |A〉 = i e ε∗α (kγ)

∫
d3rei(~q−

~kγ)~r

× 1

2
Tr
[
u(p′)

(
ρp(r)Γ

µα
p + ρn(r)Γµαn

)
u(p)

]MN

Ep

≡ i e ε∗α (kγ)Rµα ,

(7.5)

where we have defined the amputated amplitudes ΓµαN corresponding to the
Z boson interaction with each nucleon, N , as

〈Nγ| JµNCγ |ZN〉 = u
(
p′
)

ΓµαN u (p) ε∗α (kγ) , (7.6)

with εα(kγ) the polarization of the outgoing photon. In the following section
we define the content of these amplitudes. Using the Fourier transform
property of Eq. (B.13), we have that

Rµα =
2π∣∣∣~q − ~kγ

∣∣∣

∫
dr r sin

(∣∣∣~q − ~kγ
∣∣∣ r
)
Tr
[
u(p′)

(
ρpΓ

µα
p + ρnΓµαn

)
u(p)

]MN

Ep
.

(7.7)
For the so far undefined nucleon momenta, we assume that the momen-
tum transferred to the nucleus is equally shared by initial and final on-shell
nucleons [138]:

~p =
~kγ − ~q

2
, (7.8)

with the corresponding energy is Ep =
√
M2

N + ~p 2, and then

p = (Ep, ~p) ,

p′ = (Ep,−~p) .
(7.9)

This prescription is based on the fact that, for Gaussian nuclear wave func-
tions, it leads to an exact treatment of the terms in the elementary amplitude
that are linear in momentum. Therefore, we have

Rµα =
2π∣∣∣~q − ~kγ

∣∣∣

∫
dr r sin

(∣∣∣~q − ~kγ
∣∣∣ r
)

× Tr
[
/p+MN

2MN
γ0

(
ρpΓ

µα
p + ρnΓµαn

)]MN

Ep
.

(7.10)
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In the case where there is no density dependence in the amputated am-
plitudes, one can factorize the density. Then, relying on the definition of
Eq. (3.72), we have

Rµα =
∑

N=p,n

1

2
Tr
[
/p+MN

2MN
γ0ΓµαN

]
MN

Ep
FN

(∣∣∣~q − ~kγ
∣∣∣
)
, (7.11)

where, for the nuclear FF, we take the parametrization given in Eq. (3.76).
We further discuss the applicability of this factorization when treating the
nuclear corrections in next section.

Finally, for the modulus of the amplitude squared we can write

|M|2 = −G
2
F

2
e2Lαβ gµν (Rµα)†Rνβ , (7.12)

where we have performed the average over initial spins and the sum over the
final ones. From Eq. (7.4) we obtain the same expression for the leptonic
tensor than in Eq. (6.5),

Lµν = 8
[
k′µ kν + k′ν kµ − gµν(k′ · k)± iεµνσρk′σkρ

]
, (7.13)

where the upper (lower) sign stands for (anti)neutrinos.

7.3 Elementary amplitudes

The elementary ZN → Nγ amplitude, described in earlier publications [32,
34, 144], include nucleon and baryon-resonance pole terms (direct and
crossed), as well as anomaly-driven t-channel meson (π, ρ, ω) exchange.
In the case of the coherent process, nucleon-pole contributions are negligi-
ble because a cancellation between direct and crossed terms is favored by
kinematics. π and ρ exchange terms are not only small but, in the coherent
case, vanish exactly for isospin symmetric nuclei. The ω exchange contri-
bution, instead, does not vanish for symmetric nuclei because amplitudes
on protons and neutrons add up rather than cancel. This mechanism was
found subdominant at Eν ∼ 1 GeV. Its relevance at higher energies is highly
uncertain due to a high sensitivity to unknown form factors and unitarity
constraints but cannot be discarded due to its strong energy dependence [33]
and deserves future studies. Here we focus on the contribution from baryon-
resonance (N∗, and ∆) intermediate states, Fig. 7.2. The calculation of
Ref. [34] considered ∆(1232), N(1440), N(1520) and N(1535) diagrams.
From these results it is clear that the contribution of the ∆(1232)-pole term
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Figure 7.2: Feynman diagrams for photon emission off the nucleon mediated
by baryon resonances.

is dominant at neutrino energies of the order of 1 GeV. Keeping in mind that
there are experiments which work with higher energy fluxes, like MINERνA,
where the medium-energy flux peaks at around 6 GeV and can detect pho-
tons with energies above 500 MeV, we extend the validity of the model to this
domain. This is done by adding new resonant diagrams to the amplitude.

7.3.1 Resonance properties

We consider in our calculation all N∗ and ∆ states listed in Table 7.1, which
correspond to all four-star (according to the PDG [40] classification) reso-
nances with invariant masses W < 2 GeV whose electromagnetic properties
were investigated with the Mainz Unitary Isobar model (MAID) [145, 146].

While most properties of the isolated ∆(1232) are rather well known,
there are large uncertainties and model dependence in our understanding of
heavier excited states of the nucleon. To reflect this situation, in the present
study we consider two sets of resonance properties (Breit Wigner mass and
total width and R→ πN branching ratio). In the first one, labeled MAID,
the parameters are taken from the SAID partial wave analysis [147] while the
second, labeled PDG, adopts the estimates of the Particle Data Group [40].
The list of Table 7.1 contains the values for both sets. As discussed later in
the section to each of the sets we associate a different treatment of the W
dependence of the resonance width.

Electromagnetic properties of the nucleon-to-resonance transitions are a
critical input for our study. Not only they determine the electromagnetic
couplings that characterize the resonance radiative decays but also fix the
vector part of the weak transition nuclear currents by means of isospin rota-
tions. Transition EM properties are encoded in helicity amplitudes, which
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J P L MR [GeV] Γ0 [GeV] bR
∆(1232) 3/2 + P 1.232 1.232 0.118 0.117 1.00 1.00
N(1440) 1/2 + P 1.462 1.440 0.391 0.350 0.69 0.65
N(1520) 3/2 − D 1.524 1.515 0.124 0.110 0.59 0.60
N(1535) 1/2 − S 1.534 1.530 0.151 0.150 0.51 0.42
∆(1620) 1/2 − S 1.672 1.610 0.154 0.130 0.09 0.30
N(1650) 1/2 − S 1.659 1.650 0.173 0.125 0.89 0.60
N(1675) 5/2 − D 1.676 1.675 0.159 0.145 0.47 0.40
N(1680) 5/2 + F 1.684 1.685 0.139 0.120 0.70 0.65
∆(1700) 3/2 − D 1.762 1.710 0.599 0.300 0.14 0.15
N(1720) 3/2 + P 1.717 1.720 0.383 0.250 0.13 0.11
∆(1905) 5/2 + F 1.881 1.880 0.327 0.330 0.12 0.12
∆(1910) 1/2 + P 1.882 1.900 0.239 0.300 0.23 0.20
∆(1950) 7/2 + F 1.945 1.930 0.300 0.285 0.38 0.40

Table 7.1: Properties of the baryon resonances included in the model. N
resonances have I = 1/2 and ∆ resonances I = 3/2. This list includes
spin, parity, πN partial wave, Breit-Wigner mass, total decay width and
branching ratio into πN . The first column for each parameter corresponds
to the analysis of Ref. [147], while the second column was extracted from
Ref. [40].
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we introduce in the next section before describing how we ascribe specific
values to the two sets of parameters.

7.3.2 Helicity amplitudes

We have taken the parametrizations for these helicity amplitudes from the
MAID analysis of Refs. [145, 146], where they are defined as3

AN1/2 =

√
2πα

kR
〈R, Jz = 1/2| ε+µ JµEM |N, Jz = −1/2〉 1√

2MN
√

2MR
,

AN3/2 =

√
2πα

kR
〈R, Jz = 3/2| ε+µ JµEM |N, Jz = 1/2〉 1√

2MN
√

2MR
,

SN1/2 = −
√

2πα

kR

|~k|√
Q2
〈R, Jz = 1/2| ε0µJµEM |N, Jz = 1/2〉 1√

2MN
√

2MR
,

(7.14)
in the resonance rest frame. Jz denotes the spin projection onto the z-axis.
In this definition the z-axis is taken parallel to the photon momentum, then

kµ =
(
k0, 0, 0, |~k|

)
,

pµ =

(√
M2

N + ~k
2
, 0, 0,−|~k|

)
,

pµR = pµ + kµ = (MR, 0, 0, 0) ,

(7.15)

are the virtual photon, nucleon and resonance four-momenta. Furthermore,
in Eq. (7.14) Q2 = −k2, and

kR =
M2
R −M2

N
2MR

. (7.16)

The photon polarization vectors are given by

εµ(±) = ∓ 1√
2

(0, 1,±i, 0) ,

εµ(0) =
1√
Q2

(
|~k|, 0, 0, k0

)
.

