Interpreting Neutrino Data

J. W. F. Valle

AHEP-IFIC-CSIC/U. Valencia

AHEP http://ific.uv.es/ahep

Valle @ Padova, Nov 5, 2004 – p.

Solar neutrino oscillations

Maltoni et al, hep-ph 0405172 vs PRD68 (2003) 113010

similar analyses by Bahcall et al, Bandyopadhyay et al, Balantekin et al, Fogli et al, ...

Reactor Neutrinos: KamLAND02 vs KamLAND04

Chooz-Palo Verde see no oscillations on $\sim 1~{\rm Km}$ baseline

defi cit +spectrum distortion over ≤ 200 Km baseline

confirms solar-nu oscillation hypothesis and gives tighter $\Delta m_{\rm SOL}^2$

Maltoni et al, hep-ph 040517

enormous progress

in contrast to atm, solar mixing is non-maximal

bi-maximal out at 5.6 σ

atm neutrinos

the discovery of neutrino mass

AHEP http://ific.uv.es/ahep

Atmospheric zenith distribution

Maltoni et al, PRD67 (2003) 013011 sterility rejection

(1-d Bartol)

accelerator neutrinos: K2K

Maltoni et al, hep-ph 0405172

 ν_{μ} defi cit+ distortion of the energy spectrum over 250 km baseline

neutrino oscillation signal

Super-KAN

atmospheric + K2K (3d)

Maltoni et al, hep-ph 0405172 (3-d from Honda et al astro-ph/0404457) earlier 1-d Bartol flux used in PRD68 (2003) 113010

3-nu oscillation parameters

AHEP http://ific.uv.es/ahep

minimal set of basic parameters

3 masses

minimal set of basic parameters

3 masses

3 angles θ_{ij}

3 phases 1 KM-like phase

2 Majorana phases

23=atm	12=sol	13=reac
oscillations		δ
$etaeta_{0 u}$		lpha,eta

minimal set of basic parameters 3 masses 3 angles θ_{ij} 23=atm 12=sol 13=reac oscillations 3 phases 1 KM-like phase $\mathbf{0}$ 2 Majorana phases $\beta\beta_{0\nu}$ α, β simplest form of 3-f lepton mixing $K = \omega_{23}\omega_{13}\omega_{12}$ $c_{12} e^{i\phi_{12}}s_{12} - i\phi_{12}s_{12} = c_{12}$ with each factor Schechter and JV, PRD22 (1980) 2227, D23(1980) 1666 for $\Delta L = 0$ oscillations we can drop Maj phases & take KM-like form $s_{13}\mathrm{e}^{-\mathrm{i}\delta_{\mathrm{CP}}}$ $c_{12}c_{13}$ $s_{12}c_{13}$ $-s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{\rm CP}}$ $c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\rm CP}}$ $C_{13}S_{23}$ $s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{\rm CP}}$ $-c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\rm CP}}$ $C_{13}C_{23}$ 5 parameter 3-f oscillation analysis oscil currently not sensitive to δ_{CP} so we also drop it

AHEP

3-nu Oscillations, after Nu04

AHEP

3-nu Oscillation Parameters, after Nu04

M. Maltoni et al, hep-ph/0405172

parameter	best fit	2σ	3σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	8.1	7.3–8.7	7.2–9.1
$\Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$	2.3	1.7 - 2.9	1.4-3.3
$\sin^2 heta_{12}$	0.30	0.25 - 0.34	0.23-0.38
$\sin^2 heta_{23}$	0.50	0.38 – 0.64	0.34-0.68
$\sin^2 heta_{13}$	0.00	≤ 0.028	≤ 0.047

Table I: Best-fit values, 2σ and 3σ intervals (1 d.o.f.) for the three-flavour neutrino oscillation parameters from global data including solar, atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K) experiments.

probing 3-nu oscillation effects

tough challenge

"Dirac" CPV disappears when any $\Delta_{ij} \rightarrow 0$, e. g. Δm_{SOL}^2

Schechter and JV, PRD21 (1980) 309

and when $\theta_{13} \rightarrow 0$

 $\Delta m_{\rm SOL}^2$ - θ_{13} correlation...

for low $\Delta m^2_{\rm ATM}$ solar+KamLAND both contribute

AHEP

Do we really understand

the Sun? neutrino propagation ? neutrino interactions ?

• • •

• • •

• • •

more than constraining oscillations ...

