Calibration of gamma-ray instruments for Nuclear Astrophysics

José Manuel Alvarez (IEEC-CSIC, Barcelona) Margarita Hernanz (IEEC-CSIC, Barcelona) Peter von Ballmoos (CESR, Toulouse)

Outline

- Gamma-rays in astrophysics
- Detection of gamma-rays
- How to focus γ -rays?
- Steps towards a γ-rays lens for nuclear astrophysics
 CLAIRE: a focusing γ-rays lens
 The MAX mission
- Experimental proposals for the GRL

Radioactive isotopes relevant for γ-ray line astronomy

Isotope			Decay chain					Lifetime			Line energy (keV)		keV)
N	⁵⁶ Ni			⁵⁶ Ni	→ ⁵⁶ Co			8.8	3 d		158, 8′	12, 750,	480
nain	⁵⁶ Co			⁵⁶ Co	→ ⁵⁶ Fe	9		11	1 d		84	7, 1238	;
vae r	⁵⁷ Ni		⁵⁷ Ni	-> 5	⁷ Co 	⁵⁷ Fe		(52 h)	390 d			122	
erno	⁴⁴ Ti		⁴⁴ Ti		⁴ Sc —	⁴⁴ Ca		89 y (5.4 h)		78,	68, 115	7
Sup	²⁶ Al			²⁶ Al	► ²⁶ Mg	ļ		1.0 x	10 ⁶ y			1809	
	⁶⁰ Fe		⁶⁰ Fe		⁶⁰ Co →	⁶⁰ Ni	2.	0 x 10 ⁶	y (7.6	y)	117	73, 133	2
ae nlv	⁷ Be			⁷ Be -	→ ⁷ Li			77	7d			478	
Nov mai	²² Na			²² Na	→ ²² Ne	;		3.8	3 y			1275	
			e⁻ cap	oture	>β+	_	- β-		ĺ				

γ-ray emission from galactic radioactivity

Relevant radioactive nuclei for galactic γ-ray line emission:
 how and where they are synthesized:
 nucleosynthesis (hydrostatic and explosive), in stars
 interaction with cosmic rays, in the interstellar medium

Electron-positron annihilation emission (line and continuum):
 > e⁺ from β⁺- unstable nuclei
 > BUT other sources of e⁺ (≠ radioactivity) exist

Sites of explosive nucleosynthesis relevant for γ-ray line astronomy

• SUPERNOVAE:

➤ Thermonuclear supernovae (SN Ia): exploding white dwarfs in binary systems (no remnant)
 ➤ Core collapse supernovae (SN II, SN Ib/c): exploding massive stars (M ≥ 10 M_☉) (neutron star or black hole remnant)

$v \sim 10^4$ km/s, E ~ 10^{51} erg, M_{ej} ~ M_o

Explosion of the external H-rich accreted shells of a white dwarf in a binary system

v ~ 10² - 10³ km/s, $E \sim 10^{45} \text{ erg}, M_{ei} \sim 10^{-4} \text{ - } 10^{-5} M_{\odot}$

Compton Gamma-Ray Observatory: COMPTEL map of the 1.8 MeV line of ²⁶Al

γ-ray detection

How to focus γ -rays?

How to focus γ -rays?

http://www.cesr.fr/~pvb/Claire/index.html

Mosaic crystals

Darwin model: the true defect structure of the crystal is replaced by an agglomerate of perfect crystal blocks typically of microscopic size, where each one is offset in inclination from the others.

The distribution of the inclination of the perfect crystal blocks is assumed to be Gaussian in the Darwin mosaic model, with a FWHM called the **Mosaic width**.