(7.17)

For both the MAID and PDG sets, we adopt the MAID parametriza-
tions [145, 146] for the q2 dependence of the amplitudes but in the PDG set,

3Factor 1√
2MN
√

2MR

in the definition of the helicity amplitudes comes from the adopted

normalization of Dirac spinors.
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AN1/2(0) and AN3/2(0) values at the photon point are replaced by the PDG
estimates. These values are given in Table 7.2. Our results for coherent
photon emission turn out to be quite sensitive to these values.

A1/2(0) A3/2(0) S1/2(0)

∆(1232) −140.4 −135.0 −265.3 −255.0 17.5

N(1440)
(p) −61.4 −65.0 − − 4.2
(n) 54.1 45.0 − − −41.5

N(1520)
(p) −27.0 −25.0 160.6 140.0 −63.6
(n) −76.5 −50.0 −154.0 −115.0 13.6

N(1535)
(p) 66.0 105.0 − − −2.0
(n) −50.7 −75.0 − − 28.5

∆(1620) 65.6 50.0 − − 16.2

N(1650)
(p) 33.3 45.0 − − −3.5
(n) 9.3 −10.0 − − 10.1

N(1675)
(p) 15.3 18.0 21.6 22.0 1.1
(n) −61.7 −60.0 −83.7 −85.0 0

N(1680)
(p) −25.1 −10.0 134.3 135.0 −44.0
(n) −27.9 30.0 −38.4 −35.0 0

∆(1700) 226.0 130.0 210.0 130.0 2.1

N(1720)
(p) 73.0 100.0 −11.5 28.0 −53.0
(n) −2.9 −64.0 −31.0 −4.0 0

∆(1905) 18.0 22.0 −28.0 −45.0 0

∆(1910) 18.0 20.0 − − 0

∆(1950) −94.0 −70.0 −121.0 −90.0 0

Table 7.2: Helicity couplings in units of 10−3 GeV−1/2. The first column for
each parameter corresponds to the analysis of Ref. [147], while the second
column was extracted from Ref. [40].

7.3.3 Amputated amplitudes

The expression of each amputated amplitude depends on which resonance
mediates the interaction. Indeed, we must distinguish the different reso-
nances not only by their spin but also by their isospin and parity quantum
numbers. In this calculation, following Ref. [148], resonances of spin higher
than 3/2 are treated using the same formalism as spin 3/2 ones. The am-
putated amplitude for each intermediate state includes, in turn, the contri-
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bution from the direct, ΓµαD , and crossed diagram, ΓµαC , in Fig. 7.2.

Spin 1/2 resonances

In this case

Γµα1/2 = Γµα1/2,D + Γµα1/2,C = J
µ
EM(−kγ)

/p+ /q +MR

(p+ q)2 −M2
R + iMRΓR

JαNC(q)

+ JαNC(q)
/p′ + /q +MR

(p′ − q)2 −M2
R + iε

J
µ
EM(−kγ) ,

(7.18)
whereMR is the mass of the resonance and ΓR itsW -dependent decay width,
discussed below. We have introduced amputated currents as

〈R(p2)| Jµ |N(p1)〉 = u(p2)Jµu(p1) , (7.19)

where

J
µ
EM,±(q) =

[
F1(q2)

(2MN)2

(
/qq
µ − q2γµ

)
+
F2(q2)

2MN
iσµνqν

](
I
γ5

)
,

JαNC,±(q) =

[
F̃1(q2)

(2MN)2

(
/qq
µ − q2γµ

)
+
F̃2(q2)

2MN
iσµνqν

](
I
γ5

)

+ F̃A(q2)γα
(
γ5

I

)
,

(7.20)

where the first (second) row corresponds to resonances with positive (nega-
tive) parity. We have not considered a term proportional to the pseudoscalar
FF in the above equation because it leads to terms in the cross section pro-
portional to the outgoing neutrino mass and therefore negligible. In the
above equation, Fi(q2) and F̃i(q2), i = 1, 2, A, are the EM and NC transition
FFs respectively. These FFs are specific for the transition between nucleon
and each different resonance. Notice that the EM current in Eq. (7.18) is
evaluated at the photon point k2

γ = 0.
As mentioned above, in order to obtain Fi(q

2) we rely on the MAID
global analysis of pion electroproduction [145, 146] data, where γ∗N → R
transitions are described and parametrized in terms of helicity amplitudes.
Substituting the EM currents of Eq. (7.20) in the definition of the helicity
amplitudes of Eq. (7.14), we obtain the equations connecting them to the
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7. Coherent photon emission in neutral-current interactions

EM FFs for J = 1/2 resonances,

A
(p,n)
1/2,± =

√√√√πα
[
(MR ∓MN)2 +Q2

]

2MN
(
M2
R −M2

N
)

[
Q2

2M2
N
F

(p,n)
1 +

MR ±MN

MN
F

(p,n)
2

]
,

S
(p,n)
1/2,± = ∓

√√√√πα
[
(MR ±MN)2 +Q2

]

2MN
(
M2
R −M2

N
) (MR ∓MN)2 +Q2

4MNMR

×
[
MR ±MN

2MN
F

(p,n)
1 − F (p,n)

2

]
,

(7.21)
where the upper (lower) sign corresponds to positive (negative) parity res-
onances. By inverting these equations one obtains the EM FFs in terms of
the helicity amplitudes.

Isospin symmetry allows to relate NC vector FFs to the EM ones. For
I = 1/2 resonances (N∗) these relations are the same as for nucleons:

2F̃
(p)
1,2 =

(
1− 4 sin2 θW

)
F

(p)
1,2 − F

(n)
1,2 − F

(s)
1,2 ,

2F̃
(n)
1,2 =

(
1− 4 sin2 θW

)
F

(n)
1,2 − F

(p)
1,2 − F

(s)
1,2 ,

,

(7.22)

For the purely isovector transitions to resonances with I = 3/2 (∆)

F̃1,2 =
(
1− 2 sin2 θW

)
F1,2 , (7.23)

for both protons and neutrons.
In the same way, isospin rotations relate axial NC FFs to the CC ones.

For I = 1/2 resonances

2F̃
(p,n)
A = ±FA + F

(s)
A , (7.24)

while for I = 3/2

F̃A = −FA . (7.25)

For the axial couplings FA(0) one can derive off-diagonal GT relations as
shown in Sec. 7.3.4. In contrast, there is no experimental information that
could guide our choice for the q2 dependence of FA. Then, we simply adopt
a dipole ansatz

FA = FA(0)

(
1− q2

M∗2A

)−2

, (7.26)
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7.3. Elementary amplitudes

with M∗A = 1 GeV, so that the axial transition radius has the right order of
magnitude.

Finally, we set to zero the strange vector and axial-vector FFs that are
present in the I = 1/2 case, for which no experimental information is avail-
able but likely have a negligible impact on the observables.

Spin 3/2 resonances

In the case of transitions from a nucleon to a resonance with J = 3/2, the
amputated amplitude reads

Γµα3/2 = Γµα3/2,D + Γµα3/2,C

= i e γ0
[
J
βα
EM
(
p′, kγ

)]†
γ0 Pβρ (p+ q)

(p+ q)2 −M2
R + iMRΓR

J
ρµ
NC(p, q)

+ i e γ0
[
J
βα
NC
(
p′,−q

)]†
γ0 Pβρ (p′ − q)

(p′ − q)2 −M2
R + iε

J
ρµ
EM(p,−kγ) ,

(7.27)

where Pβρ(p) is the spin 3/2 projector operator, which reads

Pµν(p) = −
(
/p+MR

) [
gµν − 1

3
γµγν − 2

3

pµpν

M2
R

+
1

3

pµγν − pνγµ
MR

]
, (7.28)

and

J
δµ
EM,±(p, q) =

[
CV3 (q2)

MN

(
gδµ/q − qδγµ

)
+
CV4 (q2)

M2
N

(
gδµq · pR − qδpµR

)

+
CV5 (q2)

M2
N

(
gδµq · p− qδpµ

)]( γ5

I

)
,

JσαNC,±(p, q) =

[
C̃V3

(
q2
)

MN

(
gσα/q − qσγα

)
+
C̃V4

(
q2
)

M2
N

(gσαq · pR − qσpαR)

+
C̃V5

(
q2
)

M2
N

(gσαq · p− qσpα)

](
γ5

I

)

+

[
C̃A3
(
q2
)

MN

(
gσα/q − qσγα

)
+
C̃A4
(
q2
)

M2
N

(gσαq · pR − qσpαR)

+C̃A5
(
q2
)
gσα
]( I

γ5

)
,

(7.29)
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with pR = p+q. In both cases, the upper (lower) sign correspond to positive
(negative) parity resonances. As for S = 1/2 resonances and for exactly the
same reasons, pseudoscalar terms have been omitted.

