Signatures with multiple b-jets in the Left-Right twin higgs model

fast simulation study of the ATLAS reach

L. March, E. Ros, <u>M. Vos</u> IFIC, U. Valencia/CSIC

Les Houches BSM working group Twin Higgs discussion session 23rd june 2007

Particle spectrum – Little Higgs

Symmetry $SU(5) \rightarrow [SU(2) \otimes U(1)]^2$

 masses of T, W_H, Z_H, φ not fixed
 by the model
 After fixing the masses, free parameters (λ₁, θ, θ', v') remain
 that affect cross-sections
 W_H is LEFT-handed
 Theory: Arkani-Hamed et al.
 Phenomenology: Han et al.

Particle spectrum – twin Higgs

Symmetry

$U(4) \otimes U(4) \rightarrow SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)$

→ masses of T, W_{H} , Z_{H} , ϕ , h not fixed by the model

After fixing the masses, NO free parameters remain, cross-

sections can be computed

- → No A_H (photon partner)
- More complex scaler sector (\mathbf{h}_{2}^{0}

is dark matter candidate)

• W_{H} is RIGHT-handed

Theory: Chacko et al. (hep-ph/0506256) Phenomenology: Goh and Su (hep-ph/0608330)₃

Phenomenology – little Higgs

 $Z_H \rightarrow e^+e^-$ BR ~ 4 % $W_H \rightarrow e_e P_e$ BR ~ 8 % mass reach ~ 5 TeV (cot θ = 1)

Other decays:

 W_H → tb BR ~ 25 % mass reach ~ 2.5 TeV (cot θ = 1)

Model test:

mass reach ~ 2 TeV (cot θ = 0.3, decay absent for cot θ = 1)

ATLAS study published in: EPJ C39S2, 13 (2005) Other studies: ATL-PHYS-2006-003

Phenomenology – LR twin Higgs

BR ~ 2.5 %
not considered

Other decays ($W_{H} \rightarrow tb$ is suppressed):

 $W_{\mu} \rightarrow Tb$ $\mapsto \phi^{\pm} b$ → tb → Wb $\mapsto \mathbf{v}$ $W_{\mu} \rightarrow \phi^{\pm} \phi^{0}$ → bb → tb \rightarrow Wb $\rightarrow v$

Absence of W_{H} leptonic decay may allow to distinguish Little Higgs from LR twin Higgs

Signature: $4 b + I + E_{T}^{miss}$

These decays provide a model test (not present in Little Higgs)

Signature for W_H (1 TeV/c²) \rightarrow Tb

्व			b ₄
\rightarrow	W/		b ₃
q'	^{vv} н Т		⊅ b₂
		¢∸ t	b ₁
			₩ [±]
			ν

particle	mass (GeV)	decay	BR
W _H	1000	Tb	(20%)
Т	500	$\varphi^{\pm} b$	(80%)
$\boldsymbol{\varphi}^{\pm}$	200	tb	(100%)
t	175	Wb	(100%)
W	80	lv	(21%)

	<p_> (GeV)</p_>
b ₁	95
b ₂	34
b ₃	201
b ₄	277
I	67
ν	80

Simulation:	Pythia + ATLFAST
<u>X-section:</u>	σ = 30 pb x BR
Background:	tt, W+jets
Luminosity:	$L = 30 \text{ fb}^{-1}$

W_{H} (1 TeV/c²) \rightarrow Tb selection cuts

Efficiency (kin. cuts only): $\epsilon_{kin} \sim 12 \%$

Reconstruct masses

 $I+v \rightarrow W$ $p_{_{T}}$ (I) > 25 GeV/c, E_{τ}^{miss} > 25 GeV/c assume $p_v^{\nu} // p_j^{-1}$ to reconstruct W $\varepsilon_1 = 90\%$ (trigger + lepton ID) $W+b_1 \rightarrow t$ 25 < $p_T (b_1)$ < 200 GeV/c $t+b_2 \rightarrow \phi^{\pm}$ 25 < $p_T (b_2)$ < 100 GeV/c $\phi^{\pm}+b_{3} \rightarrow T \quad p_{T}(b_{3}) > 100 \text{ GeV/c}$ $\mathbf{T} + \mathbf{b}_{A} \rightarrow \mathbf{W}_{H} \ \mathbf{p}_{T} \ (\mathbf{b}_{A}) > 150 \ \text{GeV/c}$ $|\eta| < 2.5$ for all leptons and jets **Additional cuts** m(t) $< 250 \text{ GeV/c}^2$ $m(\phi^{\pm}) < 250 \text{ GeV/c}^2$ $m(T) < 700 \text{ GeV/c}^2$ p_{τ} (T) > 150 GeV/c (jacobean peak)

