Gamma-rays generated at ALBA Applications to Medicine of M. Anguiano and A.M.L. (Granada) J.M. Udías (Madrid) Barcelona, 2004

Contents

- External radiotherapy
- Internal radiotherapy
- Diagnostic radiology
- Conclusions

External radiotherapy

- small divergences of the beam precision small field treatments
- energy distribution
 improvement of the relat

specially for deep tumours !!! improvement of the relative tumour to normal tissue dose

Internal radiotherapy

- in situ activation of short-lived neutron + neutron absorption by ^{10}B absorbed by tumour producing radioisotopes (165 Ho, 197 Au, 141 Pr) 165 Ho $(\gamma,n)^{164}$ Ho: $\sigma \sim 0.5$ barns at 15 MeV
- photon activation (^{27}Al)

ulterior β^+ decay could permit monitoring

photofission

Diagnostic radiology

- quasi-monochromatic x-rays
- reduction of the imparted dose
- enhancement of the contrast
- BUT: low energies needed (<100 keV)

the gamma-ray line at ALBA

offer good possibilities for medical applications