Analogously to the spin 1/2 case, substituting Eq. (7.29) in the helicity
amplitudes, Eq. (7.14), we obtain

A
(p,n)
1/2,± =

√√√√πα
[
(MR ∓MN)2 +Q2

]

3MN
(
M2
R −M2

N
)

[
M2

N ±MNMR +Q2

MNMR
C
V (p,n)
3

− −MR −M2
N −Q2

2M2
N

C
V (p,n)
4 − M2

R −M2
N +Q2

2M2
N

C
V (p,n)
5

]
,

A
(p,n)
3/2,± =

√√√√πα
[
(MR ∓MN)2 +Q2

]

MN
(
M2
R −M2

N
)

[
MN ±MR

MN
C
V (p,n)
3

+
−MR −M2

N −Q2

2M2
N

C
V (p,n)
4 +

M2
R −M2

N +Q2

2M2
N

C
V (p,n)
5

]
,

S
(p,n)
1/2,± = ±

√√√√πα
[
(MR ±MN)2 +Q2

]

6MN
(
M2
R −M2

N
) (MR ∓MN)2 +Q2

M2
R

×
[
MR

MN
C
V (p,n)
3 +

M2
R

M2
N
C
V (p,n)
4 +

M2
R +M2

N +Q2

2M2
N

C
V (p,n)
5

]
,

(7.30)
where the upper and lower signs correspond to positive and negative parity
resonances respectively. With these equations, the EM FFs are obtained as
functions of the helicity amplitudes.

For I = 1/2 resonances we have again the same isospin symmetry than
for nucleons, then the vector NC FFs can be written in terms of the just
deduced EM FFs

C̃
V,(p)
i =

(
1

2
− 2 sin θW

)
C

(p)
i −

1

2
C

(n)
i − 1

2
CsVi ,

C̃
V,(n)
i =

(
1

2
− 2 sin θW

)
C

(n)
i − 1

2
C

(p)
i −

1

2
CsVi ,

(7.31)

with i = 3, 5, while for I = 3/2 resonances we have

C̃Vi =
(
1− 2 sin2 θW

)
CVi . (7.32)

In this case CVi = C
V (p)
i = C

V (n)
i .
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7.3. Elementary amplitudes

For the ∆(1232) we can take advantage of the clear dominance of the
M1 multipole for the EM transition and simplify the expressions taking

CV5,∆(1232) = 0 ,

CV4,∆(1232) = − MN

M∆(1232)
CV3,∆(1232) .

(7.33)

Then, in this scenario, CV3,∆(1232) can be written as a simple function of A3/2,
as follows Eq. (7.30).

In the axial sector, isospin relations lead to

C̃
A,(p,n)
i = ±1

2
CAi +

1

2
CsAi , (7.34)

for I = 1/2 resonances while for I = 3/2 resonances we have

C̃Ai = −CAi , (7.35)

For the dominant axial FF, we assume a dipole q2 dependence,

CA5 (q2) = CA5 (0)

(
1− q2

M2
A

)−2

, (7.36)

with MA = 1 GeV. The coupling CA5 (0) is determined via GT relations as
explained below. As for the q2 dependence of CA5 (0), there is no experi-
mental information to constrain the remaining axial FFs. We simply set
them C̃A3 (q2) = C̃A4 (q2) = 0 owing to the fact that their contribution to the
amplitude squared contain higher powers of q2 and, then, their contribu-
tions should be small. This is specially true in coherent scattering, where
high values of q2 are suppressed. The only exception of this prescription
corresponds to the N − ∆(1232) transition, for which some information is
available from ANL and BNL bubble chamber experiments on deuterium
due to the prominent role it plays in pion production. Following the analy-
sis of Ref. [149], we keep the dipole ansatz but with MA = 0.93 GeV, while
adopting the so-called Adler model [150, 151]

C̃A3,∆(1232)(q
2) = 0 ,

C̃A4,∆(1232)(q
2) = −

C̃A5,∆(1232)(q
2)

4
,

(7.37)

for the rest of axial FFs.
As for S = 1/2 resonances, we set to zero the strange vector and axial-

vector FFs that are present in the I = 1/2 case.
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7. Coherent photon emission in neutral-current interactions

7.3.4 Resonance decay widths and axial couplings

For the invariant mass dependence of the resonance decay width we follow to
different strategies. In the case of the MAID set, as in the MAID model [152],
all the width that does not come from the πN decay is ascribed to the two-
pion channel:

ΓR(W ) = ΓR→πN (W ) + (1− bR) ΓR→ππN (W ) , (7.38)

where bR is the πN branching ratio. The only exception is the N(1535) , for
which the decay to nucleon and η is also treated separately. Then, instead
of Eq. (7.38) we have

ΓN1535(W ) =ΓN1535→πN (W ) + ΓN1535→ηN (W )

+ (1− bN1535→πN − bN1535→ηN ) ΓN1535→ππN (W ) .
(7.39)

The two-pion decay partial decay width is parametrized as in Ref. [153]4

ΓR→ππN (W ) = Γ0

( |~q2π|(W )

|~q2π|(MR)

)2L+4(MR

W

)
, (7.40)

where Γ0 is the total decay width in the vacuum and L the angular mo-
mentum of the πN partial wave; the CM momentum of the 2π compound
is approximated as [153]

|~q2π|(W ) =

√[
W 2 − (MN + 2mπ)2

] [
W 2 − (MN − 2mπ)2

]

2W
. (7.41)

In Table 7.1 we have listed the mass, total decay width , partial wave and πN
branching ratio for the resonances under consideration. For the calculations
corresponding to the MAID parametrization, we use the parameter values
of the first column in the table.

In the case of the PDG set, besides the πN channel, we take into ac-
count the most relevant decay channels according to the PDG estimate, with
branching ratios within the PDG ranges. They are listed in Table. 7.3. Of-
ten, the decay products are unstable mesons or baryon resonances. We then
use [154]

ΓR→ab(W ) = ΓR→ab(MR)
ρab(W )

ρab(MR)
, (7.42)

4Except for the barrier-penetration factor since we do not incorporate such factors in
this study.
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where ρab is given by

ρab(W ) =

∫
d
(
p2
a

)
d
(
p2
b

)
A
(
p2
a

)
A
(
p2
b

) |~qcm|2L+1
(
W 2, p2

a, p
2
b

)

W

×Θ

(
W −

√
p2
a −

√
p2
b

)
,

(7.43)

and the CM momentum of the final state products is

|~qcm| =
λ1/2

(
W 2, p2

a, p
2
b

)

2W
, (7.44)

with λ, the Källén function defined in Appendix C.2. The vacuum spectral
function reads

A(p2
a) = − 1

π
Im

{
1

p2
a −M2

a + iMaΓa(p2
a)

}
. (7.45)

If one of the decay products is a stable particle, then for that particle Γa = 0
and

A(p2
a) = δ

(
p2
a −M2

a

)
, (7.46)

hence

ρab(W ) =
Mb

πW

∫
d(p2

b)
Γb(p

2
b)(

p2
b −M2

b

)2
+M2

b Γ2
b(p

2
b)

× |~qcm|2L+1
(
W 2, p2

a, p
2
b

)
Θ

(
W −Ma −

√
p2
b

)
.