W_{H} (1 TeV/c²) \rightarrow Tb mass reconstruction

Reconstructed mass and width: $m = 982 \text{ GeV/c}^2$ $\sigma = 120 \text{ GeV/c}^2$

Remark:

 $\Gamma (W_{H}) = 24 \text{ GeV/c}^{2}$

W_{H} (1 TeV/c²) \rightarrow Tb signal/bkg for L=30 fb⁻¹

Signature for W_H (1 TeV/c²) $\rightarrow \phi^{\pm}\phi^0$

q	¢	0	b
q'	W _H ϕ^{\pm}		b ₂
		t	

particle	mass (GeV)	decay	BR
W _H	1000	$\phi^{\pm}\phi^{0}$	(3%)
φ^{\pm}	200	tb	(100%)
$\mathbf{\phi}^{0}$	100	bb	(80%)
t	175	bW	(100%)
W	80	lv	(21%)

	<p_> (GeV)</p_>
b ₁	148
b ₂	52
b ₃	200
b ₄	200
I	100
ν	121

Simulation:	Pythia + ATLFAST
X-section:	σ = 30 pb x BR
Background:	tt, W+jets
<u>Luminosity:</u>	$L = 30 \text{ fb}^{-1}$

10

W_{H} (1 TeV/c²) $\rightarrow \phi^{\pm}\phi^{0}$ selection cuts

Efficiency (kin. cuts only): $\epsilon_{kin} \sim 8 \%$

Reconstruct masses

 $I+v \rightarrow W$ $p_{_{T}}$ (I) > 25 GeV/c, E_{τ}^{miss} > 25 GeV/c assume $p_v^{\nu} // p_j^{-1}$ to reconstruct W $\varepsilon_{I} = 90\%$ (trigger + lepton ID) $W+b_1 \rightarrow t$ 25 < $p_T (b_1)$ < 300 GeV/c $t + b_2 \rightarrow \phi^{\pm}$ 25 < $p_{\tau} (b_2)$ < 150 GeV/c $\mathbf{b}_{1} + \mathbf{b}_{1} \rightarrow \mathbf{\phi}^{0} \quad \mathbf{p}_{T} (\mathbf{b}_{3}, \mathbf{b}_{4}) > 25 \text{ GeV/c}$ $\phi^{\pm} + \phi^0 \rightarrow W_{\mu}$ $|\eta| < 2.5$ for all leptons and jets **Additional cuts** m(t) $< 250 \text{ GeV/c}^2$ $m(\phi^{\pm}) < 250 \text{ GeV/c}^2$ $m(\phi^0) < 150 \text{ GeV/c}^2$ $p_{\tau} (\phi^{\pm}, \phi^{0}) > 300 \text{ GeV/c} (\text{jacobean peak})$

W_{H} (1 TeV/c²) $\rightarrow \phi^{\pm}\phi^{0}$ mass reconstruction

W_{H} (1 TeV/c²) $\rightarrow \phi^{\pm}\phi^{0}$ signal/bkg for L=30 fb⁻¹

other W_H (1TeV/c²) decays

Decay	signature	total B.R.	comment
$W_{H} \rightarrow Tb \rightarrow \phi^{\pm}bb$	\rightarrow 4b + I + E _t ^{miss}	3.2 %	this contribution
\rightarrow bWb	$\rightarrow 2\mathbf{b} + \mathbf{I} + \mathbf{E}_{t}^{miss}$	0.4 %	
\rightarrow thb	\rightarrow 4b + I + E _t ^{miss}	0.4 %	
\rightarrow tZb	$\rightarrow 2b + 3I + E_t^{miss}$	0.01 %	very small rate/no bkg.
$\rightarrow t\phi^0 b$	$\rightarrow 4b + I + E_t^{miss}$	0.1 %	
\rightarrow tb	\rightarrow 2b + I + E _t ^{miss}	0.8 %	cf. LittleHiggs BR=5%
$\rightarrow \phi^{\pm} \phi^{0}$	\rightarrow 4b + I + E _t ^{miss}	0.5 %	this contribution
\rightarrow qq	\rightarrow 2 jets	73 %	QCD di-jet background

Twin Higgs decay table for M=150 GeV [M is T-t mixing parameter] Remark: None of the above decays are visible for $M \rightarrow 0$

Mass dependence

b-tagging: multi-jet final states

How to tag a signal of 4 b-jets against a background of 2 b + 2 j ?

