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Capitulo 1

Introduccion

1.1. Introduccion general al problema

Esta Tesis Doctoral estudia las desintegraciones del lepton 7 que incluyen
algiin meson entre las particulas finales, llamadas por ello desintegraciones hadroni-
cas o semileptonicas. Al contrario de lo que sucede con el resto de leptones (electrén,
e~ y muodn, p~) sumasa (M, ~ 1,8 GeV) es suficientemente elevada como para per-
mitir este tipo de desintegraciones incluyendo mesones ligeros (piones -7-, kaones
-K- y etas -n, n-). Estos procesos incluyen ademés el correspondiente neutrino del
tau, v,, y pueden incluir (en los llamados procesos radiativos) multiples fotones, .
Si bien es cinematicamente posible producir otros mesones ligeros cuyas masas sean
menores que la del tau, el tiempo de vida caracteristico de estas particulas (reso-
nancias) es excesivamente corto como para que sean detectadas. No obstante, como
veremos, el efecto de su intercambio es importante para entender estas desintegra-
ciones. Aunque M, ~ 2M,, donde M, es la masa del protén, debido a que es algo
inferior en realidad (M, = 1,777 GeV y 2M, = 1,876 GeV) y a la conservacién del
numero bariénico (que exigiria producirlos en pares barién-antibarién, siendo el mas
ligero protén-antiprotén) las desintegraciones del 7 a bariones estdan prohibidas.

Las desintegraciones puramente lepténicas del 7 son procesos debidos a la interac-
cion electrodébil, que a dia de hoy quedan adecuadamente descritos en el marco del
Modelo Estandar de Fisica de Particulas (SM) [I]. En las desintegraciones hadréni-
cas del tau interviene, adicionalmente, la interaccion fuerte. Aunque es bien conocido
que la Cromodindmica Cuéntica (Quantum Chromodynamics, QCD) es la teoria [2]
que la describe, no somos capaces todavia de resolver el problema que nos ocupa
utilizando el Lagrangiano de QC'D tnicamente, como explicaremos.

Las dos dificultades senaladas anteriormente -que las resonancias no sean estados
asintoticos en el sentido de que sea posible su deteccién y que no seamos capaces
de resolver QC'D para hallar una solucién al problema- nos dan la clave del interés
de las desintegraciones semileptonicas del tau: proporcionan por un lado un entorno
limpio en el que estudiar la interaccién fuerte a energias bajas e intermedias, ya
que la mitad electrodébil del proceso es limpia y esta bajo control desde el punto
de vista tedrico; por otra parte, dado el intervalo de energias del sistema hadrénico
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que cubren estas desintegraciones (esencialmente desde el umbral de produccion de
7 ~ 0,14 GeV hasta M. ), las resonancias més ligeras se pueden intercambiar en capa
maésica (on-shell), de modo que sus efectos son notables y se puede asi proceder al
estudio de sus propiedades.

La interaccion nuclear fuerte fue descubierta en el experimento clasico de Ruther-
ford, que probd la existencia del nticleo atéomico: era una fuerza de gran intensidad
y muy corto alcance. Pronto dicha fuerza comenzo a estudiarse en procesos de dis-
persién entre hadrones -las particulas que experimentan la interaccién fuerte- (que
se crefan elementales) en lugar de nicleos atémicos. El gran nimero de hadrones
descubierto en los anos 50 y 60 con el advenimiento de los primeros aceleradores
de particulas sugeria que dichas particulas no fuesen fundamentales, a imagen de lo
sucedido con los elementos quimicos, al fin constituidos por protones y neutrones
en sus nucleos. Para completar la analogia, la sistematizacién de las propiedades de
los hadrones (en este contexto intimamente ligadas a sus nimeros cudnticos y en
concreto a las simetrias aproximadas de sabor) ayud6 a entender su subestructura y
Gell-Mann comprendié que los hadrones debian estar constituidos por los llamados
quarks, con un nimero cuantico adicional -de color- que resolvia los problemas de
adecuaciéon del espin de las particulas observadas a la estadistica cuantica que obe-
decian.

Ahora bien, mientras que es posible desligar protones o neutrones de un ntcleo
-bien sea a través de radiactividad natural o artificialmente- no se ha conseguido
hasta la fecha extraer quark constituyente alguno del hadrén en que se halle. Es-
ta propiedad se conoce como confinamiento y, aunque existen razones tedricas que
apuntan a dicho fenémeno no existe una explicacién del mismo. Este hecho im-
pone una dificultad a la hora de entender los procesos mediados por interacciéon
fuerte: mientras que se produce entre quarks y gluones (los bosones intermediarios
de la QCD, que también tienen autointeracciones), nuestros detectores registran
unicamente hadrones, pues los quarks, antiquarks y gluones producidos forman in-
mediatamente objetos con carga de color total nula: hadronizan. Al contrario del
resto de fuerzas conocidas (electromagnética, débil y gravitatoria), en la QC'D la
fuerza no disminuye con la distancia sino que aumenta -aunque sea muy corto su
alcance-.

Aunque después se abundara en esta cuestién, baste decir por el momento que
aunque QC'D es la teoria de la interaccion fuerte, no sabemos cémo manejarla en su
régimen no perturbativo y, por ello, a efectos computacionales, su Lagrangiano sélo
permite abordar analiticamente procesos inclusivos y a energias elevadas (E > 2
GeV tipicamente) donde un tratamiento en términos de quarks, antiquarks y gluo-
nes tiene sentido. A las energias menores en que sucede nuestro problema deberemos
buscar un camino alternativo. Como sucede siempre en Fisica, una eleccion adecua-
da de los grados de libertad simplifica (o incluso permite) la resolucién. En nuestro
estudio exclusivo de determinados canales de desintegracion del tau es evidente que
seran los mesones y resonancias mas ligeras los grados de libertad adecuados para
abordar el problema. El método mas conveniente y riguroso de hacerlo es el uso de
las Teorfas de Campo Efectivas (EFT's), que preservan las simetrias de la teoria



1.2 La Fisica del 7 3

fundamental y estan escritas en términos de los grados de libertad relevantes en una
region de energias dada. Como las desintegraciones del 7 suceden alrededor de una
escala tipica de energias densamente poblada por resonancias, no sera suficiente em-
plear Teoria de Perturbaciones Quiral (xPT) [3, [ 5] que incluye sélo los mesones
pseudoescalares mas ligeros (7, K, 1), sino que sera necesario, ademads, incorporar a
las resonancias como grados de libertad activos para extender a energias superiores
la teorfa: la Teoria Quiral de Resonancias (RxT) [0l [7] es una herramienta que per-
mite este desarrollo.

En lo que resta de Introduccién elaboraremos con mayor detalle sobre aspectos
relevantes de la fisica de taus no abordados en capitulos posteriores y sobre QCD
y nuestras limitaciones a la hora de implementar sus soluciones en fisica hadronica
a energias bajas e intermedias. Después avanzaremos algunas de las ideas capitales
subyacentes a nuestro marco tedrico en referencia a las teorias efectivas, la teoria
quiral de perturbaciones, el limite de gran nimero de colores de QC'D y la propia
teoria quiral de resonancias. Finalizaremos con una enumeracion de los distintos
capitulos de la Tesis.

1.2. La Fisica del 7

Comenzamos con una introduccién somera a la fisica del tau que permi-
tird contextualizar adecuadamente este trabajo: El leptén 7 es un miembro de la
tercera generacion que se desintegra a particulas que incluyen los sabores ligeros per-
tenecientes a las dos primeras, junto al v,. Por ello, la fisica de taus podria darnos
pistas que permitieran entender por qué existe una serie de (al menos tres) copias
de leptones y quarks que sélo se diferencian por su masa [8] (Tabla [L]):

Parece 16gico que sean los fermiones més pesados los mas sensibles a la generacion
de masa fermionica. Al ser el quark top demasiado pesado como para hadronizar
antes de desintegrarse, la fisica de quarks b y leptones 7 es prometedora en este sen-
tido. Aunque el valor de M, no permite desintegraciones a mesones encantados (con
quark c), es el 7 el inico leptén suficientemente pesado como para desintegrarse en
hadrones y asi, relacionar de algiin modo los sectores de quarks (ligeros) y leptones.

El grupo liderado por M. L. Perl [10] descubri6 el 7 en 1975, lo que constituyé el
primer indicio experimental a favor de la existencia de la tercera generacion de
particulas y, consiguientemente, también la primera indicacion de que era inteligible
dentro del SM la violacién de C'P [11] ya observada [12] en el sistema de kaones
neutros, a través de la matriz de mezcla de Cabibbo, Kobayashi y Maskawa [111 [13].
De todos modos, esta explicacion no es suficiente como para entender la enorme pre-
ponderancia observada en nuestro Universo de materia sobre antimateria [9] 14, 15],
lo que representa una de las claras indicaciones de la existencia de algin tipo de
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Generacion | quarks mg leptones my
1 d 3,5 + 6,0 MeV e ~ 0,5110 MeV
u 1,5 < 3,3 MeV Ve <2eV
2 s 70 < 130 MeV W ~ 105,7 MeV
c 1,16 <» 1,34 GeV vy < 0,19 MeV
3 b 4,13 <» 4,37 GeV T ~ 1,777 GeV
t 169 <+ 175 GeV 7 < 18,2 MeV

Cuadro 1.1: Contenido de materia del SM. Las masas de quarks corresponden al esquema
MS con la escala de renormalizacién p = mg para los quarks pesados (¢, b) y p =2 GeV
para los ligeros. Para estos ultimos el valor de m, dado es una estimacién de la masa
corriente (current quark mass). En el caso del quark t se emplea un promedio de las
medidas en Tevatron pero no el reciente ajuste global del TEVEWWG, véase [§]. Las
masas de los neutrinos son las masas “efectivas‘: mg,f 1= > \Ukl\Qm?jl Sin embargo, a

partir de datos cosmoldgicos es posible determinar [9] >, (m,,) < 0,67 eV.

nueva fisica mas alla del SM E' Los nimeros cuanticos del 7 quedaron establecidos
[20] de modo casi simultdneo al descubrimiento de la siguiente particula de su ge-
neracion, el quark b [2I]. La particula mas pesada conocida hasta la fecha, el quark
top, no fue detectado hasta 1995 [22 23].

Resumiré a continuacion brevemente la Fisica que podemos aprender de las de-
sintegraciones del 7 [24], 25| 26| 27, 28] 29].

En primer lugar, estas desintegraciones permiten verificar la universalidad de las
corrientes electrodébiles, tanto cargadas como neutras. Dentro del SM, las desin-
tegraciones leptonicas mas sencillas del 7 vienen descritas por la correspondiente
anchura parcial, cuya expresion es [30, 31, [32]:

Gh M?

_ __ m?
L7 = v I p) = 192 73 (MIQ) TEW, (1.1)

donde f(x) =1 -8z +8x% —a* —122%logz y rpw incluye las correcciones radiativas
electrodébiles no incorporadas en la constante de Fermi, G, y la estructura no local
del propagador del W, rgy ~ 0,9960. Por tanto, el cociente

Br - _ 4 (i)
B(T — u) f <mﬁ>

M2

(1.2)

estd fijado y permite verificar la universalidad de las corrientes cargadas electrodébi-
les. Las restricciones resultantes son bastante fuertes: ~ 0,20 % para el cociente e/

'Los recientes resultados experimentales relativos a la razén entre flujos extragaldcticos de
materia y antimateria [I6] (17, I8, [19] no tienen -por el momento- una explicacién undnimemente
aceptada.
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y ~ 0,22 % para las razones que incluyen al 7. Los errores asociados provienen de
la indeterminacién actual de ~ 0,3 MeV en M, . Esta incertidumbre es todavia ma-
yor [33, B4] en la relacién entre la tasa de desintegracién (branching ratio, BR) a
leptones y la vida media del tau -fijada utilizando el valor de la constante de Fermi
proviniente de la desintegracion del pu- (aparece elevada a la quinta potencia en la
ec. (1)), que se mejorard notablemente en BES — 1] y KEDR préximamente
[35]. KEDR prevé alcanzar un error total de 0,15 MeV y BES — 11 de sélo 0,10
MeV. No trataremos aqui la determinacion de la masa del 7 cerca de su umbral de
produccién [35].

En el SM, todos los leptones con la misma carga eléctrica tienen acoplos idénticos
al bosén Z, tal y como se ha venido comprobando en LEP y SLC' durante anos.
La precisién alcanzada para los acoplamientos axial-vectores de corriente neutra es
aun mayor que para los vectoriales [36]:

Z—“ — 1,0001(14), Z—“ — 0,981(82); Z— = 1,0019(15), Z— = 0,964(32).
e e e e (1.3>

A partir de 7= — v, 17 7, se ha obtenido también un limite superior para los
acoplos estandar y no estandar [37,, 38| 39, 40}, 41}, 42] entre corrientes fermiénicas
levogiras/dextrogiras (left/right-handed: L/R) : RR, LR , RL, LL; escalares, vec-
toriales y tensoriales (S, V, T'). Es destacable que los limites actuales no permitan
concluir que la transicion es del tipo predicho: V — A [43]. Tanto estas cotas como las
de los *Michel parameters’ [37] Bl mejoraran ostensiblemente en BES — I11 [35], 44].

En el SM minimo con neutrinos sin masa, existe un ntmero lepténico aditivo
que se conserva separadamente para cada generacién (el llamado numero lepténico
de sabor, lepton flavour number). Sin embargo, y tras la evidencia de la oscila-
cién de neutrinos v, — v, anunciada por LSND [45] 46], la confirmacién a través
de las medidas de oscilaciones publicada por SNO [47, 48] y Super-Kamiokande
[49, 50] descarta la anterior hipétesis del SM minimo. Estd claro por tanto que
dicho nimero cuantico de familia se viola en procesos que involucran neutrinos.
Aunque seria lo mas natural que esto sucediera también en procesos con e, u, 7, to-
dos los datos actuales son consistentes con tal ley de conservacion es ese subsector
lepténico. A pesar de que los limites en violacién de ntimero cuantico leptéonico de
sabor a través de desintegraciones de 7 estdn mejorando dia a dia (BR < 1077)
(511, 52, 53], B4, (5, 56l 57 BIL 58, 60, 61 62 63, [64], 65, 66] , estan lejos todavia de
los limites existentes en las desintegraciones de u con andloga violacién [25].

El laboratorio de FERMILAB en Chicago ha resultado una herramienta fun-
damental para el descubrimiento de los otros miembros de la tercera generacion.
Alli -como ya se comenté- el quark b fue descubierto en 1977, el top en 1994-5 (con
la ayuda inestimable de la profecia de LEP, tal y como comentaré) y, finalmente,
el experimento DONUT [67] consiguié detectar la particula restante, el neutrino
tauonico, en 2000. De hecho, los mejores limites directos sobre la masa del neutrino,
m,.., vienen de las desintegraciones hadrénicas del 7 [68]: 7= — v, X, donde

2Estos pardmetros describen la distribucién del espacio fasico en las desintegraciones lepténicas
de p, T.
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X~ = (nrm)", (2K 7)), (5br)”. Aunque -segin ya se indicdé- quedan ampliamen-
te rebasados por las cotas provenientes de estudios cosmolégicos, nuestro estudio
podria mejorar los limites directos.

Ademas, las desintegraciones semilepténicas del 7 son el marco ideal para estu-
diar efectos de interaccién fuerte en condiciones realmente muy limpias, ya que la
mitad electrodébil de la desintegracién estda por completo bajo control y no se ve
afectada por la hadronizacion que ensucia sobremanera el proceso. Estas desintegra-
ciones sondean el elemento de matriz de la corriente cargada levégira entre el vacio
de QCD vy el estado final hadrénico, tal y como se representa en la Figura [T Se
dedicara mas atencién a este tema -central en la Tesis- a lo largo del trabajo.

Una comprobacién directa de QC'D [69] se puede realizar a partir del cociente

h

o

\

EW QCD hy,

Figura 1.1: Diagrama de Feynman para la contribucién al orden dominante a una
desintegracién hadronica genérica del lepton 7.

R, =

F(T_ — v, hadrones (7)) - R v + R. 4+ R S <1 4>
) - T, 7,5 ’

I'(tm = vee v (y)

que separa las contribuciones de las corrientes vectorial (V') y axial-vector (A) que
corresponden a un numero par/impar de piones en estado final de aquellas con un
nimero impar de kaones (.S es una abreviatura de procesos con cambio de extrafeza).
Determinados canales (como K K1) no pueden ser asociados a priori a corriente V'
o A. En este caso, es especialmente importante un estudio como el que realizamos
para saber cuanto contribuye cada una a la anchura parcial de dicho canal.

La predicciéon tedrica requiere las funciones de correlacion de dos puntos de las
corrientes levigiras de quarks: Lj; = V(1 —v5)0i (i, = u,d, s):

1(q) = [ atec™ QITLL@LLONI0) = (—g"¢ + ¢'a") 1) (¢) + ' 1 ().

(1.5)
Utilizando la propiedad de analiticidad, R, se puede escribir como una integral de
contorno en el plano de s compleja, donde el circuito se recorre en sentido antihorario
alrededor del circulo de radio |s| = M? centrado en el origen:

, ds s \? S S
R, = 6m]|fM2 e (1 - W) {(1 HW) IO (s) — 2WH<°>(5) , (1.6)

T T T T
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donde TIW(s) = |Via2TI) (s) 4 [Vie|2T1E) (5). En (I6) sélo hace falta conocer
los correladores para s complejo ~ M?, que es notablemente mayor que la escala
asociada con efectos no perturbativos. Utilizando la expansion en producto de ope-
radores (Operator Product Expansion, OPE [10, [71], [72]) para evaluar la integral de
contorno, R, se puede escribir como una expansién en potencias de 1/M?2.

Asi, la prediccién tedrica de R,y 44 se puede expresar como sigue [73]:

R.via = N |Vaad? Sew (1 + gy + dp + Snp), (1.7)

donde No = 3 es el niimero de colores posibles de cada quark. Sgy y 6%y, contienen
las correcciones electrodébiles conocidas a los érdenes dominante y subdominante en
la aproximacion logaritmica. Las correcciones no perturbativas puede demostrarse (y
comprobarse) que son pequenas [73] . La correccién dominante ( ~ 20 % ) proviene
de la contribuciéon de QCD puramente perturbativa, dp, que ya se conoce hasta
O (o) [73, [74] e incluye una resumacién de los efectos mds relevantes a 6rdenes
superiores [30), B} B2 [74] [75] [76, [77]. El resultado final [29] [78] [79, 80] resulta ser
extremadamente sensible al valor de a,(M?) , y permite una determinacién muy
fina del acoplamiento de QC'D que -en el esquema M S- es [81] £

as(M?) = 0,342 £0,012. (1.8)

Al usar las ecuaciones del grupo de renormalizacién (Renormalization Group
Equations, RGE) para hacer evolucionar este valor hasta la escala del Z [82] uno
encuentra que:

as(M2) = 0,1213 40,0014, (1.9)

mientras que el valor obtenido en desintegraciones hadrénicas del bosén Z [§] es
as(M2) = 0,1176 40,0020, (1.10)

por lo que hay acuerdo entre el valor extraido de desintegraciones hadrénicas de
taus y la medida directa realizada en el pico del Z, con mejor precision incluso en el
primer caso. Esto proporciona una bella comprobacion del cambio con la escala del
valor del acoplamiento de QC'D, esto es, una comprobacién experimental realmente
significativa de libertad asintotica.

Es pertinente un comentario respecto a la fiabilidad de los errores en el resultado
(LH). Dicho estudio asume que se da la dualidad quark-hadrén [83]. Las violaciones
de ésta [84] y el error inducido en andlisis que la utilizan -como la determinacién
anterior de ag- ha sido un tema de investigacién reactivado [85] [86] R7, 88 [89)
recientemente, después de que durante muchos anos se ignorara sistematicamente.
Aunque los ultimos analisis abogan porque esta violacién se haya subestimado, de
modo que los errores serian mayores, lo cierto es que la cuestion no esta clara todavia
y se necesitard por un lado modelos mas realistas (esencialmente se usa un unico
modelo basado en resonancias y con menos frecuencia otro basado en instantones;

3Véase en esta referencia los trabajos utilizados en la determinacién.
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ambos debidos a Shifman [84]) para parametrizar tales violaciones, y por otro datos
experimentales de mayor calidad para poder cuantificar este efecto con precisién.

La medida separada de las anchuras de desintegracién de procesos con |AS| =0
y con |AS| = 1 nos brinda la oportunidad de ser sensibles al efecto de ruptura de la
simetria SU(3) de sabor inducida por la masa del quark extrano. Concretamente,
esto sucede a través de las diferencias

Ry 4 R m3(M?) 00,
SR = U T VR ST Sulas) ~ 8 Qulas), (L1

donde se ha introducido los momentos espectrales R*:

M? k l

? dR
K s 1) (=2 T 1.12
B /O ° M2) \DM2) ds (1.12)

Las correcciones perturbativas Ay (ag) v Qri(as) se conocen a O(ad) y O(a?),
respectivamente [90, OT], ©2] y 6O, proporcional a la ruptura de simetria SU(3) -ya
que lo es a la diferencia entre el condensados de quarks s y u- esta bien determinado
[93]. Aunque en un futuro, con datos de excepcional calidad, serfa posible determinar
tanto ms(M,) como |V, simultdneamente analizando el conjunto de momentos
espectrales, en la determinacién més reciente [94] se fija:

ms(2GeV) = 94 £ 6MeV, (1.13)

-obtenida con las ultimas determinaciones de simulaciones en el reticulo (lattice) y
utilizando reglas de suma de QQC'D- de modo que el momento con mayor sensibilidad
a |Vis|, con kl = 00, permite extraer [95]:

|Vius| = 0,2208 % 0,0033x, £ 0,0009y, = 0,2208 £ 0,0034 , (1.14)

que puede competir en precisién con la extracciéon estdandar de |V, | de desintegra-
ciones K.3 [06] y con las nuevas propuestas realizadas para tal determinacién. Més
aun, el error asociado a esta determinacién de |V,;| se puede reducir en el futuro ya
que estda dominado por la incertidumbre experimental que disminuira notablemente
en anos venideros gracias a los datos de factorias de mesones B. Como se sugirio,
otra mejora realizable consistird en el ajuste simultdneo de |V,;| y ms a un conjunto
de momentos de la distribuciéon de masa invariante de las desintegraciones hadréni-
cas del tau, que proporcionara todavia més precision en la determinacion de ambos
parametros.

Hoy por hoy, todos los resultados experimentales sobre el lepton 7 son consisten-
tes con el SM. Sin embargo, el andlisis de datos ya recogidos en fabricas de mesones
B como BaBar y Belle -y futuros experimentos en esta tltima- o instalaciones de-
dicadas a la produccién de 7 — ¢ como BES resultan prometedores para obtener
verificaciones cada vez mas exigentes del SM y explorar la Fisica mas alla del mismo

4En el capitulo[ se explica la importancia de las desintegraciones de taus para conocer el sector
escalar y para determinar la masa de un Higgs ligero.
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1.3. QCD: la teoria de la interaccion fuerte

A continuacién introducimos brevemente (QC'D con el fin de explicar por qué es
a dia de hoy imposible resolver problemas como los que nos planteamos de modo
analitico y completo.

Los experimentos de dispersién profundamente ineldstica en SLAC [97, O8] per-
mitieron concluir que los protones no eran particulas puntuales, sino que tenian una
subestructura en términos de particulas de carga eléctrica fraccionaria (quarks). A
pesar de que estos quarks habian sido predichos tedricamente al intentar encontrar
un esquema de clasificacién de la gran cantidad de mesones observados durante
los 60 -primero [99] [I00]- y al tratar de entender cémo se aplicaba las estadisticas
cudnticas a todas estas particulas y en especial a los bariones de espin 3/2 -después
[TOT]-, no estaba clara su existencia més alla del ente matematico y todos los ex-
perimentos subsiguientes fallaron en su intento de aislar estos constituyentes como
particulas libres. Las dos caracteristicas principales de la interaccion fuerte se habian
manifestado: libertad asintética a altas energias y confinamiento de los quarks en
hadrones a bajas energias.

Diversos estudios tedricos de teorias gauge no abelianas [102], [[03] demostraron
que el distinto comportamiento UV e IR de esta teoria podia explicarse en base a
un algebra no conmutativa. Mds tarde, la evidencia de que el barién A*T existia
llevé a concluir que debia haber un niimero cuantico adicional -llamado de color- a
través de la conservacién del teorema de Conexion Espin-Estadistica, y motivé un
trabajo de la comunidad tedrica que acabaria dando como resultado la explicacién
simultanea de todos estos fenémenos a través del cuadro presentado por Fritzsch,
Gell-Mann y Leutwyler [2], quienes identificaron SU(3) -donde 3 es el nimero de
colores diferentes que un quark puede tener- como el grupo de gauge base para la
construccion de la QC'D. Es decir, la teoria permanece invariante bajo transforma-
ciones locales del grupo SU(3) de color. Existe toda una serie de evidencias tedricas
y experimentales de que esto es asi [104].

La simetria gauge no-abeliana local SU(N¢) para ny (ntmero de sabores) campos
de materia de quarksﬁ determina el Lagrangiano de QC'D que directamente incorpo-
ra la interaccion de éstos con los campos de gauge gluonicos y las autointeracciones
de estos gluones. El Lagrangiano de QC'D es:

1
ZGZVGZW + LoriFp,

Locp =7 (i) —M)q —
. wa

D,u = 8# — ngGﬂ?’

GZV = 0,G;, — 8VGZ + gsf“chZGf,, (1.15)

donde a = 1, ..., 8, G}, son los campos de gluones y g; es la constante de acopla-
miento fuerte. El campo de quark ¢ es un vector columna con n; componentes en

5El grupo de gauge fija el contenido en bosones -particulas mediadoras- de la teoria, pero no
asi los campos de materia: su representacion y numero de copias es algo que debe inferirse de los
datos experimentales.
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espacio de sabor, M representa la matriz de masas de los quarks es espacio de sa-
bor y viene dada por M = diag (ml, ceey My f), donde m; son las diferentes masas
de los quarks: m,, mq, me, mg, my, my, para ny = 6 dentro del SM, pardmetros
a cuyo valor la simetria no impone ninguna restriccién. Como vemos, la simetria
gauge prohibe que los gluones tengan masa y sus acoplos son iguales para todos los
sabores de quark. Las matrices 2~ son los generadores de SU(3) en la representa-

2
A% )\
2 2

constantes de estructura del grupo de gauge, SU(N¢). Finalmente, el término de
Fadeev-Popov [105], Lg77p, incluye el Lagrangiano anti-hermitico que introduce
los campos de fantasmas y el término que fija el gauge:

cién fundamental y quedan normalizadas mediante Tr ( ) = %5@ y f%¢ son las

1

= o'GS)(0,GY
‘CQ}— 25 ( u)( a) )
Lrp = =0,0,D"¢", D'¢* = 0" — g, [, G, (1.16)
donde ¢ es el llamado parametro de gauge, y aa (a=1,..., Ni-1) es un conjunto

de campos escalares, hermiticos, sin masa y que anticonmutan entre si. La derivada
covariante, D*¢®, contiene el acoplamiento necesario entre campos de fantasmas y
gluénicos y Lrp es obligatoriamente anti-hermitico para introducir una violacion
explicita de unitariedad que cancele las probabilidades no-fisicas correspondientes
a las polarizaciones longitudinales de los gluones y devolver asi la propiedad fun-
damental de unitariedad a los observables fisicos que se obtiene finalmente. Una
explicacién muy pedagdgica sobre estos términos se puede encontrar en [104]. No
discutimos aqui el llamado término ¢ [I06], invariante bajo SU(N¢) y que viola C'P
si no hay ningin quark sin masa. A dia de hoy los experimentos mas precisos no
indican ninguna violacion de C'P en procesos fuertes. Esta presunta violacion se
manifestaria, por ejemplo, en un momento dipolar eléctrico no nulo del neutrén. La
cota experimental [§] es nueve 6rdenes de magnitud inferior al valor natural tedrico.

La evolucién de la constante de acoplo con la energia estd detras de la propie-
dad de libertad asintética y parece apuntar al confinamiento como una consecuencia
natural. El acoplamiento gs; que aparece en el Lagrangiano de QCD (L15) recibe
correcciones cuanticas [I04] que, a primer orden en la expansién en el nimero de
lazos (loops), vienen dadas por los diagramas de la Figura [[L2

Figura 1.2: Diagramas de Feynman para la contribucién a un lazo a la funcion Soep.

La funcién Bgep se define a través del uso de las ecuaciones del grupo de renor-
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malizacion, (Renormalization Group Equations, RGFE ﬁ) A un lazo viene dada por

[113] (14, 115] 016, 117]:

g 2np\ g2
bacp = 1 o ( 3 ) 1672’ (L.17)

por consiguiente -a este orden en la expansion-, es negativo para ny < 16. Las
RGE implican que el acoplamiento renormalizado varie con la escala de energias, el
llamado running coupling. Al ser Soep < 0, si resolvemos (LI7), esta desigualdad
comportara que el acoplamiento renormalizado, g, decrezca al aumentar la energfa;
en otras palabras, llevara a la libertad asintotica de la interaccién.

Hemos supuesto implicitamente que el calculo a un lazo nos da una aproximacién
razonablemente buena, al menos cualitativamente. Cabe decir que, al hablar de
libertad asintética es este el caso, valga recordar (L8)), (LI0). De hecho, los célculos
a los 6rdenes subdominantes, NN N LO, [118| [IT9] apoyan este razonamiento.

Al integrar la ecuacién (LIT) obtenemos que:

127
33 — 2ny) log(q2/A2QCD) ’

donde se ha definido ay, = ¢2/4w. Esta ecuacién ilustra cémo el acoplamiento (re-
normalizado) fuerte depende tinicamente de la escala caracteristica de QCD, Agep,
definida en funciéon del valor acoplo renormalizado a una determinada escala de
renormalizacion, pu, y de p mismo mediante:

as(q?) = ( (1.18)

127
o233~ 2ny)

Las RGFE y sus verificaciones experimentales -como por ejemplo el par de ecuacio-
nes (L8), (LI0)- parecen estar en perfecto acuerdo con una interaccién cuya carga
es el grado de libertad de color muy intensa a bajas energias (i.e. largas distan-
cias), lo que provocaria el confinamiento. Una imagen intuitiva de este fenémeno es
sencilla: al separar dos cargas eléctricas, la intensidad de la interaccién entre ellas
queda reducida (apantallada) por la creacion de dipolos entre ambas. Este efecto
corresponde al término con —2n; en la ecuacién ([LI8). En el caso de las cargas de
color, el diferente comportamiento es debido al término con el 33 en dicha ecua-
cién. Las autointeracciones de gluones hacen que haya antiapantallamiento y llega
un momento en que no es posible seguir separando el par quark-antiquark ya que
es energéticamente mas favorable crear un nuevo par. Salvando las diferencias y pa-
ra completar una analogia intuitiva, se puede decir que seria como sucede con los

SLas RGE [107, 108, 109, 110, 111, 112] se deducen al requerir que un observable no pueda
depender de la escala de renormalizacién escogida arbitrariamente y que la fisica sea invariante de

escala. Esto tdltimo conlleva que las funciones de Green tengan un comportamiento bien definido
bajo reescalado de los momentos que aparecen en ellas. Esto permite relacionar los valores de
las cantidades renormalizadas a energias distintas y también calcular las dimensiones anémalas,
que modifican la evolucién con la energia deducida sélo con analisis dimensional debido a efectos
cuanticos.

log(Ajop) = logp? — (1.19)
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imanes. Al romper uno, siempre nos encontramos con un nuevo iman, con dos polos
opuestos. Es imposible aislar el monopolo magnético como lo es aislar una carga de
color.

De un modo algo més técnico, la fase confinante se define en términos del com-
portamiento de la accién del llamado lazo de Wilson ( Wilson loop) [120], que corres-
ponde al camino descrito en cuatro dimensiones por un par quark-antiquark entre
sus puntos de creacion y aniquilaciéon. En una teoria no confinante, la accion de
este lazo seria proporcional a su perimetro. Sin embargo, en una teoria confinante,
la accién del lazo iria como el area. Como el perimetro de dos lineas abiertas es
igual a la suma, mientras que el area se hace infinita, en la teoria no confinante
seria posible separar el par; mientras que en la confinante no lo seria. Aunque los
lazos de Wilson fueron introducidos para tener una formulacién no perturbativa de
la QCD y resolver el problema de confinamiento, esto no ha sido posible todavia. Su
influencia -como la de tantas ideas surgidas intentando entender QQC'D- ha sido no
obstante muy grande, ya que condujeron a Polyakov [121] a la formulacién moderna
de las teorias de cuerdas (string theories).

A pesar de lo que se ha dicho existe un modo de acercarse experimentalmente
al confinamiento. Hasta ahora se ha considerado siempre teoria de campos a tem-
peratura y densidad finitas. En el origen del Universo ambas fueron tan elevadas
que la simetria quiral estaria rota y los quarks y gluones no tendrian tiempo de ha-
dronizar debido a sus interacciones constantes. En experimentos con iones pesados
se esta investigando este marco para intentar arrojar mas luz sobre el problema de
confinamiento.

En resumen, las correcciones cuanticas provocan que la intensidad de la interac-
cién cambie con la energia. En el caso de QC'D es muy intensa a bajas energias,
por lo que no podremos hacer una expansion perturbativa en potencias de la cons-
tante de acoplo y realizar calculos ttiles asi, ya que no convergeran al no cumplirse
ag < 1. Adicionalmente, y debido al confinamiento, habra que encontrar el modo de
relacionar la teorfa fundamental con grados de libertad quark, antiquark y gluén con
los mesones producidos en las desintegraciones de taus. Veremos en los siguientes
apartados y capitulos que la solucién a ambos problemas viene de la mano, pues el
encontrar los grados de libertad adecuados nos permitira entender cémo construir
un célculo fiable.

1.4. Las Teorias Cuanticas de Campos Efectivas

La Historia de la Fisica es una historia de entendimiento de fenémenos cada
vez mas numerosos y diversos. En muchos casos, la comprensién de los nuevos no
invalida la descripcién de los antiguos, que se obtiene como un caso particular de
las nuevas teorias, de mayor alcance. En ocasiones, la vieja teoria puede verse como
una teoria efectiva de la nueva en un determinado rango de aplicacién de ésta.

Algunos ejemplos pueden resultar ilustrativos: a principios del S. XIX se tenia
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una descripcién correcta de la electrostatica. Diversos experimentos debidos a Ors-
ted, Ampere, Ohm y Faraday -entre otros- aumentaron el conjunto de fenémenos a
describir simultaneamente incluyendo la electrodindmica y el magnetismo con flujos
variables con el tiempo. El conjunto de todos ellos se podia explicar coherentemente
a través de las ecuaciones de Maxwell. En ellas se describia la naturaleza ondulatoria
de la luz, mostrandola como una onda electromagnética que se propagaba a una ve-
locidad, ¢, constante universal de la teoria. En el limite ¢ — oo, se pierde la corriente
de desplazamiento de Maxwell. Por tanto, la teoria antigua (ley de Ampere) se podia
ver como caso limite de la moderna (ecuaciones de Maxwell) cuando se consideraba
un determinado parametro pequeno (1/c¢). La ley de Ampere puede considerarse el
primer orden en la expansién en 1/c de la llamada ley de Ampere generalizada que se
obtiene de las ecuaciones de Maxwell. Es pues una teoria efectiva de la primera. En
fenémenos estaticos, un tratamiento basado en las ecuaciones completas de Maxwell
es innecesario y bastan las ecuaciones de Coulomb o Ampere, obviamente.

La Mecanica Newtoniana es valida en gran nimero de sucesos de nuestra vida
diaria. Sin embargo no lo es en el mundo de lo extraordinariamente pequenio o de
lo enormemente veloz. La Mecanica Cuantica la generaliza en el primer caso y la
Relatividad Especial en el segundo. Una de las hipotesis fundamentales de la teoria
cuantica es que la accién esta cuantizada en multiplos enteros de la constante de
Planck (%), lo que permite explicar el espectro de emisién de los cuerpos negros, por
ejemplo. El valor de esta constante es tan pequenio que en los sucesos macroscépicos
es irrelevante. Es por ello 16gico que el limite A — 0 de la teoria cudntica nos de-
vuelva a la teoria clasica que es asi una teoria efectiva de aquélla. Nadie recurriria a
la Mecanica Cuantica para resolver un problema macroscopico salvo que fuera para
ilustrar una leccion de introduccion a la Cuéntica.

Puede verse también que la electrodindmica clasica de Maxwell es la teoria efec-
tiva de la electrodindmica cuantica en el limite A~ — 0. La que desde un punto de
vista era antes teoria fundamental, desde otro es efectiva de la siguiente fundamen-
tal. De nuevo parece innecesario resolver el problema de la trayectoria de un cuerpo
macroscopico cargado sometido a un campo electromagnético utilizando la teoria
cuantica. Queda claro que las teorias efectivas son mas ttiles (de ahi su otra posible
traducciéon como eficaces) que las fundamentales en los subsectores en que se apli-
can.

Salvo que trabajemos con una teoria del todo nuestra teoria sera siempre efectiva,
y ademas mejor que lo sea. El adjetivo debe verse como algo positivo, ya que evi-
tamos complicar el problema innecesariamente y escogemos las variables adecuadas
para describirlo. Queda justificar que sea una teoria cuéntica de campos (Quantum
Field Theory, QFT).

El método habitual de estudio de las QFT's se basa en el empleo de teoria de
perturbaciones en potencias de la constante de acoplo, que debe ser pequena para
que cada término contribuya menos que el anterior y podamos cortar nuestra ex-
pansion a un orden dado, debido a que la serie de perturbaciones no es sumable
exactamente. Tal expansion no tiene sentido en nuestro caso de las desintegraciones
hadrénicas del 7, por el valor de ag ~ O(1) por lo que debemos buscar una via
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alternativa.