KamLAND has solved the solar neutrino problem... rejecting non-standard mechanisms as leading solns

Burgess et al JCAP 0401 (2004) 007, MNRAS 348 (2004) 609 robust

Miranda et al PRL 93, 051304 (2004) & hep-ph/0406066 robust

Miranda etal hep-ph/0406280 almost robust ...

AHEP http://ific.uv.es/ahep

fragility of solar-nu oscillations?

degenerate dark-side soln, not resolved by KamLAND

LMA-0 also noted in Guzzo, de Holanda, Peres, Friedland, Lunardini, Pena-Garay LMA-D new

probing non-standard interactions with solar-nu's

AHEP

How robust are atmospheric oscillations?

probing non-standard interactions with atm data

atm bounds on FC and NU nu-interactions upd of Fornengo et al, PRD65 (2002) 012

Neutrinos from Heavens

nu's as astro probe

AHEP http://ific.uv.es/ahep

Neutrinos as deep solar probe

use precision solar-nu data to probe the sun beyond helioseismology ... e.g. R-zone MHD physics leading to density fluctuations

Burgess et al, MNRAS 348 (2004) 609

neutrinos as future Supernova probe

4.5

1.3

1.25

0

0.2

0.4

though OK with SN1987A

LMA may clash with future SNovae

The measurement of a large number of neutrinos from a future galactic supernova will give us important astro information

simulate nu-signal from 10 kpc galactic SN with given astro param...

see also Barger, Marfatia & Wood

0.6 ξ 0.8

1.2

1

Kachelriess et al PRD65 (2002) 073016

Minakata et al, PLB542 (2002) 239

improved supernova parameter determination

AHEP

hierarchical or (quasi)-degenerate

oscillations can not resolve ...

0-nu double beta decay and the neutrino spectra

given that neutrinos are massive, one expects $\beta\beta_{0\nu}$ to occur with an amplitude governed by the average mass parameter

$$\langle m_{\nu} \rangle = \sum_{j} K_{ej}^2 m_j$$

$$\langle m_{\nu} \rangle = c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 e^{i\alpha} m_2 + s_{13}^2 e^{i\beta} m_3$$

- **3** masses: m_i
- 2 angles: θ_{12} and θ_{13}
- **2** CP violating phases: α, β

$\beta\beta_{0\nu}$ decay sensitivities of tritium & cosmo

Klapdor, Paes, Smirnov, ... Bilenky, Faessler, Simkovic hep-ph/0402250

can not yet reconstruct majorana phases Barger, Glashow, Langacker, Marfatia, PLB540 (2002) 247

Relevance of 0-nu double beta decay

gauge theories $\beta\beta_{0\nu} \leftrightarrow$ majorana mass

In any gauge theory of the weak interaction a non-zero $\beta\beta_{0\nu}$ implies at least one neutrino is Majorana

Schechter and JV, PRD25 (1982) 2951

no such theorem for flavor violation

the origin of neutrino mass

Weinberg PRD22 (1980) 1694

top-bottom neutrino masses

bottom-up neutrino masses

SUSY as origin of neutrino mass

M. Hirsch, JV, hep-ph 0405015 NJP

probing nu-mixing at LHC/NLC?

the road to nu-mass Theory

theory pathways to nu-mass

top-bottom

vs bottom-up

- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...

theory pathways to nu-mass

top-bottom

vs bottom-up

- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...

what is the scale ?

- Planck scale: Strings?
- GUT scale E(6), SO(10),...
- Intermediate scale: P-Q, L-R ...
- Weak SU(3) \otimes SU(2) \otimes U(1) scale

AHEP

theory pathways to nu-mass

top-bottom

vs bottom-up

- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...
- what is the scale ?
- Planck scale: Strings?
- GUT scale E(6), SO(10),...
- Intermediate scale: P-Q, L-R ...
- Weak $SU(3) \otimes SU(2) \otimes U(1)$ scale

no theory of flavour

AFIEP

theory pathways to nu-mass

top-bottom

vs bottom-up

- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...

what is the scale ?