Standard efficiency-rejection curves approach is inefficient for multi-jet final states

Construct a 4 b-jet likelihood from individual jet weights.

b-tagging likelihood weights

b-tag likelihood "weights" for $60 < p_{\tau} < 100 \text{ GeV/c}$ (2D signed IP significance algorithm - DC1 data)

$$\epsilon_{b} = 50\%$$

$$p_{T} = 100 \text{ GeV/c} \rightarrow R_{u} = 130$$

$$p_{T} = 500 \text{ GeV/c} \rightarrow R_{u} = 60$$

Parameterisation

b-jets \rightarrow w^a e^{-bw} **c-jets** \rightarrow w^c e^{-dw} + gaussian **u-jets** \rightarrow e^{-ew} + gaussian a,b,c,d,e determined on full simulation for several p_T bins

multi b-jet likelihood:

$$W_{event} = \sum_{jets} W_j$$

p_{T} distribution of b-jets

20

Very high p_T b-tagging (I)

 $L = c \tau \gamma$ -> THE experimental signature for b-tagging is strongly enhanced for high p₁ b-jets

This makes it easier to tag the jets, or does it?

Very high p_{T} b-tagging (II)

$L = c \ \tau \ \gamma$

Average decay radius of B hadrons versus B-hadron transverse momentum B-layer

Decay radius distribution for B-hadrons in Z'->bb events $(m_{z'} = 2 \text{ TeV})$

Very high p_T b-tagging (III)

Number of tracks in jet (core) increases with jet E_{T}

jet core is getting very dense (shared hits in pixel detector) # tracks from B-decay = constant: relative weight tracks from B-decay decreases

p_T dependence of b-tagging

p_{T} dependence in Z_{H} (2 TeV/c²) \rightarrow bb samples

Full simulation "Rome" samples = DC1 geometry

SV1 = secondary vertex based btag algorithm2D = signed IP significance tagger

Studies ongoing on CSC samples (= DC3 geometry with updated material and residual misalignment)

Standard ATLAS tagging algorithms, without retuning

Summary and conclusions

- Twin Higgs model with LR symmetry and M > 0 predicts signatures with multiple b-jets in the final state
- The decay chain

 $W_{_{_{H}}} \rightarrow Tb \rightarrow \phi^{\pm}bb \rightarrow tbbb \rightarrow Wbbbb \rightarrow 4b + I + E_{_{t}}^{miss}$ can be observed with ATLAS and L=30 fb⁻¹ for masses up to m (W_{_{_{H}}}) ~ 3 TeV/c²

- Other decays like $W_{_H} \rightarrow \phi^{\pm} \phi^0 \rightarrow 4b + I + E_t^{_{miss}}$ can be observed for m ($W_{_H}$) ~ 1 TeV/c²
- b-tagging for high p_{T} ($p_{T} > 200 \text{ GeV/c}$) and very high p_{T} ($p_{T} > 500 \text{ GeV/c}$) is very important to identify these signatures

The work presented today is just the first step:

fast simulation (with some feedback from full simulation)

of ONE experiment's (ATLAS) potential for

ONE promising final state

(in terms of feasibility of signal isolation, mass reach, and added value to distinguish models)

for ONE set of parameters

(mixing parameter M of t-t_H known to have big impact on phenomenology)

Home-work for experiments/experimentalists; further signatures:

 $Z_H \rightarrow e^+e^-$ discovery BSM (little Higgs study, e+e- group) $Z_H \rightarrow TT$, tt, tT (M large) $TT \rightarrow 6 b + 2 W$ $W_H \rightarrow e v_R$ 2 I + jets (ATLAS phys. TDR) $W_H \rightarrow tb$ polarization $t_H \rightarrow tZ \rightarrow 2b + 3I + E_T^{miss}$ background-free