De todas formas, es conveniente no renunciar a las QFT's, ya que su formalismo
nos garantiza que los observables cumplan todos los requisitos de una teoria cuantica
relativista (como debe ser la que describa nuestra fisica de particulas): microcausa-
lidad (si dos puntos espacio-temporales estan separados espacialmente cualesquiera
operadores definidos en ellos tienen relaciones de conmutaciéon o anticonmutacion
-segun su estadistica- triviales), unitariedad (la suma de probabilidades de todos los
sucesos posibles es la unidad), analiticidad (las funciones de los campos deben ser
complejo-diferenciables en el entorno de cada punto de su dominio), invariancia Poin-
caré (el grupo de simetria de la Relatividad), teorema de conexién espin-estadistica
(estadistica de Fermi-Dirac para particulas de espin semientero y de Bose-Einstein
para particulas de espin entero) y descomposicién en nucleos, clusters (asegura la
localidad de la teoria, ya que regiones suficientemente separadas se comportan in-
dependientemente).

Convencidos ya de que las técnicas de las QFT's son altamente deseables hay
que reconocer que no son, por si mismas, suficientes, ya que si uno se restringe a
estos principios tan generales necesitaria muchisima informacién experimental para
poder caracterizar una teoria y asi hacer predicciones. Segiin hemos visto antes, es
conveniente utilizar las FFT's. Asi pues, sera natural y adecuado emplear las teorias
cuanticas de campos efectivas en nuestro problema.

Para formularlas necesitamos identificar los grados de libertad relevantes y el
parametro de la expansion, lo que en general sucederd simultdneamente, como vere-
mos en las secciones siguientes. Habra una escala tipica, A, que separara los grados
de libertad activos de los pasivos. Se considerard en la accién las particulas con
m < A, mientras que se procederd a la integracién funcional de la accién de las
variables pesadas con M > A. Consideraremos las interacciones entre los estados
ligeros que organizaremos en serie de potencias en 1/A. Como m/A < 1 el efecto de
cada término sucesivo sera menor que el del anterior y podremos cortar la expansion
a un orden dado. Ademas, tendremos control sobre el error cometido estimando la
contribucion del primer término omitido a partir del pardmetro de expansiéon y los
términos conocidos.

Finalizaremos esta seccion con la formulacion de las EF'T's cuanticas a la Wein-
berg [3]: si -para unos grados de libertad dados- aplicamos teoria de perturbaciones
con el Lagrangiano mas general posible consistente con las simetrias asumidas de
la teorfa obtendremos los elementos de matriz S -y por tanto los observables que
de ella se derivan- mas generales posibles consistentes con analiticidad, unitariedad
perturbativa, descomposicién en ntcleos y las simetrias asumidas.

Obsérvese que respecto a la formulacién méas general que antes se introdujo aqui se
anade el comprometerse con una elecciéon de grados de libertad y suponer unas si-
metrias de la teoria subyacente, pero nada mas. Esta aproximacion se revisara mas
tarde, pues quiza pueda ser deseable una aproximacién mas elaborada en la que se
incluya més contenido dinamico de la teoria subyacente.
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1.5. Teoria Quiral de Perturbaciones

Se acaba de poner de relieve el concepto de simetria. Las simetrias han sido
siempre la clave para la comprension de los fenémenos fisicos. Por un lado se expre-
san en términos del mayor rigor matematico y por otro permiten -en ciertos casos-
las aproximaciones, base de practicamente cualquier célculo realista.

., Cuadl sera la simetria que podremos emplear para construir nuestra teoria efec-
tiva? La respuesta no es sencilla ni inmediata. Uno pensaria en alguna propiedad
relacionada directamente con el grupo de gauge de la teoria, con la propiedad de
color. Debido a la hadronizacion, las estructuras posibles con carga total de color
nula quedan inmediatamente fijadas por las reglas para el producto de representa-
ciones de la teoria de grupos, ya que conocemos las representaciones de los campos
de gauge (adjunta) y hemos fijado las de materia (triplete y antitriplete para quarks
y antiquarks, respectivamente). En lo que nos ocupa comprobamos que los mesones
cumplen esta condicion, pero no obtenemos nada 1til para desarrollar nuestra teoria
efectiva. De hecho, asumiendo confinamiento, observamos que dejar libre N¢ es la
Unica posibilidad que nos queda, la trataremos en el siguiente apartado.

No sera pues una simetria gauge local la que nos permita construir la teoria efec-
tiva. Veamos qué simetrias globales tiene la interaccién fuerte. Pensemos en primer
lugar que en los procesos examinados en esta Tesis vamos a producir los mesones
mas ligeros: piones, kaones y etas. Es intuitivo que los quarks mas pesados no seran
activos. Examinemos por tanto el Lagrangiano de QC'D tinicamente para los sabores
ligeros: u, d, s, ny = 3 en (LIH). Si en primera aproximacién despreciamos las masas
de estos quarks m, ~ mg ~ ms ~ 0, el Lagrangiano de QC'D es invariante bajo
transformaciones separadas de las componentes dextrégira y levogira de los quarks,
transformaciones globales del grupo G = SU(ny), ® SU(ny)g, el llamado grupo de
simetria quiral.

Sabemos que las simetrias locales determinan la interacciéon -como en ([LIH)-.
Para las simetrias globales hay dos posibilidades: Si tanto el Lagrangiano como el
vacio son invariantes bajo el grupo de transformaciones G entonces la simetria se
manifiesta en el espectro de particulas. Sin embargo, si aunque el Lagrangiano sea
invariante bajo transformaciones pertenecientes a G el vacio de la teoria no lo es,
entonces el espectro reflejara las simetrias de un cierto subgrupo H del grupo G,
donde tanto el Lagrangiano como el vacio seran simétricos bajo transformaciones
de H, pero sélo el Lagrangiano serd invariante bajo todo el grupo GG. Se habla en
este caso de que ha habido ruptura espontédnea de la simetria G — H. Sabemos
ademds que tendremos tantas particulas de masa nula (bosones de Goldstone [122])
como generadores rotos. Es decir, el nimero de bosones de Goldstone serd igual a
la diferencia entre el niimero de generadores de G'y de H.

Si recurrimos a la fenomenologia observamos que los mesones mas ligeros se pue-
den clasificar en multipletes (ny = 3) de igual espin (J) y paridad intrinseca (P),
lo que corresponde a las representaciones de SU(3)y. También vemos que los mul-
tipletes con paridad opuesta no tienen la misma masa: el multiplete de vectores
(J¥ = 17) es més ligero que el de axial-vectores (17). Y el de mesones pseudoes-
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calares éO) es mucho mds ligero que el de escalares (07) o que las particulas de
espin 1[]. En el capitulo Bl se muestra cémo estas observaciones conducen a concluir
que el patrén de ruptura espontanea de simetria es SU(3), @ SU(3)g — SU(3)y. El
numero de generadores rotos es nfc —1 = 8, que seria el nimero de bosones de Golds-
tone que deberiamos observar. En realidad, como las masas de los quarks ligeros son
pequenas comparadas con el pardmetro tipico de hadronizacién, A, sp ~ 1GeV, pero
no nulas, se tiene junto a la ruptura espontanea de la simetria quiral una ruptura
explicita de la misma por ser m; # 0, m; = m,, mg, ms. Por este motivo observamos
8 particulas con masa pequena pero no nula a las que llamamos pseudo-bosones de
Goldstone (en razén a su origen en la ruptura espontanea de la simetria y a su masa
en la ruptura explicita de la misma). Estos son los piones, kaones y etas detectados
en nuestras desintegraciones de taus: 7+, 70, 7, K* KO KO.

Ahora que ya tenemos la simetria y los grados de libertad debemos preocuparnos

de construir el Lagrangiano efectivo que los incluya adecuadamente. El teorema de
Weinberg nos asegura que una vez hecho esto, el tratamiento perturbativo del mismo
nos conducira a los elementos de matriz S més generales posibles en un tratamiento
consistente. El formalismo que permite construir Lagrangianos efectivos en base a
grupos de simetria con ruptura espontanea de la misma se debe a Callan, Coleman,
Wess y Zumino [123] [124]. Su aplicacién a QC'D a bajas energias nos permitira es-
cribir una EF'T que describa la interaccion de estos pseudo-bosones de Goldstone.
Ademds, como hay un intervalo de energia razonable entre estas particulas y las
siguiente més pesadas, el efectos de estos modos pesados serd pequeno y permi-
tird construir una teoria efectiva que contenga sélo estos modos, la Teoria Quiral de
Perturbaciones, xPT" [4l, B].
Veremos mas adelante que esta teoria presenta un parametro de expansion natural
en el cociente entre las masas o momentos de los pseudo-bosones de Golstones sobre
la escala A, sp, que serd bastante menor que la unidad. Hemos resuelto por tanto to-
dos los problemas que nos plantedbamos: Y PT es una EF'T construida en base a las
simetrias de QC'D en cierto subsector de la misma (el de sabores ligeros en procesos
a baja energia donde solo se producen pseudo-bosones de Goldstone y la simetria
quiral de QC'D es una buena aproximacién) y con un pardametro de expansiéon que
permite desarrollar teoria de perturbaciones. Ahora bien, debido al valor de la masa
del tau, entorno a 1,8 GeV, las resonancias podran ser grados de libertad activos
en algunas regiones del espectro de desintegracion, por lo que deberemos extender
XPT a energias superiores e incluir nuevos grados de libertad. Desafortunadamente,
en este caso sera mucho mas complicado cumplimentar los pasos anteriores de cara
a la construccién de la teoria, como ahora veremos.

"Llamaremos genéricamente resonancias a todas estas particulas que contienen sabores ligeros
més pesadas que el multiplete mas ligero de particulas 0.
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1.6. El limite de gran nimero de colores de QCD

Al incorporar particulas mas pesadas se rompe el contaje de la teoria, ya que
las masas y momentos de estos nuevos grados de libertad son del mismo orden o
superior a A, gp, de modo que su cociente ya no es un buen pardmetro de expansion
de la teorfa. Se anade otra dificultad: ya no existe un intervalo grande y bien definido
de energias que separe las particulas que seran grados de libertad activos de nuestra
teoria de las que seran integradas de la accién por no serlo. Veremos que una solucion
a ambos problemas puede venir de considerar el limite de gran nimero de colores de
QCD [125] [126], 127]. En cualquier caso, hay que destacar que contrariamente a lo
que sucede en el sector de muy bajas energias con y P71 no se conoce como construir
una FFT dual a QCD en el régimen de energias intermedias. El limite No — oo
es una herramienta que permitird entender qué contribuciones son mas importantes
-de todas las permitidas por las simetrias- en nuestro Lagrangiano.

't Hooft sugiri6 considerar el limite de QC'D cuando el niimero de colores posibles
del grupo de gauge tendia a infinito [I125]. Su motivacién era conseguir una teoria
mas simple que guardara semejanza con la original y de la que se pudiera deducir
propiedades cualitativas -y con suerte cuantitativas- de la subyacente. En el limite
de gran No QC'D es exactamente soluble en dos dimensiones [126], pero no en las
cuatro habituales. Sin embargo, si asumimos que la teoria es confinante se pueden
derivar toda una serie de caracteristicas experimentales de QC' D, lo que sugiere que
esta construccién es una buena aproximacion a la naturaleza. Entre ellas adelanta-
mos por el momento que:

- En el limite estricto No — oo los mesones son libres, estables (no se desintegran)
y no interaccionan entre ellos. Las masas de los mesones tienen limites suaves y
hay infinidad de ellos: toda una torre de excitaciones por cada conjunto de nimeros
cuanticos.

- A primer orden en la expansién en 1/N¢ la dindmica de los mesones queda descri-
ta por diagramas a orden arbol obtenidos con un Lagrangiano efectivo local cuyos
grados de libertad son mesones, tal y como se ha considerado antes en el enfoque de
las EFFT's a la Weinberg de xyPT'.

Llegados a este punto uno observa que hay una cierta contradicciéon interna en-
tre la construccién de EFT's a la Weinberg y la expansion en 1/No de QC'D que
habra que resolver de algiin modo: por un lado el enfoque a la Weinberg nos di-
ce que definamos el contenido de particulas y las simetrias y luego construyamos
el Lagrangiano mas general posible consistente con las simetrias asumidas de la
teoria garantizando que obtendremos a través de una aproximacion perturbativa los
resultados mas generales compatibles con propiedades generales de la QFT y las
simetrias de partida. El problema es que al introducir resonancias el pardametro de
expansion que nos funcionaba en yPT' deja de hacerlo.

Por otra parte, cuando pensamos que el limite de gran niimero de colores de QC' D
puede servirnos para organizar una expansion en 1/N¢ que nos saque del atolladero
observamos que contradice las ideas enunciadas en el anterior parrafo, ya que una
de sus conclusiones a primer orden es que no podemos fijar a priori el contenido
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de particulas de la EF'T', por consistencia de la expansién habra infinitas copias de
cada tipo de resonancia.

Es por ello que tenemos dos posibilidades:

- O bien olvidamos el requisito de la formulacion a la Weinberg de hacer una elecciéon
de grados de libertad adecuada al rango de energias en que sucede nuestro proceso
y por tanto a los grados de libertad activos e incluimos el espectro necesario que
pide el limite No — o0.

- O bien incluimos el espectro fenomenoldgico y nos desviamos del contaje en 1/Ne.

Se podria pensar que incorporando los efectos subdominantes en 1/N¢ podremos
llegar al espectro medido. Esta idea no se puede concretar por el momento debido
a la naturaleza de la expansién en 1/Ng de QCD. Si bien a un orden en «g hay un
nimero determinado de diagramas, y éstos se pueden calcular y sus efectos resumar,
no sucede lo mismo en 1/N¢: en cada orden intervienen infinitos diagramas, y na-
die ha sido todavia capaz de idear algin mecanismo que nos permita estudiar esta
cuestion. En el marco de las teorias efectivas basadas en esta expansion si existen
estudios a orden subdominante en 1/N¢, como veremos.

Adicionalmente, cabe recordar que el enfoque a la Weinberg no incluye ningin
tipo de informacién dinamica sobre la teoria subyacente: es el precio a pagar por
su generalidad. En nuestro caso veremos que una teoria con grados de libertad
pseudo-bosones de Goldstone y resonancias, que respeta la simetrias de QC'D a ba-
jas energias, y por tanto reproduce yPT a bajos momentos, y basada en el limite
N¢o — o0 no es compatible con el comportamiento conocido de QCD a altas ener-
gias. Como nuestra teoria debe funcionar hasta £ ~ 2 GeV y a esas energias la QCD
perturbativa ya es fiable, esto no debe suceder. Asi pues la teoria que necesitamos
precisard de la adicién de informacién dinamica de QC'D -lo que permitira que en-
lace los regimenes quiral y perturbativo en el sector mesénico de sabores ligeros-
y de, o bien renunciar a la eleccion de estados fisicos como grados de libertad, o
bien modelizar la expansién en 1/N¢. Estas son las cuestiones que se discute en el
siguiente apartado.

1.7. La Teoria Quiral de Resonancias

La Teoria Quiral de Resonancias, RxT [0} [7], incluye los pseudo-bosones de
Goldstone y las resonancias como grados de libertad activos de la teoria y requiere
las propiedades generales de las QFT's y la invariancia bajo C'y P de QCD. Sus
caracteristicas fundamentales se tratan a continuacién.

El limite a bajas energias de RxT debe ser xPT. Esta propiedad se ha utilizado
para predecir sistematicamente las LEC's de xPT en términos de las masas y aco-
plamientos de las resonancias al integrar éstas de la accion, a los 6rdenes quirales
O (p*) [6] y O (p°®) [128] en el sector de paridad intrinseca positiva, con Ng — oo y
exigiendo el comportamiento dictado por QCD a altas energias.

El Lagrangiano de yPT incluye el octete de pseudo-bosones de Goldstone. En
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su extension, el de RxT incorpora a las resonancias como grados de libertad, que
se incluyen en nonetes debido a que octetes y singletes de un grupo SU(Ng = 3)
se funden en un nonete para No — oo. El Lagrangiano de yPT se construye en
base a la simetria quiral aproximada de QQC'D sin masas. Después se incorporan
las rupturas espontanea y explicita de la simetria del mismo modo que sucede en
QCD. Los nonetes de resonancias se anaden exigiendo las propiedades generales e
invariancias bajo C' y P y la estructura de los operadores viene dada por simetria
quiral. A primer orden en la expansién en 1/N¢ los términos con mas de una traza y
los lazos estan suprimidos. La primera propiedad permite postergar ciertos términos
permitidos por las simetrias del Lagrangiano y la segunda justifica su uso a nivel
arbol como se explico antes.

Segun ya se dijo la teoria determinada por las simetrias no posee algunas propie-
dades conocidas de QC'D a altas energias. Por ello se debe proceder al empalme con
QCD asintética a nivel de funciones de Green y/o factores de forma. La aplicacién
de estas propiedades determina una serie de relaciones entre los acoplamientos de la
teoria que permiten que con un menor nimero de datos experimentales de partida
la teoria sea capaz de predecir otras. En concreto en esta Tesis obtenemos relaciones
de este tipo sobre los factores de forma en dos tipos de procesos que confrontare-
mos a las halladas en funciones de Green de dos y tres puntos donde intervienen
los mismos acoplamientos ﬁ El buen comportamiento ultravioleta prohibe términos
con muchas derivadas, lo que nos ayuda a delimitar el niimero de operadores que
intervienen en el Lagrangiano ya que el contaje que a tal efecto servia en x P71 ahora
esta roto. La situacion no es tan sencilla, como se comentard después, pues condi-
ciones de consistencia pueden requerir introducir operadores con mas derivadas y
con alguna relacion no trivial entre sus acoplos. En general, no se incluye términos
con un numero excesivo de derivadas ya que se precisarian relaciones ajustadas muy
finamente (fine tuning) para asegurar las cancelaciones necesarias a altos momen-
tos. En muchos casos no es sino el éxito fenomenolégico la comprobacién de que la
construccion seguida es adecuada.

Respecto a la inconsistencia entre la aproximaciéon a la Weinberg y el limite es-
tricto No¢ — 0o debemos decir que no se conoce ningiin modo de implementar la
torre infinita de resonancias sin modelizacion. Por tanto, parece razonable comenzar
estudiando procesos sencillos con el menor nimero de grados de libertad posible in-
volucrados. A medida que se tenga mayor control de la teoria en esta aproximacion
serd posible ir incluyendo més estados del espectro de resonancias. Esta aproxima-
cién no es solo préactica desde el punto de vista de ir estimando progresivamente
los distintos coeficientes de la teoria, sino que es la base de la buena descripcion
fisica, siempre en términos del menor niimero posible de parametros compatible con
la informacion experimental. El mayor grado de precisién progresivo de ésta aca-
bara exigiéndonos una descripcion mas elaborada, pero mientras no sea preciso no
serd deseable tampoco.

Finalmente, nuestro estudio fenomenolégico no puede evitar introducir algunas

8No existen calculos en RxT de funciones de Green de cuatro puntos, cuyas relaciones de
comportamiento asintético pudiéramos confrontar a las de las desintegraciones hadrénicas del tau.
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propiedades que resultan ser efectos al orden siguiente en el desarrollo en 1/N¢o. En
el intervalo de energias en que se desintegran los taus las resonancias alcanzan su
capa masica y ademas tienen un comportamiento resonante debido a su anchura
tipicamente menor que su masa. Las anchuras son un efecto a orden subdominante
que incluiremos de modo consistente en Rx7', como veremos.

1.8. Organizacién de la Tesis

Como se ha dicho, nuestro estudio adopta el enfoque de las EF'T's. Se realiza
por tanto una introduccion a sus fundamentos en el Capitulo Bl Tres son los pila-
res tedricos de nuestro trabajo: por un lado el asegurar el limite correcto a bajas
energias, dictado por xPT. Por otro, el limite de gran nimero de colores (N¢) de
QC'D aplicado a teorias efectivas con grados de libertad hadrénicos, en nuestro caso
RxT. Y finalmente, el garantizar un comportamiento acorde al dictado por QCD
a altas energias para los distintos factores de forma. La primera y la segunda cues-
tion son abordadas en los Capitulos Bl y Ml respectivamente, mientras que la tercera
se introduce en la Seccion y se pone en practica en cada aplicacion particu-
lar de la teoria en los siguientes capitulos, a los que precede un breve resumen de
los estudios tedricos mas significativos y un repaso de las caracteristicas esenciales
de las desintegraciones hadronicas exclusivas del tau (capitulo [l). Las aplicaciones
consideradas son: las desintegraciones hadronicas con tres piones (capitulo [6) y con
dos kaones y un pién (Capitulo [7). También se incluyen las desintegraciones con
mesones 7 (capitulo ) y las desintegraciones radiativas del tau con un tnico mesén
T — P ~vv,, donde P = 7, K, en el Capitulo [ . Con todas ellas mejoramos ex-
cepcionalmente el control de los parametros del Lagrangiano de resonancias que
participa en los procesos senalados, tanto en la corriente vectorial como en la axial-
vector y, por tanto, conocemos mejor como describir de un modo tedricamente sélido
basado en las EF'T's y las simetrias de QC' D estas desintegraciones del 7. Podremos
explotar estas adquisiciones en un futuro, aplicindolas a procesos mas complejos.
La Tesis acaba con las conclusiones generales del trabajo realizado.



Chapter 2

Introduction

2.1 General introduction to the problem

This Thesis studies those decays of the 7 lepton including mesons among the
final state particles, that are called, for this reason, hadron or semileptonic decays.
Contrary to what happens to the other leptons (electron, e~ and muon, p~) its
mass (M, ~ 1.8 GeV) is large enough to allow this kind of decays including light
mesons (pions -7-, kaons - K- and etas -1, 1’-). These processes include, in addition,
the corresponding tau neutrino, v,, and may include (in the so-called radiative pro-
cesses) multiple photons, . Although it is kinematically possible to produce other
light mesons whose masses are lighter than M., the characteristic lifetime of these
particles (resonances) is way too short to allow their detection. Notwithstanding,
as we will see, the effect of their exchange is important in order to understand these
decays. Although M, ~ 2M,, where M, is the proton mass, since it is a bit smaller
actually (M, = 1,777 GeV and 2M, = 1,876 GeV) and to the conservation of
baryon number (that would require producing them in baryon-antibaryon pairs, the
lighter being proton-antiproton) 7 decays into baryons are forbidden.

Purely leptonic decays of the 7 are processes mediated by the electroweak inter-
action, that today is adequately described in the framework of the Standard Model
of Particle Physics (SM) [I]. In hadron decays of the tau, the strong interactions
acts, additionally. Although it is common lore that Quantum Chromodynamics,
QCD is the theory [2] that describes it, we are not yet able to solve the problem at
hand using only the QC'D Lagrangian, as we will explain.

Both difficulties mentioned above -the fact that the resonances are not asymp-
totic states, so that it is not possible to detect them, and our current inability to
solve QC'D to find a solution to the problem- are telling us how interesting can the
semileptonic tau decays be: the provide a clean environment where to study the
strong interaction at low and intermediate energies, because the electroweak part
of the process is clean and under theoretical control; on the other side, given the
range of energies the hadron system can span (essentially from the threshold for
pion production, m ~ 0.14 GeV, to M, ), the lightest resonances can be exchanged
on-mass-shell (or simply on-shell, in what follows), in such a way that their effects
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are sizable and one can thus study their properties.

The strong interaction was discovered in the classic Rutherford’s experiment,
proving the existence of the atomic nucleus: it was a force of amazing strength
and very short range. Soon after, this force started to be studied in scattering
experiments between hadrons -as the particles experiencing strong interactions are
called- (they were believed to be elementary then) instead of atomic nuclei. The
large number of hadrons that was discovered in the ’50s and ’60s with the advent of
the first particle accelerators suggested that these particles were not fundamental,
analogously to what happened with the chemical elements, in the end constituted
by protons and neutrons tighten in their nuclei. In order to complete the anal-
ogy, the systematics attached to the hadron properties (in this context intimately
related to the quantum numbers and specifically to the approximate flavour symme-
tries) helped to understand their substructure and Gell-Mann comprehended that
hadrons had to be constituted by the so-called quarks, possessing an additional
quantum number -christened as color- that solved all problems of adequacy of the
observed spin and the quantum statistics obeyed by the particles.

However, whereas it is possible to unbind protons or neutrons from the nucleus
-either through natural radioactivity or artificially- it has been impossible so far to
free any constituent quark from the hadron to which it belongs. This property is
known as confinement and, though there are theoretical reasons pointing to this phe-
nomenon there is not yet any explanation of it. This fact imposes a difficulty when
understanding the processes mediated by strong interaction: while it is produced
between quarks and gluons (the intermediary QC'D bosons, that also autointeract),
our detectors are recording only (in this context) hadron events, since quarks, an-
tiquarks and gluons cluster immediately after they are produced into objects with
vanishing total color charge: they hadronize. Contrary to the remaining known
forces (electromagnetic, weak and gravitational), in QC'D the force does not dimin-
ish as the distance increases, but just the opposite -even though its range is very
short-.

Although we will dwell into this later on, let it be enough for the moment saying
that even though QCD is the theory of strong interactions, we can not handle it
in its non-perturbative regime and, therefore, computationally, its Lagrangian only
allows to tackle analytically inclusive processes at high energies (E > 2 GeV typi-
cally) where a treatment in terms of quarks, antiquarks and gluons is meaningful.
At the lower energies where our problem occurs we must search an alternative way.
As it uses to happen in Physics, an appropriate choice of the degrees of freedom
simplifies (or even allows) the solution. In our study of several exclusive tau decay
channels it is evident that they will be the lighter mesons and resonances. The most
convenient and rigorous way to do it is the use of Effective Field Theories (EFT's),
that preserve the symmetries of the fundamental theory and are written in terms
of the relevant degrees of freedom in a given energy range. As 7 decays typically
happen in an energy scale densely populated by resonances, it would not be enough
to employ Chiral Perturbation Theory (xPT) [3, 14, [5] that includes only the light-
est pseudoescalar mesons (7, K, 7). Instead, it will be necessary to incorporate
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the resonances as active degrees of freedom to extend the theory to higher energies:
Resonance Chiral Theory (RxT) [0, [7] is the tool allowing these developments.

In the remainder of the Introduction we will elaborate in greater detail on the
relevant aspects of tau Physics that are not treated in later chapters and on QCD
and our limitations when implementing its solutions in Hadron Physics at low and
intermediate energies. After that, we will summarize some of the capital ideas un-
derlying out theoretical framework concerning EFT's, Chiral Perturbation Theory,
the large number of colours limit of QC'D and Resonance Chiral Theory itself. We
will finish by enumerating the different chapters of this Thesis.

2.2 7 Physics

We begin with a short introduction to tau physics that will allow us to contex-
tualize adequately this work: The 7 lepton is a member of the third generation
which decays into particles belonging to the first two and including light flavours, in
addition to its neutrino, v,. This is the reason why tau physics could give us useful
hints in order to understand why there are (at least three) lepton and quark copies

that only differ by their masses [§] (Table 2.2)):

Generation | quarks Mg leptons my
1 d 3.5 <> 6.0 MeV e ~ 0.5110 MeV
U 1.5 < 3.3 MeV Ve <2eV
2 5 70 < 130 MeV W ~ 105.7 MeV
c 1.16 <+ 1.34 GeV v, < 0.19 MeV
3 b 4.13 <> 4.37 GeV T ~ 1.777 GeV
t 169 <> 175 GeV v, < 18.2 MeV

Table 2.1: Matter content of the SM. Quark masses correspond to the M S scheme with
renormalization scale u = m, for heavy quarks (c, b) and p = 2 GeV for light quarks. For
the latter the given value of m, is an estimate for the so-called current quark mass. In the
case of the t quark it comes from averaging Tevatron measurement but it does not include
the recent global fit by TEV EW WG, see [§]. Neutrino masses are the so-called “effective

2 .
masses“: M, 1= > |Uki[*m?,. However, cosmological data allows to set a much lower

bound [9] ", (m,,) < 0.67 eV.

It seems reasonable that the heavier fermions will be more sensitive to the genera-
tion of fermion masses. Being the top quark too heavy to hadronize before decaying,
b quark and 7 lepton physics seems promising in this respect. Although the value
of M, does not allow for decays into charmed mesons (containing a ¢ quark), the 7
is the only lepton massive enough to decay into hadrons and thus relate somehow
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the (light) quark and lepton sectors.

The group led by M. L. Perl [10] discovered the 7 in 1975. This constituted
the first experimental evidence in favor of the existence of third generation par-
ticles and, consequently, the first indication that it was possible to accommodate
within the SM CP violation [I1], that had already been observed [12] in the neutral
kaon system, through the Cabibbo, Kobayashi and Maskawa [11], [13] mixing matrix.
Anyhow, this explanation is not enough to understand the enormous observed abun-
dance of matter over antimatter in our Universe [9] [14], [15], which represents one of
the indications for the existence of some type of new physics beyond the SM [ -
quantum numbers were established [20] almost simultaneously to the discovery of
the next particle of its generation, the b quark [21I]. The heaviest particle known so
far, the top quark, was not detected until 1995 [22] 23].

In the following, I will summarize briefly the Physics one can learn from 7 decays
[24, 25, 26, 27, 28, 29].

First of all, these decays allow to verify the universality of electroweak currents,
both neutral and charged. Within the SM, the easiest lepton 7 decays are described
by the following partial width [30, 31, 32]:

_ __ G2 M? m?
L™ = v I p) = 1527r3 (ﬁg) TEW, (2.1)

where f(z) = 1—8z+8x3 —z*—122%logz and rzy includes the electroweak radiative
corrections not incorporated in the Fermi constant, GG, and the non-local structure
of the W propagator, rgy ~ 0.9960. Therefore, the ratio

Br = _ I (i)
B(T — ,LL) f (mﬁ>

M2

(2.2)

is fixed and allows to verify the universality of the charged electroweak currents.
The resulting restrictions are rather strong: ~ 0.20% for the e/ ratio and ~ 0.22%
for the ratios including the 7. The associated errors come from the current indeter-
mination of ~ 0.3 MeV in M,. This uncertainty is even larger [33, [34] in the ratio
among the branching ratio, BR, to leptons and the tau lifetime -that is fixed using
the value for the Fermi constant extracted from the u decay- (it appeared to the
fifth power in. (2.1))), that will be improved substantially in BES —III and KEDR
soon [35]. KEDR foresees to reach a total error of 0.15 MeV and BES — II1 of
only 0.10 MeV. We will not discuss here the determination of the 7 mass close to
its production threshold [35].

In the SM, all leptons with the same electric charge have identical couplings to
the Z boson. This has been verified at LEP and SLC' for years. The precision

!The recent experimental results concerning the ratio of matter and antimatter galactic and
extragalactic fluxes [16] (17, (18, 9] do not have -for the moment- an explanation universally ac-
cepted.
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reached for the neutral current axial-vector couplings is even better than for the

vectors [36]:

T = 1.0001(14), % = 0.981(82); T = 1.0019(15), - = 0.964(32).

a’e ,U(i a’e ,U(i
(2.3)

From 7= — v, l7 7, it was also obtained an upper limit for the standard and
non-standard couplings [37, 38, B9] 40, 41, 42] between left/right-handed (L/R)
fermion currents: RR, LR , RL, LL; scalars, vectors and tensors (S, V, T). It is
remarkable that the current limits do not allow to conclude that the transition is
of the predicted type: V — A [43]. Both these bounds and thoss on the ’Michel
parameters’ [37] B will improve sizably in BES — 11 [35], [44].

In the minimal SM with massless neutrinos, there is an additive lepton number
that is conserved separately for each generation (the so-called lepton flavour num-
ber). Notwithstanding, and after the evidence of the neutrino oscillation v, — v,
announced by LSND [45, [46], the confirmation through the oscillation measure-
ments published by SNO [47, 48] and Super-Kamiokande [49] [50] discards the for-
mer hypothesis of the minimal SM. There is therefore no doubt that this generation
quantum number conservation is violated in processes involving neutrinos. Though
the most natural thing would be that this also happens in processes with e, u, 7,
all current data are consistent with that conservation law in this lepton subsector.
Despite the limits on lepton flavour violation coming from 7 decays are improving
every day (br < 1077) [511, 52, 53|, 54, (5, K6, 57, 59, (S, 60, 61, 62] 63, 64, 65, 66] |,
they are still far than the existing limits in p decays with analogous violation [25].

FERMILAB in Chicago became a fundamental tool in the discovery of the
other members of the third generation. There, the b quark was discovered in 1977,
the top quark in 1994-5 (with the help of the valuable LEP prophecy, as I will
explain) and, finally, the DONUT experiment [67] succeeded in the discovery of
the remaining particle, the tau neutrino, in 2000. In fact, the best direct limits
on the neutrino mass, m,,._, come from hadron 7 decays [68]: 7= — v, X~, where
X~ =(nnm)”, (2K m)~, (bm)~. Although -as it was already written- they are clearly
superseded by the bounds coming from cosmological observations, our study might
be able to improve the direct limits.

Besides, semileptonic 7 decays are the ideal benchmark to study strong inter-
action effects in very clean conditions, since the electroweak part of the decay is
controlled theoretically -to much more precision than the hadron uncertainties even
taking the LO contribution- and it does not get polluted by the hadronization that
the process involves. These decays probe the hadron matrix element of the left-
handed charged current between the QC'D vacuum and the final state hadrons, as
it is represented in Figure [LI We will devote more attention to this topic, central
in the Thesis, throughout the work.

2These parameters describe the phase-space distribution in the 1 and 7 lepton decays.
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A direct test of QC'D [69] can be made through the ratio

['(t~ — v, hadrones (7))
R, = = R; T Frs .
D= = vre v (7)) e -

that splits the contributions from vector (V) and axial-vector (A) currents corre-
sponding to an even/odd number of final-state pions from those with an odd number
of kaons (S is short for strangeness changing processes). Given channels (like K K1)
can not be associated a priori to V or A current. In this case, it is specially impor-
tant to consider a study as ours in order to know the relative contributions of each
one to the partial width of that channel.

The theoretical prediction requires the appropriate two-point correlation func-
tions of left-handed (LH) quark currents: L; = V(1 —y5) i, (6,5 = u,d, s):

v — iqx v v v 1 v 170
I () = i / d'w e (0| T(LE (2) Ly (0)D]0) = (=g ¢* + ¢¢") T (¢%) +q"¢" T (4?).
(2.5)
Using the property of analyticity, R, can be written as a contour integral in the

complex s-plane, where the circuit is followed counterclockwise around a circle of
radius |s| = M? centered at the origin:

. ds s )2 S S

where II1(V)(s) = |Vud|2H£L{l)(s) + |VUS|2HSL‘Q(S). In (26]) one needs to know the
correlators for complex s ~ M? only, that is larger than the scale associated to non-
perturbative effects. Using the Operator Product Expansion, OPFE [70] [T1], [72]) to
evaluate the contour integral, R, can be written as an expansion in powers of 1/M?2.
Therefore, the theoretical prediction of R,y 4 can be written as follows [73]:

Revia = No|Vd® Sew (1 + 0y + 0p + dnp), (2.7)

where No = 3 is the number of colours. Sgpy and 0%y, contain the known elec-
troweak corrections to leading and subleading orders in the logarithmic approxima-
tion. One can show and check that the non-perturbative corrections are small [73].
The leading correction (~ 20%) comes from the purely perturbative QCD correc-
tion, dp, that is known up to O (ad) [73, [74] and includes a resummation of the
most relevant effects at higher orders [30), B1] 32] [74, [75, [76, [7]. The final result
29, [78, [79, [80] turns out to be extremely sensitive to the a,(M?) value, allowing to
determine very precisely the QC'D coupling that - in the M.S scheme- is [81] H:

as(M?) = 0.342 £0.012. (2.8)

When one uses the Renormalization Group Equations, RGFE, to run this value
up to the Z scale [82] one gets:

as(M2) = 0.1213 4+ 0.0014, (2.9)

3See in this reference all works employed in this determination.
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while the value obtained in hadronic Z-boson decays [8] is
as(M%) = 0.1176 & 0.0020 . (2.10)

Therefore, there is agreement between the extraction from hadron tau decays and
the direct measurement at the Z peak, even with better precision in the first case.
This provides a beautiful test of the change of the QC'D coupling with the scale,
that is, a significant experimental test of asymptotic freedom.

A comment with respect to the reliability of the errors in the result (28] is in
order. This study assumes that the quark-hadron duality [83] is realized. Its viola-
tions [84] and the error induced in the analysis that rely on it -like the determination
of ag- is being an active area of research [85] [86] [87, 88|, 89 recently, after being ig-
nored systematically for years. Although the last works point to an understimation
of the error induced, this issue is not clear yet and one would need on one hand more
realistic theoretical models to estimate these violations (essentially only one is used
that is based on resonances and less frequently, another one that is instanton based;
both developed by Shifman [84]) , and on the other hand more quality experimental
data to quantify precisely this effect.

The separate measurement of the decay widths of |[AS| = 0 and |AS| = 1 pro-
cesses gives us the opportunity to be sensitive to the effect of SU(3) flavour symmetry
breaking induced by the strange quark mass. Specifically, this happens through the
differences

Rivia  RYs m(M?) 00,
= Tk " up = AT Aules) 48T ues), (21D

where the spectral moments R were introduced:

M2 k l
? AR
Kl -2 (= T 2.12
1. /0 ds ( m2) \2) “ds (2.12)

The perturbative corrections Ay (ag) and Qp(as) are known to O(a?) and
O(a?%), respectively [90, O1], 92] and 6Oy, proportional to the SU(3) breaking- since
it is to the difference of the s and u quark condensates- are well determined [93].
Although in the future, with exceptional quality data, it would be possible to de-
termine both ms(M;) and |V,s| simultaneously analizing the whole set of spectral
moments, in the most recent determination [94] one fixes:

ms(2GeV) = 94+ 6MeV (2.13)

-obtained with the latest lattice determinations and using QQC'D sum rules- in such
a way that the more sensitive moment to |V,|, with kI = 00, allows to extract [95]:

|Vius| = 0.2208 % 0.0033cx, £ 0.0009y, = 0.2208 £ 0.0034 , (2.14)

that can be competitive with the standard extraction of |V,| from K3 decays [96]
and with the new proposals made for this determination. Moreover, the error associ-
ated to this determination of |V,4| can be reduced in the future since it is dominated
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by the experimental uncertainty that would be reduced notably in forthcoming years
thanks to B-factory data. As suggested, another improvement that one could make
would consist in fitting simultaneously |V,s| and mg to a set of moments of the
invariant mass distribution in hadron tau decays, that would provide even more
precision in the extraction of both parameters.

