

J. W. F. Valle

IFIC-CSIC/U. Valencia

thanks to Martin Hirsch

Tubingen Seminar - June 25, 2003 - p.2

AHEP http://ific.uv.es/~ahep

р

р

Current limit on $\beta\beta_{0\nu}$ **decay**

L. Baudis et al., PRL 83 (1999) 41-44

Depending on analysis and Matrix elements one finds

A summary of current $\beta\beta(0\nu)$ limits

For references see: S.R. Elliott and P. Vogel, hep-ph/0202264

Isotope	$T_{1/2}^{0\nu}(y)$	$\langle m_{ u} angle$ (eV)
⁴⁸ Ca	$> 9.5 \times 10^{21} (76\%)$	< 8.3
⁷⁶ Ge	$> 1.9 imes 10^{25}$	< 0.35
⁸² Se	$> 2.7 imes 10^{22} (68\%)$	< 5
¹⁰⁰ Mo	$> 5.5 imes 10^{22}$	< 2.1
¹¹⁶ Cd	$>7 imes10^{22}$	< 2.6
^{128,130} Te	$\frac{T_{1/2}(130)}{T_{1/2}(128)} = (3.52 \pm 0.11) \times 10^{-4}$	< 1.1 - 1.5
¹²⁸ Te	$> 7.7 imes 10^{24}$	< 1.1 - 1.5
¹³⁰ Te	$> 1.4 \times 10^{23}$	< 1.1 - 2.6
¹³⁶ Xe	$>4.4 imes10^{23}$	< 1.8 - 5.2
150 Nd	$> 1.2 \times 10^{21}$	< 3

Uncertainty in $\beta\beta(0\nu)$ matrix elements

Haxton & Stephenson,
 PPNP 12 (1984) 409
 Caurier et al, NPA654 (1999) 973c
 Engel, Vogel, Zirnbauer,
 PRC 37 (1988) 731
 Staudt, Muto & Klapdor,
 EPL 13 (1990) 31
 Faessler & Šimkovic,
 JPG24 (1998) 2139
 Pantis, Šimkovic, Vergados,
 Faessler PRC 53 (1996) 695

From S.R. Elliott and P. Vogel, hep-ph/0202264

$etaeta(0 u)$ ha $\langle m_{ u} angle$ = ements gi	lf-lives in 50 meV ven in	n units and the	s of 1 nuclea indicat	.0 ²⁶ ar m ed	years atrix referen	for el- ces
Nucleus	Ref: 1)	2)	3)	4)	5)	6)
⁴⁸ Ca	12.7	35.3	-	-	-	10.0
⁷⁶ Ge	6.8	70.8	56.0	9.3	12.8	14.4
⁸² Se	2.3	9.6	22.4	2.4	3.2	6.0
¹⁰⁰ Mo	-	-	4.0	5.1	1.2	15.6
¹¹⁶ Cd	-	-	-	1.9	3.1	18.8
¹³⁰ Te	0.6	23.2	2.8	2.0	3.6	3.4
¹³⁶ Xe	-	48.4	13.2	8.8	21.2	7.2
150 Nd	-	-	-	0.1	0.2	-
¹⁶⁰ Gd	-	-	-	3.4	-	-

Current status of neutrino parameters

upg of Maltoni et al, PRD67 (2003) 013011 & PRD 67 (2003) 093003, upd of PRD63 (2001) 033005

AHEP http://ific.uv.es/~ahep

Which neutrino spectrum?

any of the following can solve solar and atmospheric neutrino problems:

Colour coding for flavour composition: ν_e , ν_{μ} , ν_{τ} cosmological relevance of neutrinos?

$\beta\beta_{0\nu}$ and the neutrino spectra (mass mechanism)

the double beta decay $\beta\beta_{0\nu}$ amplitude is governed by the average mass parameter

$$\langle m_{\nu} \rangle = \sum_{j} K_{ej}^2 m_j$$

parametrizing K in terms of angles we get

Schechter and JV, PRD22 (1980) 2227

- $\langle m_{\nu} \rangle = c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 e^{i\alpha} m_2 + s_{13}^2 e^{i\beta} m_3$
- 3 masses: m_i
- 2 angles: θ_{12} and θ_{13}
- 2 CP violating phases: α, β

three possibilities

Normal Hierarchy
$$m_i \ll m_j \ll m_k$$
Inverse Hierarchy $m_i \ll m_j \approx m_k$ Quasi-Degeneracy $m_i \approx m_j \approx m_k$

AHEP http://ific.uv.es/~ahep

Tubingen Seminar - June 25, 2003 - p.10

like cosmology, $\beta\beta_{0\nu}$ probes absolute m-nu scale

in contrast to oscillations

100

Current sol-atm, $\beta\beta_{0\nu}$ and **Tritium sensitivities**

- Current neutrino oscillation data
- Upper limit for $\langle m_{\nu} \rangle \leq 0.3$ [eV] with factor ~ 2 uncertainty band
- Upper limit from Tritium experiments: $m_1 \le 2.5$ [eV]

Beyond the mass mechanism

- Neutrinoless double beta decay violates lepton number
- Any model beyond SM with lepton number violation can contribute!
- Derive constraints from absence of $\beta\beta_{0\nu}$