(7.47)

The one-pion channel is not only prominent for most resonances but
often it is also the best understood. Furthermore, it is particularly relevant
here because the strength of the resonance coupling to πN can be used to
obtain the leading transition axial couplings thanks to the off-diagonal GT
relations. In the following we give a more detailed description of how the
πN channel is modeled in the present work.5

Spin 1/2 resonances

The effective Lagrangian describing the R1/2Nπ coupling can be cast as

LR1/2Nπ =
f∗1/2
mπ

Ψ

{
γµγ5

γµ

}(
∂µ~π · ~t

)
ΨR1/2

+ H.c. , (7.48)

5The treatment of the N(1535) decay to η N is analogous to the πN one, as described
below.
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N(1440)
br[∆(1232)π] L br[Nσ] L

0.17 P 0.18 S

N(1520)
br[∆(1232)π] L br[∆(1232)π] L

0.27 S 0.13 D

N(1535)

br[Nη] L br[Nσ] L
0.48 S 0.03 P

br[N(1440)π] L br[∆(1232)π] L
0.05 S 0.02 D

∆(1620)
br[∆(1232)π] L br[N(1440)π] L

0.64 D 0.06 S

N(1650)

br[Nη] L br[ΛK] L br[∆(1232)π] L
0.14 S 0.05 S 0.07 D

br[Nσ] L br[N(1440)π] L
0.05 P 0.09 S

N(1675)
br[∆(1232)π] L br[Nσ] L

0.51 D 0.09 F

N(1680)
br[∆(1232)π] L br[∆(1232)π] L br[Nσ] L

0.09 P 0.09 F 0.17 D

∆(1700)

br[∆(1232)π] L br[∆(1232)π] L br[N(1520)π] L
0.45 S 0.22 D 0.06 P

br[N(1535)π] L br[∆(1232)η] L
0.02 P 0.10 S

N(1720)

br[Nη] L br[Nω] L br[ΛK] L
0.03 P 0.21 P 0.04 P

br[∆(1232)π] L br[Nσ] L br[N(1520)π] L
0.51 P 0.07 D 0.03 S

∆(1905)

br[∆(1232)π] L br[∆(1232)π] L
0.26 P 0.50 F

br[N(1680)π] L br[∆(1232)η] L
0.09 P 0.03 P

∆(1910)
br[σK] L br[∆(1232)π] L br[N(1440)π] L

0.10 P 0.54 P 0.06 P

∆(1950)
br[∆(1232)π] L br[N(1680)π] L

0.27 F 0.33 P

Table 7.3: List of resonance decay channels, excluding πN , extracted from
Ref. [40]. L stands for the relative angular momenta of the decay particles.
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where the upper and lower rows correspond to positive and negative parity
resonances respectively. Ψ and ΨR1/2

are the nucleon and resonance fields.
The pion field is denoted by ~π. In the case of I = 1/2 resonances, ~t = ~τ , the
vector made of Pauli matrices. For I = 3/2 resonances we have the isospin
1/2→ 3/2 transition operator, ~t = ~T , defined by the matrix of the spherical
components of ~T † [155]

T †±1 ≡ ∓
T †1 ± iT †2√

2
; T †0 ≡ T †3 . (7.49)

Namely, 〈
3

2
,MR

∣∣∣∣T
†
λ

∣∣∣∣
1

2
,MN

〉
=

(
1

2
, 1,

3

2

∣∣∣∣MN, λ,MR

)
. (7.50)

where
(

1
2 , 1,

3
2

∣∣MN, λ,MR

)
is a Clebsch-Gordan coefficient.

From the Lagrangian of Eq. (7.48) we can obtain the R1/2 → πN decay
width in the resonance rest frame, in terms of the invariant mass of the
system,

ΓR1/2,±→πN (W ) =
cI
4π

(
f∗1/2
mπ

)2

(W ±MN)2

× E′ ∓MN

W
|~qcm|Θ (W −M −mπ) ,

(7.51)

where Θ is the step function, cI = 3 for I = 1/2 and cI = 1 for I = 3/2. The
upper and lower signs hold for positive and negative parity, respectively. The
momentum and the energy of the outgoing nucleon are given in this frame
by

|~qcm| =

√(
W 2 −m2

π −M2
N
)2 − 4m2

πM
2
N

2W
,

E′ =
W 2 +M2

N −m2
π

2W
.

(7.52)

Using the values for the Breit-Wigner mass, total width and branching ratio
tabulated in Table 7.1, from

ΓR→πN (MR) = Γ0 bR , (7.53)

in Eq. (7.51) we obtain the coupling f∗1/2.
On the other hand, proceeding in an analogous way as for the diagonal

(nucleon) case, Sec. 3.2, we can get the off-diagonal GT relation and write
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the axial coupling in terms of f∗1/2,

FA(0) = −ciso
√

2
f∗1/2
mπ

fπ , (7.54)

with the isospin factor ciso =
√

2 and ciso = −
√

1/3 for I = 1/2 and I = 3/2
resonances, respectively.

Finally, in analogy to the N(1535)→ πN decay, for the N(1535)→ ηN
we can write

ΓN(1535)→ηN (W ) =
1

4π

(
f̃∗1/2
mη

)2

(W −MN)2

× E′ +MN

W
|~qcm|Θ (W −M −mη) ,

(7.55)

where f̃∗1/2 is the coupling to this channel, that can be obtained from
the corresponding branching ratio, which in the case of MAID we set to
bN(1535)→ηN = 0.42 [156], and the analogous one for PDG is given in Ta-
ble 7.3.

Spin 3/2 resonances

In the case of resonances with spin 3/2 the R3/2Nπ coupling is given by the
Lagrangian

LR3/2Nπ =
f∗3/2
mπ

Ψ

{
I
γ5

}(
∂µ~φ · ~t

)
Ψµ
R3/2

+ H.c. , (7.56)

where the upper and lower rows hold for positive and negative resonances
respectively; Ψµ

R3/2
is a Rarita-Schwinger field. The correspondent decay

width is given by

ΓR3/2,±→πN (W ) =
cI
6π

(
f∗3/2
mπ

)2
E′ ±MN

2W
|~qcm|3 Θ (W −M −mπ) , (7.57)

with the upper (lower) sign standing for the positive (negative) resonances.
The off-diagonal GT relation has an analogous form to Eq. (7.54),

CA5 (0) = −ciso
√

2
f∗3/2
mπ

fπ . (7.58)
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7.3.5 Nuclear medium corrections

In our model for NC coherent photon emission, as discussed above, the
elementary process is mediated by resonances, which are produced inside the
nucleus. Therefore, the nuclear medium, can alter the resonance properties.
We must, then, consider these effects. We specifically do it for the ∆(1232)
resonance, which dominates the cross section and is known to be strongly
modified in this medium, see Refs. [157–163]. For the rest of the baryon
states, less information is available about a medium modification of states
which are already broader and less isolated than the ∆(1232). Furthermore,
their contribution to the cross section is small so we choose to neglect this
correction.

The denominator of the ∆(1232) propagator in vacuum reads

DR(p2) =
1

p2
R −M2

R + iMRΓR(p2)
, (7.59)

with ΓR(p2) given by the ∆ → Nπ decay, Eq. (7.57).6 The propagator is
then modified in the nucleus as DR → D̃R, with

D̃R(p2, ρ(r)) =
[
p2
R − (MR + Re{ΣR})2

+i (MR + Re{ΣR})
(

Γ̃R − 2 Im{ΣR}
)]−1

,
(7.60)

where Γ̃R is the vacuum decay width corrected by the Pauli blocking of
the final nucleon in the ∆ → Nπ decay. Adopting the approximation of
Ref. [164] we have

Γ̃R
(
p2, ρ(r)

)
≈ ΓR(p2)I

(
p2, ρ(r)

)
, (7.61)

where

I
(
p2, ρ(r)

)
= 1 + θ (q̃ − 1)

(
−2

5

1

q̃2
+

9

35

1

q̃4
− 2

21

1

q̃6

)

+ θ (1− q̃)
(

34

35
q̃ − 22

105
q̃3 − 1

)
,

(7.62)

with
q̃ =

|~qcm|
kF (r)

, (7.63)

6The coupling, obtained with the method previously described, is f∗∆(1232) = 2.14.
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and the Fermi momentum7

kF (r) =

(
3π2 ρ(r)

2

)1/3

. (7.64)

The nucleon density, ρ(r) = ρp(r) + ρn(r) is normalized as in Eq. (4.23). In
Ref. [34], as well as in earlier studies of coherent pion production the ∆(1232)
self-energy has been taken from the many-body calculation of Ref. [160].
Here, instead, the simpler approximation of a central spreading potential
has been adopted:

Re{Σ∆} ≈ 0 ,

Im{Σ∆} ≈ 2V0
ρ(r)

ρ(0)
,

(7.65)

with V0 ≈ 80 MeV [165]. We have checked that with this self-energy we get
results that are consistent with those obtained with the more sophisticated
self-energy of Ref. [160].