Up to now, all experimental results on the 7 are consistent with the SM. How-
ever, the analysis of B-factories data from BaBar and Belle -and future experiments
in the latter- or facilities dedicated to 7 — ¢ production, as BES are promising in
order to obtain more and more stringent verifications of the SM and explore the
physics beyond it f.

2.3 QCD: The theory of strong interaction

Next we will introduce briefly QC'D in order to explain why it is not possible to
solve the problems we deal with analytically and completely.

Deep inelastic scattering experiments at SLAC' [97, [08] allowed to conclude that
the protons were not punctual particles. Instead, they have substructure made up of
particles with fractional electric charge (quarks). Although these quarks had been
predicted theoretically while trying to find a scheme to clasify the large amount
of mesons observed during the '60s -first [99] [100]- and when trying to understand
how to apply the quantum statistics to all of them, and especially to the spin 3/2
baryons -later on [101]-, it was not clear that their existence went beyond a math-
ematical concept and all subsequent experiments failed in their attempt to isolate
them as free particles. The two main features of strong interaction had manifested:
asymptotic freedom at high energies and confinement of quarks in hadrons at low
energies.

Different formal studies of non-abelian gauge theories [102] 103] showed the dif-
ferent UV and IR behaviours of this theory could be explained in terms of a non-
conmuting algebra. Later on, the evidence that the baryon A** existed led to the
conclusion that there had to exist an additional quantum number -called colour-
through the conservation of the Spin-Statistics theorem, and motivated the effort of
the Scientific community that finally brought as a result the simultaneous explana-
tion of all abovementioned phenomena through the picture presented by Fritzsch,
Gell-Mann and Leutwyler [2], who identified SU(3) - 3 being the number of different
colours a quark can have- as the gauge group, basis for the construction of QCD.
The theory remains thus invariant under local transformations of the SU(3) colour
group. There are a number of theoretical and experimental evidences supporting
this picture [104].

The local non-abelian gauge symmetry SU(N¢) for ny (number of flavours) quark

4In the Chapter [l we explain the importance of hadron 7 decays in order to find out what the
scalar sector of the SM is and eventually to determine the mass of a light Higgs.
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matter fields [ determines the QC'D Lagrangian, directly incorporating the interac-
tion of these with the gluon gauge fields and the selfinteractions among these gluons.
The QCD Lagrangian is:

N 1 a v
Locp =q (i) —M)q — ZGWGZL + LorirFp,
. aa
D, =0, — ZgSGﬂ?,
G, = 0,Gy — 0,G5 + g f*" GG, (2.15)
where a = 1,..., 8, G}, are the gluon fields and g is the strong coupling con-

stant. The quark field ¢ is a column vector with ny components in flavour space,
M represents the quark mass matrix in flavour space and it is given by M =
diag (ml, ceey, My f), where m; are the different quark masses: m.,, mg, me, Mg, Mg, My
for ny = 6 within the SM, parameters whose value is not restricted by symmetry.
As we see, the gauge symmetry forbides a non-vanishing mass for the gluons and
their couplings are universal, irrespective of flavour. The matrices 2~ are the SU(3)

2
a b

22 ) = 20 and

abe are the structure constants of the gauge group, SU(N¢). Finally, the Fadeev-
gauge g N

Popov term [105], Lgx: 7p, includes the anti-hermitian Lagrangian introducing the

ghost fields and the gauge-fixing term:

generators in the fundamental representation, normalized as Tr (

1

— L a v
Lg]: 2£ (8 Gu)(aVGa) )
Lrp = =80,0,D"¢", D'¢" = 0" — g f™ ¢, G, (2.16)
where ¢ is the gauge parameter, and ¢ (a=1,..., Ni1)is a set of scalar, hermi-

tian, massless and anticonmuting fields. The covariant derivative, D*¢“, contains
the needed coupling between ghost and gluon fields and Lzp is antihermitian, as it
must, in order to introduce a explicit unitarity violation cancelling the non-physical
probabilities corresponding to the longitudinal polarizations of gluons and restore
the fundamental property of unitarity to the physical observables that are finally
obtained. A very pedagogical explanation of this can be found in Ref. [104]. We
do not discuss here the so-called 6 term [106], invariant under SU(N¢) and C'P
violating if there is not any massless quark. The most precise experiments do not
indicate any C'P violation in strong interaction processes. This allegged violation
would manifest, for instance, in a non-vanishing neutron dipole electric moment.
The experimental bound [§] is nine orders of magnitude smaller than a natural the-
oretical value.

The running of the coupling constant with the energy is behind the property of
asymptotic freedom and seems to point to confinement as a natural consequence.

5The gauge group fixes the bosons content -mediators of the theory- but it does not for the
matter fields: its representation and number of copies is something that must be inferred from
experimental data.



30 Introduction

The coupling g that appears in the QCD Lagrangian (2.I5]) receives quantum cor-
rections [104] that, at one loop, are given by the diagrams in Fig. [[2

The Bgep function is defined through the use of the Renormalization Group
Equations, RGFE H) At one loop they are given by [113] 114} 115} 116, 117]:

09, 2ny g3
- = (112 2.17
Bacp 'uﬁ,u ( 3 ) 1672’ (2.17)

so that -at this order in the expansion-, is negative for ny < 16. RGE imply that
the renormalized coupling varies with the energy, so-called running coupling. Being
Bocp < 0, this will result in the decreasing of the renormalized coupling, g%, when
increasing the energy; that is, in asymptotic freedom.

We have implicitly assumed that the one-loop computation gives a reliable ap-
proach. When speaking about asymptotic behaviour this is the case, just remember
(Z8), I0). In fact, the computations at (N)NNLO [118| [119] support this reason-
ing.

Integrating the equation (2.17) we find:

127
33 — 2ny) log(q2/A2QCD) ’

as(q®) = ( (2.18)

where oy = g¢5/4m has been defined. This equation depicts how the strong (renor-
malized) coupling running depends just on the QQCD-scale, Agcp, defined in terms
of the renormalized coupling value at some renormalization scale, i, and p itself by:

127
o (1?)(33 = 2ny)

log(Ajep) = logp? — (2.19)

RGE and the experimental tests of them seem -(2.8), (ZI0)- to be in agreement
with a very strong color interaction at low energies that can cause confinement.
There is an easy intuitive picture of this phenomenon: when splitting two electric
charges, the strength of the mutual interaction decreases (is screened) by the cre-
ation of dipoles between them. This effect corresponds to the term with —2n; in
Eq. (2I7). In the case of colour charges, the different behaviour comes from the
term including the 33 in that equation. Gluon selfinteractions cause anti-screening
and finally, it is not possible to keep on separating the quark-antiquark pair since
it is energetically favoured to create a new pair. In order to complete the intuitive
analogy, one could compare this with magnets. When breaking one, there will al-
ways appear new ones, with oposed poles. It is impossible to isolate the magnetic
monopole as it is isolating a colour charge.

6 RGE [107, 108 109} [TT0} [TTT} [IT2] are derived from the requirement that an observable can not
depend on the arbitrary chosen renormalization scale and that the physics must be scale invariant.
The last property implies that the Green functions have a well-defined behaviour under rescaling
of the momenta appearing in them. This allows to relate the values of the renormalized quantities
at different energies and also to calculate the anomalous dimensions, that modify the evolution
with energy derived on dimensional grounds because of quantum effects.
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More technically, the confining phase is defined in terms of the behaviour of the
action of the Wilson loop [120], that corresponds to the path followed by a quark-
antiquark pair in four dimensions between its creation and annihilation points. In a
non-confining theory, the action of this loop would be proportional to its perimeter.
However, in a confining theory, the loop action would grow with the area. Since the
perimeter of two open lines is equal to its sum, while the area goes to infinity, in a
non-confining theory it would be possible to split the pair; while in the confining it
would not be so. Although Wilson loops were introduced in order to have a non-
perturbative formulation of QC'D and solve confinement, this has not been possible
so far. Its influence -like many ideas that emerged trying to understand QQC D- has
been great, since it lead Polyakov [I121] to formulate string theories in a modern way.

Despite of what has been said, there could be an experimental way to come close
to confinement. So far we have always considered field theories at finite temperature
and density. At the begining of the Universe both were so high that chiral symmetry
would be broken there and quarks and gluons would not have the time to hadronize
because of their incessant interactions. This framework is being investigated in
heavy ion experiments to try shed some light on the problem of confinement.

In summary, quantum corrections make the strength of the interaction to change
with the energy. In the case of QCD, it is very strong at low energies, so we will not
be able to make a perturbative expansion in powers of the coupling constant and
make useful computations in this way, because they will not converge since ag ~ 1.
Aditionally, and due to confinement, one should find the way to relate the funda-
mental theory with quark, antiquark and gluon degrees of freedom with the mesons
produced in hadron tau decays. In the next sections and chapters we will see that
the solution to both problems comes together: when one finds the appropriate de-
grees of freedom, we will understand how to build a reliable and useful computation.

2.4 Quantum Effective Field Theories

The history of Physics is a history of the understanding of more and more nu-
merous and diverse phenomena. In many cases, the understanding of the new does
not invalidate the description of the already-known, that is obtained as a particular
limiting case of the new theories, whose range is larger. Sometimes, the old theory
can be regarded as en effective theory of the new one in a determined range of ap-
plication of it.

Some examples can illustrate this: at the beginning of the XIX century a cor-
rect description of electrostatics was already achieved. Diverse experiments due
to Orsted, Ampere, Ohm and Faraday -among others- increased the number of
phenomena to describe simultaneously including electrodynamics and magnetism
with time-dependent fluxes. The whole set could be explained coherently through
Maxwell equations. In them, the wave nature of light was described, showing it
as an electromagnetic wave propagating at a given speed, ¢, that was a universal
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constant of the theory. In the limit ¢ — oo, one loses the Maxwell’s displacement
current. As a consequence, the old theory (Ampere’s law) could be seen as a limiting
case of the new one (Maxwell equations) when the appropriate parameter (1/c) was
considered to be small. Ampere’s law can be considered as the first order in the
expansion in 1/c of the so-called generalized Ampere’s law that could be obtained
from the Maxwell equations. It is thus an EFF'T of the former. In static phenomena
a similar treatment, based on the complete Maxwell equations is unnecessary and
Coulomb or Ampere’s laws are enough, obviously.

Newtonian mechanics is valid for a large number of situations in our everyday
life. Notwithstanding this is not the case in the world of the infinitely small or
enormously fast. Quantum Mechanics generalizes it in the first case and Especial
Relativity does it in the second. One of the fundamental hypothesis of the quantum
theory is that the action is quantized in integer multiples of the Planck’s constant
(h), which allows to explain the emission blackbody spectra, for instance. The value
of this constant in IS units is so small that it becomes macroscopically irrelevant.
For this reason it makes sense that the limit 4 — 0 of the quantum theory will bring
us back to the classical theory that is this way and EFT of the former. Nobody
would resort to Quantum Mechanics to solve a macroscopic problem unless it is to
illustrate an introductory lesson to the topic.

It can also be seen that classical Maxwell’s electrodynamics is an EF'T' of Quan-
tum Electrodynamics, QE D, appropriate in the limit 7 — 0. The theory that we
have seen before as fundamental, it is from this point of view an EFF'T" of the next
more fundamental theory. Again it is not necessary to solve the equation of motion
of a macroscopic charged body in presence of an EM field using the quantum theory.
From the practical point of view, FF'Ts are more useful than the fundamental in
its subsectors of applicability.

But for the case that we work for a theory of everything our theory will always be
effective, and it will be better this way since one avoids complicating the problem
without any need and the choice of variables is suitable to its description. We still
need to justify that this effective theory would be a quantum field theory, (QFT).

The most common method of study of QQF'T's is based in the use of perturbation
theory in powers of the coupling constant, that must be small for every term in the
expansion to be smaller than the previous one so that we can cut our expansion
at a given order, because the perturbative series is not exactly summable. Such
an expansion does not make sense in our case of hadron 7 decays, for the value
ag ~ O(1). Then, one has to find an alternative way to proceed.

In any case, it is convenient not to abandon QQF'T's, since their formalism guar-
ranties that the observables will fulfill all requirements of a relativistic quantum
theory (as it must be the theory describing the Physics of our elementary parti-
cles): microcausality (if two space-time points are separated spatially, whatsoever
operators defined in them satisfy trivial commutation or anticommutation rules -
depending on their statistics-), unitarity (the sum of all possible events is unity),
analyticity (the functions of the fields must be complex-differentiable in the vicinity
of every point of its domain) , Poincaré invariance (the symmetry group of Rel-
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ativity), spin-statistics connexion theorem (Fermi-Dirac statistics for half-integer
spin and Bose-Einstein for particles with integer spin) and cluster decomposition
(ensuring the locality of the theory, since sufficiently far away regions behave inde-
pendently).

Although we have seen that the techniques of Q F'T's are highly desirable we must
admit that they are not enough on their own, because if one incorporates these very
general principles into the theory one would need a lot of experimental information
to characterize a theory and therefore make predictions. As we have seen before it
is convenient to use EFTs. Therefore, it will be natural and adequate to employ
quantum EFT's in our problem.

In order to formulate them we need to identify the relevant degrees of freedom
and the expansion parameter. Both things will happen generally at the same time,
as we will see. There will be a typical scale, A, separating active and passive degrees
of freedom. Particles with m < A will be kept in the action while the heavy fields
with M > A will be functionally integrated out. We will consider the interactions
among the lightest states that will be organized in a power series in 1/A. Since
m/A < 1 the effect of every consecutive term will be less than the previous one and
we will be able to cut the expansion at a given order. Besides, we will be able to
control the error introduced estimating the contribution of the first omitted term
from the expansion parameter and the known terms.

We will close the section stating Weinberg’s definition of EFT's [3]: if -for a given
set of degrees of freedom- we apply perturbation theory with the most general La-
grangian consistent with the assumed symmetries we will obtain the most general S
matrix elements -and therefore the observables that are obtained from them- that
are consistent with analyticity, perturbative unitarity, cluster decomposition and
the assumed symmetries.

We note that with respect to the most general formulation introduced before
we are adding here the compromise with a choice of degrees of freedom and the
assumption of the symmetries of the underlying theory. This approach will be re-
viewed later on, because it may be desirable to make a more elaborated approach
including dynamical content of the underlying theory.

2.5 Chiral Perturbation Theory

We have highlighted the concept of symmetry. Symmetries have always been the
key to understand physical phenomena. On one hand they are expressed with the
greatest mathematical rigour, on the other end they allow -in some cases- approxi-
mations, that are at the core of almost any realistic computation.

Which is the symmetry that we can employ to build our effective theory? The
answer is neither easy nor immediate. One could think in some property directly
related to the gauge group of the theory, with the property of colour. Due to
hadronization, the possible structures with vanishing total colour charge are im-
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mediately fixed by the product of representations in group theory, since we know
the representations of the gauge group (adjoint) and we have fixed that of matter
(triplet and antitriplet for quarks and antiquarks, respectively). We can check that
the mesons fulfill this condition, but we do not obtain anything useful in order to
develop our FFT. Indeed, assuming confinement, we observe that letting N¢ free
is the only remaining possibility that we will consider next.

It will not be then a local gauge symmetry the one allowing us to built the EF'T'.
Let us see which global symmetries has the strong interaction. We think first that in
this Thesis we study processes that produce the lightest mesons: pions, kaons and
etas. It is intuitive that the heavier quarks will not be active. Therefore, we consider
the QCD Lagrangian for light flavours: u, d, s, ny = 3 in (2.I5). If we neglect in
first approximation the masses of these quarks m, ~ my ~ mg ~ 0, the QCD La-
grangian is invariant under separate transformations of the RH and LH components
of the quark fields, global transformations of the group G = SU(ny);, ® SU(ny)g,
the so-called chiral symmetry group.

Local symmetries determine the interaction -as in (2.I5)-. There are two possi-
bilities for globals symmetries: If both the Lagrangian and the vacuum are invariant
under the group of transformations G' then the symmetry is manifest in the parti-
cles spectrum. However, even if the Lagrangian is invariant under transformations
belonging to GG, the vacuum is not, then the spectra will reflect the symmetries of
a certain subgroup H of G, where both the Lagrangian and the vacuum will be
symmetric under transformations of H, but only the Lagrangian will be invariant
under all the group G. One speaks in this case of spontaneous symmetry breakdown
of the symmetry G — H. We also know that we will have as many massless scalar
particles (Goldstone bosons [122]) as broken generators. That is, the number of
Goldstone bosons equals the difference between the number of generators in G and
H.

If we restore to phenomenology we observe that the lightest mesons can be clas-
sified in multiplets (n; = 3) of equal spin (J) and intrinsic parity (P), which corre-
sponds to the representations of the group SU(3)y. we also see that multiplets with
opposite parity do not share mass: the vector multiplet (J© = 17) is lighter than
that of axial-vectors (17). and that of pseudoscalar mesons (07) is much lighter
than the scalars (07) or than the spin 1 particles fl. Chapter Bl it is explained
how these observations lead to the pattern of spontaneous breaking of the symme-
try is SU(3), ® SU(3)gr — SU(3)y. There are n7 — 1 = 8 broken generators, that
would be the number of Goldstone bosons that we should observe. In fact, since the
masses of the light quarks are small compared to the typical hadronization param-
eter, Aysp ~ 1GeV, but not zero, we have in addition to the spontaneous breaking
of the symmetry a explicit breaking of it because m; # 0, m; = m,,, mg, ms. That
is why we observe 8 particles with small but nonvanishing mass that we call pseudo-
Goldstone bosons, pGbs, (for his origin in the spontaneous breaking of the symmetry
and his mass in the explicit breaking of it). These are the pions, kaons and etas

"We will call resonances all light-flavoured particles heavier than those belonging to the lightest
multiplet 0~.
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detected in our semileptonic tau decays: ©*, 7%, 7, K+, K°, K°.

Now that we have the symmetry and our choice of degrees of freedom we have to
worry about building the EFF'T" Lagrangian that contains them conveniently. Wein-
berg’s theorem ensures that having done that, the perturbative treatment of it will
lead to the most general S-matrix elements in a consistent way. The formalism that
allows to build effective Lagrangians for symmetry groups that have been broken
spontaneously is due to Callan, Coleman, Wess and Zumino [123] 124]. Tts applica-
tion to low-energy QC'D will allow us to write an EF'T describing the interaction
among pseudo-Goldstone bosons. Moreover, since there is an energy gap between
these particles and the next heavier ones, the effect of these heavier modes will be
small and will allow to build an EFF'T" containing only these modes, Chiral Pertur-
bation Theory, yPT [4, [5].

This theory has a natural expansion parameter in the ratio between masses or
momenta of the pseudo-Goldstone bosons over the scale A,sp, that will be much
less than unity. All the initial problems are thus solved: yPT is an EF'T built upon
symmetries of QC'D in a specific subset of it (light flavours in low-energy processes
where the only products are pGbs and chiral symmetry is a good approximation)
and with a expansion parameter that permits to do perturbation theory. Since,
M, ~ 1.8 GeV, the resonances could be active degrees of freedom, so that we will
have to enlarge x PT' to higher energies and include new degrees of freedom. Unfor-
tunately, in this case it will be more complicated to proceed through the previous
steps to build the theory, as we will see.

2.6 (QCD in the limit of a large number of coulours

When we incorporate heavier particles the counting is broken, since the masses
and momenta of these new degrees of freedom are of the same or higher order than
Ay sp, in such a way that its ratio is no longer a good expansion parameter of the
theory. We have another difficulty: there is no longer a large and well-defined en-
ergy gap separating the particles that are active degrees of freedom of the theory
from those who will be integrated out because they are not. We will see that a
solution to both problems can arrive from considering the large number of colours
limit of QC'D [125 126, 127]. Anyhow, we should point out that as opposed to
the low-energy sector with xPT', it is not known how to build an FFT dual to
QC'D in the intermediate energy range. The limit No — 0o is a tool that will allow
to understand which are the dominant contributions and which are not important
-among all allowed by symmetries- in our Lagrangian.

't Hooft suggested considering QQC'D in the limit when the number of colours of
the gauge group goes to infinity [125]. His motivation was achieving a simpler the-
ory that still kept some resemblance with the original one and from which one could
derive qualitative properties -hopefully also quantitative- of the underlying one. In
this limit QC'D is exactly soluble in two dimensions [126], but not in four. Still, if
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we assume that the theory is confining, a number of experimental features of QCD
can be derived, which suggests that this construction is a good approximation to
nature. Among them we will highlight for the moment that:

- In the Ng — oo limit mesons are free, stable (they do not decay) and do not in-
teract among themselves. Meson masses have a smooth limit and there are infinite:
a tower of excitations per each set of quantum numbers.

- At first order in the expansion in 1/Ng meson dynamics described by tree level
diagrams obtained with an effective local Lagrangian whose degrees of freedom are
mesons, as it was discussed in the Weinberg’s view of yPT.

At this point one can observe that there is a certain internal contradiction be-
tween the construction of EFT's a la Weinberg and the expansion in 1/N¢ for QCD
that should be solved in some way: on the one hand Weinberg’s view is to define the
particle content and the symmetries and then to build the most general Lagrangian
consistent with the assumed symmetries and it guarantees that we will obtain the
most general results through a perturbative approach. The problem is that the in-
troduction of the resonances invalidates the former expansion parameter, that was
successful for yPT .

On the other side, the large number of colours limit of QC'D can help us to or-
ganize an expansion in 1/Ng, but it contradicts the ideas in the previous paragraph
since one of its conclusions at lowest order is that we can not fix a priori the particle
content of the FF'T', for the consistency of the expansion we have to have infinite
copies of every type of resonance.

Because of that we have two possibilities:

- Either we forget the requirement for the Weinberg’s formulation of making a suit-
able choice of degrees of freedom for the energy range we are considering and we
include the spectra demanded by the limit No — oc.

- Or we include the phenomenological spectra and depart from the 1/Ng counting.

One could think that incorporating subleading effects in 1/No we may be able
to get the measured spectra. This idea can not become a reality for the moment
because of the nature of the 1/N¢ expansion in QCD. It is true that a given order
in ag there is a definite number of diagrams, and that they can be computed and
their effects resummed, but this is not at all the case in 1/Ng: at every order there
are infinite diagrams, and nobody has been able to think of a mechanism able to
study this question. In the framework of EF'T's based on this expansion there are
studies investigating the NLO in 1/N¢.

Additionally, one can recall that the Weinberg’s approach does not include any
type of dynamical information on the underlying theory: this is the price to pay for
its generality. In our case we will see that a theory with pseudo-Goldstone degrees
of freedom and resonances, that respects the symmetries of low-energy QQC'D, and
therefore reproduces xyPT at low momenta, based in the limit No — oo, is not
compatible with the known asymptotic behaviour of QCD at high-energies. Since
we want our theory to work up to some E ~ 2 GeV and at these energies perturba-
tive QC'D is already reliable, this must not happen. Then, the theory we need will
require dynamical information from QC'D -this will allow it lo link the chiral and
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perturbative regimes in the sector of light-flavoured mesons- and, either renounce
to the choice of the physical final states as degrees of freedom or to model the ex-
pansion in 1/N¢. This is discussed in the next section.

2.7 Resonance Chiral Theory

Resonance Chiral Theory, RxT [0} 7], includes the pseudo-Goldstone bosons and
the resonances as active degrees of freedom of the theory and requires general prop-
erties of QF'T's and the invariance under C' and P QC'D has. Their fundamental
features are sketched in the following.

The low-energy limit of RxT must be xPT. This property has been used to
predict systematically the LEC's of xPT in terms of masses and couplings of the
resonances when integrating these ones out of the action, at the chiral orders O (p*)
[6] and O (p®) [128] in the even-intrinsic parity sector, with N¢ — oo and requiring
the QC' D high-energy behaviour.

The xPT Lagrangian includes the octet of pseudo-Goldstone bosons. When ex-
tending xPT, RxT incorporates the resonances as active degrees of freedom that
are included in nonets, since octet and singlet of a SU(Ng = 3) group merge into
a nonet for No — oco. The yPT Lagrangian is built using the approximate chi-
ral symmetry of massless QC'D. After that, the spontaneous and explicit symmetry
breaking is incorporated in exactly the same way as it happens in QC'D. The nonets
of resonances are added requiring the general properties and invariance under C' and
P and the structure of the operators is determined by chiral symmetry. At first or-
der in the expansion in 1/N¢ the terms with more than a trace and the loops are
suppressed. The first property permits to postpone some terms allowed by the sym-
metries of the Lagrangian and the second one its use at tree level, as it was already
explained.

We remark that the theory determined by symmetries does not share yet some
of the known properties of QC'D at high energies yet. Therefore, one must match
the theory with asymptotic QCD at the level of Green functions and/or form fac-
tors. The application of these properties determines a series of relations between
the couplings of the theory that allows it to be predictive with less experimental
information than otherwise. In this Thesis we obtain relations of this type on the
form factors in two different type of processes that we will confront to those found
in two- and three-point Green functions where the same couplings appear B, The
nice UV behaviour forbids terms with a lot of derivatives, what helps us to limit
the number of operators in the Lagrangian, since the counting that worked in x PT
is now broken. The situation is not that easy, as we will comment later on, because
consistency conditions may require the introduction of operators with more deriva-
tives and some non-trivial relations among their couplings. Generally speaking, we

8There are not computations within RxT of four-point Green functions, whose short-distance
relations we could confront to ours.
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do not include terms with a lot of derivatives because this would require fine-tuned
relations to ensure the required cancellations needed at large momenta. In many
cases the phenomenological success is the support of our approach.

There is an inconsistency between Weinberg’s approach and the strict limit No —
00, but to our knowledge, there is no known way of implementing the infinite tower
of resonances in a model independent way. Then, it seems reasonable to start study-
ing easy processes with the minimum number of degrees of freedom involved. As we
get more and more control in this approximation (or the data get more and more
precise) we will be able to include more states if needed. This approach is practical
in order to estimate the different coefficients of the theory and it also respects the
goal of a good physical description, trying to do it in terms of the least number of
variables.

Finally, our phenomenological study can not avoid introducing some properties
that are higher orders in the 1/N¢ expansion. In the energy range where the taus
decay, resonances reach their on-mass condition and do indeed resonate due to their
width, typically lower than its mass. Widths are a subleading effect. We will include
them consistently within Rx7T', as we will see.

2.8 Organization of the Thesis

As it has been said, our study adopts the approach of EFT's. For this reason we
introduce its basics in Chapter Three are the cornerstones of our work on the
theory side: on the hand ensuring the right limit at low energies, ruled by yPT'
On the other, the large number of colours (N¢) limit of QC' D applied to EFT with
hadron degrees of freedom, in our case Rx7. And finally, to warrant a behaviour
at high energies in agreement with QCD for the different form factors. The first
and second question are considered in Chapters Bl and (] respectively, whereas the
third one is introduced in Section and applied in any particular application of
the theory considered in later chapters, that are preceded by a brief summary of the
theoretical studies undertaken and an overview on the essentials of exclusive hadron
tau decays (Chapter [l). The applications that we consider are: hadron decays into
three pions (Chapter []) and with two kaons and a pion (Chapter[). We also include
the decays including 7 mesons (Chapter [])) and the radiative decays of the tau with a
single meson 7 — P~ vy v, where P = w, K, in Chapter @ With all of them we will
improve exceptionally the control on the parameters of the resonance Lagrangian
participating in the considered processes, both in the vector and in the axial-vector
current and, therefore we know better how to describe, in a theoretically sound way
based on EFTs and the symmetries of QCD), these 7 decays. We will be able to
take advantage of all these findings in the future, applying them to more complex
processes. The thesis ends with the general conclusions on the work done.



Chapter 3

Effective Field Theories: Chiral
Perturbation Theory

3.1 Introduction

Effective Field Theories are built upon two seemingly contradictory deep roots:
the idea of symmetry and the usefulness of making justified approximations. That
is because symmetry is linked to the mathematical structure behind and appears to
be fundamental, while an approximation implicitly seems to assume some deviations
from Nature. We will clarify in which context -that of FF'T's- both concepts join
together in a rigorous approximation.

It is not true that if one had the exact solution to the complete theory, no one
would use the FF'T instead. The FF'T is more convenient in its domain of applica-
bility because it uses the right variables and exploits the hierarchy of the problem.
We will be more specific about this point later on.

Although the precise formulation of FFT's has been reached in the last thirty
years, the two main ideas named above are, in a sense, living within Physics for long.
It is common lore that the choice of variables can make the problem easier. If not
exactly realized in Nature symmetries are sometimes given at a quite approximate
level and allow for a parameterization of the problem that exploits that and renders
the computation doable (it is advisable to use cylindrical coordinates to solve the
Laplace Equation in a tube-shaped cavity, for instance). At the same time, either
analytically or numerically, one can work corrections to this exact solution by in-
cluding the symmetry breaking as it happens in reality, or faithfully modeling it.
We will see quite generally how these ideas of symmetry and approximation apply.

One of the longstanding motivations in Physics has been that of pursuing the so-
called theory of everything. This theory would be almost useless because the energy
scales involved would be orders of magnitude higher than the ones we can probe
experimentally. That would be the situation for any theory that unifies Gravity
with other forces, since its characteristic energy scale, the so-called Planck Mass
(Mp; = (87G)~Y2 ~ 10" GeV), is outside our reach. Thus, this unification would
be useless but from the point of view of the likely mathematical beauty. An EFT
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description using just the active degrees of freedom in any specific setting is in order.

On the other hand, if we leave gravity aside, the situation changes: If there was
exact unification of the SM gauge groups [129] -with maybe some others [130],
adding extra particles [131], using small additional dimensions to reduce E ~ Mp;
[132, 133, 134], etc.- at some energy scale ever accessible to experiments, then we
would reaffirm our understanding on SM, gain more insight on some kind of Physics
beyond it (BSM) discovered by that time and get a number of predictions testable
in experiments.

Let us use the very well-known example of the hydrogen atom to explain how
the relevant degrees of freedom arise naturally. A first description of the system is
achieved by using the Schrodinger equation for the electron bounded to a proton by
Coulomb’s law. The only properties that count at this stage are the electron mass
and charge (or, equivalently, the fine structure constant, a = e2/(47w) ~ 1/137). It
does not essentially matter that the proton mass is not infinite, because it is much
heavier than the electron one. The spin 1/2 of the electron does not affect yet either.
If one counts the mass scales that appear in the problem, one sees they are m,. and
Mp, being m./Mp ~ 5-107%. Any effect of m./Mp # 0 will be a ~ 1073 correction,
at most. One can see that the leading interaction involving spin (between the elec-
tron spin and the electrons’ orbital angular momentum) are also suppressed with
respect to the leading Coulombic interaction. The general feature we may extract
is that the characteristic energy scale of the problem (A) is set by the electron mass
and the strength of the interaction: A ~ mea, the typical momentum (or inverse
of length scale, the familiar Bohr radius) of the system. Therefore, the relevant de-
grees of freedom will correspond to particles with energies much lower than this one
(m, E < A): ultrasoft photons with energy of the order of m.a?, that sets the scale
of energy splittings between levels, the Rydberg (or inverse of characteristic times).
On the other hand, particles with much higher energies (M > A) will influence
tinily the spectrum and thus can be integrated out from the action. This will be
the case of the proton or soft and hard photons. But also of the W-boson, what
justifies that electroweak corrections to this QFED bound state are marginal.

One has then the possibility of constructing the most general Lagrangian consis-
tent with QQE'D symmetries including interactions among the lightest states and one
will be able to organize them efficiently as an expansion in powers of E/A. We have
found through this example the general rules for building FF'T's: identifying the rel-
evant energy scale of the problem, integrating out the heavier modes and building
the most general Lagrangian consistent with symmetries involving the light modes:
a tower of interactions that one will conveniently organize in powers of E/A. The
procedure rests on Weinberg’s Theorem, that will be discussed in Section 3.2

The fact that the heavier states can be integrated out (as explained in Section
B3) does not mean that they do not leave any mark in the low-energy Physics. The
effect of these states on the EF'T is double: on the one side they pose symmetry
requirements on the EF'T EI, on the other hand they correct the values of the con-

'For instance, in the non-relativistic £ FT's the relativistic invariance of the fundamental theory
implies relations between the LEC's in the EF'T that are valid to all orders in the coupling constant.
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stants specifying the dynamics of the low-Energy theory (LEC's), that are different
in the full and in the effective theory in case they enter in both [, see Section [3.4]

If the underlying theory is weakly coupled at the scale A one is able to compute
explicitly the values of the LEC's. Otherwise, one must rely in lattice evaluations or
fix them phenomenologically as discussed in Section In the first case, the same
coupling constant will serve as an expansion parameter to apply the perturbative
techniques, while in the second one it may be difficult to find such a parameter.

One important feature of EFT's mentioned above was that there is an infinite
number of interacting terms in the £ F'T', which makes the theory non-renormalizable
in the classical sense. However, this is not a problem once we understand that EF'T's
add to the general characteristics of renormalizable theories the need of having a
rule in order to estimate the size of these non-renormalizable terms. This will allow
us to stop the expansion once we reach some desired maximum error associated to
our computation. We will classify the terms in the Lagrangian according to some
counting scheme that makes explicit the organization of all allowed interaction terms
in powers of the expansion parameter. Then, at a given order, one will have infinites
that will be renormalized by redefining the LEC's appearing at the next order in
the expansion. If one regularizes using Dimensional Regularization (that preserves
all symmetries of the theory in the renormalization procedure), renormalizability is
assured since every infinite will be the coefficient of an operator respecting the sym-
metries and therefore already present in the effective Lagrangian at a higher order,
determining an order-by-order renormalization. At the practical level, EFT's are as
renormalizable as those classically called that way. For a given asked accuracy we
have to take into account terms in the expansion up to some order, that includes a
finite number of terms, as in any renormalizable theory.

A general remark before closing this introductory section: It seems that EFFT's
are the tool that solves everything and that is not true. The Hydrogen atom is a
system with a well-defined hierarchy of scales and a non-relativistic nature. Then,
the ratios /A and v/c are two small magnitudes that work extremely well in the
setting described above. Moreover, most of Particle Physics systems fulfill the non-
trivial characteristic that there is a small number of quantities playing a role in the
problem with some scaling among them. This allows (and suggests) an EFT ap-
proach. Even in the cases where the scaling is not so well defined or the expansion
parameter is not that small it is an advisable tool. However, in Chemistry (or even
more in Biology) there appear an enormous amount of unrelated energy scales of
comparable magnitude. Then even the extremely simple approach applied to the
Hydrogen atom as first step will lead in an FFT study to too cumbersome expres-
sions to make any sense out of them. We are lucky that these techniques can be
applied in Physics.

In the remainder of the chapter we will be more precise on the ideas sketched
above. We have made extensive use of Refs. [135], 136, 137, 138, 139, 140, 14T, 142]

in order to prepare this part.

2This does not happen when the degrees of freedom are different in the fundamental and effective
theory.
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3.2 Validity of EFT's: Weinberg’s Theorem

We will precise now the formulation of EFT's a la Weinberg. It can be stated as
a theorem [3]:

For a given set of asymptotic states, perturbation theory with the most general
Lagrangian containing all terms allowed by the assumed symmetries will yield the
most general S matrix elements consistent with analyticity, perturbative unitarity,
cluster decomposition and the assumed symmetries.

EFTs describe the physics at low energies, this defined with respect to some
energy scale, A, characteristic of higher energy processes. Heavier states with M 2> A
are integrated out from the action and the relevant degrees of freedom are those with
masses m << A. There is a well defined ordering in powers of E/A for the infinite
interactions among the light states one gets.

The view on renormalizability of QFT's has changed through the years. For
much time, it was claimed that for a QF'T to be renormalizable one needed that
the Lagrangian contained only terms with dimension less or equal than that of
the space-time, D. If operators of any dimension were allowed, one would need
an infinite number of counterterms to absorb all the infinites and consequently an
infinite number of unknown parameters condemning the theory to have no predictive
power. Since the £FT has an infinite number of terms (L.sf = L<p + Lpi1 + ...,
where only the first one is renormalizable in the classical sense) the conclusion seems
devastating.

We have explained at the end of the previous section that the infinite number of
terms in the EF'T will not cause any problem with respect to the renormalization of
the theory. For a definite number of powers in the (£/A) expansion, the symmetries
of the FF'T allow only a finite number of operators in the Lagrangian. Consequently,
there will be a finite number of counterterms that renormalize the theory at this
order.

In addition to the problem of no predictivity, one could think that as the energy
of the process increases this tower of classically non-renormalizable interactions will
give rise to a wild violation of unitarity at high energies. To clarify that this is not
the case, we will classify the Quantum Field Theories according to their sensitivity

to high energy [143]:

1. Asymptotically free theories: Nothing in them signals a limiting energy beyond
which they can no longer be employed.

2. Ultraviolet unstable theories: The theories themselves report about a limit
energy range of applicability. This statement will be illustrated with several
examples in section 3.5

EFTs belong to the second group. The main difference with respect to the first
ones comes from the appearance of new LEC's at every order in the perturbative
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expansion -that is not simply an expansion in the number of loops, as we will see-.
It makes no sense to go further and further in this expansion indefinitely. Every new
order in the series in (£/A) is intended to achieve a more detailed description. The

accuracy reached with every new term goes as € < (%)Dlmaz_{ where D"** is the
highest dimension of all operators included H. Once we demand a limited precision,
we know at which order in the expansion we can stop. Moreover, if we desire to
enlarge the applicability of the EFFT to higher energy physics the way out is not
to include operators of higher and higher dimension, because as soon as F ~ M;
-being M; the mass of the lightest initially integrated out particle- the Weinberg’s
theorem tells that the right procedure is to include it in the Lagrangian as an active
field. This happens usually, and there is a formal way to deal with this successive
incorporation of particles, that we will describe in the next section.

In QCD, confinement forbids quarks and gluons to be asymptotic states. Wein-
berg’s theorem guarantees that writing out the most general Lagrangian in terms
of hadrons -that can be thought as active degrees of freedom in a given subset of
energies- consistent with the needed symmetries and respecting all the other stated
conditions will bring us the most general observables consistent with the assumed
symmetries and general properties of QFT's.