The Bragg condition is monochromatic:

$$2d\sin\theta = n\lambda = n\frac{hc}{E}$$

Energy bandpass:

$$\Delta E = \frac{\Delta \theta}{\theta} E$$

Energy bandwidth ΔE of a Bragg reflection due to a mosaic width $\Delta \theta$, assuming incident photons with no angular divergence.

http://www.cesr.fr/~pvb/Claire/index.html

CLAIRE: a γ-ray lens prototype

8 rings - 576 Ge crystals – 45 cm diameter – 511 cm² area

					Ny
ring number	reflection plane	number of crystals	crystal surface WxH [mm x	crystal thickness	Bragg angle
	[hkl]		mm]	T [mm]	@ 170 keV
1	111	28	10 x 10	3.0	0.66°
2	220	52	10 x 10	3.2	1.08°
3	311	56	10 x 10	4.6	1.27°
4	400	72	10 x 10	4.2	1.52°
5	331	80	10 x 7	5.1	1.67°
6	422	88	10 x 10	5.0	1.87°
7	333	96	10 x 7	6.2	1.99°
8	440	104	10 x 10	5.6	2.17°

Nx

Nz 🗲

[hkl]

× ...

http://www.cesr.fr/~pvb/Claire/index.html

The gamma-ray bench at CESR

Does it work? Testing the lens in the lab

Does it work? What's expected for sources at infinity?

Is the lens performing as expected for sources at quasiinfinity?

von Ballmoos et al. 2004.

CLAIRE TGD: at 200m

File Edit View Go Bookmarks Tools Window Help

http://www.ieec.fcr.es/hosted/claire/tgd.html

🔏 Home 🗄 Bookmarks 🛇 The Mozilla Organi... 🛇 Latest Builds 🖻 Empresas 🖻 SantCugat 🖻 Ocio 🖻 viajes 🖻 Idiomas 🖄 Le Monde diploma... 🛇 USA State Map/Q...

What is Claire-TGD?

Setting of the TGD

Arrival at Ordis

Assembly in Ordis

TGD measures

X-ray generator tube

Miscellaneous: Ordis May 2003

TGD Team (May 2003)

G

CLAIRE **Long Distance Test in Ordis**

The experimental setup of the long distance test, along one of the tracks of the aero-club Ordis (May 2003)

Aaro alub ORDIS

- 6 ×

CESR

Search

2

Is the lens performing as expected for sources at infinity?

von Ballmoos et al. 2004

CLAIRE:balloon-borne γ-rays lens telescope

Detector

- 3x3 matrix
- high purity Ge 1.5*1.5*4 cm
- AC shield
- CsI
- BGO

γ-ray lens
- 563 crystals
- E = 170 keV
- FWHM ~ 3 keV

http://www.cesr.fr/~pvb/Claire/index.html

Is the lens performing as expected for sources at infinity?

on Ballmoos et al. 2004/

From CLAIRE to MAX (space mission)

www.cesr.fr/~pvb/MAX/

MAX V2.2 - baseline

3σ narrow line sensitivity MAX two broad energy bands diffracting HEAO3 HEAO3 OSSE - E/∆E ~ 500 OSSE - ang. res. ~ 1' σ narrow line sensitivity [ph cm SPI - timing - polarization 10⁻⁵ options a) baseline detector **Ge Compton stack** ŝ 10⁻⁶ MAX 'b) b) single detector **SPI type GeD** a) a) 10^{-7} 460 470 480 490 500 510 520 530 800 820 840 860 880 900 Energy [keV] Energy [keV]

www.cesr.fr/~pvb/MAX/

Diffraction efficiencies test with the APS at Argonne National Lab

• The Advanced Photon Source (APS) synchrotron at Argonne National Laboratory is a third generation synchrotron with 7GeV positrons energy. The critical energy is 19.5KeV.

• A bending magnet beam line was used for the test.

Kohnle et al., NIM, 1998

First and second crystals form a doublecrystal monochromator

Calculated and measured bending magnet flux from the source.

APS beam test of a Ge crystal

These measurements served to verify the Darwin mosaic model used to calculate CLAIRE's performance

Experimental proposals for the gamma-ray line beam

Measurement of diffraction efficiencies in mosaic crystals

Crystals	Mosaicity	ΔΕ	Size	Energy	Miller indices
Ge	30 arcsec	20 KeV	1.5x1.5x1 cm ³	460-522 KeV	[111]
Cu	60 arcsec	70 KeV	1.5x1.5x1 cm ³	825-910 KeV	[111]

Diffraction efficiencies: larger E, various planes (i,j,k); Ge,Cu,Si,...