This broadening of the ∆(1232) resonance propagator only applies to the
scattering direct diagram in Fig. 7.2. Therefore, for the rest of the cases, as
the amputated amplitudes do not have any dependence on the density, we
can use Eq. (7.11). For the direct diagram of the ∆(1232), we can write

Γ̃µαR,Dir

(
(p+ q)2 , ρ(r)

)
= GµαD̃R

(
(p+ q)2 , ρ(r)

)
, (7.66)

where
Gµα = i e γ0

[
J
βα
EM
(
p′, kγ

)]†
γ0Pβρ (p+ q) JρµNC(p, q) . (7.67)

As Gµα does not depend on the density, we have

Rµα =
∑

N=p,n

1

2
Tr
[
/p+MN

2MN
γ0G

µα
N

]
MN

Ep
F̃N , (7.68)

with

F̃N =
4π∣∣∣~q − ~kγ

∣∣∣

∫
dr r sin

(∣∣∣~q − ~kγ
∣∣∣ r
)
ρN (r)D̃R

(
(p+ q)2 , ρN (r)

)
. (7.69)

In the case of the ∆(1232), since Gµα(p) = Gµα(n) = Gµα,

Rµα =
1

2
Tr
[
/p+MN

2MN
γ0G

µα

]
MN

Ep

(
F̃(p) + F̃(n)

)
, (7.70)

7In this case we do not distinguish between both types of nucleons, which leads to a
difference of 2 due to isospin with respect to Eq. (4.38).
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Performing this integral can be computationally expensive.8 Therefore we
evaluate the propagator at the average nuclear density, ρ,

F̃N = D̃R

(
(p+ q)2 , ρ

)
FN

(∣∣∣~q − ~kγ
∣∣∣
)
, (7.71)

with ρ calculated as

ρ =
A

4
3πR

3
, (7.72)

where R = (1.2 fm)A1/3. Then, the average density has a constant value
of ρ = 0.138 fm−3. In Fig.7.3 we compare this approximate result with
the calculation without the factorization of the density integral in the case
of the ∆(1232) resonance alone and for a 12C target. In this figure we
also show the difference between using the Eq. (7.65) potential and the
Ref. [160] self-energy. Although in our calculations we choose the nuclear
FF parametrization of Eq. (3.76), in Fig. 7.3 for this comparison the har-
monic oscillator parametrization, that can be found in Ref. [55], has been
taken. These intermediate results are also used in next section to compare
our approximations to the results of Ref. [34], where the harmonic oscillator
density profile was used for 12C. In Fig. 7.3 only a small difference between
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Figure 7.3: Differential cross section for the coherent NCγ reaction as a
function of the outgoing photon energy in the Laboratory frame. Results
are shown for 12C, with incoming neutrino energy of 1 GeV and the harmonic
oscillator nuclear density profile of Ref. [55]. Orange and green curves have
been calculated by performing the integration over density, taking the ap-
proximation of Eq. (7.65) and the self-energy of Ref. [160], respectively. The
blue line is obtained with the factorization of the nuclear form factor, using
the average nuclear density (7.71) and the approximated self-energy.

8The computing time becomes relevant when considering the implementation of this
model in Monte Carlo event generators like GENIE or NuWro.
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7. Coherent photon emission in neutral-current interactions

the curves in the peak region can be noticed. At higher energies of the in-
coming neutrino we observe similar effects. As such a sensitivity is not at
reach for future experimental measurements of this process, the approxima-
tions previously described are justified and, therefore, used in the rest of the
work.

7.4 Results

We begin this section by comparing our results with those of Ref. [34], taking
only the ∆(1232), N(1440), N(1520) and N(1535) resonances into account.
In Fig. 7.4 we show our results, using the MAID set for both energy and
angular distributions, in neutrino mode, together with the corresponding
curves from Ref. [34]. The difference observed between the two results (blue
vs green curves) can be chiefly attributed to the difference in theN−∆(1232)
axial coupling value. Indeed, in Ref. [34] a value of CA5,∆(1232)(0) = 1.0
was used, as well as a harmonic oscillator density profile. Taking the same
CA5,∆(1232)(0) and nuclear FF parametrization, our results get much closer to
those of the Ref. [34]. The small remaining difference is mainly due to the
density factorization approximation and the phenomenological in-medium
∆(1232) self-energy. In antineutrino mode we observe similar effects.
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Figure 7.4: Energy (left) and angular (right) distributions for coherent NCγ
on 12C, for 1 GeV incoming neutrinos. Results from Ref. [34] (green curve)
are compared to those of the present work using only the ∆(1232), N(1440),
N(1520) and N(1535) resonances (blue curve). Changing the value of CA5
and the nuclear FF to match those in Ref. [34] we obtain the orange curve.
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7.4. Results

7.4.1 Extension of the model to higher energies

As the neutrino energy increases, new excitation channels for the nucleon
open and the inclusion of heavier resonances becomes necessary. In the
present work we incorporated all theN∗ and ∆ resonances listed in Table 7.1.
A simple estimate of the Eγ in the Laboratory frame that corresponds to a
resonance peak can be obtained from

(
kγ + p′

)2
= M2

R , (7.73)

Taking p′ from Eqs. (7.8, 7.9) and for ~kγ ≈ ~q, which is favored by the nuclear
FF we obtain

Eγ =
M2
R −M2

N
2MN

. (7.74)

This estimate also allows us to gauge the validity range of the model
in Eγ : given the resonance content of our model and the width of the states
one can see for Eγ & 2.5 GeV the invariant masses probed are too high for
the model to be reliable. We therefore restrict Eγ < 2.5 GeV in all the
forthcoming results.

As expected from Eq. (7.74) and phase space considerations, the addition
of heavier resonances has a very small effect for neutrinos of energy around 1
GeV. This can be realized by comparing the full calculation with the results
where only the lightest four states are taken into account, Fig. 7.5. At this
energy the contribution of the ∆(1232) dominates the distribution, together
with a small peak that comes from the N(1520) resonance. This is consistent
with the results obtained in Ref. [34].

In Fig. 7.6 we present separately the photon energy distributions of each
resonance, for neutrinos with 3 GeV energy and both MAID and PDG sets
of parameters. These results plots clearly show the dominant role of the
∆(1232), with some strength coming from the N(1520) for Eγ < 1 GeV. For
Eγ > 1 GeV, several resonances overlap but the only non negligible strength
is provided by ∆(1700) and ∆(1950).

In the case of the ∆(1232) the two curves overlap. For some resonances,
instead, big differences are apparent. We have identified the different values
in masses, total widths and electromagnetic couplings as the main origin of
the discrepancies rather than the different treatment of the invariant mass
dependence of the width. An example of this effect is represented in Fig. 7.7,
for the N(1650) resonance. There we show curves for the MAID set using
different combinations of the parameters with the PDG result as a reference.
When all the values are adopted while keeping the ΓR(W ) parametrization
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Figure 7.5: Differential cross section for coherent NCγ on 12C as a function
of the outgoing photon energy, with 1 GeV incoming neutrinos. Results
taking the Ref. [153] model.

of Eq. (7.38) (green dashed line), the result is very close to the PDG one.
In the case of N(1720), where there is a huge difference in the parameter
values, the discrepancy in the cross section is around an order of magnitude.
In almost all cases, the peak position is the same for both sets with the clear
exception of ∆(1620) where the maximum is shifted due to the disparity in
the resonance mass.

In Fig 7.8 the Eγ distributions are shown at 1, 3 and 6 GeV of incoming
neutrino energy.9 The tendency of the cross section towards saturation is
apparent with small differences between the results at 3 and 6 GeV. In
Fig. 7.9 the comparison between MAID and PDG sets are shown for 3 and 6
GeV energy incoming neutrinos. As there is no significant difference in the
∆(1232) region, we show the results above 0.5 GeV, where the discrepancies
are present. The differences between sets exposed in Fig. 7.6 do not lead to
significant variations in the total cross sections due to the smallness of many
of the individual contributions. Looking back to Fig. 7.6, it is clear that the
differences in the N(1520), ∆(1700) and ∆(1950)states are the cause of the
observed distinctions.