3.3 Integrating out the heavy modes

We will explain here more formally the integration of heavy modes from the action
that has been anticipated in the previous sections. We will use the path integral
formalism and assume that the theory at high energies is known. The effective action
g, will be written only in terms of the light modes and encodes all the information
at low energies, where it yields the same S matrix elements than the fundamental
theory by construction. Seg reads

el Sert[P1] /[dq)h] ei5[¢z7q>h}’ (3.1)

where ®; and @, refer to the light and heavy fields respectively and S[®;, ®5] is
the action of the underlying theory where both modes are dynamical. The effective
Lagrangian gets defined through

Se®)] = / da Logl®l]. (3.2)

The effective action Seg|[®;] can be computed using the saddle point technique. The
heavy field @, is expanded around some field configuration @, as follows (A®,(x) =

3There will be quantum corrections to this estimate, that most of the time will be irrelevant.
Anyway, the moral is that the error is essentially under control, as one would ask any theory for.
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®), is chosen so that the second term in the RHS of Eq. (3:3) vanishes to allow a
(formal) Gaussian integration
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We see from Eq. ([B3]) that the first term corresponds to a tree level integration of
the heavy field ®;. The power counting of the EF'T will determine how the expan-
sion is realized, as we will see in the case of xPT in Chapter 2.

Two comments are in order: The procedure is iterative; one can have a pair of
{EFT-fundamental theory} valid up to some energy scale A. Then, for £ > A,
some other mode may become active and the fundamental theory in the previous
step will become the EFT in the next one. The other remark concerns the actual
use of that integration. The general procedure outlined above can involve compli-
cated or unfeasible calculations. This may happen because the degrees of freedom
are different in both theories and there is no unambiguous way of relating both,
or because a perturbative treatment is not applicable. In these situations one may
restore to phenomenology or lattice evaluations to do the computations. In any
case, it is always possible to obtain some information on e*“#[®l from symmetry
constraints stemming from the fundamental theory.

3.4 Effect of heavy modes on low-energy Physics

We have stated in Section 3.1l that although the heavy modes are non-dynamical
at low energies they have an impact in the LEC's of the theory when integrating
them out following the method in Sect.[3.3lin going from the the fundamental theory
to the effective one. We will see this general property at work in the case of xPT.
There is again a theorem expressing this notion precisely, due to Appelquist and
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Carazzone [144]:

For a given renormalizable theory whose particles belong to different energy scales,
that does not suffer Spontaneous Symmetry Breaking and does not have chiral fermions;
the only effects of the heavy particles of characteristic mass M in the physics of the
light particles of masses around m at low energies either appear suppressed by in-
verse powers of M or through renormalization.

The question is immediate: Does it apply in general? Does it to QC'D?

QCD is renormalizable [145] [146], 147, T48] and we have discussed in the intro-
duction that there are six quarks with masses spanning four orders of magnitude.
This suggests that one could very likely have hadrons belonging to different en-
ergy scales, and also dynamical gluons with very different energy-momentum. In
principle, the first condition of the theorem does not seem impossible to meet, al-
though one should revise this assumption in any particular scenario. Moreover there
is no spontaneous symmetry breaking associated to the QC'D vacuum. Finally its
fermions are not chiral: left-handed and right-handed fermions do not couple differ-
ently to the gauge color group. All conditions of the Appelquist-Carazzone theorem
are a prior: fulfilled.

3.5 Example

We will introduce an example of £ F'T's in order to help us illustrate some general
characteristics of EF'T's that have already been discussed and will be of use in the
next sections. We will see how:

e An EF'T indicates its border of applicability by itself.

e FF'T's help to understand the physics involved giving us some hints that point
to the more fundamental theory to be scrutinized in future experiments.

Inspired by the coupling of the electromagnetic current to photons, Fermi
[T49] proposed as the basis of a theory of weak interactions a local current x current
interaction among fermions that we can write -just for the lightest species- now as:

4G — 1
A ———— [Vus - (uy" Prs) (dvuPLu) + (ey"Prve) (EﬁuPLu)} + O (—4 ) ,
NG My

(3.7)

where Pp, is the projector over left-handed states.

Eq. (87) and dimensional analysis imply that o (v, e~ — p~ 1) must diverge in
the ultraviolet as G% s, which signals again a more general theory, the SM.

Is this the end of the story? Coming back to the hierarchy problem, see Table
1, there is a dimension five operator (thus, suppressed at low energies by the high-
energy scale) that respects all gauge symmetries of the SM and that will give mass
to Majorana neutrinos [150]:

1

- (?L g0) F(3'4) + he. (3:8)
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through diagonalization of the mass-term . Thus, MMajorana — % F, where v? is

related to the electroweak scale and A to the new Physics scale. The important les-
son we learn from this particular example is that regarding the SM as an FF'T we
can go on learning about a more fundamental theory. To mention a recent example,
let us note that these ideas have also been applied under the hypothesis of minimal

flavor violation [151].

The same physical predictions in the full and effective theories should be
expected around the heavy-threshold region. Thus, both descriptions are related
through a so-called matching condition: the two theories (with and without the
heavy field) should give the same S matrix elements for processes involving light
particles.

Until the matching conditions have not been taken into account, one is not deal-
ing with the effective field theory, that is, the matching procedure is a fundamental
step to develop effective approaches. We will illustrate how this works with the
Fermi theory, see Eq. (3.7).

When the W-boson momentum is small compared to its mass, its propagator
can be Taylor-expanded to give:

1 1 < p? p? )
_ 1+ Loy By ), (3.9)
p? — My, M, Mg, My

and the lowest order in this expansion can be applied to the SM tree-level result
for us — dw in the unitary gauge:

1g * IV 9w
A = <ﬁ) ViusViy (@ Prs) (dv" Pru) <p2 - j\‘;[%/) , (3.10)

to give:

A= <ML5V> (%)2 VisViy (@y"Pys) (dv,Pru) + O <Miév> . (3.11)

Comparing this to the amplitude obtained with Eq. (1) we can match both

theories up to O (M%
w

through the W mass:

) corrections by relating the corresponding coupling constants

Gr . 92
V2 8Mg
Going further in the expansion of Eq. ([B.9) will require to include additional
higher-dimension operators in Eq. (B.1).

(3.12)

4Left-handed leptons are collected in the /s, @s include the Higgs field and F is, in general ,
non-diagonal in flavour space.
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Figure 3.1: Feynman diagrams for the flavour changing charged current process
us — du at lowest order: within the fundamental electroweak theory through W-
exchange (left) and using Fermi’s EFT (right). The effective local vertex is repre-
sented by the thick dot.

In this particular example the tree level matching is not trivial because the
|AS| = 1 processes are allowed without loops. For |[AS| = 2, the LO non-trivial
contribution comes from the loop box diagram.

In the Fermi theory it has been possible to compute the LEC's in the EFT from
the fundamental theory. In our case, when studying low and intermediate energy
QCD, it will not be possible to derive from QC' D the couplings of RxT', the match-
ing conditions in this case will apply when demanding asymptotic QC'D behaviour
to the Green functions and form factors obtained within Rx7. That will impose
some restrictions on the effective couplings of the theory, as we will see.

3.6 Weakly and strongly coupled theories

A weakly coupled theory is one in which perturbation theory applies in a given
energy range, whereas it is strongly coupled in some energy interval if the couplings
are there comparable to (or even greater than) unity and any ordering for the pertur-
bation series makes no sense. One might try to understand why asymptotic states
differ from interacting states for these strongly coupled theories as a consequence of
this property. In practice, and apart from very few realistic exceptions (like, for in-
stance, Bethe-Salpeter equation [I52], 153, [154] for bound states in QFT') we are only
able to get rid of physical problems in QF'I" by using perturbative methods: Either
belonging to the original theory or to an FFT (in fact, the naming non- perturbative
methods has been generalized for this last case); so, it is clear that our inability for
dealing with such kind of mathematical problems makes F'F'T's even more necessary.

Finally, another consequence for weakly/strongly coupled theories is that in
them the naif dimensional analysis is not/is modified by anomalous dimensions )
Anomalous dimensions (together with a non-abelian gauge group) can explain how
a theory can share ultraviolet freedom and infrared confinement, as it is the case for

5The anomalous dimensions are quantum corrections to the classical operator dimensions. Their
importance at different energy scales can be evaluated by using the so-called Renormalization
Group Equations.
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QCD. Ref. [I55] gives an easy and illustrative example of this. We recall its main
features in the following: Let us consider the two-dimensional Thirring model [I56]
for a fermionic field whose Lagrangian is

L=T6 —m)y — 59 (@) (313)

It can be shown that it is dual to the sine-Gordon model for a fundamental scalar
field, with the Lagrangian:

1 «
L = 5 Mgb@“gb + ECOSBQS’ (314)
where the couplings g and S are related by means of:
B2 1
—_ = 3.15
A 1+ g/n’ (8.15)

that indeed shows us that sine-Gordon strongly coupled model with 3% ~ 47 can
be studied with the weakly coupled Thirring model (¢ ~ 0). Then, we have two
-equally valid and quite different- alternatives for describing the same theory (this
happens because of the big anomalous dimensions that appear within strongly cou-
pled theories at some scale. They can change drastically the behaviour of the dif-
ferent operators entering the £'F'T" when considering them at different energies). At
a given energy scale, we can choose between a strongly coupled theory involving
bosons that has big anomalous dimensions and a weakly coupled theory whose de-
grees of freedom are fermions with little anomalous dimensions. From the purely
formal point of view, there is no reason to prefer one alternative to the other one,
but in order to compute it is clear that the second option -that has a smooth per-
turbative behaviour- is more comfortable.

This example emphasizes again the importance of making a right selection of de-
grees of freedom. A theory that can be really involved at some energies (sine-Gordon
model, that is strongly coupled) can be studied by means of another one, which is
easier (Thirring model).

The parallelism with QC'D is tempting. The strongly coupled low-energy QQC'D
can be treated by means of a weakly coupled theory written in terms of bosons, and
this will be much easier than if we would have tried to solve it using quarks and
gluons as the relevant fields.

3.7 Precise low-energy Physics as a probe for New
Physics

Under the conditions of the Appelquist-Carazzone Theorem one sees that the
effect of integrating out the heavy particles is to modify the values of the LEC's and
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impose symmetry restrictions. We enumerated how all conditions of the theorem
(but for maybe the energy gap between particles in some regions of the spectrum)
were accomplished for the theory of strong interactions. However one can have
EFTs applicable to sectors of the rest of the SM that may not fulfill the theorem
and bring valuable information about the Physics at higher energies by analyzing
with precision the low-energy experiments because in this case the effect of heavy
modes in low-energy Physics will not be that mild. This is indeed the case for the
electroweak (EW) sector of the SM, where spontaneous symmetry breaking affects
the EW vacuum and fermions are chiral in the sense defined above.

Thus, we understand that when extremely precise LEP data were analyzed and
compared to theoretical computations including many quantum corrections, the Z
width [I57], and its decay into a b-b pair [I58, [159], were shown to be so sensitive
to the yet-undiscovered top quark, through my, that it indicated where to find it
at FERMILAB, as we told in the introduction. This is a clear and historically
interesting example of how immensely precise low-energy experiments can give us
clues about where physics beyond our model waits hidden.

We will add two related examples of current interest: an electroweak precision
test (measurement of the weak mixing angle) and the anomalous magnetic moment
of the muon. We will be very schematic here just in order to highlight the point
we wish to make, for a detailed analysis one can consult recent reviews on the topic
[160], 161], or Ref. [162].

Precision tests of the SM are promising places to look for physics BSM. An
accurate measurement must be supplemented by very precise input parameters and
higher order radiative corrections. At first sight it is striking that the measurement
with finest precision is the main source of uncertainty in the end. That highest
precision number is that of the fine structure constant, «, determined from the
measurement of the anomalous magnetic moment of the electron [163], with amazing
accuracy: g./2 = 1.00115965218073(28) = a~! = 137.035999084(51), relying on
perturbative QFE D as summarized in Ref.[164]. However, physics at higher energies
is not described by this a measured at zero momentum transfer but for the one
incorporating the quantum running. The shift of the fine structure constant from
the Thompson limit to high energies involves necessarily a low-energy region in
which non-perturbative hadron effects spoil that astonishing precision. In particular,
the effective fine structure constant at the Z pole plays an important role in EW
precision tests, like the weak mixing angle, 6y, related to «, the Fermi constant,

Gr, and My through [165] 166, 167]:
T

ﬂGFM%(l - AT) ’

sin*fycos® Oy = (3.16)

where Ar incorporates the universal correction Aa(My), the quadratic dependence
on my and all remaining quantum effects. In the SM, Ar depends on various physical
parameters including the mass of the Higgs Boson, My, still unknown. This way,
the measurements of sin’fy can help to put indirect bounds on My [168, 169, 170].
The error on Aa(Myz) dominates the theoretical prediction. Here and in the case of
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the muon magnetic anomaly the source of the uncertainty is similar, and it depends

on R(s), defined as follows:

o(ete” — had(v))
o(efem = ptu=(v))

R(s) = (3.17)

Specifically, the hadron contribution Aa}(l?d(M 7) of the five quarks lighter than
the Z boson can be related to Eq. (317) via [I71]:

(5) _ [aMF /°° R(s)
AO[had(‘]\4z) - ( 3t ) e m2 dsS(S . M% _ ’LE) ) (318)
where 0 )
_ Ohad\S
B = a2 /3s) (3.19)

and o}, (s) is the total cross section for the annihilation into any hadron with
vacuum polarization and initial state Q E D corrections subtracted off. As discussed
extensively in the introduction, we are lacking a way of using the QC'D Lagrangian
that allows to compute Eq. (B19) with enough accuracy to discriminate if there
is new physics associated to the measurement of sin?). The strategy is to use
experimental data on the e*e™ annihilation into any hadron state from threshold
up to some energy (~ 2 GeV) where we can already rely on perturbative QCD
supplemented by a motivated description of the lineshape of the many resonances
appearing as sharp peaks in the hadron cross section. Therefore, the theoretical
prediction of R(s) -and of the observables that depend on it- includes experimental
information.

The current accuracy of this dispersion integral is at the level of 1% and it is
dominated by the measurements in the region below a few GeV [172, 173, 174, 175
76, (17, (178, (179, (T80, (18T, 182, [183).

As in the case of the fine-structure constant at the Z scale we have just considered,
the theoretical (in the sense commented above) prediction of the anomalous magnetic
moment of the muon is dominated by the error on the hadron vacuum polarization
effects at non-perturbative energies. Using analyticity and unitarity it was shown
[184] that it could be computed from the dispersion integral:

ghatzo _ 1 / " dsK(5)0%(s) = - /4 TS keRe), (320

I ) ~ a2
477 ) g2 3% Jamz S

where the kernel K(s) ~ 1/s is further enhancing the low-energy contributions. In
particular, the dominant part is given by the two-pion vector form-factor (F7"(s)):

2 g
oo — (S)” [ S (o)), (3.21)
4 S

"
67T mgr

where o, is defined immediately above Eq. (C7)) and A is the scale up to which we
consider experimental data instead of the theoretical perturbative QC D prediction.
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A recent compilation of eTe” BaBar data gives [I85] a}*"© = (695.5 +4.1) -
10719 with similar results obtained by other groups [160, 161],183] [186]. The current
prediction is [I83, 187 a5 = 116591834(49) - 10~ !, to be compared to the experi-
mental average af = 116592080(63) - 107, that yields for the difference exp—SM
Aa,, = 246(80) - 107", 3.1 standard deviations. This would seem an indication for
new physics [I88]. However, given the facts that:

e There have been discrepancies [I89, [190] in the shape of R(s) (not that much in
the integrated value) in the region of interest between the different experiments
KLOE, CMD2, SND and BaBar that seemed to hint to underestimated
systematical errors in the unfolding of the data. An increase of precision in
the experimental measurement and a revision of the estimated uncertainties
in the treatment of radiative corrections could help settle this issue.

e One should have an independent way of extracting aﬁ“d’LO using R, -Eq. ([2.4)-
after an isospin rotation. This way one would have a theory prediction using 7
data instead of eTe™ data. The results obtained with 7 data seem to be closer
to the SM ones (1.9 o away, [191]).

e A common treatment of radiative correction (including maybe more than one
Monte Carlo generator) by the different collaborations would be desirable.

One should conclude that it is still early to claim for this BSM physics.

The purpose of this section has been to show a few selected physical observables
that allow for precision measurements at low energies that were sensitive to new
physics at higher energies. The SM would be the EFT of the one describing all
phenomena at this higher scale. In all cases that was possible because the EW sec-
tor of the SM did not fulfill the conditions of the Appelquist-Carazzone theorem,
and thus the effect of heavier modes was not only in modifying the values of the
LECs and imposing additional symmetry properties. It is also instructive to see
how in the cases of both sinfy and a, this probe of BSM physics is polluted by
the hadron uncertainty imposed by low-energy QC'D, some aspects of which we are
discussing through this Thesis.

3.8 Summary of EFTs

We conclude the first block of the chapter with a recapitulation on the main
features of EFTs. They are the following ones:

e Dynamics at low energies does not depend on details of physics at high ener-
gies.

e One includes in the action only the relevant degrees of freedom according to
the physics scale considered and to the particle masses. If there are large
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energy gaps, we can decouple the different energy scales, that is:
0—mM<KE<KM— 0.

There is a well-defined perturbative way of incorporating finite corrections
induced by these scales.

Exchanges mediated by heavy particles have been replaced by a set of local
(non-renormalizable) operators involving only the light modes.

The EFT-Lagrangian is a sum of operators, £ = > . ¢;0;, whose coefficients
scale as ¢; — E% Y ¢;. Here, d; comes from dimensional analysis and ~; is the
anomalous dimension. Provided we have chosen the right degrees of freedom,
anomalous dimensions are small and the leading behaviour at low energies is
given by the lowest dimension operators. Then, going further in the expansion
we improve our accuracy: to include all corrections up to order 1/EP, one
should include all operators with dimension < d; —~; + p, i.e., all terms with
coefficients of dimension > —p. The number of operators to be considered at
each order is finite.

Although EFTs are not renormalizable in the classical sense -they are ul-
traviolet unstable-, they are order-by-order renormalizable for a given asked
accuracy.

EFTs have the same infrared behaviour than the underlying theory. On
the contrary, EF'T's do not possess the same ultraviolet behaviour than the
fundamental one, so we need to perform a matching procedure to ensure that
they are equivalent at a given intermediate (matching) scale.

Whenever we respect symmetry principles for building the EFT, we will get
the right theory written in terms of the variables we have chosen ( Weinberg’s
theorem).

Under some conditions, Sect.[3.4] the only remnants of the high-energy dynam-
ics are in the LEC's and in the symmetries of the EFT (Decoupling theorem,).

3.9 Introduction to Chiral Perturbation Theory

In this section we will introduce a paradigm of EFT's, xPT. We will need it to

build the RxT Lagrangian. The remainder of the chapter will be devoted to it.

We have seen in the Introduction, Eq. (LIT), how the strong coupling evolves to

smaller values with increasing energy and the converse in the other end of energies:
it increases its value as the energy gets smaller and smaller. A look to Figure
could be instructive.
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Figure 3.2: Summary of the values of ag(u) at the values of u where they are
measured. The lines show the central values and the +1c0 limits of the PDG [§]
average. The figure clearly shows the decrease in ag when increasing p. The data
correspond to -as p increases- 7 width, T decays, deep inelastic scattering, ete™
event shapes at 22 GeV from the JADE data, shapes at TRIST AN at 58 GeV, Z
width, and ete™ event shapes at 135 and 189 GeV.

One sees that at p ~ 2 GeV the value of ag(u) is not yet that big to prevent a
meaningful perturbative expansion in terms of it. Following the RGFE to extrapo-
late to lower values of 1 it is found that at a typical hadron scale 1 ~ M,, Mp one
can have ag(p) > 0.5 that jeopardizes that approach. Since hadron decays of the 7
span the range 0.14 — 1.78 GeV, one should find a way out that starts from QCD.
One rigorous alternative is to simulate on the lattice the QC'D action. We will not
report about this option here. Although it has proved to be very successful in many
non-perturbative strong-interaction problems, the processes we study here have not
been addressed by the lattice community yet. One can also construct models that
keep this or that feature of QC'D, but we do not find this alternative satisfactory.
Finally, one can build an EF'T of QC'D for this subset of energies using as variables
the active degrees of freedom as we will describe next.

In order to discuss the global symmetries of the QC D Lagrangian, Eq. (LIH), we
will restrict ourselves to the so-called light sector of QCD, with n; light flavours.
In our case, ny = 3: u, d, s, that are much lighter than the so-called heavy quarks
¢, b, t. The characteristic hadron scale lies in between both regimes. Therefore,
integrating out these three heavy quarks we go from [ QCD™=5 to QCD™=3. The
Lagrangian of QC'D™=3 in the limit of massless light quarks (so-called chiral limit)

6The effective strong coupling in the two theories are related by a matching condition, intro-
duced in Sect. This is discussed in Ref. [192], for instance.
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is: ]
16w
where the upper-index zero reminds us the limit taken, and we have employed the
usual notation for the left(right)-handed spinors ¢q1(qr) and projectors: q;, = Prq
(¢r = Pra).

The Lagrangian, Eq. (3:222]), is invariant under global transformations belonging to
SU(ns)@SU(ns)r@U(1)y @U(1)4. U(1)y is trivially realized in the meson sector
but it gives rise to baryon number conservation, U(1)4 gets broken by anomalies
and explains why the 7' is heavier than the n or the kaons. Finally, it remains
SU(ng)r @ SU(ng)g, the so-called chiral group of transformations in flavour space,
that acts on the chiral projections of the quark fields in the following way:

‘C%CD =19, Pqr + iqrPar — Gy, (3.22)

q., — qu = grL4L

gr — qr' = 9R4R (3-23)

where g1z € SU(ny) 1R
This chiral symmetry, which should be approximately valid in the light quark
sector (u, d, s), is however not seen in the meson spectrum (Table B.1J):

JP | Particle m (MeV) JP | Particle m (MeV)
0~ 70 ~ 135.0 0t ag ~ 985
s ~ 139.6 as ~ 985
n,n ~ 547.9, (957.8) Jo ~ 980
K* ~ 493.7 K+ ~ 800
KO K’ ~ 497.7 KO K ~ 800
1~ o ~ 775.8 1t a? ~ 1230
Pt ~ 775.5 ai ~ 1230
w ¢ | ~782.7, (1019.5) hi, fi | ~ 1170, (1281.8)
K+ ~ 892.0 K= ~ 1273
KO K™ ~ 891.7 KO K ~ 1273

Table 3.1: Spectrum of the lightest mesons [8]. The f(600) or o [193],[194] is not included

in the Table.

The conclusions we draw are the following ones:

e Mesons are nicely classified into SU(3)y representations.

e Reversing intrinsic parity changes drastically the spectrum (just compare the
masses of the octet of JP = 0~ versus that with J© = 0%, or J© = 1~ vs.
JP = 17). Thus, a transformation involving s is not a symmetry of the
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spectrum. Chiral transformations seem not to be a symmetry of low-energy

QCD.

e The octet of J¥ = 0~ stands out being its members much lighter than the
ones in other octets.

Although chiral symmetry changes the parity of a given multiplet, the previous
spectrum is not contradictory with it. We shall recall that there exist two ways of
realizing a global symmetry: In the Wigner-Weyl way all the symmetries of the La-
grangian are shared by the vacuum of the theory and then they are manifest in the
spectrum. In the Nambu-Goldstone way, there is a so-called spontaneous breakdown
of the symmetry that makes compatible the observed spectrum with the underlying
approximate symmetry.

There are two fundamental theorems concerning spontaneous symmetry break-
ing: Goldstone theorem [122] [195], which is devoted to global continuous symmetries
and Higgs-Kibble theorem [196 197, 198, 199, 200], that worries about local gauge
symmetries.

Chiral symmetry is a global symmetry, then Goldstone theorem is the one applied
here. We can state it in the following way: Given a global continuous symmetry of
the Lagrangian: either the vacuum shares the symmetry of the Hamiltonian; or there
appear spin zero massless particles as a display of Spontaneous Symmetry Breaking.
In the last case, for every spontaneously broken generator, the theory must contain
a massless particle, the so-called Goldstone boson.

Vafa and Witten showed [201] that the ground state of the theory must be invari-
ant under vector transformations, so that Spontaneous Symmetry Breaking cannot
affect the vector part of the chiral subgroup (Vi = Rj, + Lf), but the axial one
(A% = R, — LY.

Let us consider [202, 203] a Noether charge ), and assume the existence of an
operator O that satisfies

(0][@Q,0]|0) # 0; (3.24)

the only possibility for this to be valid is that Q|0) # 0. Goldstone theorem states
there exists a massless state |G ) such that

(07°|GY(GlO[0) £ 0. (3.25)

It is important to notice that the quantum numbers of the Goldstone boson are
dictated by those of J° and O. The quantity in the left-hand side of Eq. (324 is
called the order parameter of SSB.

Considering that U(1)4 is affected by anomalies, only SU(ns)4 can be concerned
with the Goldstone theorem. Then, for ny = 3 and for the lightest quark flavours
(u, d, s) we end up with eight broken axial generators of the chiral group and, corre-
spondingly, eight pseudoscalar Goldstone states |G* ), which can be identified with
the eight lightest hadrons (three 7s, four K's and the n, see Table Bl), their (rel-
atively) small masses being generated by the explicit breaking of chiral symmetry
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induced by the quark mass matrix entering the QC'D Lagrangian. The correspond-
ing operators, O% must be pseudoscalars. The simplest possibility is O = gy5\%q,
which satisfies

1 2
(0[1Q% 73 \"q][0) = =5 (0[7{\",\"} g/0) = —2 5" (0[gq|0). (3.26)
The quark condensates
(O[aul0) = (0]dd|0) = (0|3s|0) # 0 (3.27)

are then the natural order parameters of Spontaneous Chiral Symmetry Breaking

(SxSB).

3.10 Different representations for the Goldstone
fields

Based on the previous reasoning, our basic assumption is the pattern of Sy SB:

Since there is a mass gap between the lightest multiplet of pseudoscalar particles
and the rest of the spectrum, we can easily apply the Weinberg’s approach and
formulate an FF'T dealing only with these modes.

The general formalism for £ F'T-Lagrangians with S.S B was worked out by Callan,
Coleman, Wess and Zumino (CCW Z) [123, [124]. A very clear explanation can be
found in Ref. [136].

Consider a theory in which a global symmetry group G is spontaneously broken
down to one of its subgroups, H. The vacuum manifold is the coset space G/H.

The set of coordinates we choose has to be able to describe the local orientation
of the vacuum for small fluctuations around the standard vacuum configuration. Let
E(x) € G be the rotation matrix that transforms the standard vacuum configuration
to the local field one. Due to the invariance of the vacuum under H transformations,
= happens to be not unique; namely, =(z) h(x) -where h € H- gives the same con-
figuration. In the present case, =Z(z) € O(NN) and we can parameterize any vector ¢
by means of the suitable = matrix:

o) = =) | . | (3.29)
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The same configuration ¢(z) can also be described by Z(x) h(z). In our example,

h(z) is a matrix of the form:
_ (W) 0
h(xz) = ( 0 1 ) : (3.30)

with A/(x) is an arbitrary O(N — 1) matrix, since:

0 0
0 0

<hlgx) ?) = . (3.31)
0 0

The CCW Z prescription is to pick a set of broken generators X, and choose

[1]

() = X7, (3.32)

where 7(x) describes the Goldstone modes.

Under a global transformation g, the matrix =(z) changes to a new matrix g
E(x) for ¢p(z) — go(z), that it is not in the standard form of Eq. (8:32)), but can
be written as

g= = Z'h, (3.33)

that is usually turned into
=(2) — g=(x) h (g, Z(a). (3.34)

CCW Z formalism is characterized by equations (3.32) and (3.34]) for the pseudo-
Goldstone boson (pG) fields and their transformation law. The transformation h
appearing there is non-trivial because the Goldstone boson manifold is curved. Any
other choice gives the same results as CCW Z formalism for all observables, such as
the S matrix, but does not give the same off-shell Green functions.

The CCW Z prescription in Eq. ([3.32) says nothing about which set of broken
generators we would better choose. Depending on our choice, we will have a different
base. There are two that have become standard in order to write the QC'D chiral
Lagrangian, the so-called {-basis and the »-basis [136]. Each of them brings us a
different equivalent parameterization (commonly called U and u, respectively).

There are many simplifications that occur for QC'D because the coset space G/H
is isomorphic to a Lie group.

Let X* = T} + TF% be our choice of broken generators.

An element g € G can be written as:

g=<§]0%), (3.35)
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where L(R) € SU(3)rr). The unbroken transformations are of the form (B.33),

with L = R = U,
U 0
g—(o U). (3.36)

Now, using the CCW Z recipe, Eq. ([8.32):
_ iXew(z) _ AR 0 o f(l‘) 0
(x) =e = e:z:p( 0 —iT.x ) = < 0 i) ) (3.37)

£ = el XT (3.38)
stands for the upper block of =Z(z). The transformation rule Eq. (8.34]) gives

(7 atm ) = (0 7 ) (5 el ) (707 o ) 000

and, consequently, the transformation rule for &,

(1]

where

§(x) — L&(x) U (2) = U()¢(x) BT, (3.40)

which defines U in terms of L (R) and &. If we choose X* = T} as the basis for
broken generators, we will have U = R, and

Y(z) — LY(z)R'. (3.41)

Finally, comparing Eqs. (8:40) and (3.41]), one concludes that 3 and £ are related

by
N(z) = &(x). (3.42)

In the context of yPT, everybody writes U(x) instead of ¥(z) and u(z) sub-
stitutes £(z). It is also more common to employ ®(x) for the coordinates of the
Goldstone fields. We will follow this notation from now on.

The Goldstone boson nature restricts these fields to be angular variables, thus
dimensionless. It is convenient to work with boson fields of mass dimension one,
which motivates the standard choice:

u=¢T¥ U =P (3.43)

where F' ~ 92.4 MeV is the pion decay constant.

1S 73t g Tt K*
B(r) = VITO'(2) = =3 Al = T —aT s K
o=l K~ K _%778
(3.44)

where the Gell-Mann matrices in flavour space, \,, -which are the fundamental
representation of SU(3)- have been introduced with the same normalization as for
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SU(N¢) generators of QCD.

Notice that U(®) transforms linearly under the chiral group, but the induced
transformation on the pG fields is highly non-linear.

There is abundant good literature available on this topic and its specific applica-

tion to xPT [143, 202, 203] 204, 205, 206].

3.11 Lowest order Lagrangian. Method of exter-
nal currents

In order to obtain an FF'T realization of QCD at low energies for the light quark
sector, we should write the most general Lagrangian involving the matrix U(®) (or
u(®P)), which respects chiral symmetry. The Lagrangian can be organized in terms
of increasing powers of momentum or, equivalently, of derivatives (the subindex 2n
refers to that):

LxPT - Z£2n7 (345)
n=1

being the dominant behaviour at low energies given by the terms with the least
number of derivatives. Unitarity of U obliges two derivatives to be present for
having a non-trivial interaction. At lowest order, the effective chiral Lagrangian in
the U-formalism is uniquely given by the term:
F2
Ly = I(GMUT8”U>. (3.46)
where ( A) is short for trace in flavour space of the matrix A.

Expanding the matrix that exponentiates the pG fields in a power series in &,
we get the Goldstone kinetic terms plus a tower of interactions increasing in the
number of pseudoscalars. It is a capital fact that all interactions among the Gold-
stones can be predicted in terms of a single coupling, F'. The non-linearity of the
EFT-Lagrangian relates the amplitudes of processes involving a different number
of pGs, allowing for absolute predictions in terms of F'. This sector was thoroughly
studied by Weinberg [3], 207, 208, 209].

But the lightest mesons do not interact solely due to elastic scattering among
themselves. In addition to the strong interaction, they also experience electro-
magnetic and (semileptonic) electroweak interactions and this has to be taken into
account. In order to compute the associated Green functions, we will follow the
procedure employed by Gasser and Leutwyler, who developed xPT' consistently to
one loop ([4, B, 210]). We extend the chiral invariant QC'D massless Lagrangian,
Eq. (322), by coupling the quarks to external Hermitian matrix fields v,, a,, s, pll:

Locp = Loop + O (0 +750,) ¢ — G (s —ivsp) q. (3.47)

"We do not include the tensor source [211].
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External photons and W boson fields are among the gauge fields and (pseudo)sca-
lar fields provide a very convenient way of incorporating explicit xySB through the
quark masses (see Eq. (850), where M is defined.):

rn — 1, +eQA,,
2e

EN — EN + GQAM + \/QTHHVV (WTT_;,_ + hC) s
s = s+ M, (3.48)
bein
: 20 0 0 Via Vi
Q=0 —3 0 , T.=(0 0 o0 (3.49)
0 0 —3 0 0 0

Inclusion of external fields promotes the global chiral symmetry to a local one:

q — 9r4r + 9L4L
s+ip — gr(s +ip)g},
b = grlugy +igr 0.9t
ru = GrTWGR + i9ROu gl (3.50)

where we have introduced the definitions r, = v, +a, and ¢, = v, —a,; and requires
the introduction of a covariant derivative, D,U, and associated non-Abelian field-
strength tensors, F7'5:

DU = 9,U —ir,U + iUl, , D,U — grD,Ug;",
Frv = ota” — 0" at — izt 2%, x =1, L. (3.51)

The transformations of the external sources under the discrete symmetries P//C
are as follows:

s+ip = s—ip//(s—ip),
ly -t/ — T;—,
T — /] — f;.
The power of the external field technique is exhibited when computing chiral
Noether currents. Green functions are obtained as functional derivatives of the
generating functional, Z [v*, a*, s, pl|, defined via the path-integral formula

exp{iZ} = /DquDGu exp {i/d% EQCD} = /DUexp {i/d4:c Eeg} )
(3.52)
At lowest order in momenta, Z reduces to the classical action, Sy = [ d*z L5, and

the currents can be trivially computed by taking suitable derivatives with respect
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to the external fields. In particular, one realizes the physical meaning of the pion
decay constant, F', defined as

(O[(J) 7" (p)) = iV2F . (3.53)

The locally chiral invariant Lagrangian of lowest order describing the strong,
electromagnetic and semileptonic weak interactions of mesons was given by Gasser
and Leutwyler [ [5]:

F2
L= (D,UD*UT + xU' + x'U), x = 2B(s + ip). (3.54)
The two LECSs that characterize completely the O(p?)-chiral Lagrangian are

related to the pion decay constant and to the quark condensate in the chiral limit:

F, = F[l + O(m,)] = 92.4MeV,
(Oluul0) = —F*B[1 + O(m,)]. (3.55)

A consistent chiral counting must be developed to organize the infinite allowed
terms in the Lagrangian. Depending on the actual relation of these two LEC's one
could have different EF'T's for low-energy QQC'D. This illustrates the fact that the
Weinberg’s approach to FFT's does only rely on symmetries but does not have dy-
namical content incorporated. This issue is studied in the next section.

3.12 Weinberg’s power counting rule

Chiral Lagrangians were originally organized in a derivative expansion based on
the following chiral counting rules (see Table B.2]).
Using Eqs. (343, B.44)) and setting the external scalar field equal to the quark

Operator | O
U p°
DU, v, a, | p
Fi'r P’

5, P p?

Table 3.2: Chiral counting in Standard yPT.

mass matrix -that is, explicitly breaking chiral symmetry in the same way it happens
in QCD-,
m, O 0
s =M, = 0 mg O , (3.56)
0 0 mg
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one can straightforwardly read off from Eq. (B.:54]) the pseudoscalar meson masses
to leading order in my:

mii = 27/1\13,
m2, = 2mB — ¢ + O(e?),
mis = (my + my)B,
m%o o = (mg+my)B,
2,
ml = g(m + 2m,)B + ¢ + O(£?), (3.57)
where [202]
~ 1 B (m, — md>2
= = (m, e = o Mu T Md) 3.58
m 2(m + mg), € R r— (3.58)

With the quark condensate assumed to be non-vanishing in the chiral limit
(B # 0), these relations explain the chiral counting rule in Table

Up to this point, yPT is a very elegant way of understanding the phenomeno-
logical successes obtained in the pre-QQC'D era. The well-known relations already
obtained with current algebra techniques are recovered using Eqs. (8.54) and (B.56)):

FPmZ = —2m(0[gql0) [212] (3.59)
m? m? m2.,

B = —~ = KT K [212], P13 3.60

2m ms + My, ms + my ' (3.60)

3m; = 4mj —mi [214], [215], (3.61)

but the real power of yPT -as an FFT- lies in the fact that it gives a perfectly
defined way of taking into account the next orders in the chiral expansion and the
quantum corrections.

xPT is based on a two-fold expansion: as a low-energy effective theory, it is an
expansion in small momenta. On the other hand, it is also an expansion in the
quark masses, mg, around the chiral limit. In full generality, the Lagrangian is:

Lypr = Zﬁz‘j, Lij = O(p'm]). (3.62)
b,J

The two expansions become related by Eq. (857). If the quark condensate is non-
vanishing in the chiral limit, meson masses squared start out linear in m,. Assuming
the linear terms to give the dominant behaviour there, we end up with the standard
chiral counting with m, ~ O(p*) and

Legp =Y Loy Li= Y Ly, (3.63)
d i+2j=d

In short, Eq. (B54]) has two LEC's: F and B. xPT assumes B to be big compared
to F' and organizes the chiral counting according to that assumption. Generalized
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xPT [216], 217, 218] was developed as a scheme adapted for much smaller values of
B, a picture that is not supported by lattice evaluations of the condensate [219] 220]
2211, 222, 223, [224], 225], 226] or estimations based on sum rules [227], 228, [229] 230]
231, 232, 233]. Another issue that is still unsolved concerns the possible instabilities
due to vacuum fluctuations of sea g — ¢ pairs, as the number n; of light fermions
increases [234), 235, 236], 237, 238 239, 240].

In order to build higher orders in the chiral expansion it is better to use the chiral
tensor formalism that uses u instead of U as the exponential non-linear realization
of the pG's. This is so because the building blocks in the U-formalism (U, F7g,
X) do not transform in the same way under the chiral group. While this is not an
issue for dealing with the lowest order Lagrangians, in can make very difficult to
determine the minimal setting of independent operators at higher chiral orders.