- Planck scale: Strings?
- GUT scale E(6), SO(10),...
- Intermediate scale: P-Q, L-R ...
- Weak SU(3) \otimes SU(2) \otimes U(1) scale

no theory of flavour

LSND?

not the end, much more to come!!

end of the talk

1

AHEP

Aristizabal et al PRD68 (2003) 033006

$$W = W_{MSSM} + W_{BRpV} + W_{\Delta} \qquad \widehat{\Delta}_u = \begin{pmatrix} \widehat{\Delta}_u^{++} \\ \widehat{\Delta}_u^{+} \\ \widehat{\Delta}_u^{0} \end{pmatrix} \qquad \widehat{\Delta}_d = \begin{pmatrix} \widehat{\Delta}_d^{0} \\ \widehat{\Delta}_d^{-} \\ \widehat{\Delta}_d^{--} \end{pmatrix}$$

- p.40

Aristizabal et al PRD68 (2003) 033006

$$W = W_{MSSM} + W_{BRpV} + W_{\Delta} \qquad \widehat{\Delta}_u = \begin{pmatrix} \widehat{\Delta}_u^{++} \\ \widehat{\Delta}_u^{+} \\ \widehat{\Delta}_u^{0} \end{pmatrix} \qquad \widehat{\Delta}_d = \begin{pmatrix} \widehat{\Delta}_d^{0} \\ \widehat{\Delta}_d^{-} \\ \widehat{\Delta}_d^{--} \end{pmatrix}$$

solar scale from small induced Higgs triplet vevs (weak-scale type-II seesaw)

$$\left\langle \Delta_{u,d}^{0} \right\rangle \simeq \frac{1}{\sqrt{2}} h^{ij} \frac{\xi_i \xi_j}{M_{susy}^2} \qquad \xi_j \equiv v_i \text{ or } \epsilon_j$$

E. Ma

Aristizabal et al PRD68 (2003) 033006

$$W = W_{MSSM} + W_{BRpV} + W_{\Delta} \qquad \widehat{\Delta}_u = \begin{pmatrix} \widehat{\Delta}_u^{++} \\ \widehat{\Delta}_u^{+} \\ \widehat{\Delta}_u^{0} \end{pmatrix} \qquad \widehat{\Delta}_d = \begin{pmatrix} \widehat{\Delta}_d^{0} \\ \widehat{\Delta}_d^{-} \\ \widehat{\Delta}_d^{--} \\ \widehat{\Delta}_d^{---} \end{pmatrix}$$

 $\left(\widehat{\Lambda}_{++} \right)$

solar scale from small induced Higgs triplet vevs (weak-scale type-II seesaw)

$$\left\langle \Delta_{u,d}^{0} \right\rangle \simeq \frac{1}{\sqrt{2}} h^{ij} \frac{\xi_i \xi_j}{M_{susy}^2} \qquad \xi_j \equiv v_i \text{ or } \epsilon_j$$

atm scale from susy

Aristizabal et al PRD68 (2003) 033006

$$W = W_{MSSM} + W_{BRpV} + W_{\Delta} \qquad \widehat{\Delta}_u = \begin{pmatrix} \Delta_u^{-} \\ \widehat{\Delta}_u^{+} \\ \widehat{\Delta}_u^{0} \end{pmatrix} \qquad \widehat{\Delta}_d = \begin{pmatrix} \Delta_d^{-} \\ \widehat{\Delta}_d^{-} \\ \widehat{\Delta}_d^{-} \end{pmatrix}$$

 $\left(\widehat{\Lambda} + + \right)$

solar scale from small induced Higgs triplet vevs (weak-scale type-II seesaw)

$$\left\langle \Delta_{u,d}^{0} \right\rangle \simeq \frac{1}{\sqrt{2}} h^{ij} \frac{\xi_i \xi_j}{M_{susy}^2} \qquad \xi_j \equiv v_i \text{ or } \epsilon_j$$

atm scale from susy

LSP decay properties correlate with atm & reactor (ratios as RPV) Higgs^{±±} decay BR ratios correlate with solar mixing (triplet Yukawa ratios)

E. Ma

 $\int \widehat{\Lambda} 0$

– p.40

inverse seesaw with low-scale origin for nu-mass

Mohapatra & JV, PRD34 (1986) 1642

"inverse seesaw" m_{ν} –

$$\rightarrow 0$$
 as $\mu \rightarrow 0$

$$\mathcal{M} = \begin{pmatrix} 0 & m_D^T & 0 \\ m_D & 0 & M^T \\ 0 & M & \boldsymbol{\mu} \end{pmatrix},$$

LFV & CPV persist as $m_{\nu} \& \mu \to 0$

NHL exchange

Bernabeu et al, Branco, Rebelo and JV, Rius & JV, Gonzalez-Garcia & JV

susy loops

Hall, Kostelecky & Raby Borzumati & Masiero Barbieri & Hall, Casas & Ibarra, ...