Examples:

- \Rightarrow Left-right symmetric models
- \Rightarrow R-parity conserving supersymmetry
- \Rightarrow R-parity violating supersymmetry Hirsch, Klapdor, Kovalenko, PRL75 (1995) 17; Faessler, Kovalenko, Simkovic, PRD58 (1998) 055004

Relevance of $\beta\beta_{0\nu}$

gauge theories $\beta \beta_{0\nu} \leftrightarrow$ majorana mass

Schechter and JV, PRD 25 (1982) 2951

no such theorem for flavor violation!

like other *L* violating processes $\beta\beta_{0\nu}$ is potentially sensitive to Majorana phases Schechter and JV, PRD22 (1980) 2227, D23 (1981) 1666

Wolfenstein PLB107 (1981) 77; Doi et al

currently can not reconstruct majorana phases

Barger, Glashow, Langacker, Marfatia, PLB B540 (2002) 247

a pity for leptogenesis

Theory of neutrino properties

basic dim-5 operator \odot

from Gravity

Weinberg; Barbieri, Ellis, Gaillard; Zee & Weldon

• from seesaw schemes

Gell-Mann, Ramond, Slansky; Yanagida; Mohapatra, Senjanovic PRL **44** (1980) 91 Schechter, JV PRD **22** (1980) 2227

AHEP http://ific.uv.es/~ahep

bilinear R parity violation: weak-scale seesaw

Diaz, Hirsch, Porod, Romao and Valle, hep-ph/0302021 PRD in press;
 PRD 62 (2000) 113008 [Err-ibid. D 65 (2002) 119901]; PRD 61 (2000) 071703

solar mass scale loops in Broken R parity Susy

M. A. Diaz et al hep-ph/0302021

solar mass scale loops: analytical vs numerical

M. A. Diaz et al hep-ph/0302021

$\beta\beta_{0\nu}$ decay in Bilinear Broken R parity Susy In bilinear (spontaneous) RP breaking dominated by mass mechanism $\langle m_{\nu} \rangle$ vs solar Hirsch, Romao, Valle PLBB486 (2000) 255, Hirsch & Valle. NPB557 (1999) 60 10⁻² 10⁻² $\langle m_{\nu} \rangle \left[eV \right]$ 10⁻³ 10⁻³ 10⁻⁴ 10^{-4} **10⁻⁵** 10⁻⁸ **10⁻⁴ 10⁻¹⁰** 10⁻⁶ 10^{-3} 10^{-2} **10⁻¹** $\sin^2(2\theta_{sol})$ $\Delta m_{12}^2 \ [eV^2]$ requires new generation of expts

The future AHEP http://ific.uv.es/~ahep

Future $\beta\beta_{0\nu}$ experiments

- GENIUS: J. Hellmig and H. V. Klapdor-Kleingrothaus, Z.Phys. A359 (1997) 351-359 \Rightarrow many (~ 300 - 3000) detectors ($\simeq 1 - 10$ ton)
 - \Rightarrow to reduce background operate detectors in liquid nitrogen
 - \Rightarrow claims sensitivity of $\langle m_{\nu} \rangle \sim 0.01(0.002) \text{ eV}$
- EXO: M. Danilov et al., hep-ex/0002003 \Rightarrow (1-10) tons in high pressure TPC
 - \Rightarrow to reduce background detect Ba⁺ daughter ion by laser tagging
 - \Rightarrow claims sensitivity of $\langle m_{\nu} \rangle \sim 0.02 \ (0.0025) \ eV$
- MOON: H. Ejiri et al., nucl-ex/9911008
 - \Rightarrow foils of several tons of enriched ¹⁰⁰Mo surrounded by plastic scintillators
 - \Rightarrow reduce background by ???
 - \Rightarrow claims sensitivity of $\langle m_{\nu} \rangle \sim 0.02 0.05$
- CUORE: Avignone FT, *et al.*, hep-ex/0201038 \Rightarrow 750 kg TeO₂ bolometers
 - \Rightarrow claims sensitivity $T_{0\nu\beta\beta} \sim 2 \times 10^{26} \left(\langle m_{\nu} \rangle \sim 0.02 0.05 \text{ eV} \right)$
- ...other expts ... CAMEO, CANDLES, GEM, Majorana ...

current vs future sol-atm, β and $\beta\beta_{0\nu}$ sensitivities

- take current neutrino oscillation data as in Maltoni et al, PRD67 (2003) 013011 & PRD 67 (2003) 093003, vs Δm^2 (best-fit point) data within 10 %
- let the upper limit for (or discovery) be $\langle m_{\nu} \rangle \leq 0.01$ [eV], with factor ~ 2 uncertainty
- take the upper limit (or discovery) from KATRIN experiment as $m_1 \simeq 0.4$ [eV] (±10%)

current vs future oscillation data: Log $\langle m_{
u}
angle$ /eV vs Log m_1 /eV

normal versus inverse hierarchy in the future

- assume future LMA-MSW parameters to within 10 %
- Non-zero s_{13}^2 discovered: $0.05 \le s_{13}^2 \le 0.07$

 $\log \langle m_{\nu} \rangle / \text{eV}$ vs $\log m_1 / \text{eV}$