The Lagrangian must be chiral symmetric, hermitian, and Lorentz, parity (P)
and charge conjugation (C') invariant. In the u-formulation one uses traces of chiral
tensors either transforming as

X — h(g, ®) X h(g, ®)', (3.64)

or being chiral invariant.
With this purpose, we define the chiral tensors:

u, = i{uT(au—iru)u—u(au—z'l“)tﬁ},

e = uxyu tuyu, (3.65)

The lowest order chiral Lagrangian that can be written respecting also all other

symmetries is then
2

F
Ly = I(uuu“ + X4 ) - (3.66)

Explicit x.SB is incorporated through x., where x is given by Eq. (8.54]). Then,
in the isospin limit,

m2 0 0
X =2Bs = 0 m2 0 . (3.67)
0 0 2m3%—m?2

The content of Eqs. (8.54) and (3.60) is exactly the same.

Now we will explain why the expansion in an FFT may not be simply an
expansion in the number of loops. This is indeed what happens in yPT.

Consider an arbitrary complex Feynman diagram involving just pGs. We recall
the expansion in YPT, Eq. (845). The LO Lagrangian supplies O(p?) vertices, the
NLO one O(p*) couplings, and so on and so forth. Using N, to denote the number
of vertices obtained employing the Lagrangian of order O(p?), remembering that pG
fields have mass dimension one and that any momentum running inside a loop is to
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be integrated over four dimensions -after proper renormalization-, one may conclude
that for this generic diagram all powers of momentum will fulfill the relation:

D = 4L — 2B + Y Nud, (3.68)
d

being L the number of loops and B; the number of internal boson lines, respectively.
Moreover, there is a topological relation for any connected Feynman diagram

L =B — (Z N, — 1) (3.69)

that one can use to erase By from Eq. (B.68) to end up with Weinberg's power
counting rule [3]:

D=2L+2+) Nyd-2). (3.70)
d

It is straightforward to read off from ([B0) the exact ordering of the chiral ex-
pansion:

e D = 2 corresponds to L = 0 and N, = 1, i.e., tree level contributions obtained
using Eq. (854) -or ([B.66)-. This makes sense: we recover the predictions of
old current algebra as the dominant very low-energy behaviour in x PT'.

e D = 4 is obtained either with L = 0 and N4 = 1, or with L. = 1 and arbitrary
insertions of N,. Tree level contributions coming from L4 are to be balanced
with one-loop diagrams formed with £5. And so on. This is in agreement with
the order-by-order renormalization of yPT": the divergences generated at a
given chiral order are renormalized by the appropriate counterterms appearing
at the next order.

However, this is not the whole story. For yPT to be dual to QC'D at low en-
ergies it must satisfy classical symmetries slightly modified by quantum properties.
Classical symmetries can be swapped away by anomalies, which are long-distance
non-perturbative effects. And this is what happens with U(1)4 for the massless
QCD Lagrangian, Eq. (822)). To ensure the duality, every aspect of low-energy
QQC'D must be realized in the same way in xPT and, particularly, one must add a
term that reproduces this anomaly, as it is discussed in the next section. Moreover, it
is not possible to write a generating functional for massless QC' D that is simultane-
ously invariant under the subsets of V' and A transformations of the chiral group. It
is mandatory to include a term that mimics this behaviour whose degrees of freedom
are pGs. This task was carried out by Wess, Zumino and Witten [241], 242], who
wrote such a kind of functional, W ZW f. It happens to start contributing at O(p?).
Therefore, three contributions shape N LO chiral expansion that are, schematically:
L=0with Ny=1, L =1V Ny, and WZW f.



3.13 NLO in the chiral expansion 65

3.13 NLO in the chiral expansion

The lowest order Lagrangian is O (p?) (Eq. ([B68])) for even intrinsic parity and
O (p*) (the WZW f) in the odd-intrinsic parity sector.
There is a new operator that enters the O(p?) Lagrangian in the u-formalism:

o= wFul £ ul PR (3.71)
that collects the left(right)-handed field-strength tensors presented in Eq. (B.21).
The covariant derivative in this formalism reads:

V,X =0,X + [I',, X], (3.72)
defined in terms of the chiral connection

1
r, = 3 {u" (8, — ir,)u + uw (9, — il,)u'}, (3.73)

for the covariant derivative to be transformed in the same way as X does, Eq. (8.64]).

It easy to check that (V,X)I = V,(XT). The connection does not transform
covariantly as X. It will be useful when introducing the chiral multiplets of reso-
nances in Rx7', which transform in the same fashion. With I', one may also build
the covariant tensor

T = 0,0y — 0, + [T, (3.74)
The other O(p?) operators transforming covariantly, Eq. ([3:64)) are:

Uy Uy,

hyw = Vyu, + Vyu,, (3.75)
where it has been used that wu, can be written as
u, = iu'D,Uu’ = —iuD,U" = uL, (3.76)

and is traceless.

The relevant transformation properties of chiral tensors in this formalism are
shown in Table Taking these into account, we achieve the most general O(p*)
chiral Lagrangian written in terms of them:

Ly = Li{uu")® + Lo{uu? Y utu, ) + Ly{uufu,u”) + Lyl uut Y xy )
+ Ls(upu x4 ) + Le(x+)® + Le(x=)* + Ls/2 (X5 +x2)
— i Lo( ffuyuy ) + Lao /4 fr Y — fow I2)
i Ly (X (Vu +i/2x2)) — Lo (V,u" +14/2x_)?)
HH /2 frwf+ fow ) + Ha/4 (X5 —X2) (3.77)

where the terms whose coefficients are L1; and L5 do vanish considering the equa-
tions of motion (EOM) of O(p?). The EOM for L, is:

05 () = Tyt~ 4 (-~ ) =0 (3.79)
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L1y and Ly, can now be skipped at O(p*) using that:
L=l = L (x-09M(u)) = Liz( Oy (w) 07" (u)1). (3.79)

The terms with coefficients H, and Hs are contact terms relevant for the renor-
malization of yPT.
The renormalization of y PT needed to work at O(p?) was accomplished in Refs.

Operador P C h.c. | x order

u, —u u, u, D

X+ X+ Xt X+ P
fuu:l: ifiy + g;j: fuu:l: p2

P -o oT P 1

U ul ul ul 1

T r, | 7T | o |
Uy —uT ul, uf, p?
Vo, | -VAu | (V)T | Vi, p?

Table 3.3: Transformation properties under C', P and hermitian conjugation of the chiral
tensors and other useful structures in the u-formalism. 7" means transposed.

[4, B]. The divergences that arise using Ly at one-loop, divergences are of order
O(p*) and are renormalized with the LEC's of Ly:

D—4
L = Li(u) + Tk {LJFC},

"3272 | D — 4
~MD74 2
H = H' I, _c .
: i)+ Z32w2{D—4+C}’ (3.:80)

where D is the space-time dimension and C' is a constant defining the renormaliza-
tion scheme.

The renormalized couplings, L7(u) do depend on the arbitrary renormalization
scale pu. This dependence cannot survive in any physical observable. As it had to
happen, it is canceled out with that coming from the loop in any physically mean-
ingful quantity.

As we said, the odd-intrinsic parity sector starts at O (p*). Its appearance is
due to one of the anomalies affecting the chiral group U(3);, ® U(3)g. On the one
hand there is the anomaly which makes that the classical symmetry U(1),4 is lost
at the quantum level. Apart from group color factor, it is identical to the case
of the axial anomaly of QFE D), discovered perturbatively in one-loop computations
[243, 244] by Adler, Bell and Jackiw. Later on, the proof that this result does not
receive radiative corrections [245] by Adler and Bardeen insinuated that anomalies
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could have a non-perturbative nature, as it was shown by Fujikawa, using the path-
integral formalism [246] 247].

On the other hand, there is an anomaly that affects the whole U(3) ® U(3) sym-
metry group that has its origin in the fact that it is not possible to preserve the
simultaneous invariance of the generating functional under vector and axial-vector
transformations. Wess and Zumino [241] were the first to obtain a functional gen-
erating this anomaly that affects chiral transformations written in terms of pG's.
Operatively, it is more useful the one derived later by Witten [242], that I will
present here following the discussion in [24§].

The fermionic determinant does not allow for a chiral invariant regularization.
Given the transformations

gr = 1+ i(a(z) + B(z)), g = 1 + i(a(r) - B(z)), (3.81)

the conventions in the definition of the fermionic determinant may be chosen to pre-
serve the invariance of the generating functional, Z, either under V' transformations,
or under the A ones; but not both simultaneously. Choosing to preserve invariance
under the transformations generated by the vector current, the change in Z only
involves the difference f(z) between gr and gy

57 = —/dx(ﬁ(x)@(z)), (3.82)

Qz) = %gaﬁuu [Uaﬁ Uy + %Da ag D,a, + % { vap, a, a,}
+ % Ay Vop Gy + g anag a, a, | , (3.83)
Vag = Oa¥p — OgV4 — 1 [Va, Vg , (3.84)
Dyag = 0nap — i[va, ag) . (3.85)

Notice that €2 only depends on the external fields, v, and a,, and that the quark
masses do not occur.
The explicit form for the functional Z [U, ¢, r] that reproduces the chiral anomaly
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given by Witten [242] is:

Y -
ZU, 4 r)ypw = _;407f2 /M 5 dPaeMm(SFSESE NSk (3.86)

_iNg
4872
1
WU, 4, 1) ywap = (Ul b, U s + ZUEMUTrVUeaU*rﬁ + iU, 0,0, Ul rg
+i0,r Ul Ulrg —iS 0, U rUlsg + S U0, Uly
— XISl U o Ul + 51,0015 + X0, Lo 15

/d4l’8w/a5 (W(U, 0, ryel (1, o, r)“”o‘ﬁ)

1
— Xl b loly + SN0, 5505 — iSERI Tl )

2
—(L <— R), N¢ = 3,
S =U'0,U, 5} =U0,U", (3.87)

where (L <— R) stands for the exchange

U«— U, b, «—r,, I+ 3] (3.88)

The first term in Eq. (8.80) bears the mark of the anomaly: It is a local action

in five dimensions that can not be written as a finite polynomial in U and D,U

in four dimensions. This term involves at least five pseudoscalar fields and will not

contribute either to the hadron three meson decays of the 7 or to its radiative decays

with one meson in the final state. Eqs. (8.86) and (B.87) contain all the anomalous

contributions to electromagnetic and semileptonic weak meson decays: 7 — 77,
T — ev.?, etc. For further discussions on this topic see also Ref. [249].

3.14 NNLO overview and scale over which the
chiral expansion is defined

xPT is an expansion in powers of momentum over a typical hadronic scale that
we can understand in two equivalent ways:

e pGs stand out due to SxSB. This generates -through quantum effects-, the

SxSB-scale, A, as a natural parameter over which the chiral expansion is
defined.

e Decoupling theorem told us that one of the effects of heavy integrated-out
particles in the physics of light modes appears in inverse powers of these larger
masses. Then, we expect typical masses of the lowest-lying resonances to
provide this scale, as well.
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I will start considering the appearance of that scale through loops. For this, let
us consider scattering among pGs at O(p?). Apart from the tree level contribution
of L4, there will be that given by L, at one-loop, whose amplitude is of order

d4p pZ pZ 1
I ~ — = 3.8

where 1/p* comes from the internal boson propagators and each interacting vertex
of Ly gives -after expanding the LO Lagrangian up to terms with four powers of ®,
that is, four pGs- a factor (p/F)? B. One can estimate this integral as

4

1
I~ 16W2ﬁlogu, (3.90)
where p is the renormalization scale. On the other hand, the tree level interaction
given by L4 has the shape L! (¢/F)* We know the total amplitude is scale inde-
pendent which implies that a shift in the scale p has to be balanced by that of the
tree level £, contribution. The loop-related factor 1/16 72 must be also in L.

We can write the L.y as:

F2
L = —

L — — ...
1 2 + +

Azt (3.91)

~Z4Z6]

where 1/A, gives the expansion of the EFT-Lagrangian in powers of ¢/A,. It is
straightforward to check that this also happens as the chiral order in the expansion
is increased. Taking into account the loop-related factor, we estimate

Ay ~ 47F ~ 1GeV. (3.92)

This dimensional analysis suggests that the n — pG's vertex will receive a contri-
bution from the O(p™) Lagrangian that will go as

F?A2 (%) n <A%) " , (3.93)

and, consequently, the LEC's in the Lagrangian will be of order

F2 F4fm
A2 7 (gmym

(3.94)

On should be aware that A, ~ 1 GeV does not mean xP7T can be applied up
to this energy. The complementary point of view explained at the beginning helps
to understand this. M, ~ 0.8 GeV sentences all x PT" attempts to explain physics
from this region on to failure unless one explicitly incorporates resonances as active

8 All vertices will have some momentum p, but other external ones too. The ¢ below intends to
represent these ones.
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degrees of freedom, as Ry does.

M, ~ 0.8 GeV is to be regarded as a clear upper bound for the validity of x PT
and corresponds to the typical size of the counterterm corrections. On the other
hand, 47F ~ 1.2 GeV is the scale associated to quantum effects through loop cor-
rections.

There is still one more reason for using Rx7T when we go over 0.5 GeV, or so.
The lowest order contributions in the chiral expansion lose importance continuously
and we are forced to go further and further in the expansion to reach the same
accuracy. Two LEC's specify the O(p?) Lagrangian , 10 appear at O(p*) but 90
are challenging us and the number of different experimental data we can collect to
fix them at O(p%). Although not all of them enter a given process, the description
becomes pretty much easier when resonances become active variables, as we will see.
The O (p°) xPT Lagrangian was developed and the renormalization program was

accomplished in Refs. [250, 25T], 252 253].



Chapter 4

The Large N limit and
Resonance Chiral Theory

4.1 Introduction

We finished the last Chapter by recalling some of the motivations for enlarging
xPT and extend it to higher energies. The problem is that as soon as we try to do
it the chiral counting gets broken because the momentum of the pG's can get com-
parable to A, or M,. Thus, there is no immediate parameter to build the expansion
upon.

In many other instances in QC' D, this difficulty does not occur. QCD is pertur-
bative at high energies, so the same strong coupling is a useful expansion parameter
in that energy region. There can be a double expansion (in ag and 1/Mg) because
pole masses are good parameters for a quick convergence of the perturbative series
when studying heavy quarks: Heavy Quark Effective Theory (HQFET) -for just one
heavy quark- [254], 255] 256], 257, 258, 259] , or (potential) Non-Relativistic QC'D
((p) N RQC D) -if both quarks are heavy- [260, 261], 262, 263, 264, 265, 266, 267, 268].

In addition to the lack of a natural expansion parameter in the region where the
light-flavoured resonances pop up, there is some thinking in y P7', that might guide
the strategy to follow. While in the EFT's listed in the previous paragraph the
expansion parameters are quantities appearing in the QC'D Lagrangian, this is not
the case for yPT": the expansion involves the momenta and masses of the pGs and
A, (not the quarks and gluons and Agep).

The proposed expansion parameter, 1/N¢, will indeed be useful to describe the
physics of light-flavoured mesons. Moreover, it can be used to understand qualita-
tively some results in yP7T in terms of a quantity that defines the gauge group of
the strong interactions in QCD.
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4.2 1/N¢ expansion for QCD

't Hooft [125] had the seminal idea of generalizing QCD from a theory of three
colours to the case with Ng colours. Though a priori this can be regarded as an
unnecessary artifact that will make things even more difficult, this is not -at all- the
case, and QC'D gets simplified in the large- No limit becoming even solvable in one
spatial plus one time dimension [126].

Later on, many papers appeared guided by 't Hooft’s idea, Ref. [127] is the capital
one, but see also Refs. [269, 270 271]. This part of the chapter is mainly based on
them and on Refs. [272], 273, 274, 275].

As we will see, there are many phenomenological facts that find their only expla-
nation on large- No arguments. This is, at the end of the day, the strongest support
the 1/N¢ expansion for QCD has.

Recall the QCD Lagrangian, (LI5). From it, we can read off the Feynman rules
obtained for all QC'D vertices and see how the coupling of a fermionic line to a gluon
is O(gs), exactly as the three gluon vertex. The four gluon interaction is O(g?), each
quark loop runs over three colours and each gluon loop over eight possibilities, cor-
responding to the number of generators of SU(3)s. Eight is not so much greater
than three, but in the large- N¢ limit, the number of gluon states (N2 — 1) is really
huge compared to that of quarks (N¢). It is also reasonable to approximate N2 — 1
by NZ, that is, to consider U(N¢) instead of SU(N¢). The first ingredient of the
large- N¢ limit of QC'D is to take into account that gluon states are more important
than quark states. The second one comes from asking a finite behaviour in this limit
for the quantum corrections and happens to modify the usual counting in powers of
gs for the vertices reminded before.

Prior to that, it is useful to introduce in this context the double line notation
for the gluon lines. This way we represent each gluon as a quark-antiquark pair, an
approximation that becomes exact in the large- No limit. For the gluon selfenergy,
we will have the diagrams displayed in Fig. [4.1]

Within the new notation, each line represents a given colour propagating. After
fixing external colour indices, there is no remaining freedom in the quark-loop con-
tribution, but there is still an inner loop in the purely gluon contribution over which
N¢ colours can run.

If we now use the Feynman rules obtained from Eq. ([LI3]), we perceive that the
second diagram in Figure 1] behaves, in the large-N¢ limit, as g2, while the first
one diverges: it goes as g°> No. As we want gluon self-energy (and the S-function)
to be finite in the limit No — oo, we are led to redefine g, as g, = \/gi. This also

Ne
modifies the Feynman rules. Now, gluon coupling to a fermionic current or three

gluon vertex will be of O (ﬁ), and four gluon local interaction of O <NLC> This
way, the beta function reads:

dgs ny §2
— (112 ) % 4.1
Fau ( NC) 4872 (41)
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Figure 4.1: Feynman diagrams for the LO contribution to the gluon self-energy:
using the usual notation (left), and with the double line one (right).

and we keep the hadronization scale Agcp independent of the number colours when
it is taken to be large. One can see from Eq.(dJ]) that quark loops are suppresed
with respect to gluon loops in the large-N¢ limit.

Let us consider now the diagrams of Figure [£.2]

H
H

H

Figure 4.2: Comparison between planar and non-planar diagrams for gluon self-
energy. The four-gluon vertex is depicted by a thick dot. Other superpositions of
two gluon lines correspond to crossings and not to intersections.

The upper diagram in Figure is planar -all superposition of lines correspond
to intersections- , while the lower one is not -some of them are just crossings-. For

6
the first one, the counting is (ﬁ) NLC N¢ = 1, of the same order than the purely
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gluon contribution in Figure [41]

6

For the lower one, we have (ﬁ) No = NL% This is because the diagram is
non-planar and the number of colour loops has decreased from four to one and the
central vertex has disappeared.

We have seen explicitly how, in the easiest examples, two selection rules arise:

e Non-planar diagrams are suppressed by the factor ﬁ
C

e Internal quark loops are suppressed by the factor NLC

Planar diagrams, with arbitrary exchanged gluons do dominate (and the obliged
external quark loop to be a meson).
To see that all this is always true it is convenient to rescale fermion and gluon

fields:

A gs
¢ = @G 4.2
Gy, \/N—C wo ( )
~ 1
q = q, (4.3)

&

whence .
- N =(-7 ~ =~ Fa S 4.4
EQCD C |f] (le M) q 4§§ G,uuGa ’ ( )

and all the counting is simply in powers of Nic It can be seen [273] that the order
in this expansion for any connected vacuum diagram is related to a topological in-
variant, the Euler-Poincaré characteristics, which allows to demonstrate the above
properties in full generality independently of the number of exchanged gluons. The
conclusion we draw is clear: In the large- No limit, Feynman diagrams are planar
and without internal quark loops.

It is worth to stress that Nic—expansion for QC'D has to be regarded in a different
way than usual expansions in perturbation theory. Expanding in powers of the cou-
pling constant gives us Feynman diagrams and, at any given order, there are a finite
number of them contributing to a process. Looking at the commented equivalence
among diagrams belonging to Figure .1l which is clearly the LO Feynman diagram,
and to Figure [L.2} a general fact is enlightened: In order to obtain a given order in
NLC, we need an infinite number of Feynman diagrams. The diagrams collected in
Figure are both of LO in 1/N¢ and one could think of much more complicated
ones.

4.3 N¢ counting rules for correlation functions

Two related basic assumptions are made for studying meson dynamics in the
large- N¢ limit:
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Figure 4.3: Two LO contributions in 1/N¢ to gluon self-energy. Gluon vertices are
highlighted by a thick dot.

e QCD remains to be a confining theory for No — oo.

e Therefore, the sum of the dominant planar diagrams is responsible of confine-
ment in this limit.

We will consider quark and gluon composite operators whose quantum numbers
are able to create a meson [] (they must be color-singlet thus). The aim is to under-
stand some salient features of meson phenomenology by looking to gauge invariant
operators that cannot be splitted into separate gauge invariant pieces. For the quark
operators, B the suitable bilinears are named according to the same spin-parity as-
signments used for mesons: scalars (g ¢), pseudoscalars (Gvsq), vectors (Gv* q), or
axial-vectors (7" v5¢). We will represent them generically as O;(z). We will use
again the method of external sources (or currents, J;(z)) coupled to them. In order
to be consistent with the counting for the rescaled fields introduced in Eq. (£2), the
right expression to add will be [273] N¢ J;(z) O;(x) that will keep all the selection
rules told before. Correlations functions are obtained functionally differentiating the
generating functional W (J) with respect to the sources:

o 1 9 1 9 1 9
<0102“'OZ>C_z’NCaJliNCaJQ"'iNCaJZ

W(J)|s=o, (4.5)

and each additional functional differentiation (i.e. each source insertion) is weighted
by a factor ~ NLC It can be shown that O(NZ) contributions stem from planar
vacuum-like diagrams only with gluon lines. They can contribute to correlation
functions of purely gluon operators. n-point Green function of purely gluon oper-
ators will be of O(NZ™™). An r-meson vertex is of order Né_r ?. Quark bilinear
operators start contributing at O(N¢) -which corresponds to a quark loop in the
outermost border-, being O(N/ ") the corresponding n-point Green function.
Considering that with No = 3 the symmetric wave-function in colour space of a

meson 1s written as

3
1

IThe large-N¢ limit is also useful to understand some properties of baryons. For a review on

this topic, see Refs.[273) 276, 277, 278].

2Symmetries also allow mixed operators composed by quarks and gluons and glueballs made
up of gluons only.
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in the large- N limit this will be

VN &

providing an amplitude for creating a meson that is -as it should be- independent
of N¢. This property applies also for glueballs.
For any arbitrary number of currents, the dominant contribution will be

(T(Jy...J,)) ~ O(Ne). (4.8)

1 X
i=1

given by diagrams with one external quark loop and arbitrary insertions of gluon
lines that do not spoil the planarity of the diagram.

fTL f?i
:Zn NO(]',/NC)

|’_‘

= N% (JJ)

=

o

Figure 4.4: Basic diagram for the 2-point correlator and representation as a sum of
tree-level diagrams with meson exchange.

In Ref. [273], it is shown that the action of J(x) over the vacuum will create only
one-meson states in the large-Ne limit. Taking this into account, the two-current
correlator is of the form:

(I I(-)) = Yol (49)

where the sum extends over infinite meson states of mass m,, and decay constant f,
defined through f,, = (0]J|n). This is a capital result from which we can derive
most of meson phenomenology in this limit:

e Being (JJ) ~ O(N¢), fn ~ O(v/N¢) because k* has nothing to do with the
Ne-counting. Meson decay constants are O(v/N¢).

e Moreover, the whole denominator must be O(1), whence m, ~ O(1), too.
Meson masses are said to have smooth large-N¢ limit.

e (J(k)J(—k)) is known to have a logarithmic behaviour at large momentum
[279. 2801 28T, 282], k. Therefore, if we are to obtain these logarithms adding
terms going as 1/k?, we will need an infinite number of them. Despite seeming
quite surprising at first, the conclusion is clear: There are infinite mesons in
the large- No limit.
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e The poles of (L9) are all in the real axis. Because the instability of a particle
is translated into an imaginary part in its propagator that has to do with its
decay width, we deduce that mesons are stable for No — oc.

To sum up, the two-point correlator is reduced in the large- N¢ limit to the addi-
tion of tree-level diagrams in which J(—k) creates a meson with amplitude f,, that
propagates according to m being annihilated by J(k) with the same amplitude.

It is straightforward to generalize this result for an arbitrary number of currents.

It can be shown that, in the large-N¢ limit [274]:

e n-point Green functions are given by sums of tree level diagrams obtained by
using a phenomenological Lagrangian written in terms of freely propagating
mesons that accounts for local effective interactions among m < n of them.

e Mesons do not interact, because both the m-meson vertex and the matrix
. 1-m/2 .
element creating m mesons from the vacuum are O(N ), suppressed in
this limit.

e The same can be applied for gluon states by considering gluon currents, J; =
(G"*Ga ). The n-point Green function is O(NZ) and a g-gluon operator
vertex is (’)(Néfg ); so gluon states are also free, stable and non-interacting in
the strict limit.

e The mixed correlator with m quark-bilinears and ¢ gluon operators is O(N¢),

but the local vertex among all them is (’)(Néfgfm/ %), that is suppressed, t00.
Gluon and meson states do decouple in the large- N limit, being their ensemble

suppressed by 1//N¢.

All this discussion is portrayed by Figure[L.5 where the counting in 1/N¢ is given.

When considering the different Green functions, one wants to guarantee that
all the poles are originated by the tree-level diagrams obtained from an EFT-
Lagrangian. To show this, one needs to restore to unitarity and crossing symmetry.
Crossing means that every pole appearing in a given channel will manifest in all
others related to the previous one by crossing. Unitarity guarantees that every ap-
pearance of a pole in a given diagram will reappear each time this particular topology
will occur as a subdiagram in a higher-order Green function. All amplitudes are thus
produced by tree level exchanges with vertices given in an EF'T-Lagrangian.

Some might raise an objection about the convergence of a series in 1/N¢ that ends
up being 1/3 in the real world. QED is known to have a well-behaved perturbative

expansion in powers of %2 = &~ 10~%, but the electric charge unit is not

4m)?
that small, e ~ 1/3 ~ 1/N¢. I(n z)my case, in QC'D the expansion is not in powers
of 1/NZ, although many times the corrections to LO in 1/N¢ happen to be of this
order. In spite of this, 1/N¢ is a good expansion parameter for QCD, attending
to the phenomenological successes in meson dynamics and also to the corroborated

predictions large- No limit gives both for y PT and for Rx7T. All these reasons seem
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x X
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~0(3%)
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Figure 4.5: 3 and 4-point correlators given by meson exchanges: Tree-level diagrams
are dominant and every quark loop is suppressed by one power of 1/Ng. The
counting in 1/N¢ is given for all of them taking into account that every source

brings in a 1/N¢ factor and that r-meson vertices introduce the factor Né_r/ %,

to suggest that some factor comes to complement 1/N¢ for the expansion parameter
to be lowered. Unfortunately, we cannot check this explicitly. As it was told in the
introduction to this chapter, an infinite number of Feynman diagrams contribute to
each order in 1/N¢ and nobody has achieved the formidable task of computing them
by some clever resummation. For the moment, it is impossible to be more precise
defining the expansion parameter of the large- N limit of QC D, but the reason lies
in the different nature this expansion has compared to usual perturbative expansions
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in powers of the coupling constant.

4.4 Resonance Chiral Theory

Our methodology stands on the construction of an action, with the relevant de-
grees of freedom (Weinberg’s approach), led by the chiral symmetry and the known
asymptotic behaviour of form factors and Green functions driven by large-No QCD.
The large-N¢ expansion of SU(N¢g) QC'D implies that, in the No — oo limit, the
study of Green functions of QC'D currents can be carried out through the tree level
diagrams of a Lagrangian theory that includes an infinite spectrum of non-decaying
states. Hence the study of the resonance energy region can be performed by con-
structing such a Lagrangian theory. The problem is that we do not know how to
implement an infinite spectrum in a model independent way. However, it is well
known from the phenomenology that the main role is always played by the lightest
resonances. Accordingly it was suggested in Refs. [0l [7] that one can construct
a suitable Lagrangian involving the lightest nonets of resonances and the octet of
Goldstone bosons states (7, K and 7). This is indeed an appropriate tool to handle
the hadron decays of the tau lepton. The guiding principle in the construction of
such a Lagrangian is chiral symmetry. When resonances are integrated out from
the theory, i.e. one tries to describe the energy region below such states (£ < M,),
the remaining setting is that of y PT', that was described in Chapter one and in the
previous section in the context of the large- N limit. Then, RxT is a link between
the chiral and asymptotic regimes of QC'D and a very useful tool to understand
intermediate-energy QC'D dynamics.

The path-integral formalism is adequate to explain what we are doing. Starting
from the generating functional, Z, of QCD, one obtains the different Green func-
tions taking the suitable functional derivatives of Z. Depending on up to which
energy we consider the interesting physics scale to be, the heavier integrated-out
degrees of freedom will be all meson resonances (xP7'), or just the charmed -and
even heavier- mesons (RxT'). That is,

e'? = /DqD@DGMeifd%EQCD

= / Du [[DVi [[ DA, [[ DSk [ DPw e’ ¢ tmxrVids S
i=1 j=1 k=1 m=1
= / Dy e’ debxrr(e) (4.10)

where V', A, S, P designates the type of resonance: vector (1), axial-vector (1771),
scalar (071) and pseudoscalar (0~"). Integrating the resonances out of the action
reproduces x PT-pG's interaction simply modifying the xyPT-LEC's. In Eq. (@I0)
an infinite number of resonances have been considered per each set of quantum
numbers, as Ngo — oo tells. There are two approaches to this: the single resonance
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approximation (sra) considers that the lowest-lying multiplets are able to collect the
bulk of the dynamical information and these are the only resonant degrees of free-
dom kept active in the action. Since there is an infinite number of Green functions,
it is obviously impossible to satisfy all matching conditions with asymptotic QC D
with these few resonances. The minimal hadronic approximation (mha) generalizes
the sra by including into the action the minimal number of resonances that allows
fulfilling the QC'D short-distance constraints in the considered amplitude.

RXT includes explicitly the xyPT at O(p?) but, instead of adding to it the next
order in the chiral expansion, that piece is supplemented with a Lagrangian de-
scribing interactions among pG's and resonances. The more convenient chiral tensor
formalism in terms of u(z) and all the other structures introduced in ([B.71]) for the
external sources and the pGs ([B.43)), (3.44), (B.65) whose transformation properties
under C'; P and Hermitian conjugation were collected in Table are employed to
write:

Lryr(u,V, A, S, P) = LS} (u) + Lr(u,V, A, S, P). (4.11)

For the resonance fields, the observed multiplets tell us that only octets and
singlets in flavour space occur; so reffering to them as R and Ry, respectively, the
non-linear realization of the chiral group G, will be given by

R — h(g, ®) Rh(g, ®)', R, — R;. (4.12)

For the first vector nonet H, we will have:

8
1
Ve = — S AV 4.13
v A o
5% + Jews + Jswn ot K+
— 1 0 1 1 * 0
= 1% —Ep _'__Ti(g@ + %wl K ,
K*~ K —%ng —+ %wl o

where it has been introduced the antisymmetric tensor formulation for vector fields
instead of that due to Proca, that may be more familiar B. With this description
one is able to collect, upon integration of resonances, the bulk of the low-energy
couplings at O(p?) in yPT without the inclusion of additional local terms [7]. In
fact it is necessary to use this representation if one does not include the EE?I)DT in the
Lagrangian theory. Though analogous studies at higher chiral orders have not been
carried out, we will assume that no ESQT with n = 4,6, ... in the even-intrinsic-parity
and n = 6,8, ... in the odd-intrinsic-parity sectors need to be included in the theory.

3There are many possible ways to transform the resonance fields that lead to the same trans-
formation under the vector group and it can be shown that they are all equivalent after a field
redefinition. Since we are working in the wu-basis the most convenient choice is the one in Eq.
D).

4In the N¢ — oo limit octet and singlet converge to a nonet.

5The appendix E is specially devoted to this topic.



4.4 Resonance Chiral Theory 81

Operador P C h.c.
Vi Ve | — V“Tl, Vi
A, — A Afl, A,

S S ST S
P —P PT P

Table 4.1: Transformation properties of resonances under P, C' and Hermitian conjuga-
tion.

I write the axial-vector octet since it is also of major importance in the processes
considered in this Thesis:

8
1 a
A, = NG Z)\QAW (4.14)

a=0

1.0 1 1 + x4

al %ill vl 1.0 all 1 KI*AO

= aq —%al +_7§él1+ﬁf1 KlA

Ky Ky, —%hl + %f}

One can proceed analogously for S and P-multiplets [6] and for the particles with
JPC =1+ [283].

The formulation of a Lagrangian theory that includes both the octet of Goldstone
mesons and U(3) nonets of resonances is carried out through the construction of
a phenomenological Lagrangian [123] 124] where chiral symmetry determines the
structure of the operators. In order to construct the relevant Lagrangians, we
need to introduce the covariant derivative (3.72), dictated by the local nature of the
non-linear realization of G in R (£I2)), in such a way that

V.R — h(g, ®) V,Rh(g, ®)'. (4.15)

The transformation properties of resonance fields under P, C' and Hermitian
conjugation that are needed to write the Effective Lagrangian are collected in Table
L1l For other structures appearing in the later extensions of the original Lagrangian
and their transformation properties, see Section .Gl

We have to build the most general Lagrangian involving all the pieces that respect
the assumed symmetries. This means considering O(p?)-pG tensors together with
one resonance field. If we think about 7 m-scattering again, this amounts to consider
as the first correction to the tree level amplitude not only the one-loop diagrams
obtained with arbitrary insertions of £, vertices, but also meson-resonance exchange
amid both pairs of pions.

For the kinetic terms, bilinears in the meson fields are considered including the
covariant derivative [ and incorporating by hand the corresponding mass of the

6Tt reduces to the ordinary one in the case of singlets.
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octet or singlet. The pattern of preserved SU(3)y justifies the same mass for all
members of the representation of the symmetry group and it cannot be determined
from first principles, but fitted to the experiment. The discrepancy among resonance
masses within the same multiplet has two sources: on the one hand it corresponds
to SU(3)y breaking operators and on the other hand to NLO corrections in 1/N¢.

The construction of the interaction terms involving resonance and Goldstone fields
is driven by chiral and discrete symmetries with a generic structure given by

O; ~ (RiRo.. . Rix™ () , (4.16)

where (™ (¢) is a chiral tensor that includes only Goldstone and auxiliary fields. It
transforms like R in Eq. ({I2) and has chiral counting n in the frame of xP7T. This
counting is relevant in the setting of the theory because, though the resonance the-
ory itself has no perturbative expansion, higher values of n may originate violations
of the proper asymptotic behaviour of form factors or Green functions. As a guide
we will include at least those operators that, contributing to our processes, are lead-
ing when integrating out the resonances. In addition we do not include operators
with higher-order chiral tensors, x™(¢), that would violate the QCD asymptotic
behaviour unless their couplings are severely fine tuned to ensure the needed can-
cellations of large momenta.

Guided by these principles and considering only one resonance field, the La-
grangian that was obtained in Ref. [0] is

Lp= Y {Lw(R) + L(R)}, (4.17)

R=V,A,S,P

where the kinetic termﬁ is

1 1
Lin(R) = —o(V'B\VRY = SMR,RY), R=VA
1
Lin(R) = F(V'RV,R — MzR®), R=SP . (4.18)

and Mp stands for the nonet mass in the chiral limit. The purely interacting term,

L5(R), is given by

LV = f—vﬂ% Y ;Cj;w,w[u“, w),

LA = %wm,

LSO = el Sua) + el Sx2) + & i) + G Si(xs).
LQ[P(O’JF)] = id,(Px_) + id, Pi{x_), (4.19)

where all couplings are real and it has been considered only the octet for V' and A,
because ( f) = ([u*, u”]) = 0 forbides couplings for V' and A singlets at this

"This naming can be a little bit confusing because this term also includes interactions hidden
in the covariant derivative part.
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chiral order.

We also assume exact SU(3) symmetry in the construction of the interacting
terms, i.e. at level of couplings. Deviations from exact symmetry in hadron tau
decays have been considered in [284]. However we do not include SU(3) break-
ing couplings because we are neither considering next-to-leading corrections in the
1/N¢ expansion. These corrections have already been considered within Ry7" in

Refs. [192, 285, 286, 287, 288, 289, 290, 2911, 292] 293] 294].

4.5 Matching RxT with QCD asymptotic behaviour

The long distance features of QC'D [295, 296] have to be inherited by RxT as
made precise by the matching conditions. At high energies, RxT must match the
OPFE, and this will impose some relations among its couplings. These relations
will depend upon the Lagrangian we choose. Due to historical reasons we will
explain here the results obtained with the kinetic pieces and the interactions terms
in Eq. (AI9) restricting our attention to those that can be relevant in the processes
we examine, namely the spin-one resonances.The number of relations that we obtain
will influence decisively in the predictability of the theory. Working in the sra, we

find [274]

e Vector Form Factor.
At LO in 1/N¢, the form factor of the pion is given within Rx7 by

Gy ¢

2
=1 .