We now discuss distributions over the photon angle. In this regard,
we warn the reader that only photon energies up to 2.5 GeV have been
considered as explained at the beginning of the section. We reflect this by
writing σ̃ instead of σ for observables integrated over the photon energy.

9The peaks of MINERνA’s low and medium energy fluxes are close to 3 and 6 GeV
respectively.
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Figure 7.6: Differential cross section for coherent NCγ on 12C as a function
of the emitted photon energy, with 3 GeV incoming neutrinos. Individual
contributions of each baryon resonance obtained with the MAID (blue) and
PDG (orange) parameter sets are displayed.
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show the difference in the results using the MAID and PDG parameter sets.
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Figure 7.8: Photon energy distribution for coherent NCγ on 12C for 1 GeV,
3 GeV and 6 GeV incoming neutrinos obtained with the MAID set.
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Figure 7.9: Photon energy distribution for coherent NCγ on 12C for 3 GeV
(left) and 6 GeV (right) incoming neutrinos obtained with the MAID (solid)
and PDG (dashed) sets.

Angular distributions, Fig 7.10, are forward peaked as expected for coherent
scattering. As the neutrino energy increases, more strength is accumulated
at small photon angles. To minimize the momentum transfer to the nucleus,
most of the momentum transferred by the neutrino is taken away by the
emitted photon. In other words, for large values of

∣∣∣~q − ~kγ
∣∣∣ in Eq. (7.7), the

integral is dumped due to the rapid oscillations of sin
∣∣∣~q − ~kγ

∣∣∣ r. That is,

higher values of the nuclear FF correspond to small
∣∣∣~q − ~kγ

∣∣∣. Furthermore,

because q0 ≈ |~kγ | and q0 < |~q| the cancellation of
∣∣∣~q − ~kγ

∣∣∣ also favors small

q2 for which ~q and, therefore, ~kγ are aligned with the incoming neutrino.
Note that, for high energy photons, a small change in the angle will be
highly disfavored by the nuclear FF. The consequence is that the forward
peak is a reflection of the contribution of the high energy tail in the energy
distribution.

To explore the dependence on the target mass, we have calculated the
integrated cross section as a function of the neutrino energy, Fig. 7.11. As
noticed in Ref. [34], we observe that cross-section dependence on the num-
ber of nucleons in the nucleus does not scale with A2 as one would naively
expect: while the amplitude in coherent scattering scales with the num-
ber of nucleons, the presence of the nuclear FF alters the distribution. As
we mentioned before, the FF has a strong dependence on the momentum
transferred to the nucleus, vanishing at high values. A consequence of this
strong dependence is that a change in the nuclear FF can significantly alter
the results, changing the relative position of the different curves in the plot.
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Figure 7.10: Photon angular distribution of the neutrino cross section on
12C, as a function of the cosine of the photon angle (left) and the angle
(right). Results for 1 GeV, 3 GeV and 6 GeV incoming neutrinos are shown.

This sensibility to the details of nuclear FF is reflected in the fact that the
curve for 56Fe is above the rest, with the exception of 12C, in contrast to
the results of Ref. [34], where it is below the lighter nuclei. In any case,
the relative size of the cross section for different nuclei shows a soft energy
dependence .
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Figure 7.11: Integrated cross section as a function of the incoming neutrino
energy, normalized to the number of nucleons. Results are shown for different
nuclei.

Finally, we present observables in antineutrino mode. The distributions
exhibit the same general features as neutrino mode. The differences be-
tween the curves of Fig.7.12 imply a stiffer energy dependence compared to
the neutrino case. On the other hand, the peak from the N(1520) is rela-
tively smaller and the tail of the distribution, corresponding to high energy
photons, does not decrease as in neutrino mode. We have checked that the

189



7.4. Results

main contributions to the cross section come from the same resonant pro-
cesses as in the case of neutrino interactions. Analogously to the neutrino
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Figure 7.12: Same as Fig. 7.8 but for incoming antineutrinos.

case, we find a forward peaked angular distribution, Fig. 7.13. While the
difference in the interference pattern between neutrinos and antineutrinos is
barely visible in the energy distribution, it is more apparent in the angular
distribution.
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Figure 7.13: Same as Fig. 7.10 but for incoming antineutrinos.
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7.5 Summary

The main objective of this study is to extend the validity range of the micro-
scopic model for NC coherent photon emission in neutrino-nucleus scattering
introduced in Ref. [34], motivated by the possibility to measure this rare but
important process at MINERνA. To accomplish this, we have added heav-
ier resonances to the model, extending the range to an estimated maximum
outgoing photon energy of 2.5 GeV. We have verified that, for neutrino en-
ergies below 1 GeV, the effect of this addition does not have an appreciable
impact on the results. The process mediated by the ∆(1232) resonance is
reported as the main contribution at all incoming neutrino energies. Energy
and angular distributions of the emitted photons in the neutrino-nucleus
coherent scattering were calculated for both neutrino and antineutrino in-
teractions. The target mass dependence of the integrated cross section was
also explored.

The results we obtain predict a strong signal for emitted photons of
around 0.3 GeV due to the ∆(1232) followed by a tail where the N(1520),
∆(1700) and ∆(1950) also contribute. The strength of this tail is found
predominantly at forward photon angles. To gauge the uncertainties in the
present knowledge of baryon resonance properties, including their electro-
magnetic excitation, we have performed the calculations with two differ-
ent sets of parameters with different parametrizations of the invariant mass
dependence of the resonance width. As expected, the contribution from
well known ∆(1232) is largely independent of these changes, while several
other states show a high sensitivity to modifications in the mass, width, πN
branching ratio (from which the leading axial couplings are obtained) and,
particularly, helicity couplings.

In passing, we performed and validated several approximations in the
treatment of nuclear corrections and the N−∆(1232) transition form factors
aimed at increasing the speed of the computations, making the ongoing
implementation of the present model in GENIE. As no model for coherent
NCγ emission is currently available in event generators, this effort shall
facilitate the experimental study of this reaction at MINERνA but also at
MicroBooNE and SBND experiments.
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Neutrino physics have proven to be one of the most challenging fields of
modern physics, both theoretically and experimentally. Despite the great
progress achieved, there are still many unanswered questions starting from
the fact that the SM is not able to fully accommodate these particles. An
important branch of neutrino physics is concerned with the modeling of
neutrino interactions with matter, where the processes involving strongly
interacting hadrons are specially hard to manage. Along this thesis we have
tried to bring some light into some open problems in this field.

Several years have been passed since the MiniBooNE anomaly was re-
ported, yet there is still not a definitive explanation to this problem. In
Chapter 4 we critically investigated the proposal of the Refs. [4, 5] to ex-
plain the excess of events with the production and radiative decay of heavy
neutrinos. We have significantly improved previous calculations for both
coherent and incoherent processes relying on our present understanding of
electroweak interactions with nucleons and nuclei. We have presented re-
sults taking into account the electromagnetic, as well as the weak produc-
tion of heavy neutrinos. We have also investigated the propagation of the
heavy neutrino inside the detector, before its decay into a photon and a
light neutrino. We initially obtained a bad agreement between our results
and the MiniBooNE data for the electron-like excess using the parameters
proposed in Ref. [4]. Adding the detector efficiency to the calculation made
the results closer to the data but showing a poor agreement. The main
discrepancy between this theory and the data are the photon angular distri-
butions. With the original model parameters, the incoherent contribution is
very suppressed, resulting in a very forward peaked angular distribution, far
away form observations. We therefore fitted the model parameters, within
allowed values, to the data. With the new set of values, the influence of
the incoherent channel is stronger than the coherent one, resulting in wider
angular distributions. In the energy distributions, the new calculations were
also closer but still below the data. Indeed, in spite of the improved agree-
ment, the results are not able to provide a full description of the excess:
the constraints in the parameter space prevents a better description of the
data. Nonetheless, we can not discard this model as a source of part of the
signal in the detector. In order to shed further light into this open prob-
lem we have predicted the signal that would originate from the production
and radiative decay of heavy neutrinos at the three detectors of the SBN
program exposed to the Booster neutrino beam at FNAL, which are able to
distinguish photons from electrons.
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In Chapter 5 we report an analysis of the nucleon axial FF, which is an
important source of uncertainty for neutrino cross section modeling. Using
the semi-parametric model provided by feedforward neural networks, and
the data from the ANL experiment, we were able to obtain a parametriza-
tion of this FF. To select the best model, we adopted a Bayesian framework
which allows to avoid overfitting problems. After looking at the results, we
observed an unexpected behavior at low Q2, when comparing with previ-
ous determinations of the axial FF. The introduction of deuteron correc-
tions in the calculation softened the differences, but there was still no good
agreement. When the very low-Q2 data is not taking into account, our
parametrization is fully compatible with other models but with smaller un-
certainties. We also performed fits with the dipole parametrization, for the
same cases we considered with the neural network. We displayed our results
for both parameterizations, showing that the agreement of the neural net-
work with the experimental data is better than for the dipole ansatz. New
experiments would be necessary to determine this important quantity with
a satisfactory precision and with small systematic errors. The tool we have
developed shall be valuable to analyze such data.