- 1. A small beam size makes possible to study the homogeneity of the crystal material, and to measure mosaic widths and efficiencies as a function of position over the crystal face.
- 2. Dependence of the diffraction efficiency on the mosaic width.
- 3. Effect of surface damage on the diffraction efficiency.

MAX project: what do we need from GRL?

Energy range	Beam size	Angular size (crystal, at 25m)	Flux	Polarization
0.2-2 MeV	~ 1cm ²	~ 0.02 mrad	10 ⁶ -10 ⁸ ph/s/0.1%bw	high rate of linear polarization desired
Options:				
a) Tunable γ	-ray energy in th	e range 0.2-2Me	eV 📫 FEL las	ser
b) Flat-spe (select a nar	ctrum in the ener row band of energie	gy range of 0.2- es with crystal mor	·2MeV nochromator)	CO ₂ laser

Other concepts for γ -ray telescopes

Mega γ -ray telescope

MEGA: Medium Energy Gamma-ray Astronomy (0.4-50MeV)

Detection Principle

- Compton (< 10 MeV)
- Pair creation (> 10 MeV)
- Electron tracking
- Polarimeter

Telescope components :

- Tracker (layers of Si strip detectors)
- Calorimeter (CsI or CdTe)
- Shielding (plastic scintillator)

Parameters :

- energy range :
- spectral resolution :
- field of view :
- angular resolution :
- effective surface :
- sensitivity :
- new science:

400 keV - 50 MeV 3-4 % (FWHM) 120° (FWHM) 2-4° (FWHM) 100 cm² > 10 × COMPTEL polarimetry

Kanbach, et al. NewAR(2004)

Mega prototype

10 layers of double sided silicon strip detectors 18x18 cm², 0.5 mm thick

Mega-Prototype measurements at HIGS

The High Intensity Gamma-ray Source (HIGS) at Duke University

Mega-Prototype measurements at HIGS

Measured Energies and Angles (15.5 10⁶ triggered events)

					Ene	ergies [MeV]				
		0.7	2	5	8	10	12	17	25	37	49
Angles	0°	300	400	345	255	435	435	435	345	435	1095
	30°	246		345		525	525	525	390	480	390
	60°			480		525	705	570	570	570	570
	80°						480		570	480	480
	120°			120			165		165	120	165
	180°			120		165	120			220	240
	Σ	546	400	1410	255	1650	2430	1530	2040	2305	2940

Deconvolved image of pair events (50MeV) for the 9 XY-positions incidenting on Si-strip detectors.

Beam images at 49 MeV

Andritschke.R, et al. NewAR 48 (2004)

ACT options

PROPERTY	CZT STRIP	Si STRIP	Ge STRIP	LIQUID Xe	Xe μWELL
∆E/E (1 MeV)	1%	0.2-1%	0.2%	4.5%	1.7%
Spatial Resolution	<1mm ³	<1mm ³	<1mm ³	<1mm ³	0.2 mm ³
Stopping Power (Z, density)	48 8.3 g/cm ³	14 2.3 g/cm ³	32 5.3 g/cm ³	54 3.0 g/cm ³	54 0.02 g/cm ³ (3 atm)
Volume (achieved)	4 cm ³	60 cm ³	130 cm ³	3000 cm ³	50 cm ³
Operating T	10° C	-20° C	-190° C	-100° C	20° C
Application	calorimeter	scatterer	scat/cal	scat/cal	scatterer
Institutions	UNH, UCSD	NRL, UCR	Berkeley, NRL	Columbia, Rice	GSFC

TIGRE MEGA

UC Riverside MPE, UNH

Ge-ACT

UC Berkeley

Liquid XE

Columbia