(4.20)

and QCD short-distance behaviour [297] dictates Sm 1Ty (¢?) — const. as
q*> — oo, which resultsﬁ in a relation for the resonance couplings

Fy Gy = F?. (4.21)

e Axial Form Factor.
We consider the axial form factor G4(t) governing the matrix element
(v|Aulm) H]. Extracting Ga(t) from the (VAP) Green function by setting

the pion massless, one finds

B F? by + bst
OME ME -t

Gal(t) (4.22)
Demanding that the form factor G'4(t) vanishes for large ¢ [7, 281 282] 298],
we obtain

by =0 . (4.23)

8The imaginary part of the Vector-Vector correlator is given by the Vector form factor.
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Using the RyxT Lagrangian, Eq. (ZI9), under the hypothesis of single reso-
nance exchange, one finds [7, 299]

_2RGy - Fp | F

Galt .
alt) M2 M2 —¢

(4.24)

Requiring G4(t) to vanish for ¢ — oo implies the relation Fy = 2Gy, one
version of the so-called KSFR relation [300] B0I]. The inclusion of bilinear
resonance couplings modifies the form factor as given in Eq. ([£.22) [299] with
by = M3 — M, b3 =0, and it induces a correction to the KSFR relation:

2FyGy — FE . F2 M3 -—2M}
22 T 2F 2(MA - M)

(4.25)

e Weinberg’s sum rules.
The two-point function of a vector correlator between left-handed and right-
handed quarks defines the mixed correlator

F? F2 F2

(0% = — — :
LR(q) q2 + M‘Q/_qg Mi_qQ

(4.26)

Gluon interactions safeguard chirality, so I,z must fulfill a non-subtracted
dispersion relation. Moreover, it must vanish in the chiral limit faster than
1/(¢*)? as ¢* — oo. This implies [302] the relation for the couplings:

F2—-F3=F*, M:F:— MiF;=0. (4.27)

Considering the above restrictions (£21), ([L28)and (A27)), we are able to write
all decay constants in terms of F' and the resonance masses:

ME& 2 2 M\z/ 2 2 M\z/
A =Y G =rF(1--Y).
M%— Mz A M%—M2 Y M2

(4.28)

F% = F?

Finally, we will see that applying the QC' D-ruled short-distance behaviour to the
decays 77 — P~ vv, computed using RxT [303] allows to relate V and A masses

2M35 = 3M¢, (4.29)

a result that reproduces the one obtained in Ref. [304] for the form-factor Fi ..
These relations guarantee the matching among QCD and its EFT, RxT, for
the considered Green functions. Here it comes a caveat about phenomenology and
QCD.
There are infinite Green functions both in QC'D and also in its EFT's. In per-
turbative QCD, all of them are described in terms of a single coupling, a,. In
non-perturbative QC'D this is clearly not the case. Then, the situation changes



4.6 Extensions of the original Lagrangian 85

and, unless we bear this in mind, we can arrive -or seem to arrive, to be precise-, to
inconsistencies.

There is no difference between considering one set or another of Green functions
in high-energy QQC'D. The situation is opposite in its low and intermediate-energy
regime. For instance, we have seen that for a set consisting of vector, and axial-
vector form factors of pGs and LR two-point correlators the relations (A.21]), (4.23])
and ([L27) ensure QC'D asymptotic behaviour for the FFT working in the sra.

But, once we go further and study three-point correlators and form factors in-
volving three particles in the final state it is likely that either the previous relations
get modified in some cases, or -what it is preferable- we admit that the sra is a
valid approach if we do not intend to describe all QC'D Green functions at the same
time H Otherwise, we are forced to incorporate a second multiplet of resonances in
the (axial-)vector case.

These discrepancies among (QC'D-asymptotic restrictions for the parameters en-
tering Lx has already been found and discussed [299]. However, the understanding
of this issue is evolving as more works are concluded. Our position towards this
problem will get defined in later chapters concerning the practical applications of
the theory. We will see that we will arrive to consistent relations for the radiative
decays of the tau with one meson and for the three meson decays. However, it is
very likely that they will not coincide with the relations one could find studying
four-point Green functions. In any case, the study of the latter is a too involved
task that we do not consider for the time being.

4.6 Extensions of the original Lagrangian

4.6.1 Even-intrinsic parity sector

We recall the purpose of the original paper were RxT was borned [6], it was
to build a sound theory including resonances within the chiral framework that re-
spected all principles and symmetries governing light-flavoured QC'D and that was
able to reproduce the O(p*) even-intrinsic parity chiral Lagrangian upon integration
of the resonances.

In order to construct (LI7), EIR), (EI9), O(p*)-pG tensors together with one
resonance field were enough to accomplish that purpose.

One may wonder why we intend to extend the original Lagrangian in RxT', while
for x PT the decision consists in going one order further in the chiral expansion. The
nature of pGs is completely different to that of resonances. Whereas the first ones
transform non-linearly under the vector subgroup, the second ones do it linearly.
This results in a huge, fundamental difference. Processes involving different number
of pGs are related. For instance, all 2n-pG's — 2n-pG's scattering processes are con-
nected at a given order. As the easiest example, all of them are written in terms of

9The validity of these assumptions within large-No QC D is studied in Refs. [305, 306l 307, [308].
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the pion decay constant at LO; but the divergence structure -before renormalizing-
of say 12 m — 12 7 is given by that of the simplest process 2 m — 2 7, as well.

On the contrary, resonances are not free excitations (even in absence of xSB);
so that any time we want to consider physics involving one more multiplet of reso-
nances, we have to extend our Lagrangian to include it relying again on the same
symmetry principles that guided the construction of the already existing pieces.

The analysis of 7= — (77 7)” v, within Rx7 [309] could not ignore the rele-
vance of the axial-vector a;-resonance exchange within this decay. The contribution
given by the chain a; — pm — w77 driven by vector exchange was accounted for
by going one step beyond the work in Ref. [6] including bilinear terms in the reso-
nance fields that lead to a coupling a; p7, hence only the generalization including
one pseudoscalar was considered in the quoted paper.

The most general Lagrangian respecting all the assumed symmetries and includ-
ing one O(p?) chiral tensor, one vector and one axial-vector resonance fields can be

written [309]

5
LY =" N0y p., (4.30)
i=1

where \; are new unknown real adimensional couplings, and the operators O ,p
constitute the complete set of operators for building vertices with only one pseu-
doscalar [J are given by

Oyap = (V" Awlx-) .
Ovap = W[V, Aol b)),

4
OVAP = Z([V VW, Am] ),
Oyap = i{[VYY, W, AV Tu?y
OYap = ({[V* Vi, A uq ), (4.31)

where it has been used h*” defined in Eq. (B70). As we are only interested in tree
level diagrams, the O(p?) xPT EOM, [B.18), has been used in £Y4F in order to
eliminate one of the possible operators.

Explicit computation of the Feynman diagrams involved in this process -and in
all applications studied in this Thesis- show that all the contributions coming from

LYAP can be written in terms of only three combinations of their couplings
1 A4
Ao = ——= |4\ A — 4+ A
0 /2 l 1+ A2+ 5 + 5] )

1 A
)\/:ﬁ{)ﬂ >\3+74+)\5]7

1 Mg
N=— X — = — Xs5| . 4.32
s - 3 -] (1.32)

10For a larger number of pG's, additional operators may emerge.
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4.6.2 Odd-intrinsic parity sector

Now we turn to the W ZW anomalous term, we recall that it is the LO contribu-
tion in the odd-intrinsic parity sector -O(p?) in the chiral counting-. In Ref. [310],
that is the fundamental reference for this section, a suitable Lagrangian was built
and odd-intrinsic parity processes were examined within Rx7'. It is a common prac-
tice to assume that upon integrating the resonances in this Lagrangian one could
saturate the values of the O(p®) LEC's of x PT in the anomalous sector, analogously
as it happens in the even parity sector.

This work has an added interest, because it gave rise to a set of works studying
the behaviour of 3-point Green functions in Rx7T" [128, 299, B11].

Several authors [312], BT3], 314} 315, B16] started to analyze systematically a set of
QC'D three-point functions that were free of perturbative contributions from QCD
at short distances , a fact that made more reliable a smooth matching of the OPFE
result went down to low energies and the EF'T" description by a theory including
resonances.

It was shown in Ref. [315] that while the ansatz derived from the lowest meson
dominance approach to the large- N limit of QQC'D incorporates by construction the
right short-distance behaviour ruled by QQC' D, the same Green functions as calcu-
lated with a resonance Lagrangian, in the vector field representation, are incom-
patible with the OPE outcome. The authors pointed out that these discrepancies
cannot be repaired just by introducing the chiral Lagrangian of O(p°) , . New
terms including resonance fields and higher-order derivatives are needed in this case
in the vector-field representation, but the general procedure remains unknown.

This can be a serious drawback for any EF'T involving resonances as active
fields. Ref. [310] studies one class of Green functions analyzed in Ref. [315] in the
odd-intrinsic parity sector with antisymmetric tensor formalism for the resonances.
This required the introduction of an odd-intrinsic parity Lagrangian in the formu-
lation of [6] containing all allowed interactions between two vector objects (either
currents or resonances) and one pseudoscalar meson. I will introduce this extension
of the original Lagrangian of Rx7T in the following.

In principle, taking into account Weinberg’s power counting rule and resonance
exchange among vertices with pseudoscalar legs; at O(p*) in the even-intrinsic par-
ity sector one needs to treat on the same footing L, at one loop, £, at tree-level
and Lo(R). In Ref. [7] it was shown that at this order in the chiral counting, the

' They vanish in absence of SxSB for massless quarks.
12 When one considers the pion form factor calculated within the Resonance Theory both in the
vector and in the antisymmetric tensor formalisms [6], compatilibity with high-energy QCD con-

straints is found in the latter case without introducing Egﬁl;ven. In the former case, the asymptotic

behaviour is not good but upon introducing the 5;4])3’;‘/6“ the required falloff is recovered. This
possibility of including the Lagrangian at the next order in the chiral expansion does not yet yield
the proper ultraviolet behaviour in the odd-intrinsic parity sector when working with the vector
field formalism.

13We are not referring to the chiral counting in the framework of RxT', where this is known to
be lost. We recall the remark in the paragraph including Eq. ([@I4).
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Effective Lagrangian Lr,r = Lo + Lg is enough to satisfy the high-energy QCD
constraints.

Analogously, for the odd-intrinsic parity sector, three different sources might be
considered:

e The WZW action [241] 242], which is O(p*) and fulfills the chiral anomaly,

e Chiral invariant €,,,, terms involving vector mesons which, upon integration,
will start to contribute at O(p®) in the antisymmetric tensor formalism, and

e The relevant operators in the O(p%) xPT Lagrangian.

The odd-intrinsic parity Lagrangians with resonances have already been studied
in order to consider the equivalence for reproducing the one-loop divergencies of the
WZW action among different representations for the resonance fields [312]. This
procedure has also been thought to estimate the couplings appearing the O(p®) chi-
ral Lagrangian [317].

Within the antisymmetric tensor formalism, all the needed building blocks have
already been introduced. Chiral invariance of the generating functional, together
with Lorentz, Parity and Charge conjugation invariance and Hermiticity of the La-
grangian determine an independent set of operators for VV P and V JP Green func-
tions to be

e IV JP terms:

O‘l/JP = Cuvpo < {VIW’ Jpra} Vou® > ’

O\Q/JP = Euvpo < {Vlma Jpra} vocuy> )

O%JP = i €upo ({V", f7 X)),

O;l/JP = ig;wpa <VW [ffaa X+] > )

OXS/JP = gﬂVPU < {VGVMV’ ia}ua >7

OV sp = Eupo ({VaV", 73 0"),

OV sp = oo ({VTV™, [} ug) . (4.33)
o V'V P terms:

O\I/VP = Euvpo ({vm, vy vau?),

O\Q/VP = 1 €uvpo < {VW’ Vpa} X— > )

Ovvp = Epo ({VVH, VPYuT),

Ovve = Eupo ({VIV™, V% uq) . (4.34)

The Schouten identity,

Gpo€apuw T Ypapue T GpsEwoa + Gpu€voap + Jpv€oapy = 0, (4.35)

1The convention for the Levi-Civita density is €123 = +1 and J is short for external vector
current.
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has been employed to reduce the number of independent operators.

The authors of Ref. [312] also built V'V P operators in the antisymmetric tensor
formalism but applying the LO EOM to reduce the number of operators to three.
This is a valid procedure provided one is only interested in on-shell degrees of free-
dom; but particles inside Green functions are not on their mass-shell. The resonance
Lagrangian for the odd-intrinsic parity sector will thus be defined as

LY = Lysp + Lyvp,
7 4
Ca a a
Lyvjp = Z —MV VJP Lyyp = Zda Ovyp: (4.36)
a=1 a=1

where the octet mass, My, has been introduced in Ly ;p, in order to define dimen-
sionless ¢, couplings. The set defined above is a complete basis for constructing
vertices with only one-pseudoscalar; for a larger number of pseudoscalars additional
operators may emerge.

As discussed, the O(p®) xPT Lagrangian in the odd-intrinsic parity sector has to
be considered, as well. Two operators may contribute at LO in 1/N¢ to the (VV P)
Green function:

LR = g (WL — iV {17 0 ) s

where the t; LEC's are not fixed by symmetry requirements. The operators in Eq.
([437) belong both to the EFT where resonances are still active fields and to that
one where they have been integrated out. Hence in the latter case, we can split the
couplings as t; = t + #;, where t¥ is generated by the integration of the resonances
and £; stands for the surviving O(p®) x PT contribution when the resonances are still
active. We will assume, as in the even-intrinsic parity sector, that #; are negligible
compared to the resonance contributions, the ¢; are generated completely through
interaction of vectors. Accordingly, we should not include E;GI);TOdd in our study to
avoid double counting of degrees of freedom. Then, the relevant effective resonance

theory will be given by:
Zpyr|v, a, s, p] = Zwzw v, a] + Z“}id[v, a, s, p|, (4.38)

where Z“}%{d is generated by £2 in [B60), Ly in @EID), EIS), EID) and L4 in

The VV P Green function is
o)) (o, a) = [ dia [ dtye=ran (07 Vi) Vo) PO)] [0} (439

Provided a Green function is related to an order parameter of QCD, it vanishes
in the chiral limit to all orders in perturbation theory, so that there is no term in
the OPFE expansion that goes with the identity. This is specially nice regarding the
matching with the RxT result, that will never include such a kind of term including
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the identity. This is the case for (VV P) Green functions, and also for (VPPP)
Green functions like those related to 7 decays into three mesons but, for instance,
it is no longer so in (VVVV') Green functions (like, for example, light-by-light
scattering processes). It is conventionally written that we can rely on matching
RxT with the OPFE at such low energies as 2 GeV/ when there are order parameters
involved. Otherwise, the matching becomes much more involved.

The (VV P) Green function is built within Rx7" in [310]. When the limit of two
momenta becoming large at the same time is taken, one finds compatibility with the
QCD short-distance constraints, provided the following conditions among the £$34
couplings hold

403+01:O,
01—02+C5:0,
Ne My
Cy — Cg =
5 6 64772 \/§FV’
Ne ME P2

d doy = —
L S 6in? F2 | 1FZ

Ne M} F?
dy = ¢ V4 . (4.40)

6472 FZ ' 8FZ

Being the couplings in the (odd-intrinsic parity) Effective Lagrangian independent
of pG masses the result turns out to be general.

Now it comes the crucial point. The obtained ( V'V P ) Green function reproduces
the lowest meson dominance ansatz in [313]:

H (2 2 ( + )2) _ <@1/1>0 <p2+q2_'_r2)_i\77¢2~]‘;{_§ (441)
vvpeP\P, q, P q - 2 (p2—M‘2/)(q2—M‘2/)T2 .

The previous ansatz (441]) recovers the lowest meson dominance estimates for
the LEC's derived in Ref. [315]. Their authors found impossible to reproduce them
working with the vector representation for the resonances, not even paying the price
of introducing local contributions from the O(p®) chiral Lagrangian. They suggested
that the problem could be due to the Effective Lagrangian approach and unlikely
to be cured by using other representations for the resonance fields. The work un-
dertaken in Ref. [310] contradicts this assertion for the (VV P) Green function in
the odd-intrinsic parity sector.

The derived Lagrangian, Eq. ({30, was tested through the computation of the
decay width for the process w — 7~ that was completely predicted thanks to the
relations (£40). This calculation pop up the question about the validity of Vector
meson dominance-assumption [3I8] 319]. It was found that the direct vertex was
larger than expected, even comparable to the p-mediated process. Anyway, these
results agree with the large- N limit of Rx7T', in which both contributions are of the
same order in the expansion. This feature was confirmed through the computation
of other channels: In particular, w — 37 showed that Vector meson dominance
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hypothesis was at variance with the experimental value for the decay width. This
confirmed what was suggested before: that local V PP P vertices in the odd-intrinsic
parity sector are relevant.

We present here the last extension [320, B21] of the original Lagrangian that
was first applied to study the K K7 decay modes of the 7 lepton. We have found
that the most general V PPP Lagrangian in the odd-intrinsic parity sector is

5

Lyvppp = Z ]\Z—ZV O ppp (4.42)
i=1

where, in the chiral limit and using the Schouten identity, three new operators arise

Ovppp = i€uwap (v (hm“'vuﬁ - uﬁuth» ’
OVppp = @€map (V" (hmuﬁuv — uyu’h™ )
OV ppp = i€umap (V" (u,yho‘“’uﬁ —uPhu, )) (4.43)

Apart from these ones, when the chiral limit is not taken, two new operators have
to be taken into account

Ovppp = Ewap <{ VI u® “ﬁ} X—> )
OVppp = Euvap (U VUl x_) . (4.44)

From the previous distinction, we can guess that matching at high energies will
give us some information on the three couplings that survive in the chiral limit, but
for the others it is likely that only phenomenological information will shed light on
them.

Notice that we do not include analogous pieces to Eqs. (£33) and (£42) with
an axial-vector resonance, that would contribute to the hadronization of the axial-
vector current. This has been thoroughly studied in Ref. [309] (see also [322], this
picture is supported by the conclusions in Chapter [6) in the description of the
T — 7Ty, process and it is shown that no (Ax™® (p)) operators are needed to de-
scribe its hadronization. Therefore those operators are not included in our minimal
description of the relevant form factors appearing in later chapters.

4.6.3 Concluding remarks

There are other extensions of the Lagrangian which will not be used in this The-
sis. For the even-intrinsic parity sector, the reader can find in Ref. [128] the minimal
set of operators corresponding to the coupling of a resonance and an O(p*) chiral
tensor, and trilinear resonance terms without any chiral tensor. For the odd-intrinsic
parity part, in Ref. [323] there were written new pieces for the couplings among the
two vector objects and a pG or a vector source: Oy,y,p and Oy, v,.
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All the introduced extensions of the original Lagrangian will play a role in the
three meson decays and one meson radiative decays of the 7 examined in this The-
sis. As we will see, the contribution of V PPP vertices in the odd-intrinsic parity
sector turns out to be fundamental for the decay w — 3m. Therefore, apart from its
own interest, we can take advantage of it to get additional restrictions on the new
couplings introduced throughout this section. One of the targets of our work is to
gain more control over the new couplings of the resonance Lagrangian introduced in
this section and thus in improving our quantitative understanding of intermediate-
energy meson dynamics.



Chapter 5

Hadron decays of the 7 lepton

5.1 Introduction

In this chapter we want to set the model independent description of the hadron
decays of the 7 that we study. Using Lorentz invariance and general properties of
QC'D one can decompose any amplitude participating in a given process in terms of
a set of scalar quantities that only depend on kinematical invariants, the so-called
form factors. As explained in Appendix A, this description is equivalent to that in
terms of structure functions.

Moreover, we also desire to explain the three different approaches to describe the
the involved form factors and to illustrate others than ours. This will let appreciate
better the improvements introduced by our study compared to previous approaches.

As we have discussed in previous chapters we still do not know a way to derive
the form factors related to the hadronization of QC'D currents in the intermediate
energy region. In view of this, three major approaches have been developed to tackle

these problems [324]:

e The first approach is the one motivated by the discussion in the previous
chapters and followed in this Thesis. It consists in exploiting the power of the
EFT framework a la Weinberg -Section supplemented by some dynamical
content of the problem at hand, namely the known short-distance behaviour

of QC'D -Section and the large- N¢ limit of QCD -Chapter [4}.

e The second approach is that of modeling phenomenological Lagrangians. Their
actions are written in terms of hadron fields but employing ad-hoc assumptions
whose link with QC'D is not clear and which are introduced in order to get a
simpler theory. As an example, we have the suggested Hidden Symmetry or
Gauge Symmetry Lagrangians mentioned briefly in appendix F.

e Finally, we have another -more comfortable though less satisfactory- way of
facing the problem. It is to propose dynamically driven parametrizations.
They provide an amplitude suggested by the assumed dynamics: resonance
dominance, polology, etc. The expressions one obtains are much easier than
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those given by more based approaches, as we will see giving some examples
later on. Numerical fit to data is quicker and the accordance between the
theoretical expressions and the experiments are, often, remarkable. Notwith-
standing, the connection between the ad-hoc parameters and QC'D is missing.
According to our understanding, the point is not just to get an impressive fit
to the experimental points but to understand the hadronization of the QCD
currents in these particular processes.

5.1.1 Breit-Wigner approach

As we want to compare our results to those obtained within the Breit-Wigner
models, we describe their main features in this section.

Since long time ago, it is well-known that any hadronization process occurring in
the resonance energy region will be dominated by the contribution of these resonance
states. The application of this resonance dominance to hadron tau decays has a long
history [325] 326], 327, 328]. A model based on these ideas that became very popular
is due to Kithn and Santamaria [329].

In any of these cases the parametrization is accomplished by combining Breit-
Wigner factors (BWg(Q?)) according to the expected resonance dominance in each
channel 1, that is,

F(Qz) =N f(aiv BWRi(QQ)) ) (51)

where N is a normalization and the former expression is not linear, in general, in
the Breit-Wigner terms. Data are analyzed by fitting the «; parameters and the
masses and on-shell widths entering the Breit-Wigner factors. Two main models of
parametrizations have been employed:

a) Kithn-Santamaria Model (KS)
The BW form factors are given by [325] [326] 327, 328 [329]
M2
BWES(02) = Ri , 5.2
7 (@) M2, — Q* —iy/Q?T'g,(Q?) )

that vanishes in the high-Q? region, as demanded by short-distance QCD.

b) Gounaris-Sakurai Model (GS)

It was originally developed to study the role of the p(770) resonance in the vector
form factor of the pion [330] still in the current algebra era. It has been applied over
the years to other hadron resonances [331], [332] 333] by the experimental collabora-
tions. The BW function now reads

LConsequently, they do not depend only on (2, the total hadron momenta, but also on other
Lorentz invariants depending on the considered channel. The ()2 in parenthesis intends to be a
shorthand notation we will keep in the following.
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2
BWGS(QY) = Mo, + 100 , (5.3
’ Mg, = Q* + fr(Q%) — iv/Q?Tr,(Q?)
where fgr,(Q?) encodes information of the off-shell behaviour of the considered res-
onance. For the particular case of the p(770), it can be read off from Ref. [330].

In both models the normalization is fixed in order to reproduce the yPT O(p?)
behaviour at Q* << M 5. The experimental groups use to believe that the difference
among the predictions of these two models gives an estimate of the theoretical error

. As we will see, this is a severe mistake, because the simplicity of these models is
irrelevant if they fail to verify properties coming from QC'D itself, as it happens to
be the case, both in the three meson modes and the radiative decays with one me-
son. It is true that we learn things about the resonance structure using these models
to fit the data, but it is not -as argued many times- that the (occasionally) little
discrepancy among themselves in the observables (values of masses, on-shell widths
and branching ratios and shape of the spectra and Dalitz plots) can be regarded as
a proof of the rightness of both models.

5.1.2 Model independent description. General case

Within the Standard Model ﬁ the matrix amplitude for the exclusive hadron
decays of the 7, 7= — H v, is generically given by
Gr

M = EVCZ'JI(MQVT ’Yﬂ (I_VS)UTHua (54)

where G is the Fermi constant, Vci]}(M the corresponding element of the C'K M
matrix, and

Hy = (H|(Vi— Ay) e59°]0) (5.5)

is the matrix element of the left-handed current that has to be evaluated in the
presence of the strong QQC'D interactions.

Symmetries help us to decompose H,, in terms of the allowed Lorentz structures
of implied momenta and a set of functions of Lorentz invariants, the hadron form
factors, F;, of QC'D currents,

——

Moo= (L F(Q%..); (5.6)
" Lorentz structure
that are universal in the sense of being independent on the initial state, describing
therefore the hadronization of QC'D currents.
This decomposition is studied in detail in Appendix A, where it is also derived

the equivalence among using form factors or structure functions to describe these

2In fact, Ref. [329] already used it with this purpose.
3A nice and short introductory description can be found in Refs. [334] 335].
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hadron decays. We just recall for the moment that the decay width for a given
channel is obtained by integrating over the n hadrons plus one neutrino differential
phase space, the hadron and lepton tensors are defined from the follovvingH

S mMMi=(— ZG—%W 2H,, £ (5.7)
s,s’ o 2X%—|—1 2 CrM " ’ .

where 7, is the hadron current defined in Eq. (53]), £ carries information on the
lepton sector and dPS stands for the differential element for phase space integration:

Hypw = HH,, LMY = Zm(é, )V — ys)uy, (€, 8V (1 —vs5)ur (€, s) . (5.8)

Then, one has

GE

ar = == \Viens|? Lo HEHYTAPS (5.9)
with
LM HT =) Lx Wy, (5.10)
X

where Wy are the structure functions defined in the hadron rest frame.

The hadron structure functions, Wy, can be written in terms of the form factors
and kinematical components and the study of spectral functions or angular distri-
butions of data allow us to reconstruct them. Their number depends on the final
state, being 4 in the case of two mesons and 16 for three. Either form factors or,
equivalently, structure functions, are the target to achieve.

5.2 One meson radiative decays of the 7

5.2.1 Model independent description

For the decay modes with lowest multiplicity, 7 — P~v : 7, P = 7, K, the rel-
evant matrix elements are already known from the measured decays 7= — pv,
and K~ — pu~v,. The corresponding 7 decay widths can then be predicted rather
accurately. These predictions are in good agreement with the measured values, and
provide a quite precise test of chargedcurrent universality.

When one considers the emission of a photon things change and they provide dy-
namical information [336] about the hadron matrix elements of the L, = (V, — A,,)
current.

The process is 77 (p;) = v-(q¢) P~ (p)y(k) . The kinematics of this decay is equiv-
alent to that of the radiative pion decay [337]. We will use ¢ := (p, — q)* = (k +p)>.

423 » corresponds to the averaged sum over polarizations.
;
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In complete analogy to the case of the radiative pion decay [338], the matrix element
for the decay 7= — P~ v, can be written as the sum of four contributions:

M 77 (pr) = ve(@) P~ (p)y(K)] = Mip, + Mip, + My + M., (5.11)
with [
iMig, = GpVieeFppue, (k) LM,
. ij 2py (k +
iMip, = GrpVikyelp e (k) (M + guu) ,
mp — t
iIMy = 1Gp VéjKM e Fy(t) eupoe’ (k) K p° L,
iMy = GrVieyeFa@) e’ (k) [(t — 2m3) g — 2pok,) L, (5.12)
where e the electric charge and €, the polarization vector of the photon. Fy (t) and

F4(t) are the so called structure dependent form factors. Finally L* and LM are
lepton currents defined by

" =y, (" (1 —5)u-(pr)

D = = ) e ). (5.13)

The notation introduced for the independent amplitudes describes the four kinds
of contributions: Mg_ is the bremsstrahlung off the tau, (Figure 51l(a)), Mg, is
the sum of the pG bremsstrahlung (Figure [B.1I(b)), and the seagull diagram (Figure
BTl(c)), My is the structure dependent vector (Figure[5.1l(d)) and M 4 the structure
dependent axial-vector contribution (Figure El(e)). Our ignorance of the exact
mechanism of hadronization is parametrized in terms of the two form factors Fls(t)
and Fy(t). In fact, these form factors are the same functions of the momentum
transfer ¢ as those in the radiative pion decay, the only difference being that ¢ now
varies from 0 up to M? rather than just up to m?2.

The two matrix elements M;p_ and M;p, are not separately gauge invariant,
but their sum, ie. the (total) matrix element for internal bremsstrahlung I B

Mip = Mip, + Mip,, (5.14)

is indeed gauge invariant, as My and My are. We also define the (total) structure
dependent radiation SD by

Msp = My + M. (5.15)

®Notice that i and minus factors differ with respect to Ref. [336] (DF). Moreover, our form
factors have dimension of inverse mass while theirs are dimensionless. In their work, this factor of
(v/2m,)~" in the form factors is compensated by defining the sum over polarizations of the matrix

element squared with an extra 2m? factor. This should be taken into account to compare formulae
in both works using that Fy (£)PF = /2m.Fy (t)9% , Fa(t)PF = 2v2m Fa(t)°".
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(b) vr v (c) vr v

(a) v vy

T é 7 L W< P T W= P~ P~ T W= P
(d) vr v (e) vr v
T A itg P T W~ P

Figure 5.1: Feynman diagrams for the different kinds of contributions to the radiative
decays of the tau including one meson, as explained in the main text. The dot
indicates the hadronization of the QCD currents. The solid square represents the
SD contribution mediated by the axial-vector current and the solid triangle the SD
contribution via the vector current.

The spinor structure can be rearranged to give

pre€  p-e Jf
_ _ _(p.), 5.16
PR QPT'kU(p) (5.16)

iMsp = GF Vi]CKM € {iequoLueykppoFV@) + Uy, <Q)<1 + ’75) [(t - m?ﬂ))é - 2<€ : p)%] u(pT)FA@)} .
The square of the matrix element is then given by
IM? = [Myp[? + 2Re(M M) + [Mspl?, (5.17)

where the bar denotes summing over the photon polarization and neutrino spin and
averaging over the tau spin.

We follow Ref. [336] and divide the decay rate as follows: the internal bremsstrahlung
part I';p arising from |M;p|?, the structure dependent part I'sp coming from
|Mspl|?, and the interference part I';yr stemming from 2Re(M ;g M¥%,). Further-
more ['gp is subdivided into the vector-vector (I'yy), the axial-vector—axial-vector
(T'44) and the vector—axial-vector interference term I'y 4. Similarly I'jyr gets
splitted into the internal bremsstrahlung-vector interference I';5_y and the internal
bremsstrahlung—axial-vector interference I'yp_4 parts. Thus, one has

litwr = TUip+Tsp+Tinr,
I'sp = T'vv+Tva+Taa,

iMip = GpV§*™MeFp My, (q)(1 + 75)

int = Tipv+Tipa. (5.18)
It is convenient to introduce the dimensionless variables x and y:
2p; - k 2p; - p
T= e yi=—m (5.19)

In the tau rest frame z and y are the energies F, and £, of the photon and the
pion, respectively, expressed in units of M, /2:

M, M,
E, = —u, E, = 5 Y

(5.20)
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Eq. (520) sets the scale for the photons to be considered as "hard” or "soft”. This

means that the formulae for internal bremsstrahlung should be similar for radiative

tau and pion decay, once they are expressed in terms of x and y, as it is the case,

albeit photons of comparable softness will have very different energies in both cases.
The kinematical boundaries for x and y are given by

0<a< 1—1h, l—a+ B <y<l+rd, (5.21)
where )
= (r) i<, (522)

where the upper figure corresponds to P = 7 and the lower one to P = K. It is also
useful to note that

2
=

ety —1-rp),  ti=(pr—¢) = (k+p) = M(z+y—1). (523)

p-k=
The differential decay rate is given by [339]

BEA3pd3§
E.E.E, ’

dl'(t~ = v.P™7) Wk +p+q—p)MP? (5.24)

T B1210E,

where the bar over the matrix element denotes summing over the photon polar-
ization and neutrino spin and averaging over the tau spin. Choice of the tau rest
frame, integration over the neutrino momentum, p, and the remaining angles and
introduction of x and y yield

d’T ms,

drdy 25673 M (5:25)

The integration over y yields the photon spectrum

dr Lty d2r
_ / (5.26)
1

dz ot r dy

—x

Because of the infrared divergence of the internal bremsstrahlung a low-energy cut
must be introduced for the photon energy, by requiring x > z, one obtaines the
integrated decay rate
rEdr
[(xg) =T'(Fy) = / dr— (5.27)
. dx
that does depend on the photon energy cut-off (Ey = %xo). Instead of z and y one
can use x and z, where z is the scaled momentum transfer squared:

7 =
P

t
z:ﬁ—xjty—l, (5.28)
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whose kinematical boundaries are
r
z—rh<r<l--L <2<, (5.29)

Integration of d d over z yields the spectrum in z, i. e. the spectrum in the
invariant mass of the P-photon system:

dr dr I=rp/z Q21
L (V) / . Ty Y= FT el (5.30)

—r
The integrated rate for events with ¢ > ¢, is then given by

dr’

I(z0) =T (Vo) = /dza() (5.31)

We note that zg is both an infrared and a collinear cut-off.
In terms of the quantities defined in Eq. (B.I8) the differential decay rate is

Ccicréj _ —sz (2., 72) zjiuf;; (5.32)
T & IR OR v (0 73) + ARFAOFR) o (s0:73) +
PO fanler)] =55
T = S Uy () Rl 0) 2 o) Re(PA(0)]
where
fr (2 yor2) = [rp(x+2) — 2ri(z +y) trgjj:;)ji)—jzs + 22 +ay)| (rh —y+1) |
fov (:c,y,nz:) - —[ré(wyg +2p(1 =)@ +y) + (e +y—1) (e +2° =y +4°)],
G = e i)
Fioov (2.y73) = (B —x—y+;) (rp —y+1) |
frooa(w.yrd) = — rp—2rple+y)+ (-2 +y)le+y-DI(rp—y+1) (5.33)

(TP_x_y+1)
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In the approximation r% ~ ( (vanishing pion mass) these formulae simplify to

[1+(1—2)*—2(1 -y)]1 -y

f[B(fL',y,O) = (x+y—1)x2 ’
fov(z,y,0) = (z—2+y—y*) (x+y—1),
fra(x,y,0) = (x+y—1)>%x—y),
fIB—V(fL'aya 0) _ (.T + Y _x1)<1 - y) ’
frpoalz,y,0) = (r—y _;)“ —y) (5.34)

We note that the radiative decay rate has been expressed in terms of the rate of the
non-radiative decay (7= — v, P7):

_ GilVdieu"Fp

| S - M3(1—12)2. (5.35)

We finish this section by presenting the analytical expressions for the invariant
mass spectrum:

dr
dIB = ; [rp(1—2) +2rp (2 — 2°) — 42+ 52" — 2°+
z T

+ (7’4pz +2rhy — 22 — 222 + z3) lnz}

1 T
—rpz (1—r3)"

22

vy« M} (z = 1)° (z—r%)3(1+22)|F t) S N
dz 24m F2 22 v (1—17r2)2"°
dl'y 4
=0
dz ’
dCasa  a M} (z—=1)%(z - r2)° (1 4 22) F (tHQPTHWP_
dz 67 F? 22 A (1—7r2)*’
dl'rp-v _ g%f(z—rl%)?ﬂ —z+zlnz)%e(Fv(t))FT7_pr7 |
dz 2r Fp z (1—1r2)?
dP]B_A (6% ME
@ - i [rp(1—2) —1—2z+2+
2 2 Z = 7”12:’ FT*—WTP*
+ (rpz — 22— 2°) Inz] Re(Fa(t) ——= - (5.36)
“ (1—7p)

The interference terms IB—V and I B — A are now finite in the limit z — r%, which
proves that their infrared divergencies are integrable.

Although the above formulae have been noted in Ref.[330], we independently cal-
culate them [ and explicitly give them here for completeness. Moreover we would

STypoes in Refs. [336, [340, [341] have been detected through our calculation. The minus sign
difference in the definition of the I B part has been taken into account.
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like to point out that due to the fact that our definitions of the form-factors Fy ()
and F4(t) differ from the ones given in Ref. [330], as we have mentioned before,
there are some subtle differences in the above formulae between ours and theirs.

5.2.2 Breit-Wigner models

These processes where studied by Decker and Finkemeier in a series of papers
[336], [342] 343, 344]. Their parametrization respected the chiral limit (¢ = 0) for the
vector form factor, as given by the Wess-Zumino term. However, for the axial-vector
form factor it was fixed to the value of F4(t = 0) in the radiative decay of the pion.
This way, not only the value at threshold but also the low-t-dependence of the am-
plitude deviates from the QC'D prediction, which is not satisfactory. Moreover, the
off-shell widths employed for the vector resonances was just phase-space motivated,
while the one for the axial-vector resonance a; employed the ad-hoc expression in
the K'S model. High-energy QQC'D behaviour of the form factors was properly im-
plemented. Finally, the addendum to Ref. [336] change the relative sign between the
IB and SD contributions, and this has not been confirmed by any later independent
study, so this is another motivation for our work.

Our study, included in the next chapter intends to go beyond these approxima-
tions and provide a more based description of these decays. They are still unde-
tected, a feature that makes them more interesting, as it is strange according to the
estimations of the decay width of these processes. The decay modes reported by the
PDG [§] are reviewed in Table .11

5.3 Two meson decays of the 7

5.3.1 Model independent description

The vector form factor of the pion, F{7(s) is defined through:
1 _
(7 @) )] @ = dtd) o) = 0F — ' F(s). (5.37)

where s = (p+p')? (s will be defined analogously throughout this section), and the
participating current is the third component of the vector one of the SU(3) flavor
symmetry of QC'D. The matrix element of Eq. (5.37) is related by chiral symmetry
to the one appearing in 7 decays

(7 ()7 (pro)|dy"ul0) = V2(pr- — pro )" F (5) . (5.38)
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Decay mode BR(%) Decay mode BR(%)
0 e T, 17.85(5) nkK 2.2(7) - 102
1T, 17.36(5) nK-m0 1.8(9) - 102
ee e, | 2.8(1.5)-1073 T 2n <1.1-107%¢
preetm, | <3.6-1073°0 Kt2K~ | 1.58(18)-107% ©
1 7 10.91(7) n'm w0 <80-1073°
K- 6.95(23) - 10~ 7t om0 4.59(7)
2 7m0 25.52(10) 7~ 30 1.04(7)
K 8.4(0.4) - 10~ K-mtr=n% | 1.35(14) 10
K-7° | 4.28(15)- 107! K-K%z° | <16-1072¢
K-K° | 1.58(16)- 10" K30 4.7(2.1)- 1072
K—n 2.7(6) - 102 KK’ | 3.1(2.3)- 1072
0 <1.4-1072¢ 72K | 2.6(2.4) - 1072
' <74-1073° n2w -t 2.3(5)- 1072
3| 2nat 9.32(7) 207 1.5(5) - 102
= 2m0 9.27(12) 2K~ K*r® | <48-1074°
roat K~ | 3.41(16) - 107! 27 <2.0-1072
K | 3.9(4)- 107 2 7+2r® | 7.6(5)- 107
mmn 1.81(24) - 107! 740 7.6(5)- 1071
KK’ | 1.7(4)- 107 K~ 4r" -
K-K%%° | 1.58(20)-107" 21370 -
7 KTK~ | 1.40(5)- 107" 3270 —
K—27° | 6.3(2.3)-1072

Table 5.1: Decays of the 7 according to the number of mesons, n, and the BR [§]. For

the decay 7= — v, X—, X~ is displayed in the table. “:

with 95 % CL. b: with 90 %

CL. ¢: However one should take into account the very recent measurement by the Belle
collaboration [345] giving a BR of (3.29 4+ 0.177319) - 107°. —: The PDG does not give a
bound for these channels.