Deppisch & JV, hep-ph 0406040

0-0

8 10 M

12 14

fragility of solar-nu oscillations against NSI

	$\sin^2 heta_{ m SOL}$	$\Delta m^2_{ m SOL}~[{ m eV^2}]$	ε	ε'	χ^2
OSC analysis					
LMA-I	0.30	8.3×10^{-5}	—	—	83.0
OSC+NSI analysis					
LMA-I	0.30	8.3×10^{-5}	-0.15	-0.15	81.9
LMA-D	0.70	8.3×10^{-5}	-0.15	0.95	83.1
LMA-0	0.30	1.4×10^{-5}	0.00	0.30	85.0

Best fit solar neutrino oscillation points with and without non-standard interactions

Robustness of solar-nu oscillations wrt noise-KL04

neutrino propagation strongly affected by solar density noise Balantekin et al 95 Nunokawa et al NPB472 (1996) 495 Burgess et al 97 Burgess et al, Ap.J.588:L65 (2003) & JCAP 0401 (2004) 007 Guzzo et al, Balantekin et al despite such large distortion

determination is robust

cf salt

Maltoni et al, hep-ph 0405172

ATHEP

Robustness of solar-nu oscillations against SFP

prevented by solar anti-nu limit

anti-nu limit implies robustness

regular versus random mag fi eld

LSND • hints of a

hints of neutrino conversions also from the detection of accelerator-produced neutrinos in the LSND experiment

4-nu models Peltoniemi, JV, NPB406, 409 (1993) Peltoniemi, Tommasini and JV, PLB298 (1993) 383 Caldwell-Mohapatra PRD48 (1993) 325

3+1 disfavored at 3.1 σ

2+2 excluded at 4.7 σ

Maltoni et al NPB643 (2002) 321 upd of PRD65 (2002) 093004

http://www.to.infn.it/~giunti/neutrino/

4-nus do not really fit LSND with the rest

M. Maltoni et al, hep-ph/0405172; NPB643 (2002) 321

stronger rejection by solar & atm in 2+2 than 3+1

Pas & Weiler

Cosmology closes in on LSND

3+1 scheme still OK at 3sigma, higher masses excluded

2df + WMAP + HST + SNIa

Schwetz et al hep-ph/0305312

Spergel et al, astro-ph/0302209; Hannestad, astro-ph/0303076; Elgaroy & Lahav, astro-ph/0303089,

Crotty, Lesgourgues & Pastor PRD67 (2003) 123005

day-night effect as a probe of θ_{13}

Akhmedov, Tortola, JV, JHEP05 (2004) 057 relevance of central value

AHEP

why KamLAND04 improves θ_{13}

strong spectrum distortion

favors unphysical θ_{13} values

combination with solar further improves ...

Neutrino Factories

Huber, Schwetz & JV PRL88 (2002) 101804 & PRD66, 013006 (2002)

FCI-oscillation confusion theorem

a neutrino factory is less sensitive to θ_{13} because non-standard neutrino interactions are confused with oscillations

Huber et al, PRL88 (2002) 101804

near-site programme essential

 2×10^{20} mu/yr/polarity \times 5 yr, 40 kt magn iron calorim, 10% muon E-resoln above 4 GeV

FCI-oscillation confusion theorem-2

Huber et al, PRD66, 013006 (2002)

 2×10^{20} mu/yr/polarity $\times 5$ yr, 40 kt magn iron calorim, 10% muon E-resoln above 4 GeV 90% CL reach on $\sin^2 2\theta_{13}$ vs NSI bounds The dotted line is for 700 km, dash-dotted for 3 000 km and dashed is for 7 000 km baseline horizontal black line is the current NSI limit

vertical grey band is the sensitivity without NSI

diagonal solid line is the theoretical bound derived from our confusion theorem

Improved FC-NSI-tests at NuFact •

10 kt detector, 0.33 ν_{τ} detection efficiency above 4 GeV; no tau charge id needed

solar-nu 2002

Maltoni et al, PRD67 (2003) 013011

AHEP

non-standard neutrino propagation

Non-standard interactions

FC or NU sub-weak strength dim-6 terms εG_F

can induce oscillations of massless neutrinos in matter, which are E-independent, converting both neutrinos & anti-nu's, can be resonant in SNovae Valle PLB199 (1987) 432, Roulet 91; Guzzo et al 91; Barger et al 91

they give excellent description of solar data Guzzo et al NPB629 (2002) 479

but can not be the leading mechanism, due to KamLAND

how much can they affect solar neutrino oscill parameters?