Higgs sector? (depending on μ_r) M=0? replace $\phi^{\pm} \rightarrow tb \ by \ \phi^{\pm} \rightarrow \tau v_{\tau}$

Home-work for experiments/experimentalists; add the development of efficient algorithms for:

high p_{T} b-tagging

To the to-do list:

high p_{T} muon/electron trigger (isolation) top mono-jet ID/reconstruction polarization (W_H \rightarrow tb)

Home-work for experiments/experimentalists: develop:

realistic experimental strategy

(i.e. template kinematical reconstruction on masses of different particles involved in cascade)

Wish list for our theory friends:

Exact values of σ , Γ , BR for all possible channels and all combinations of parameters **DONE!**

define bench mark points,

- M=0, 10, 150 GeV
- $\mu_r = O(100 \text{ GeV}), O(1 \text{ TeV})$

BACKUP SLIDES

Theoretical motivation

The problem (known as (little) hierarchy or fine-tuning problem, or LEP-paradox):

"radiative corrections to the Higgs mass up to ultra-violet cut-off Λ yield a Higgs mass of order Λ unless there is a very delicate cancellation" (following approximately the phrasing [SN-ATLAS-2004-038])

The solution(s):

"[the instability of the SM under quantum corrections] suggests the existence of new physics at or close to a TeV that protects the Higgs mass parameter of the SM against radiative corrections". (hep-ph/0506256)

- SUSY (with R-parity)
- (Large) Extra Dimensions
- (fill in your favourite solution here)

Theoretical motivation (II)

Alternative solution: "the Higgs is naturally light because it is the pseudo-Goldstone boson of an approximate global symmetry"

(phrasing from hep-ph/0506256)

- embed SM in larger symmetry group.
- Counterparts to SM particles are of the same statistics
- The larger symmetry, broken at some high scale $\Lambda_{_{\!H}}$, protects the Higgs mass from one-loop corrections quadratic in $\Lambda_{_{\!H}}$.

(originally proposed in the 1970s, see Georgi and Pais, Phys. Rev. D 10, 539 (1974), Kaplan, Georgi, Dimopoulos, Phys. Lett. B 136, 183 (1984),

Supersymmetry?

Possible solution: Indirect (dynamical) scale generation

Supersymmetric Models:

- Field condensation in new (hidden) sector with SUSY
 - \Rightarrow SUSY breaking \Rightarrow Scale generation
- · Scalars are present because of SUSY
- Scalar potential by radiative corrections
- Top sector triggers EWSB

Little Higgs Models:

- Field condensation in new sector with global symmetry
 - \Rightarrow spontaneous symmetry breaking \Rightarrow Scale generation
- Scalars are present because of Goldstone theorem
- Scalar potential by radiative correctons
- Top sector triggers EWSB

W. Kilian, Karlsruhe 2003

Theoretical motivation (III)

Little Higgs model (Arkani-Hamed, Cohen, Georgi, JHEP 0207, 020 (2002), Phys. Lett. B 513, 232 (2001)):electroweak symmetry breaking be the result of strong dynamics

Model is severely constrained by precision electroweak data (Csaki et al., hep-ph/0211124, Hewett, Petriello, Rizzo, hep-ph/0211218)

Constraints are lifted by other models with similar LHC phenomenology (Chang, hep-ph/0306034, Kaplan and Schmaltz, hepph/0302049)

LHC reach studied in detail in SN-ATLAS-2004-038 (hep-ph/0502037)

Theoretical motivation (V)

Twin Higgs model

Introduce discrete symmetry: each SM particle is interchanged with a corresponding particle transforming under a twin SM gauge group. EW precision data reproduced by construction: although new particles may be light they do not transform under the SM gauge groups. New physics is not necessarily charged under SM gauge groups!

Mirror Twin Higgs model (Chacko, Goh, Harnik, hep-ph/0506256): *Discrete symmetry is identified with mirror parity.* Collider phenomenology: invisible Higgs decay (ILC)

LR Twin Higgs model (Chacko, Goh, Harnik, JHEP 0601, 108 (2006)): *Discrete symmetry is identified with Left-Right symmetry.* Collider phenomenology: new particles around the electroweak scale (Goh, Suh, hep-ph/0608330)