The associated vector and scalar form factors entering the decay 7= — K~ 7'v,
are defined through:

AKT( AKﬂ'

¢"F§ ™ (s)

(5.39)
The different kaon and pion masses imply the appearance of the scalar form
factor, F& 7”0(3), that accounts for the non-conserving vector current part of the

(K s ulo) = | (o= = 25%0) FE ()4
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decay, ¢" = (px + p)",s = ¢* and
Ay = mi —m?. (5.40)

Chiral symmetry dictates then the structure of the process 7 — K7~ v,: with
the changes:

K 71— K7™, 3vy"u—uyts, Féfg”o(s) — \/iF‘;(;’F(s) . (5.41)
An equivalent description is given in terms of the pseudoscalar (F™(s) = —F&7(s))
and vector (FE7™(s) = —F[™(s)) form factors. The vector form factor into two

kaons is probed through 7= — K~ K%,

(K (o) K~ (p-) [y ul0) = & FE(5)(po —p-)" (5.2

where, as in the case of the pion form factor, the vector current is conserved in the
isospin limit.

The decay 7~ — nn~ v, can only be produced in the SM as an isospin violating
effect [327], since it has opposite G-parity to the participating vector current. The
coupling to the vector current occurs via an n — 7° mixing. The related matrix
element will exhibit the structure

2

2 mg —m,  m;

(n(py)7 (px)|dy"ul0) = 3 V()

(pr — py)** . (5.43)

Mg + My, M2

_ m?2
n M

Finally, the K~n decay mode can be parametrized as follows

(K™ (px)n(py)|s7"ul0) = \/%Fé("(S)(pK —py)t, (5.44)

and the 7 — K n'v, decay mode vanishes in the limit of ideal mixing for the
7 system, so that corrections to this approach will yield a suppressed branching
fraction.

The differential decay rate for the process 7 — v, hy(p1)ha(ps) is obtained from

1 G%

d0(7 = vehahy) = o2 =F \Viens? {Lu H? Y dPS®) (5.45)

In order to disentangle the angular dependence it is useful to introduce suitable
linear combinations of density matrix elements of the hadron systemﬁ

LMVHMV = 2(M3 - S) (LBWB + I/SAWSA + I/SFWSF -+ I/SG’WSG’) s (546)

We note that the most general decomposition of L, H* (for two body decays) in
terms of density matrix elements (or structure functions) Wx of the hadron system

"The general procedure is studied in Ref. [346], where it is shown that the angular dependencies
can be isolated by introducing 16 combinations of defined symmetry.
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has two additional terms LaW4+ LgWg [346]. However, W4 and Wy vanish in the
case of tau decays into two pseudoscalar mesons. Nonvanishing W, and Wy arise
for example in decay modes with a vector and a pseudoscalar [347].

The hadron structure functions are related to the vector and scalar form factors
as follows:

Wp(s) = 4(0)?|Fv(s)]*, Wsals) = s|Fs(s)|?, (5.47)
Wsr(s) = 4v/s|pi| Re[Fy(s)Fs(s)] ,
Wsa(s) = —4/s|pi| Sm [Fy(s)F5(s)]

where |p]| = p} is the momentum of h; in the rest frame of the hadron system:

1
: [s —m? —m3® —dmim? , EP=(pi)*+m?. (5.48)

N

The hadron structure functions Wg g4 s, s¢ are linearly related to the density ma-
trix elements of the hadron system:

Wp = H®, Wey = H®, Wsp = H® + H®, Wye = —i(H® — H*). (5.49)

Finally, the differential decay rate dI'/ds yields

dT’ G2V s| S (M? — 5)? 2s + M? 3M2
N — 2 T z T W T W )
ds 2870 iz Pl =5 B(s) + 5z Weal®)

(5.50)

5.3.2 Theoretical descriptions of the form factors

There is a great amount of data available on FY}(s), Eq. (B.37), because it ap-
pears in the hadron matrix element entering the process ee~ — 77~ where
there are many precise measurements [348| 349, 350, B51], 352, 353 B54] and, in

the isospin limit, of the decay: 7= — 7~ 7’v,, where the latest data was published
by the Belle Collaboration [355]. F(s) has been studied within xPT up to O(p%)
[210, 356, 357, B58], so the very-low energy description is really accurate.

The energies going from M, to ~ 1.2 GeV are dominated by the p (770) so that
this resonance can be characterized through the study of this form factor very well.
Ref. [359] attempted to improve the O(p*) xPT result by matching it at higher
energies with an Omnes solution [360] of the dispersion relation satisfied by the
vector form factor of the pion. This way, the description keeps its validity up to 1
GeV, approximately. Some years later, the unitarization approach was used [361] to
obtain a good description of data in this region, as well. The K S-model [329] also
parametrized this decay. We will discuss it in more detail along its description of
the 37 channel in Section [5.4.3]

A model independent parametrization of this form factor built upon an Omnes
solution for the dispersion relation has also been considered [362, B63| 364]. Com-
bining this procedure with RxT [362] improves the previous approach (it extends
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now to ~ 1.3 GeV) if one includes information on the p’ (1450) through 7 elastic
phase-shift input in the Omnes solution.

It is clear that p’ (1450) and p” (1700) will play the main role in the energy region
up to 2 GeV. However, the proposed parametrizations including both resonances
only allow to quantify the relative strength of each one and the likely interference
amid these resonances, the possible presence of a continuum component, etc. are
completely lost with the most simple approaches. Within RxT, the p' (1450) was
incorporated through a Dyson-Schwinger-like resummation [365], and the ideas of
the No — oo limit and vector meson dominance were used in Ref. [366], including
a pattern of radial excitations expected from dual resonance models. They included
the three lightest p resonances plus a tower of infinite number of zero-width higher-
excited states in the spirit of large-N¢ [367]. Using the hidden gauge formalism,
Ref. [368] has emphasized the role of the p —w — ¢ mixing in this form factor. Using
Padé approximants Refs. [369] [B70] have studied all available space-like data on this
form factor up to Q% = 12 GeV2.

The last years have witnessed the discrepancy between ete™ — 77~ and 7= —
7 v, predictions [348, 349, 350, B51], 352, 353, B55] for F¥(s). There have been
some theoretical studies [191] B71], B72] of radiative corrections in the 7 decay mode,
but the difference is not fully accounted for yet.

There is also a large amount of good quality data on the K7 form factors. In
addition to the ete™ data from E865 [373], CLEO data appeared on 7 decays [374],
and two high-precision studies of the related 7 decays were recently published by
BaBar [375] -for the charge channel 7= — K~ 7%v,- and Belle [376]-7~ — Kgn~ v,-.
A comparison of the newest experiments with the Monte Carlo expectations for the
7= 7% and (K7)~ meson modes is presented in Ref. [162].

The form factor F¥™(s) was computed at O(p*) in x PT in Ref. [210]. In Ref. [358]
the x PT analysis is performed within the three flavour framework at next-to-next-
to-leading order. This provides a good description of the very-low energy spectrum.
In order to extend it to higher energies, in Ref. [377] the Linear sigma model, a
quark-triangle model and Vector meson dominance have been used. The compari-
son to data [373] favours the last one. Simple Breit-Wigner models supplemented
with vector meson dominance have also been used [378, [379]. They suffered the
same problems explained in Section

Both the vector and the scalar form factor have been reviewed recently. In
Ref. [380], the distribution function for this decay has been obtained with the rele-
vant vector and scalar form factors presented above computed within Ry7 and tak-
ing into account additional constraints from dispersion relations and short-distances.
The dynamically generated K (800) should be the resonance starring at the scalar
form factor, whether K* (1410) will modify a bit the more prominent contribution of
K* (892) to F{¥™(s), as the results confirm [381] when confronting it to Ref. [376]. In
Ref. [382], the knowledge of O(p®) chiral LEC's and of light quark masses has been
improved studying F{f™(s). These form factors have been studied using analytic-
ity constraints and taking into account isospin violating corrections by Moussallam
[284]. This strategy was also followed in Ref. [386] but sticking to the exact SU(2)
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limit. The scalar form factor has also been studied [384] 385] matching yPT to a
dispersive representation. Lately, it has been realized that there is anticorrelation
in the parameters describing the vector form factor in F¥™(s) from tau decays and
K3 decays [386, B87], which has allowed to reach smaller errors in the slope and
curvature of this form factor.

The work [388] analyzed the two-kaon vector form factor, Fff(s), in much the same
way as done for two pions [359]. By that time, the experimental data [331] B89] were
not in enough agreement with each other to check the proposed expression. New
finer results have been published since then [390, B91], so a dedicated study of these
modes within Ry7T employing all present knowledge of EF'T's, short-distance QCD,
the large-N¢ expansion, analyticity and unitarity would be desirable specially in
light of forthcoming data from BaBar and Belle.

We turn to the 7 decays into n modes: the 7~ n() channel has been observed
recently for the first time [392], while for the K7 meson system there are recent
measurements already published [393]. The smaller BR for the first one is consis-
tent with the findings of Ref. [327] summarized before. A first description of this
decay was attempted at the beginning of the eighties [394] and revisited recently
[395] and the main features were already established few years later [327, [396]. The
xXPT result at O(p*) [210] was extended to higher invariant masses of the hadron
system in Ref. [397]. Even the isospin breaking corrections have been computed for
this mode [398]. Again a study along the lines proposed in this Thesis would be
interesting. The decay 7= — K~ nv, has not been improved further than the yPT
computation at O(p*) [210].

5.4 Three meson decays of the 7
5.4.1 Model independent description
The hadron matrix element for the considered decays may be written as [346] [399]

((PPP)|(V = A)H0) = VI'FNQ s1, 82) + Vi F3H(Q% 51, 52)  (5.51)
+ QUENQ?, 51, s2) + VS F(Q 51, 52)

where

= (2D s = (2L

Vi = €“amp1apzﬁp3y ;o QF = (p1 +p2+p3)t, os=(Q — pz‘)Q (5.52)

the upper indices on the form factors stand for the participating current, either the
axial-vector (A), or the vector one (V') and not for the quantum numbers carried
by them; notice that F3'(Q?, s, s3) is the pseudoscalar form factor that accounts
for a J¥ = 07 transition. F{(Q?, s1, s5) and F§(Q?, s1, s3) are the axial-vector
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form factors that carry JE = 17 degrees of freedom. Finally, F} (Q?, s, s5) is the
vector form factor, that has JX = 17,

There are other properties that one can derive in full generality. For instance,
due to the chiral Ward identity relating axial-vector and pseudoscalar currents, con-
servation of the first one in the chiral limit imposes that F5'(Q?, sy, s») must vanish
with the square of a pG mass and hence, its contribution may be suppressed. There
are, of course, other constraints coming from SU(2) or SU(3) flavour symmetries for
a given mode, like those stating that the form factors for the decays 7= — 7%7%7 v,
and 77 — 7 7 7wty are identical in the SU(2) limit, as it happens for the form
factors in the decays 7= — K°K%r~ v, and 7~ — KTK 7 v,. There are other
symmetry requirements: in 7= — (37) v, Bose-Einstein symmetry implies that
FNQ?, 51, 59) = F{(Q?, s9, 51) and G-parity forbids axial-vector current contri-
butions to the decays of the 7 into nm~ 7% and nnr~[327]. This kind of relations will
be discussed and used in the following chapters.

We consider a general three meson decay of the 71 77 (¢,s) — v (¢',¢) +
hi(p1, z1) + ha(pa, 22) + hs(ps, z3). The polarizations (s, s', 21, 22, 23) will play no
role in the following since we will assume the tau to be unpolarized. Then, the
differential phase space for a generic channel is given by

1 G2
dFﬁf‘——+(3hY¢@)—-2ﬂ4 ;’vgm“HZLMJﬂWdP3@>, (5.53)

where the phase space-integration involves the three mesons and one neutrino in the
final state:

R EUAE C G T S e
(27)2E, (27)32E, (27)2E, (27)°2F;

dPsW — (2m)* 6 (0—0' —p1—py—p3) (5.54)

In order to obtain the differential width as a function of Q? (the so-called spectral
function), the integration over | dPSW is carried out in two steps:

(E_H/%wE%ﬁE<%G KEEJZWP (5:55)

provided we use the Kéllen’s trick to split the integrations by introducing a Dirac
delta as follows:

Coogrs [ SB 500 »

Q> (2m)%2E,

/II d%E f509‘22%>§jﬂﬂ?(5%)
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We have:
d*p; d*py
/Wd (@ = (pr —)?) = /mé (Q* = M? —m? +2p.p,) =

1 [ dplp)?
_ / |p ||p | 5(@2_M3_m3—|—2M7E1,) =

(27)? E,
L rawiped (7 721)
N (27T)2/ E, ol
T ereeM P T 2ne A2 '

where it has been taken into account that decay widths are defined in the rest frame
A/2(Q? M2 m3)

2M, :
The integration over [ dIl; is left involving the momenta p;. It yields [339] (notice

that a factor (27)™° is not included in the definition of dII3 immediately below):

of the decaying particle, and \]72\ =

apPs® 2
/dH3 = /dsdté(s— (Q—ps)?) 6 (t—(Q — p)?) G = 47222 /dsdt,
5.58

where s = (p1 + p2)? = s12, t = (p1 +p3)? = 513, and u = (po + p3)? = 893 =
Q? — s —t+m3 +m3 + m3. Using Eq. (5.58), one has:

dFT_%(hthhS)_V‘r o G%“/Z]CKMP A1/2(Q2,Mf,m3) 1

402 = 128(2n)5Mr M2 ozl
A? 1w0(Q? M?,m?
WSA(Q2757t) Yy 7‘211 Y <Q 27' ) (WA(Q27$7t) +WB(Q2757t)) ’
Q 3 Q
(5.59)
where there the integrated structure functions have been defined as follows:
WsA, A,B(QQ) = /ds dt Wga, AB(QQ, s,1). (5.60)

The other definitions employed include the so-called weak matrix element:
(Q2 M2 m2) = (M2 = Q)(M2 +2Q%) — m2(2M2 = QF — i), and £, = M2 +

m?2, ATV = ]\42 — m2 WSA,AB(QQ, s,t) correspond to the structure functions in

Ref. [346]. In terms of the form factors and set of independent vectors in Egs. (B.51)),

(E52) they are

Woa = [Q"FNQ 51,)] [QuENQ s1,5)] = Q°IFN Q% s1,5)P
Wa = — [V FANQ? s1,80) + V3 F3H Q% 51, 82)] X
[Vm Q7 51,52)+‘/2HFAQ 51782} )
Wg = [V3, FY(Q 51,50)] [V FY (@7 31,52)}* : (5.61)
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In the excellent limit of vanishing neutrino mass, the Q*-spectrum is simply given

by:

dT G2 V;C’KMQ M2 2 1 2
— F‘ J | ( T —1) /dsdt {WSA+§<1+2Q—) (WA+WB)}-

dQ? 128 (2m)> M. \ Q? M?
(5.62)
The limits of integration when obtaining the full width are the following ones:
Q2 mazx gmaw ¢maz
/ dQ2/ ds dt, (5.63)
Q% Smin tmin

(@7 s) = 1 (@ 4 md = md)? = W2 (Q2 s, m3) F N (3 )]}

4s
(5.64)
Smin = (M1 +m2)2 ;s = (V@ — m3)2 ;
?m'n = (ml +ma + m3)2 ’ Q2mam = (MT - ml/)2 : (565)

5.4.2 Recent experimental data

The BaBar [400] and Belle [345] collaborations have recently reported the mea-
surement of the branching fractions of various particle combinations (any combina-
tion of pions and kaons) in the decay to three charged hadrons. The mass spectra
have not been analysed yet. Previous studies of the mass spectra were done by
the CLEO group [401], and the ALEPH [78], DELPHI [402] and OPAL [403]
collaborations on the 37 mode. CLFEQO studied with detail also the K K'm modes
[404], [405] [406]. The 3K modes have been observed by Babar [400] and Belle [407].
Recently, the Belle Collaboration performed a detailed study of various decays with
the 1 meson in the final state [393].

5.4.3 Theoretical description of the form factors

Even before the discovery of the tau lepton, its mesonic decays and the relation
between these ones and the hadron states produced in e™e~ annihilation were stud-
ied [408| 409]. The late seventies witnessed the pioneering work of Fischer, Wess
and Wagner [325], that employed the method of phenomenological Lagrangians to
derive relations between different n-pion modes in terms of the pion decay constant,
F. Ref. [410] used isospin invariance and measurements on e*e~ annihilation to
relate several channels. Ref. [411] attempted a Lagrangian description of the 37
decays including resonances and, explicitly, the a;-m-p vertexd. However, the model
was not consistent with xYPT at O(p?) and, moreover made the severe mistake of

8The a; dominance in heavy lepton decays was proposed in 1971 [408], 4 years before the tau
lepton was actually discovered.
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not including energy-dependent widths for these spin-one resonances. The model
by Isgur, Morningstar and Reader [412] violated chiral symmetry. Braaten et. al.
[413],[414] used an EFT approach, based on U(3), ®U(3)g for the vector resonances
and respecting chiral symmetry up to O(p?) for the pGs. However, it left aside the
axial-vector mesons that happened to dominate these decays and assumed hidden
local symmetry. Ref. [415] used the isobar model that violates 3-particle unitarity.
In addition, the model did not respect chiral symmetry constraints. The works by
B. A. Li [416] 417, 418, [419| 420] covered in a unified framework the most interest-
ing decay channels. His theory was based on chiral symmetry for the pGs and the
resonances were incorporated following U(3), ® U(3)g. The author introduced an
unjustified energy-dependent p-m-m vertex. Studies using old current algebra tech-
niques were also undertaken by that time [421] [422].

The KS model [329] was a step forward, because in the zero-momentum limit
it recovered the xPT results and, additionally, it provided more realistic off-shell
widths for the involved resonances accounting both for vector and axial-vector states.
However, as it was shown later, it was inconsistent with chiral symmetryﬁ at O(p?)
[309] [423] . Moreover, the proposed widths are only phase-space motivated. Al-
though they work quite well, there is no dynamics in them, a feature that should not
be satisfactory. The KS model was a major achievement in L F P times to understand
7 data. Nowadays, the much more precise data samples and the finer understanding
of the Lagrangian approach to the intermediate-energy meson dynamics demands
the latter to be applied by the experimental community. We will report about its
application to the three-meson decays modes of the tau in Chapters 6, 7 and 8. The
recent study in Ref. [425] includes also the sigma contribution to this channel and
reports that the a| effect is needed to improve significantly the agreement with the
data. However, it violates chiral symmetry already at LO since it does not include
the diagrams with pions in xPT at O(p?).

Other three meson channels were studied following the KS model [378| 420, 427
428]. In addition to the comments we made to the original work, several other issues
enter in these cases [429, [430] 431], [432]: Some of the intermediate exchanged reso-
nances in a given channel that are allowed by quantum numbers are not included in
the model and, moreover, the treatment of spin-one resonances is inconsistent: the p
(1450) has noticeable different mass and width in the axial-vector and vector current
form factors and there are two multiplets of vector resonances in the axial-vector
current while three in the vector current, a very unnatural phenomenon. It seems
difficult to explain why the p(1700) happens to be so important in the vector form
factor, given its high mass. The KS model and its generalizations were implemented

90ne could think that it is not that important to fulfill the NLO results in yPT while one is
attempting a description in the GeV region. This is not true. The spectra are very sensitive to
the normalization and low-energy dependence of the form factors that is carried on to the rest of
the spectrum.

0The xPT result at O(p*) [356] checked that xPT could only describe this decay in a tiny
window of phase space. This low-energy part motivated also the study [424] aimed to find hints
on the mechanism of dynamical chiral symmetry breaking.
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in the famous TAUOLA library for tau decays [433, 434], 435, 436]. Later on, this
parametrization of the hadron matrix elements was complemented by others based
on experimental data by the C LEO [l and Novosibirsk groups [438]. Currently, we
are improving some of the proposed currents [439] using the results in this Thesis.
We end the section by quoting early studies that constructed the form factors
using the chiral symmetry results at low energies and experimental information to

extend it to the GeV-scale, on the K K [440] and n7r modes [441], [442].

5.5 Decays of the 7 including more mesons

5.5.1 Model independent description

As far as we know, there is no model independent description of the many-meson
decay modes, for instance Ref. [443] builds the amplitude for the 47 decay assuming
some decay chains and that the vertex functions are given by their on-shell structure
and are transverse. This work was consequence of a previous study of 7 — wn™ v,
[347]. In Refs. [444], [445] isospin symmetry is used in order to determine that all
decay channels 7= — (47) v, can be parametrized in terms of form factors that de-
pend just on one quantity once the symmetries associated to relabeling the different
47 momenta have been used. Moreover, the form factors appearing in eTe™ — (47)°
can be obtained with the same single function. Isospin symmetry was systematically
used for the first time in multimeson tau decays in Refs. [440, 447], where the meson
channels KK + nm, nm, (2n + 1)7, 2n7, and K + nt were examined.

The decays with five mesons have been addressed in Ref. [44§], but the proposed
hadron matrix elements rely on the assumed substructure of the process.

5.5.2 Experimental data

Tau decays into four-meson modes have been measured very recently in the B-
factories, and more data was collected from ALEPH [449] and CLEO [450, 451].
BaBar measured the BR for the mode (K7)°K~7° through K**K 7% [452] and
Belle for the mode 27~ 77 [453]. The five charged meson modes have been mea-
sured by BaBar [454] with much larger statistics than CLEO [455] achieved. Fi-
nally, the six-pion final state was studied also by the CLEO Collaboration [456].

5.5.3 Theoretical description of the form factors

In Ref. [457] comparisons of five- and six-pion 7 decay data with the isospin rela-
tions indicates that the final states in these decays tend to involve an w resonance.

1UThe CLEO parametrization was private, reserved for the use of the collaboration until pub-

lished in [503] .
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If the decay dynamics of the seven-pion 7 decays are similar to the five- and six-
pion decays, then isospin relations could explain a low branching ratio limit on the
T — 47 37" v, decay.

5.6 Hadron 7 decays in Higgs physics at the LHC

In this section we will report briefly on the importance of mastering hadron de-
cays of the tau in Higgs physics at the LHC. One of the main goals of the AT LAS
[458] and C'M S [459] experiments at LHC' is the search for the Higgs boson and the
source of electroweak symmetry breaking. Both detectors are capable of doing that
for any possible range of masses: 114.4 GeV -direct exclusion limit at 95% confidence
level obtained by LEP [460] to 1 TeV 4 -there are many reasons to believe that the
TeV scale is an upper limit for the Higgs mass, see for instance [462] and references
therein-. In the low-mass region (my < 130 GeV) the decays of the Higgs boson
into two photons or into two taus are the most promising for discovery. Irrespective
of the value of my its decays into taus will be important to measure its couplings,
spin and C'P properties [463, 464 465]. The production and decay of the 7 leptons
are well separated in space and time providing potential for unbiased measurements
of the polarization, spin correlations, and the parity of the resonances decaying into
7 leptons. The excellent knowledge of 7 decay modes from low-energy experiments
indeed makes this an ideal signature for observations of new physics. In the context
of the Minimal Supersymmetric Standard Model (M SSM), the branching ratio of a
H — ~~ decay is generally suppressed which makes the search for the decay H — 77
very important. This section is mainly based in Refs. [458 [459] [466], 467].

In Figure the branching fractions of the SM Higgs boson are shown as a
function of my. Immediately after they are opened, the WW and ZZ decay modes
dominate over all others (¢t can barely reach 20%, as we can see from the curve
appearing for my 2 300 GeV). All other fermionic modes are only relevant for the
Higgs boson masses below 2(My — I'yy). These modes show peculiar structures
with a peak corresponding to both weak bosons being on-shell. We see also a valley
in the WW corresponding to the peak in ZZ, since one is plotting the branching
ratio. The decay H — bb is dominating below 140 GeV. However, even though
it was included as a possible channel that could help the Higgs discovery in the
low-mass case up to 2005 [468], a re-evaluation of the QC'D backgrounds swapped
it away in later reports [458, [459]. Thus, the decays H — 77 (with br ~ 8% for
120 < my < 140 GeV) and H — vy (br ~ 2-1073) would be the way to discover
the Higgs boson in the low-mass case. In particular, the design of the detectors in
the ATLAS and CM S experiments makes —always attaching to this low-mass case—

120ne should also note that the mass range 160 < mpy < 170 GeV has also been excluded recently
by a statistical combination of the direct searches performed by the Tevatron experiments, CDF
and DO [461]. Neither of these experiments has been able to reach any exclusion limit using only
their own data yet.
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the H — 77 decay the most promising signature in the former and the H — v in
the latter.
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Figure 5.2: Branching ratio for the relevant decay modes of the SM Higgs boson as a
function of its mass.

Although the reconstruction of 7 leptons is usually understood as a reconstruction
of the hadron decay modes, since it would be difficult to distinguish lepton modes
from the primary electrons and muons, a dedicated effort has been devoted to elec-
tron and muon vetoing to reduce their background, so that all possible decays of a
777 pair: hadron-hadron (hh), lepton-lepton (¢£) or mixed (¢h) can be detected.
The following nomenclature for 7 decays is used from the detection point of view:
single-prong means that exactly one charged meson (most frequently a ) is detected
in the reconstructed decay, while three-prong means that there are three charged
mesons detected. It is understood that one can generally tell a charged lepton from
a charged meson and the small fraction (0.1%) of five-prong decays is usually too
hard to detect in a jet environment. The transverse momentum range of interest at
LHC spans from below 10 GeV to 500 GeV which makes necessary that at least two
detection strategies are developed, as we will comment later on. As one can read
from Table 5] 7 leptons decay hadronically in 64.8% of the cases, while in 17.8%
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(17.4%) of the cases they decay to an electron (muon). It is interesting to note that
the 7 — 71, decay represents only the 22.4% of single-prong decays hadron decays,
so the detection of ¥ particles in 7 — n7’r* v, is fundamental. For the three-prong
7 decays, the 7 — 37%v, decay contributes 61.6% and the 7 — na’37* v, only
about one third. Although the decays containing only pions dominate, there is a
small percentage of decays containing K* that can be identified as for states with
7 from the detector point of view. A small percentage of states with K cannot
be easily classified as one- or three- prong decays since the K3 decays significantly
both to two charged and two neutral pions. In any study performed so far other
multi-prong hadron modes have been neglected.

Three-prong decays of the 7 (essentially 7 — nn’37%1,) have the additional
interest of allowing for the reconstruction of the 7 decay vertex. This is possible
because ct, ~ 87um that one can separate with the inner silicon detector tracking
system. The transverse impact parameter of the 37% can be used to distinguish
them from objects originated at the production vertex. As we stated before, this
allows for a full treatment of spin effects. This has been done within the framework
of the AT LAS Monte Carlo simulation and events were generated using PYTHIA
6.4 [469] interfaced with TAUOLA [470], 504] [4. Full spin correlations in production
and decay of 7 leptons were implemented. The associated spin properties in gauge
boson, Higgs boson or SUSY cascade decays carry information on the polarization
of the decaying resonance: 7 leptons from W — 7v. and H* — 71, will be com-
pletely longitudinally polarized, with P, = +1 and P, = —1, respectively. As a
result, the charged to total visible energy distributions for one-prong decays will be
different in these cases, permitting their differentiation unambiguously. At the LHC
this effect can be used to suppress the background from the former and enhance ob-
servability of the latter [472]. The 7 polarization could also be used to discriminate
between M SSM versus extra dimension scenarios [473]. On the contrary, 7 leptons
from neutral Higgs boson decays are effectively not polarized and those coming from
Z decays obey a complicated function of the center-of-mass energy of the system
and the angle of the decay products [474]. In the cleaner environment of a lepton
collider, like the I LC', building variables sensitive to the longitudinal and transverse
spin correlations may lead to a C'P measurement of the Higgs boson [475] 476].

Two complementary algorithms for 7-identification and reconstruction have been
studied:

e A track-based algorithm [477], which relies on tracks reconstructed in the
inner detector and adopts an energy-flow approach based only on tracks and
the energy in the hadronic calorimeter. It starts from seeds built from few
(low multiplicity) high-quality tracks collimated around the leading one. It
has been optimized for visible transverse energies in the range 10 — 80 GeV,
that corresponds to 7-decays from W — 7v,. and Z — 77 processes.

e A calorimeter-based algorithm [478], which relies on clusters reconstructed in
the hadronic and electromagnetic calorimeters and builds the identification

13Gee also Sect. [T.11
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variables based on information from the tracker and the calorimeters. It has
been optimized for visible transverse energies above 30 GeV, which corresponds
to hadron 7-decays from heavy Higgs-boson production and decay.

Whereas the track-based algorithm has been tuned to preserve similar perfor-
mance for single- and three-prong decays, the calorimeter-based algorithm has been
tuned to provide the best possible rejection at medium-to-high energies and it is
therefore more performant for single-prong decays than the track-based algorithm.
Depending on the specific process and scenario under study, the trigger requirements
are different, a complete description can be found in Ref. [45§].

The Higgs-boson can be produced via four different mechanisms at hadron col-
liders. Although the largest production cross-section for my < 1 TeV is always that
of gluon fusion, gg — H, which is mediated at lowest order by a t-loop, the cleanest
signal in the H — 77 channel is due to the so-called Vector Boson Fusion (V BF)
channel [479] 480], that is represented in Figure (3

Y

Y

q q

Figure 5.3: Feynman diagram for the lowest order Higgs production via V BF and sub-
sequent decay H? — 7777,

The expected performance in the AT LAS experiment will be adequate to extract
7 signals in early LHC data from W — 7v, and Z — 77 decays. These signals
are important to establish and calibrate the 7 identification performance with early
data. The study of dijet events from QCD processes will allow a determination of
7 fake rates. It is expected that such rates can be measured with a statistical preci-
sion at the percent level or better already with data corresponding to an integrated
luminosity of 100 pb—* M any case, despite the advances in theoretical tools
and extraordinarily detailed simulation of the AT'LAS detector, it is preferable to

14We give some numbers to make easier this and subsequent figures: although the design lumi-
nosity of the LHC is 103*em 2571, it is still a bit optimistic to count on 1032cm =25~ for the first
year of operation. In this case, one could expect ~ 30fb~! at the end of the first year. In fact the
nominal luminosity is 66.2fb~! /year, so 100 pb~! = 0.1fb~! would be achieved very early because
the instantaneous luminosity for the very first measurements was expected to be at the level of
103tem =251,
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estimate backgrounds from data rather than relying entirely on Monte Carlo simu-
lations. All estimates can thus get sizable corrections as a result.

Once this first stage is completed, one would be ready to search for the qqH —
qqrT decays via a Higgs boson produced in association with two jets. This analysis
requires excellent performance from every AT LAS detector subsystem; 7 decays im-
plies the presence of electrons, muons, pions and a few kaons, and missing transverse
momentum, while the V BF' process introduces jets that tend to be quite forward
in the detector. Due to the small rate of signal production and large backgrounds,
particle identification must be excellent and optimized specifically for this channel.
Furthermore, triggering relies on the lowest energy lepton triggers or exceptionally
challenging tau trigger signatures. The AT LAS collaboration has estimated the
sensitivity based on ¢¢ and ¢h modes [458]. The hh channel has also been investi-
gated and gives similar results for signal and non-QC'D backgrounds as the other
channels. However, due to the challenge of predicting the QQC'D background the
estimated sensitivity for this mode was not reported.

The signal events are produced with significant transverse momenta, so the 7 from
the decay are boosted which causes their decay products being almost collinear in
the lab frame. The di-tau invariant mass can be therefore reconstructed in the
collinear approximation [3. The mass resolution is ~ 10 GeV, leading to a ~ 3.5%
precision on the mass measurement with 300" of data (one year of data taking).
In the more recent analysis particular emphasis is put on data-driven background es-
timation strategies. Expected signal significance for several masses based on fitting
the m,, spectrum is shown in Figure 5.4l The results obtained neglecting pileup
effects indicate that a ~ 5o significance can be achieved for the Higgs boson mass
in the range of special interest: 115 — 125 GeV after collecting 30 fb~! of data and
combining the ¢¢ and ¢h channels. The effects induced by the event pile-up has not
been fully addressed yet. As it is intuitive, the hadron decay gives more constraints,
since there is only one neutrino that escapes detection, while two are unobserved in
the lepton case. Unfortunately the QC'D background prevents the usage of the hh
mode for the moment, that could further improve the discovery potential in these
decays. One can check in Figure -note that this corresponds to one third of the
luminosity taken as reference previously- that this is the gold-plated mode in the
ATLAS experiment for my < 135 GeV [

We will not cover in detail the relevance of hadron decays of the tau in Higgs
searches in the context of the M SSM. We will just recall the most prominent fea-
tures. The topic is studied in depth in Refs. [458] [459] 1466, 467, [4871], [482] 1483]. The

15ie., one assumes that the 7 direction is given by their visible decay products: leptons or

hadrons.

16Tn the CM S experiment the H — v decay mode has a significance of one sigma more than
H — 77 in the energy range of interest [459]. Remarkably, the two photon mode at CM S and the
two tau mode at AT LAS have a similar significance at the discovery level in the mass range 115
GeV¢s 120 GeV with 30£b~! of data.



118 Hadron decays of the 7 lepton

[EAN
o

O

ATLAS

\'s = 14 TeV, 30 fb*
................... ll-channel
---------- Ih-channel

o0

combined

Expected Significance (o)

105 110 115 120 125 130 135 140
m, (GeV)

O -~ NN W & 01 OO N

Figure 5.4: Expected signal significance for several masses based on fitting the m. .,
spectrum in H? — 77~ with 30fb~! of data (one year of data taking). From Ref. [458].
In the TAU10 Conference (13-19.09.2010), R.Goncalo reported on behalf of the ATLAS
Coll. that the hh mode was at an advanced stage for being incorporated in these plots
soon. However, figures were not available yet.

LHC' has a large potential in the investigation of the MSSM Higgs sector. The
Higgs couplings in the M SSM are different to those in the SM. In particular, for
large Higgs masses (my > 160 GeV) its decays into weak gauge bosons are either
suppressed or absent in the case of the pseudoscalar Higgs, A. On the other hand,
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Figure 5.5: The median discovery significance for the SM Higs boson for the various
channels as well as the combination for the integrated Iuminosity of 10fb~! for the lower
mass range. From Ref. [458].

the coupling to third generation fermions is strongly enhanced for large regions of
the parameter space which makes the decays into 7 leptons even more interesting.
The search for light neutral Higgs boson is based on the same channels as for the
SM case, with more relevance of H — 77 for larger masses in some subsets of
the parameter space, due to enhanced couplings. In addition to this, A — 77 is
also relevant for large values of tan( [9. In both decay channels, the ¢h detection
mode would provide again the highest sensitivity. A final promising decay channel
is H* — 7% v, that would unambiguously proof the existence of physics beyond the
SM. For a high SUSY mass scale this charged Higgs boson could be the first signal

"The ratio of the values of the two Higgs condensates.
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of new physics (and indication for SUSY) discovered.



Chapter 6

T~ — (m7wm)” vy decays

6.1 Introduction

In this chapter we will discuss the hadron form factors and related observables
appearing in 7= — (7m7wmw) v, decays. These processes are a very clean scenario
to learn about the axial-vector current, because the vector current contribution is
forbidden by G-parity in the isospin limit. Moreover, the starring role of the lightest
vector and axial-vector resonances will allow to study in detail the properties of the
latter, since the first one is extremely well known from ete™ — 77 and 7 — 77y,
decays. At the same time, this will be a stringent test of the joint consistency of the
proposed width for a given definition of mass [380].

The 7 — wrnry, decay is thus driven by the hadronization of the axial-vector
current. Within the resonance chiral theory, and considering the large- N expan-
sion, this process has been studied in Ref. [309]. In the light of later developments
we revise here [322] this previous work by including a new off-shell width for the
a1(1260) resonance that provides a good description of the 7 — w77y, spectrum
and branching ratio. We also consider the role of the p(1450) resonance in these
observables. Thus we bring in an overall description of the 7 — w7y, process in
excellent agreement with our present experimental knowledge.

The significant amount of experimental data on 7 decays, in particular, 7 —
v, branching ratios and spectra [78], encourages an effort to carry out a theoret-
ical analysis within a model-independent framework capable to provide information
on the hadronization of the involved QCD currents. A step in this direction has
been done in Ref. [309], where the 7 — w77y, decays have been analyzed within
the resonance chiral theory (RxT) [0l [7]. As explained in detail in earlier chapters,
this procedure amounts to build an effective Lagrangian in which resonance states
are treated as active degrees of freedom. Though the analysis in Ref. [309] allows
to reproduce the experimental data on 7 — wrwy, by fitting a few free parameters
in this effective Lagrangian, it soon would be seen that the results of this fit are
not compatible with theoretical expectations from short-distance QC'D constraints
[299]. We believe that the inconsistency can be attributed to the usage of an ansatz
for the off-shell width of the a;(1260) resonance, which was introduced ad-hoc in
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Ref. [309]. The aim of our work was to reanalyse 7 — w7y, processes within the
same general scheme, now considering the energy-dependent width of the a;(1260)
state within a proper RxT framework. The last issue, that is one of the major
developments of our work is considered in detail in Section

Although this chapter is based in Ref.[322], the material covered in Sects. (.42
[6.4.3] and [6.4.4] is presented in this Thesis for the first time.