In Chapter 6 we describe our improvements to the calculation of single
kaon production in neutrino-nucleon scattering reported in Ref. [30]. We par-
tially restored the unitarity of the S-matrix, by imposing Watson’s theorem.
For this purpose we identified the dominant contribution in each reaction
channel and uses them to calculate the Olsson’s phases for the vector and
axial parts of the elementary amplitudes. This method leads to different
solutions for the phases. From these solutions, there is one that has a small
impact on the cross section, and another one that changes significantly the
observables. The weakness of the kaon-nucleon interaction leads us to think
that the set of phases which give a larger correction may not be justified
from the physical point of view. Nonetheless we report both extreme result:
future experiments should be able to discriminate between them. We have
also calculated the structure functions that characterize the cross section
dependence on the azimuthal angle. Remarkably, the terms responsible of
parity violation, which vanish at tree level become finite, although small, in
presence of the unitarity corrections.

Cherenkov detectors have been very useful in neutrino physics. For this
kind of detectors, having good models of their background signals is crucial.
As we mentioned before, this type of detector can interpret signal from pho-
tons as electron-like events. In Chapter 7 we presented an extension of the
Ref. [34] microscopic model for coherent photon emission in neutrino-nucleus
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neutral current scattering to higher energies to make it more appropriate for
the MINERνA experiment. We also performed and validated several ap-
proximations that significantly speed up the computing time, which can be
useful when implementing this model in Monte Carlo event generators. The
improvement of the model relies on the introduction of heavier baryon reso-
nances that mediate the elementary photon emission process. We explored
the impact of uncertainties in our current knowledge of resonance properties
on the NCγ cross section. We observed a particular sensitivity to the un-
certainties in the electromagnetic helicity amplitudes which influence both
the weak resonance production via isospin rotations and its radiative decay.
In spite of the large differences found for some states, the overall impact in
the cross section is small because of the dominant role of the well under-
stood ∆(1232) resonance. The angular distributions of photons resulted to
be very forward peaked, as expected for coherent scattering. In the case of
antineutrinos we observed similar effects than in neutrino mode. We have
also obtained the A dependence of the integrated cross section, comparing
the results for different nuclei. We observe a strong influence of the nuclear
FF, resulting in a behavior which is closer to an A scaling than an A2 that
would be naively expected for coherent scattering. This scaling was found
to be rather insensitive of the incoming neutrino energy.
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Appendix A

Conventions

All the calculations contained in this thesis were done in natural units with,

~ = c = 1 , (A.1)

where ~ is the reduced Plank constant and c is the speed of light in the
vacuum.

For the metric tensor we follow the convention where

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.2)

Pauli matrices read

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i

i 0

)
, τ3 =

(
1 0
0 −1

)
, (A.3)

and satisfy the commutation rules given by

[τi, τj ] = i2εijkτk , {τi, τj} = δij , (A.4)

where i, j, k = 1, 2, 3, δij is the Kronecker delta and the tensor εijk is totally
antisymmetric, with ε123 = 1.

A.1 Dirac algebra

The Dirac matrices are defined in such a way that they satisfy

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . (A.5)
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A.2. Isospin operators on nucleons

and

γµ† = γ0γµγ0 . (A.6)

We also define

γ5 = γ†5 = iγ0γ1γ2γ3 = − i

4!
εµνσργ

µγνγσγρ , (A.7)

where for the totally antisymmetric tensor we have

ε0123 = +1 . (A.8)

From the Dirac matrices we determine

σµν =
i

2
[γµ, γν ] . (A.9)

The quirality projectors are given by

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) . (A.10)

For the Dirac spinor normalization we use the convention

ur (~p)us (~p) = 2mδrs , vr (~p) vs (~p) = −2mδrs ,

ur (~p) vs (~p) = vr (~p)us (~p) = 0 .
(A.11)

A.2 Isospin operators on nucleons

The action of the isospin operators over the nucleon isospin states, |p〉 and
|n〉, is

τ3 |p〉 = |p〉 , τ3 |n〉 = − |n〉 ,
τ− |p〉 = |n〉 , τ+ |n〉 = |p〉 ,

τ+ |p〉 = τ− |n〉 = |0〉 ,

τ± =
τ1 ± iτ2

2
,

(A.12)

with τ1,2,3 the Pauli matrices:
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A.3 Cabibbo-Kobayashi-Masakawa matrix

For three generations of fermions the mixing between quark states are given
by the CKM matrix

U =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 , (A.13)

with [40]


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|




=




0.97370± 0.00014 0.2245± 0.0008 (3.82± 0.24)× 10−3

0.221± 0.004 0.987± 0.011 (41.0± 1.4)× 10−3

(8.0± 0.3)× 10−3 (38.8± 1.1)× 10−3 1.013± 0.030


 .

(A.14)

A.4 Gell-Mann matrices

This representation of the infinitesimal SU(3) group is given by

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i

0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i

0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 .

(A.15)
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Appendix B

Useful integrals

Given a function

FR =
Θ(q0)δ

(
p0 + q0 − E (~p+ ~q)

)

p0 (p0 + q0 − E (~p+ ~q))
n(~p) (1− n (~p+ ~q)) , (B.1)

where p, q are four-vectors, E(~p) =
√
~p2 +m2, m is a constant, Θ is the

Heaviside or step function and

n(~k) =

{
0; |~k| ≥ kF
1; |~k| < kF

, (B.2)

with kF constant. For the imaginary part of a function defined as

ImUR =

∫
d3p

4π2
FR =

Θ(q0)Θ(−q2)

4π|~q| Θ (EF − ER) (EF − ER) , (B.3)

where
EF =

√
M2

N + k2
F ,

ER =Max



MN, EF − q0,

−q0 + |~q|
√

1− 4M2
N/q

2

2



 ,

(B.4)

we have that ∫
d3p

4π2
FRE(~p) =

1

2
(EF − ER) ImUR , (B.5)

and ∫
d3p

4π2
FRE

2(~p) =
1

3

[
E2
F + E2

R + EFER
]

ImUR . (B.6)
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B.1 Gaussian integrals

The Gaussian function can be cast as

f(x) = e−x
2
. (B.7)

The result of integrating a function of this type over R reads
∫ ∞

−∞
e−a(x+b)2

dx =

√
π

a
. (B.8)

The n-dimensional generalization of this result, where ~x = (x1, . . . , xn), is
∫ ∞

−∞
e−

1
2
~xTA~xdnx =

√
(2π)n

detA
, (B.9)

where A is a symmetric positive-definite n×n matrix. In the case of having
a linear term, then

∫ ∞

−∞
e−

1
2
~xTA~x+ ~B T ~xdnx =

√
(2π)n

detA
e

1
2
~B TA−1 ~B . (B.10)

B.2 Fourier transform properties

The Fourier transform of a function in three dimensions is defined as

f̃(~x) =

∫ ∞

−∞
f(~ω)e−i~ω·~xd3ω . (B.11)

The inverse Fourier transform, defined as

f(~ω) =

∫ ∞

−∞
f̃(~x)ei~ω·~xd3x , (B.12)

in the case of a function which only depends on the radial component when
transformed in spherical coordinates, can be written as

f(~ω) =

∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dφf(r)eiωr cos θr2 sin θ

= 2π

∫ ∞

0
dr

∫ π

0
d cos θ f(r)eiωr cos θr2

=
4π

ω

∫ ∞

0
dr f(r) sin(ωr)r .

(B.13)
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Appendix C

Decay width and cross section

In a given particle interaction, if we label the four-momenta of the initial
particles as pi = (Ei, ~pi) , i = a, b, . . . , and their masses as mi; and the final
as pf = (Ef , ~pf ) , f = 1, 2, · · ·N , with masses mf , the phase space is defined
as

dΦN ≡
N∏

f=1

(
d3pf

(2π)32Ef

)
(2π)4δ(4)


∑

f

pf −
∑

i

pi


 (C.1)

C.1 General expression for the decay width

For an unstable particle, a which decay on any number N of other particles,
the general expression of the differential decay width reads

dΓ (a→ 1 + 2 + · · ·+N) =
1

2ma
dΦN |M|2 , (C.2)

where M is the Lorentz-invariant matrix element of the S-matrix which
describes the interaction, and

|M|2 ≡
∑

spin

|M|2 , (C.3)

is the sum of its modulus squared, over the final particles polarizations and,
in the case of non-polarized initial particles, the average over the initial ones.
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C.2 General expression for the cross section

In a given reaction where two particles collide producing N outgoing parti-
cles, the differential cross section is given by

dσ (a+ b→ 1 + 2 + · · ·+N) =
1

2λ1/2
(
s,m2

a,m
2
b

)dΦN

∣∣M
∣∣2 , (C.4)

where λ (x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz is the Källén function,
and s = (pa + pb)

2 is the invariant mass of the initial system.
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Appendix D

Probability

Given an experiment, the probability to obtain an specific result when a
measure is performed is the ratio, Ref. [166],

P =
number of occasion on which that result occurs

total number of measurements
. (D.1)

If we define P (A) and P (B) as the probabilities to occur of the events
labelled as A and B respectively, we have that

P(A+B) ≤ P(A) + P(B) , (D.2)

where equality applies for exclusive A and B events.
We define the probability of obtaining both events, A and B, as P(A∩B).

It can be calculated in terms of the probability of obtaining A, given that
B has occurred, P (A|B),

P(A ∩B) = P(A|B)P(B) = P(B|A)P(A) . (D.3)

From this result we can obtain

P(A|B) =
P(A ∩B)

P(B)
. (D.4)

For the case when A is not affected by the occurrence of B, we say that
these events are independent, and we have

P(A|B) = P(A) . (D.5)

Hence, in this case we obtain

P(A ∩B) = P(A)P(B) . (D.6)
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Appendix E

Best-fit results

It is worth noting that each of the sigmoids that constitute the neural net-
works typically describes a particular feature of the function. If a soft de-
pendence is preferred by the data, some units might be redundant and take
very similar values for the weights.

E.1 BIN0 with deuteron corrections

The best-fit parametrization for the BIN0 data set with the deuteron cor-
rection included is

N (Q2, {wj}) =
w9

e
−Q2

Q2
0
w1−w2

+ 1

+
w10

e
−Q2

Q2
0
w3−w4

+ 1

+
w11

e
−Q2

Q2
0
w5−w6

+ 1

+
w12

e
−Q2

Q2
0
w7−w8

+ 1

+ w13 .
(E.1)

The weights w1−13 take the following values:

{wj} ={−2.174061, 0.1991515, 2.140942,−0.1947798,−2.174070,

0.1991740,−5.481409, 2.501837,−2.502352, 2.308397,

− 2.502347, 3.120895,−0.1638095}
(E.2)

with a covariance matrix

A−1 =




3.037317 −0.1350095 0.7164281 0.6028375 −0.9106402 −0.7254212 −0.1375870 0.1193517 1.744848 0.7934970 −1.638952 −0.6857111 −0.6863036
−0.1350095 6.839114 0.5963543 2.241853 −0.7253642 −2.521010 0.08826055 0.08952850 0.5380971 −0.4953074 0.7737700 0.5333276 0.3832513
0.7164281 0.5963543 3.129677 −0.3601146 0.7164453 0.5964068 0.08461544 −0.05068235 1.066743 1.171111 1.066819 0.6044601 −1.304295
0.6028375 2.241853 −0.3601146 7.284083 0.6028388 2.242126 −0.1002227 −0.05207626 −0.8354786 0.1749902 −0.8355188 −0.4839537 −0.08842895
−0.9106402 −0.7253642 0.7164453 0.6028388 3.037309 −0.1350448 −0.1375865 0.1193541 −1.638966 0.7934769 1.744873 −0.6857391 −0.6862827
−0.7254212 −2.521010 0.5964068 2.242126 −0.1350448 6.839396 0.08828352 0.08953791 0.7736800 −0.4953435 0.5381072 0.5333633 0.3832724
−0.1375870 0.08826055 0.08461544 −0.1002227 −0.1375865 0.08828352 1.348550 −0.7524626 −0.8319859 0.4259322 −0.8320014 1.535086 −0.3655335
0.1193517 0.08952850 −0.05068235 −0.05207627 0.1193541 0.08953791 −0.7524626 0.5275705 0.6937163 −0.3336553 0.6937285 −0.9665196 0.3068238
1.744848 0.5380971 1.066743 −0.8354786 −1.638966 0.7736800 −0.8319859 0.6937163 13.95026 2.966996 −6.650710 −1.081263 −3.213450
0.7934970 −0.4953074 1.171111 0.1749902 0.7934769 −0.4953435 0.4259322 −0.3336553 2.966996 8.333349 2.967110 0.5435698 −8.166890
−1.638952 0.7737700 1.066819 −0.8355188 1.744873 0.5381072 −0.8320014 0.6937285 −6.650710 2.967110 13.95042 −1.081328 −3.213562
−0.6857111 0.5333276 0.6044601 −0.4839537 −0.6857391 0.5333633 1.535086 −0.9665196 −1.081263 0.5435698 −1.081328 2.761672 −0.4607885
−0.6863036 0.3832513 −1.304295 −0.08842895 −0.6862827 0.3832724 −0.3655335 0.3068238 −3.213450 −8.166890 −3.213562 −0.4607885 8.103694




.

(E.3)
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E.2. BIN1 with deuteron corrections

As explained in Sec. 5.2.2, Eq. 5.7, to obtain FA(Q2), function N (Q2, {wj})
given above should be multiplied by the dipole Eq. (3.54) withMA = 1 GeV.

E.2 BIN1 with deuteron corrections

In this case,

N (Q2, {wj}) =
w7

e
−Q2

Q2
0
w1−w2

+ 1

+
w8

e
−Q2

Q2
0
w3−w4

+ 1

+
w9

e
−Q2

Q2
0
w5−w6

+ 1

+w10 , (E.4)

with

{wj}MP ={−0.0703401, 0.0404197,−0.0703404, 0.0404186,−0.0703372,

0.0404192, 0.299085, 0.299087, 0.299086, 0.554479} ,

(E.5)
and a covariance matrix

A−1 =




0.501347 0.000475574 −0.133756 0.00312538 −0.133756 0.00312517 −0.0951767 0.0545460 0.0545442 −0.00759898
0.000475574 0.563049 0.00312506 −0.00641521 0.00312465 −0.00641482 0.0538884 −0.0236924 −0.0236923 −0.0444412
−0.133756 0.00312506 0.501346 0.000475531 −0.133757 0.00312475 0.0545453 −0.0951765 0.0545448 −0.00759898
0.00312538 −0.00641521 0.000475531 0.563050 0.00312457 −0.00641496 −0.0236928 0.0538882 −0.0236918 −0.0444415
−0.133756 0.00312465 −0.133757 0.00312457 0.501347 0.000474719 0.0545458 0.0545457 −0.0951783 −0.00759868
0.00312517 −0.00641482 0.00312475 −0.00641496 0.000474719 0.563050 −0.0236928 −0.0236921 0.0538888 −0.0444415
−0.0951767 0.0538884 0.0545453 −0.0236928 0.0545458 −0.0236928 0.505143 −0.101488 −0.101488 −0.154622
0.0545460 −0.0236924 −0.0951765 0.0538882 0.0545457 −0.0236921 −0.101488 0.505144 −0.101488 −0.154623
0.0545442 −0.0236923 0.0545448 −0.0236918 −0.0951783 0.0538888 −0.101488 −0.101488 0.505144 −0.154623
−0.00759898 −0.0444412 −0.00759898 −0.0444415 −0.00759868 −0.0444415 −0.154622 −0.154623 −0.154623 0.246587




.

(E.6)
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