6.2 The axial-vector current in 7= — (777)" v, de-
cays

Our effective Lagrangian will include the pieces given in Eqgs. (3.60), (£19) and
(@310) [l. These decays are worked out considering exact isospin symmetry, so the
corresponding hadron matrix elements will be

Tiu(p1,p2,p3) = (ma(p1)m2(p2)m™ (ps)] Ay e202(0). (6.1)

Outgoing states 7 o correspond here to 7~ and 7 for upper and lower signs in T,
respectively. The hadron tensor is written instead of three form factors following Eq.
(E5T), with F)(Q?, s1, s3) = 0 since we have no vector current contribution. Since
the contribution of F5(Q?, s1, s9) -carrying pseudoscalar degrees of freedom- to the
spectral function of 7 — 77wy, goes like m?/Q* and, accordingly, it is very much
suppressed with respect to those coming from FA(Q?, sy, so) and F{(Q?, s1, s2),
we will not consider it in the following.

The evaluation of the form factors F; and F, within in the context of Rx7 has
been carried out in Ref. [309]. One has :

Fyy = £(FX+ EF+ FFY) . i=12, (6.2)

where the different contributions correspond to the diagrams in Figure 6.1l In terms
of the Lorentz invariants Q?, s = (p; +p3)?, t = (pa+p3)* and u = (p; +p2)? (notice

!Notice that we only consider the effect of spin-one resonances. Given the vector character of
the SM couplings of the hadron matrix elements in 7 decays, form factors for these processes are
ruled by vector and axial-vector resonances. Notwithstanding those form factors are given, in the
7 — PPPuv,; decays, by a four-point Green function where other quantum numbers might play
a role, namely scalar and pseudoscalar resonances [94] [484] [485] [486]. Among these, in the three
pion tau decay modes, the lightest state -that one could expect to give the dominant contribution-
is the o or fp(600). As we assume the No — oo limit, the nonet of scalars corresponding to the
f0(600) is not considered. This multiplet is generated by rescattering of the ligthest pseudoscalars
and then subleading in the 1/N¢ expansion [487].
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Figure 6.1: Diagrams contributing to the hadron axial-vector form factors F; : (a) and
(b) contribute to F7X, (c) and (d) to Ff¥ and (e) to Ff*E.

that u = Q% — s — t + 3m?2) these contributions are given by [309]

FX(Q2, s,1) = ——=
1(@787) 3F
2, G 3 2G 20?% — 25 — —
33 s — My, Fy s — My t— My
4F,Gy  Q? 3s
FRR(O2 5 ) — — (N )\ 6.3
1 <Q7S7) 3F3 QQ_Mi ( + )S—M‘Q/ ( )
2Q° +s5—u u—s
H(Q? H(Q? t
@) T @ |
where
m?2 x
H(Q* z) = — )\ Q—g + X@ + N, (6.4)

Ao, A and A being linear combinations of the \; couplings that can be read in
Eq. (£30). Bose symmetry under the exchange of the two identical pions in the final
state implies that the form factors F} and F; are related by F»(Q?, s, 1) = F1(Q?,t, s).

The resonance exchange approximately saturates the phenomenological values
of the O(p*) couplings in the standard yPT Lagrangian. This allows to relate
both schemes in the low energy region, and provides a check of our results in the
limit @* <« MZ. This check has been performed [309], verifying the agreement
between our expression Eq. (G3]) —two-resonance exchange terms do not contribute
at this order— and the result obtained within yPT" in Refs. [356, [428] coming from
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saturation by vector meson resonances of the O(p*) couplings :

(6.5)

As an aside, it is worth to point out that this low—energy behaviour is not fulfilled

by all phenomenological models proposed in the literature. In particular, in the
widely used KS model [329] the hadron amplitude satisfies

g SE<ME 2v/2 t
Tg; )T ETa 1+M2 Vip+ {14+ —5 M2 Voul| - (6.6)

Thus, while the lowest order behaviour is correct (it was constructed to be so), it is
seen that the K.S model fails to reproduce the xPT result at the next-to-leading
order. Accordingly this model is not consistent with the chiral symmetry of QCD.

6.3 Short-distance constraints ruled by QCD

Besides the pion decay constant F', the above results for the form factors F; de-
pend on six combinations of the coupling constants in the Lagrangian Lgr,r, namely
Fy, Fa, Gy, Ao, N and )’ and the masses My, M, of the vector and axial-vector
nonets. All of them are in principle unknown parameters. However, it is clear that
Lry1 does not represent an effective theory of QC'D for arbitrary values of the cou-
plings. Though the determination of the effective parameters from the underlying
theory is still an open problem, one can get information on the couplings by assuming
that the resonance region —even when one does not include the full phenomenolog-
ical spectrum— provides a bridge between the chiral and perturbative regimes [7].
This is implemented by matching the high energy behaviour of Green functions (or
related form factors) evaluated within the resonance theory with asymptotic results
obtained in perturbative QC'D [7, 299] 310, BTT], 314, 315l 323, 48§]. In the No — oo
limit, and within the approximation of only one nonet of vector and axial-vector res-
onances, the analysis of the two-point Green functions ITy 4(¢®) and the three-point
Green function VAP of QCD currents with only one multiplet of vector and axial-
vector resonances lead to the following constraints [274] :

i) By demanding that the two-pion vector form factor vanishes at high momen-
tum transfer one obtains the condition Fyy Gy = F? [1].

ii) The first Weinberg sum rule [302] leads to FZ — F3 = F?, and the second
Weinberg sum rule gives Fg Mg = F3 M3 [6].
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iii) The analysis of the VAP Green function [299] gives for the coupling combina-
tions Ao, A" and A" entering the form factors in Eq. (6.3) the following results :

F? M

N o= = 4 6.7
2vV2 F4 Gy 22 My (6.7)
N 2Gy —Fy _ Mj—2M} (6.9)
2\/§FA 2\/5]\4\/]\4147
2 Ag2
4hg = N+N = M, (6.9)
V2 My My

where the second equalities in Egs. (6.7) and (6.8)) are obtained using the above
relations i) and ii).

As mentioned above, My and M4 stand for the masses of the vector and axial-vector
resonance nonets, in the chiral and large-N¢ limits. A phenomenological analysis
carried out in this limit [323] shows that My is well approximated by the p(770)
mass, where as for the axial-vector mass one gets M;l/ Ne = My = 998(49) MeV
(which differs appreciably from the presently accepted value of M,, (1260)= 1230+£40
MeV).

In addition, one can require that the J = 1 axial-vector spectral function in
7 — wrny, vanishes for large momentum transfer. We consider the axial two—
point function IT4’(Q?), which plays in 7 — 777y, processes the same role than
the vector—vector current correlator does in the 7 — w7, decays, driven by the
vector form factor. The goal will be to obtain QQC' D-ruled constraints on the new
couplings of the resonance Lagrangian. As these couplings do not depend on the
Goldstone masses we will work in the chiral limit but our results will apply for
non-zero Goldstone masses too. In the chiral limit the IT%’(Q?) correlator becomes
transverse, hence we can write

Q%) = (Q"Q" — ¢ Q) 1a(Q?) . (6.10)
As in the case of the pion and axial form factors, the function I14(Q?) is expected to

satisfy an unsubtracted dispersion relation. This implies a constraint for the J =1
spectral function ImIT4(Q?) in the asymptotic region, namely[297]

Q=00 NC
Imll,(Q*) — — .

Al@) 127
Now, taking into account that each intermediate state carrying the appropriate
quantum numbers yields a positive contribution to ImIT4(Q?), we have

ImITa(Q?) > —3—;2/d<b (T"14) (Thls)” (6.12)

d® being the differential phase space for the three—pion state. The constraint in Eq.

(610)) then implies

(6.11)

Q2 QQ—S W
lim ds / dt —2 =0, (6.13)
0 0 (Q2>2

Q2 —00
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where W, is the structure function defined in Eq. (5.61) B. 1t can be seen that
the condition in Eq. ([€I3) is not satisfied in general for arbitrary values of the
coupling constants in the chiral interaction Lagrangian. In fact, it is found that this
constraint leads to the relations in Egs. (671) and (€8], showing the consistency of
the procedure B,

The above constraints allow in principle to fix all six free parameters entering the
form factors F; in terms of the vector and axial-vector masses My, M. However the
form factors in Eq. (63) include zero-width p(770) and a;(1260) propagator poles,
which lead to divergent phase-space integrals in the calculation of 7 — 7wy,
decay widths. As stated above, in order to regularize the integrals one should
take into account the inclusion of resonance widths, which means to go beyond the
leading order in the 1/N¢ expansion. In order to account for the inclusion of NLO
corrections we perform the substitutions :

1 1
. | , 6.14
M; —¢? M]»Q—qQ— i M;T';(q?) ( )

J

Here R; =V, A, while the subindex j = p,a; on the right hand side stands for the
corresponding physical state.

The substitution in Eq. (6.14) implies the introduction of additional theoretical
inputs, in particular, the behaviour of resonance widths off the mass shell. This
issue is studied in detail in Appendix C and Section In the following, we will
compare it both to the popular width developed in the K'S model [329] and to the
proposal of the earlier study within Rx7', where this off-shell width was added by
hand.

6.3.1 Expressions for the off-shell width of the a; resonance

The definition we have given in Appendix C for the spin-one resonance width
-and applied for the vector case- holds for axial-vector mesons as well, but it would
amount to evaluate the axial-vector-axial-vector current correlator with absorptive
cuts of three pGs (two-loops diagrams) within Rx7. This motivated the chiral
based off-shell behaviour proposal in Ref. [309], an oversimplified approach in which
the a; width was written in terms of three parameters, namely the on-shell width
., (M2), the mass M,, and an exponent « ruling the asymptotic behaviour :

() = D) £ (32) 00— om2) (6.15)

2As expected from partial conservation of the axial-vector current (PCAC), the analogous
relation is automatically fulfilled by Wg 4.

3These results and those in Section have been obtained using the program
MATHEMATICA [489).
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where
oP) = ¢ / dsdt {VE [BW, () + V2 [BW, (1)
12(Vi - Va) Re [BW, (5) BW,(1)°]} | (6.16)
and ,
BW,(¢?) My (6.17)

OME - @ — iMyT,(¢?)

is the usual Breit-Wigner function for the p (770) meson resonance shape, the energy-
dependent width I',(¢?) is given by Eq. (C.8), and the integral extends over the 37
phase space. The vectors V; and V5, and the Mandelstam variables s and ¢ entering
the function ¢(x = ¢?, M%) are defined following the general conventions given in
Sect. B.ATl One can check them explicitly in Ref. [309].

A fundamental result of this Thesis is the improvement in the description of the
off-shell axial-vector widths. We will follow the paper [322] in our explanation.
We propose here a new parameterization of the a;(1260) width that is compatible
with the RxT framework used throughout our analysis. As stated, to proceed as in
the p meson case, one faces the problem of dealing with a resummation of two-loop
diagrams in the two-point correlator of axial-vector currents. However, it is still
possible to obtain a definite result by considering the correlator up to the two-loop
order only. The width can be defined in this way by calculating the imaginary part
of the diagrams through the well-known Cutkosky rules.

Let us focus on the transversal component, II7(Q?), of the two-point Green func-
tion :

I = i/d4:c eiQ'x(O\T[Ai(a:)Ai(O)] 10)
= (@ 9w — Q.Q) I7(Q%) + Q.Q, 11L(Q*), (6.18)

where AL = Gvu%%iq. We will assume that the transversal contribution is dominated

by the 7° and the neutral component of the a; (1260) triplet : II7(Q?) ~ II™ (Q?) +
171 (Q?). Following an analogous procedure to the one in Ref. [491], we write IT* (Q?)
as the sum

Q%) = I + I + 1% + ... . (6.19)

where H?Ol corresponds to the tree level amplitude, H?ll) to a two-loop order contri-
bution, II 21) to a four-loop order contribution, etc. The diagrams to be included are
those which have an absorptive part in the s channel. The first two terms are repre-
sented by diagrams (a) and (b) in Figure [6.3.T] respectively, where effective vertices
denoted by a square correspond to the sum of the diagrams in Figure Solid
lines in the diagram (b) of Figure correspond to any set of light pseudoscalar
mesons that carry the appropriate quantum numbers to be an intermediate state.
The first term of the expansion in Eq. (6.I9) arises from the coupling driven by
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al

(a) (b)

Figure 6.2: Diagrams contributing to the transverse part of the correlator of axial-vector
currents in Eq. (6.19). Diagram (a) gives Il and diagram (b) provides II}). The squared
axial-vector current insertion in (b) corresponds to the sum of the diagrams in Figure
The double line in (a) indicates the a; resonance intermediate state. Solid lines in (b)

indicate any Goldstone bosons that carry the appropriate quantum numbers.

F4 in the effective Lagrangian (£I9). We find

I
Thus, if the series in Eq. ([€I9) can be resummed one should get
F2
Q) = - : (6.21)

M — Q>+ A(Q%)
and the energy dependent width of the a;(1260) resonance can be defined by
M, Fa1(Q2) = - ImA(Qz) . (6'22)

Now if we expand IT*(Q?) in powers of A and compare term by term with the
expansion in Eq. (€I9), from the second term we obtain
M2 N2
A = — M=) (6.23)

ay (1)
1)

The off-shell width of the a;(1260) resonance will be given then by

M2 e Y
( al Q ) ImHa

1
a 1)
M, 1155, (1)

[, (Q%) = (6.24)

As stated, II7|| receives the contribution of various intermediate states. These
contributions can be calculated within our theoretical RxT framework from the
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effective Lagrangian in Eqs. (£19), (431), (@33), [A34), [A43) and (£44). In

particular, for the intermediate 7t7 7" state one has

1 d'pr d'ps 1
L Ty e 2
6Q° / (2m)t (2m)t 1 11 Fomiri (&)

i=1

3

I (@Q%) =

where p3 = @ — p1 — po, and T+ is the 17 piece of the hadron tensor in Eq. (G.1I),
T = VIF + VI'Fy . (6.26)

When extended to the complex plane, the function H?ll)(z) has a cut in the real axis

for 2 > 9m?, where Im H?ll)(z) shows a discontinuity. The value of this imaginary

part on each side of the cut can be calculated according to the Cutkosky rules as :

3

Im I <Q2:|:i6) _ :FE 1 / d4p1 d4p2 T T*, H (_22»71_) e(pO) 5(]92—7712)
W 26Q2 ) (2m)* (2m)t 1T e LA o
(6.27)

with p3 = Q — p1 — p2 and Q% > 9m?2. After integration of the delta functions one
finds

1 1
a 2 . *
Im H(ll) (Q + ’LG) =+ M W / dsdt T{i 1tp o (628)
where the integrals extend over a three-pion phase space with total momentum
squared Q?. Therefore, the contribution of the 77~ 7" state to the a;(1260) width
will be given by

) ~1 M? ?
I = L1 dsdt TF, Ty, . 2

In the same way one can proceed to calculate the contribution of the intermedi-
ate states K™K 7%, K°K7°, K-K% and KT K% ~. The corresponding hadron
tensors T[ can be obtained from Ref. [304]. Additionally one could consider the
contribution of nw7 and nnm intermediate states. However, the first one vanishes
in the isospin limit because of G-parity (see Chapter B]) and the second one is sup-
pressed by a tiny upper bound for the branching ratio [8, 490] and they will not be
taken into account.
In this way we have [

[, (Q%) = T (QY)6(Q*—9m2) + Ii(Q*)6(Q* — (2mk +mz)?) ,  (6.30)
where
T, -5 MaQI ’ m, K 7, K%
e = 192(27)3F3 M, <Q2 _1) / dsdt T Tyy,” - (6:31)

41t is important to stress that we do not intend to carry out the resummation of the series in
Eq. (619). In fact, our expression in Eq. ([6.24) would correspond to the result of the resummation
if this series happens to be geometric, which in principle is not guaranteed [491].
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Figure 6.3: Plot of our expression for I',, (Q?) using the values of the couplings discussed
in Sect.

Here I'7 (Q?) recalls the three pion contributions and I'X (Q*) collects the contribu-
tions of the K K channels. In Eq. (631 the symmetry factor S = 1/n! reminds
the case with n identical particles in the final state. It is also important to point
out that, contrarily to the width we proposed in Ref. [309] [[',, (Q?), in Eq. (G.15)],
the on-shell width I',, (M?2) is now a prediction and not a free parameter.

With this off-shell width a very accurate description of the related observables
will be given in later sections. In other formalisms, like that of the hidden local
symmetry chiral models [492] one needs to restore to a extremely unnatural off-shell
width description that reaches the value of 10 GeV for Q% ~ 2.5 GeV?. In Fig-
ure our expression for I',, is plotted as a function of the invariant mass squared
the hadron system has.
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6.4 Phenomenology of the 7~ — (nm77w) v, process

6.4.1 The contribution of the p(1450)

It turns out that, though some flexibility is allowed around the predicted values
for the parameters, the region between 1.5 — 2.0 GeV? of the three pion spectrum is
still poorly described by the scheme we have proposed here. This is not surprising as
the p(1450), acknowledgeably rather wide, arises in that energy region. We find that
it is necessary to include, effectively, the role of a p’ = p(1450), in order to recover
good agreement with the experimental data. The p’ belongs to a second, heavier,
multiplet of vector resonances that we have not considered in our procedure. Its
inclusion would involve a complete new set of analogous operators to the ones already
present in Lg,r, Eqs. (@I19), [@31), with the corresponding new couplings. This
is beyond the scope of our analysis. However we propose to proceed by performing
the following substitution in the p(770) propagator :

1 1 1 By
2 2 _ 5 2 2 _ N T e 2 _ 2) |
Mp —q*—iM,I',(¢?) 14 By Mp —q*—iM,I',(¢?) Mp, —q*—iMyT ,(q?)
(6.32)
where as a first approximation the p’ width is given by the decay into two pions :
My (@)
/ P 2 2
Ty(®) = Tp(M2)22 0(¢* — 4m?), (6.33)
P P\ p /q2 p(Mp%)

1
plr) = 5 Ve — 4m?2 .

For the numerics we use the values M, = 1.465 GeV and Fp/(MpQ,) = 400 MeV
as given in Ref. [§]. We find that a good agreement with the spectrum, dI'/dQ?,
measured by ALEPH [7§] is reached for the set of values :

Fy = 0180GeV , F4 = 0149GeV  , B, =—025,
My = 0.775GeV , My = 0.8953GeV , M, = 1.120GeV, (6.34)

that we call Set 1. The corresponding width is T'(t — 7wrwr,) = 2.09 x 10713
GeV, in excellent agreement with the experimental figure I'(7 — 777V;)|eap =
(2.11 £ 0.02) x 107! GeV [§]. From Fy and F, in Eq. (634), and the second
Weinberg sum rule we can also determine the value of My = Fy My /F4 ~ 0.94
GeV, a result consistent with the one obtained in Ref. [323]. If, instead, we do not
include the p’ contribution, the best agreement with experimental data is reached
for the values of Set 2 :

Fy = 0206GeV , F4 =0145GeV  , f, =0,
My = 0.775GeV , My~ = 0.8953GeV , M, = 1.115GeV, (6.35)

though the branching ratio is off by 15%. A comparison between the results for the
T — wrwy, spectra obtained from Sets 1, 2 and the data provided by ALEPH is
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Figure 6.4: Comparison between the theoretical M;W—spectra of the 7= — ntr 7 v, with
ALEPH data [78]. Set 1 corresponds to the values of the parameters : Fy = 0.180 GeV,
Fa = 0.149GeV, M,, = 1.120GeV, 8, = —0.25, M4 ~ 0.91GeV. Set 2 corresponds
to the values of the parameters : Fy = 0.206 GeV, Fy = 0.145GeV, M,, = 1.150GeV,
By =0, i.e. without the inclusion of the p’. In the case of Set 2 the overall normalization
of the spectrum has been corrected by a 15% to match the experimental data.

shown in Figure [6.4l Notice that we have corrected the results provided by Set 2
by a normalization factor of 1.15 in order to compare the shapes of the spectra.
Though it is difficult to assign an error to our numerical values, by comparing Set 1
and Set 2 we consider that a 15% should be on the safe side. Notice, however, that
the error appears to be much smaller in the case of M,,.

For Set 1 the width of the a;(1260) is T, (M2) = 0.483 GeV, which, incidentally,
is in agreement with the figure got in Ref. [309] from a fit to the data. The value of
I, (M2) quoted in the PDG (2008) [8] goes from 250 MeV up to 600 MeV.

Our preferred set of values in Eq. (6.34]) satisfies reasonably well all the short dis-
tance constraints pointed out in Sect. [6.3] with a deviation from Weinberg sum rules
of at most 10%, perfectly compatible with deviations due to the single resonance
approximation.
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6.4.2 Low-energy description

After that, we take a closer look to the low-Q? region of the spectrum. In fact,
in our approach we have assumed that O(p*) corrections arising from chiral logs are
small, hence the dominant contributions to hadron amplitudes arise from resonance
exchange. In Figure[6.5] we can see that our expression fits the data remarkably well
in the low-Q? without any need to improve it by adding the effect of the neglected
chiral logs [J. Our working hypothesis is thus confirmed. In this plot we also see
that the form-factors proposed by the KS model induced a systematic departure
of the data points increasing with the energy. It is interesting to note that -as we
asserted in Chapter BF that the wrong description at N LO in the chiral expansion is
naturally carried on to higher energies, once the full expression is included. Indeed,
the low-energy limits of the K.S expressions for the form factors and ours [ already
show that the K.S curve is systematically under ours getting farther as the energy
increases.

In Figure we can see that the shift induced at low-energies in the original
K S-model i gets carried on naturally to higher energies. In the current TAUOLA
parameterization the agreement seems to be better by introducing a large on-shell
a; width (0.6 GeV) that requires to adjust the normalization by a factor of order
40% (1.38 in the curve) that appears to be quite unnatural. Even doing so, the
description between 1.5 and 1.8 GeV? is not good.

6.4.3 dir_ distributions
ij

Next, we will analyse the differential distributions in the invariant masses of pairs
of pions, s;; = (pi+p;)? = (Q —pr)? for i # j # k and i,j,k = 1, 2, 3. Neither
Ref. [78] nor any later publication made a dedicated study of these observables.

®Close to threshold (i.e. for \/@ well below My ) one is able to explicitly calculate the contri-
butions of O(p?) chiral logs, therefore their impact can be numerically evaluated. In fact, Ref [309]
considered this correction by using the results in Ref. [356] because the description at low-energies
was not as good as the one we have achieved now. As we have already explained, the reason
was that the choice of the off-shell width for the a; biased the determination of the parameters
in the resonance Lagrangian and, particularly, affected some of the short-distance QC'D relations
involving parameters that have an impact close to threshold.

6 As described in Eqgs.(6H) and (G.6).

"The original KS model used the following values for the parameters: M,, = 1.251 GeV and
Ta, (Ma,) = 0.475 GeV. With these parameters, the description of the experimental data available
at that time [493] was very good. However, as the experimental errors were reduced ten years later
by CLEO—11 [403], OPAL [494] and ALEPH [78], one noticed that there was a need of including
another parameter to keep such a good description. In order to keep the expression for the off-
shell width the solution adopted in TAUOLA was to modify the on-shell a; width and include a
normalization factor to correct the branching ratio. The new width read 'y, (M,,) = 0.599 GeV
and the normalization factor enhances the decay rate by ~ 1.4.
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Figure 6.5: Comparison between the theoretical low-energy M3 -spectra of the 7= —
ntr m v, with ALEPH data [78]. Our results (red solid line) correspond to Set 1,
Eq. ([634]), and its corresponding low-energy limit (orange dashed line) to Eq.(65). The
green dotted line corresponds to the KS results [329] and its low-energy limit (green
dashed-dotted line) is given in Eq. We observe that the wrong K.S description at NLO
in the chiral expansion is naturally carried on to the whole expression for the spectrum.
Moreover, the excellent agreement of our prediction with data shows that our working
hypothesis of neglecting the effect of O(p*) chiral logs is well-based.

Although we cannot compare our predictions to data now, it will be an interesting
check to elucidate if our description is as accurate as Figure indicates.

In Figure we can see our prediction for dI'/ds. The distribution starts to rise
when (p, + 7;)? reaches Mp2 and then goes increasing smoothly goberned by the
p and a; widths. The contribution of the configuration in which two of the three
pions carry almost all the energy of the hadron system is negligible as one can see
comparing the tail of the spectra with earlier fall off than the one seen in Figure
In this figure and in the next two the small bumps of the curves are due to the error
associated to the integration that is larger in this case than in that of the spectral
function.

Similarly, in Fig we plot our prediction for the distribution with respect to
u. Taking into account that s, ¢t and u are related viau = Q? — s — t + 3m?, that
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Figure 6.6: Comparison between the theoretical M2 -spectra of the 7= — 7ra 7 1,
with ALEPH data [78]. Our results correspond to Set 1, Eq. (634)), and they are also
compared to the KS outcome, as they were given originally [329] as indicated in Eq. (G.0]).
We observe that the wrong K S description at NLO in the chiral expansion is naturally
carried on as they are in TAUOLA right now. In the original parameterization one sees
that the wrong description of the O(p*) xPT terms is carried naturally to the rest of
the spectrum. This is corrected in the updated parameterization in TAUOLA at the
price of including a noticeably large on-shell a; width (0.6 GeV) and an unnaturally large
normalization factor of 1.38.

form factors are symmetric under the exchange {1 <+ 2, s <> ¢t} due to the identity
of two pions one plot would be redundant. Since, moreover, we are working in the
isospin conserved limit in which all pions are equivalent, one of the checks (s;; = s
or s;; = t) will suffice. We have verified that the s- and ¢- plots are identical.
The plot in Figure is noticeably different because the two pions of equal elec-
tric charge cannot couple to a spin-one resonance. We cannot forget that isospin
symmetry breaking is not only induced by the difference of u and d quark masses
compared to the value of the s quark mass, but also by the different electric charges
of the u— and d—type quarks. When this results in a selection rule, the effects are
sizeable as we have observed.

We end this Section by noting that the dynamics encoded in the KS parame-
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Figure 6.7: Our prediction for the s-spectra of the 7= — 77~ 7~ v, with the parameters

of Set 1, Eq. (634).

terization and in our study is different. With this purpose we plot in Figure the
distributions for the s-spectra of the 7= — 7f7 7 v, as given by the K.S model
in its original version and the one in TAUOLA (the latter coveniently rescaled by
1.38). Similar differences can be observed in the t- and u-spectra.

6.4.4 Description of structure functions

Structure functions provide a full description of the hadron tensor 7,7} in the
hadron rest frame. There are 16 real valued structure functions in 7= — (P P,P3)~ v,
decays (P; is short for a pseudoscalar meson), most of which can be determined by
studying angular correlations of the hadron system. Four of them carry information
on the J¥ = 17 transitions only : w4, we, wp and wg (we refer to Ref. [346] and
Eq. and to Appendix A for their precise definitions and discussion). Indeed, for
the 7= — (7m7m) v, processes, other structure functions either vanish identically, or
involve the pseudoscalar form factor Fj', which appears to be strongly suppressed
above the very low-energy region due to its proportionality to the squared pion
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Figure 6.8: Our prediction for the u-spectra of the 7= — 77~ 7~ v, with the parameters

of Set 1, Eq. (6:34]).

mass.

Unfortunately the ALEPH collaboration data [78] only allows to obtain wa.
However, both CLEO — II [403] and OPAL [494] studied all relevant structure
functions. As a result, they have measured the four structure functions quoted
above for the 7= — 7 7%, process, while concluding that other functions are
consistent with zero within errors. Hence we can proceed to compare those experi-
mental results with the description that provides our theoretical approach. In our
expressions for the structure functions we input the values of the parameters of Set
1. This way we get the theoretical curves shown in Figs. 6.10, G.1T] and
The latter are compared with the experimental data quoted by CLEO and OPAL
[403, [494]. For we, wp and wg, it can be seen that we get a good agreement in the
low (Q? region, while for increasing energy the experimental errors become too large
to state any conclusion (moreover, there seems to be a slight disagreement between
both experiments at some points). It will be a task for the forthcoming experimental
results from the B-factories to settle this issue.

On the other hand, in the case of the integrated structure function w4, the
quoted experimental errors are smaller, and the theoretical curve fits perfectly well
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Figure 6.9: Comparison of our prediction and that of the K'S model for the s-spectra of
the 7= — nt7n 7 v,. Our parameters are fixed as indicated in Set 1, Eq. (6.34).

the ALEPH data -that is clearly the one with smaller error bars- and seems to
lie somewhat below the CLEO and OPAL data for Q* < 1.5 GeV?. However, it
happens that w, contains essentially the same information about the hadron am-
plitude as the spectral function dI'/dQ?, so it should not surprise us the excellent
agreement with ALEPH data, considering the curve obtained with Set 1 in Fig[6.4l
This relation becomes clear by looking at Eq. (5.59) if the scalar structure function
W4 is put to zero (remember that it should be suppressed by a factor O(m2/Q?)).
Taking into account that w, is given by Eq. (£.60)

wa(Q?) :/dsdt Wa(Q?, s,t) (6.36)

where W, is the structure function previously introduced in Eq. (559), one simply

has
dl’ G% | Voa)? M? 2 2
dQ? ~ 384?2|7r)g|l\47 (@5 - 1) (1 + 2%) wa(Q?) . (6.37)

In this way one can compare the measurements of w4 quoted by CLFEO — I1
and OPAL with the data obtained by ALEPH for the spectral function, conve-
niently translated into w,4. This is represented in Figure [6.I0) where it can be seen
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that some of the data from the different experiments do not agree with each other
within errors. Notice that, due to phase space suppression, the factor of propor-
tionality between w4(Q?) and dI'/dQ? in Eq. (637) goes to zero for Q* — M?2,
therefore the error bars in the ALEPH points become enhanced toward the end
of the spectrum. Notwithstanding, up to Q? < 2.5 GeV?, it is seen that ALEPH
errors are still smaller than those corresponding to the values quoted by CLEO — 11
and OPAL. On this basis, we have chosen to take the data obtained by ALEPH
to select the parameters as indicated in Set 1 to better describe the hadron ampli-
tude. Finally, notice that a non vanishing contribution of Wg,4 (which is a positive
quantity) cannot help to solve the experimental discrepancies, as it would go in the
wrong direction. Anyway we have estimated that it is orders of magnitude smaller
than the axial-vector contribution.

In the analysis of data carried out by the CLEO Collaboration [401] onto their
7= — 7 797%, results it was concluded that the data was showing large contri-
butions from intermediate states involving the isoscalar mesons f,(600), fo(1370)
and f»(1270). Their analysis was done in a modelization of the axial-vector form
factors that included Breit-Wigner functions in a Kithn and Santamaria inspired
model. Our results in the Effective Theory framework show that, within the present
experimental errors, there is no evidence of relevant contributions in 7= — (777) v,
decays beyond those of the p(770), p(1450) and a;(1260) resonances.

6.5 Conclusions

The data available in 7 — w7y, decays provide an excellent benchmark to study
the hadronization of the axial-vector current and, consequently, the properties of the
a1(1260) resonance. In this chapter we give a description of those decays within the
framework of resonance chiral theory and the large-No limit of QC'D that: 1) Sat-
isfies all constraints of the asymptotic behaviour, ruled by QCD, of the relevant
two and three point Green functions; 2) Provides an excellent description of the
branching ratio and spectrum of the 7 — w7y, decays.

Though this work was started in Ref. [309], later achievements showed that a
deeper comprehension of the dynamics was needed in order to enforce the available
QCD constraints. To achieve a complete description we have defined a new off-shell
width for the a;(1260) resonance in Eq. (6.30), which is one of the main results of
this work. Moreover we have seen that the inclusion of the p(1450) improves sig-
nificantly the description of the observables. In passing we have also obtained the
mass value M, = 1.120 GeV and the on-shell width I',, (M7 ) = 0.483 GeV.

With the description of the off-shell width obtained in this work we can now
consider that the hadronization of the axial-vector current within our scheme is
complete and it can be applied in other hadron channels of tau decays.

The a; resonance, its off-shell width and its coupling to p-m, play an important

role [495] 496], 497, (498, [499] 500}, H0T] in the evaluation of the dilepton and photon



140 7~ — (wnm) " v, decays

5000 T | T T
- A ALEPH -
e CLEO
| =  OPAL —
4000 Our results

3000

w, (Gev')

2000

1000

Figure 6.10: Comparison between the experimental data for wy, from 7= — 7~ 7%,

quoted by CLEO — IT and OPAL [403], [494] and the values arising from ALEPH mea-
surements of 7 — 7w~ 7" v, spectral functions [78]. The solid line is obtained using the

values of Set 1, Eq. (634]).

production rates from a hadronic fireball assumed to be created in the relativistic
heavy ion collisions. This would be important to be able to tell the electromagnetic
radiation of the quark-gluon plasma from the hadronic sources, so that it could be
regarded as an additional possible future application of our findings.
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values of Set 1, Eq. (6.34]).
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Figure 6.12: Comparison between the experimental data for wp, from 7= — 7~ 7%,

quoted by CLEO — 11 and OPAL [403], 494] and our results as obtained by using the
values of Set 1, Eq. (6.34]).
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Figure 6.13: Comparison between the experimental data for wg, from 7= — 7~ 7%7%,,

quoted by CLEO — II and OPAL [403] [494] and our results as obtained by using the
values of Set 1, Eq. (6.34]).
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Chapter 7

7~ — (KK7) v decays

7.1 Introduction

In this chapter we will discuss the hadron form factors and related observables
appearing in 7= — (K K7) v, decays. Once the main features of the hadronization
of the axial-vector current in these kind of decays have been fixed in the previous
chapter, we can deal with these channels where both vector and axial-vector current
contribute at, in principle, comparable rates. In fact, one of the purposes of our
work is to analyze what is the relative relevance of each of them.

We thus analyse the hadronization structure of both vector and axial-vector cur-
rents leading to 7 — K K7 v, decays. At leading order in the 1/N¢ expansion, and
considering only the contribution of the lightest resonances, we work out, within the
framework of the resonance chiral Lagrangian, the structure of the local vertices in-
volved in those processes, that is richer that the one presented in previous chapters.
The couplings in the resonance theory are constrained by imposing the asymptotic
behaviour of vector and axial-vector spectral functions ruled by QCD. Noteworthy,
the short-distance relations coming from QQC'D constraints are compatible in all with
those found in Chapter [6] and to the ones we will find in Chapters [§ and [ as well,
a feature that highlights the consistency of the whole description. In this way we
predict the hadron spectra and conclude that, contrarily to previous assertions, the
vector contribution dominates by far over the axial-vector one in all K K7 charge
channels.

Our study has a twofold significance. First, the study of branching fractions
and spectra of those decays is a major goal of the asymmetric B factories (BaBar,
BELLE). These are supplying an enormous amount of quality data owing to their
large statistics, and the same is planned for the near future at tau-charm factories
such as BES — II1. Second, the required hadronization procedures involve QC'D
in a non-perturbative energy region (E < M, ~ 1.8 GeV) and, consequently, these
processes are a clean benchmark, not spoiled by an initial hadron state, where we
can learn about the treatment of strong interactions when driven by resonances.

We recall that the analysis of these decays have to rely on a modelization of
hadronization, as discussed in Chapter Bl A very popular approach is due to the



146 77 — (KK7) v, decays

so-called Kiithn-Santamaria model (KS) [327, [329] that, essentially, relies on the
construction of form factors in terms of Breit-Wigner functions weighted by un-
known parameters that are extracted from phenomenological analyses of data. This
procedure, that has proven to be successful in the description of the mw7 final
state, has been employed in the study of many two- and three-hadron tau decays
[366, 378, 426 [427), 428, [440]. The ambiguity related with the choice of Breit-Wigner
functions [327, 829, B30] is currently being exploited to estimate the errors in the
determination of the free parameters. The measurement of the K K7 spectrum by
the CLEO Collaboration [404] has shown that the parameterization described by
the K'S model does not recall appropriately the experimental features keeping, at
the same time, a consistency with the underlying strong interaction theory [324].
The solution provided by C'LEO based in the introduction of new parameters spoils
the normalization of the Wess-Zumino anomaly, i.e. a specific prediction of QCD.
Indeed, arbitrary parameterizations are of little help in the procedure of obtaining
information about non-perturbative QC'D. They may fit the data but do not pro-
vide us hints on the hadronization procedures. The key point in order to uncover
the inner structure of hadronization is to guide the construction of the relevant form
factors with the use of known properties of QCD.

The TAUOLA library has been growing over the years [433] 434] [435] 436}, [438|
448 502, 03], 504] to be a complete library providing final state with full topol-
ogy including neutrinos, resonances and lighter mesons and complete spin structure
throughout the decay. In these works, the hadronization part of the matrix elements
followed initially only assorted versions of the K.S model. At present, the TAUOLA
library has become a key tool that handles analyses of tau decay data and it has
been opened to the introduction of matrix elements obtained with other models.
Hence it has become an excellent tool where theoretical models confront experimen-
tal data. This or analogous libraries [505, 506] are appropriate benchmarks where
to apply the results of our research [429), 430, [43T], 432].

We will be assisted in the presented task by the recent analysis of ete”™ — KK
cross-section by BABAR [507] where a separation between isoscalar and isovector
channels has been performed. Hence we will be able to connect both processes
through C'VC'. The general framework for these kind of analyses is discussed in
Appendix and only the concrete application to this channel is included in this
chapter. We have also used the process w — 777~ 7" to extract a given combination
of Lagrangian couplings that will enter into the analysis. This computation consti-
tutes Appendix Although this chapter is based on Ref. [304], the discussion of
our predictions on the shape of the dI'/ds;; and its comparison to the estimates of
other models at the end of Sect. [[4] are included in this Thesis for the first time.
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7.2 Vector and axial-vector current form factors

7.2.1 Form factors in 77 — (KF) 7 v, decays

Our effective Lagrangian will include the pieces given in Eqgs. (3.60), (3.80) -xPT
contributions-, (EI9) Hg, [#33), ([£42) -operators with one resonance- ([EL34]) and

(4371)) -operators with two resonances-.
We write the decay amplitude for the considered processes as

Gr
M= ——Vuu, (1 — u, T, , 7.1
NG Uy, Y ( ) 1 (7.1)
where the model dependent part is the hadron vector

Ty = (K(p1) K (p2) m(ps) | (Vi — Au) e“eo” | 0), (7.2)

that can be written in terms of four form factors Fiy, Fy, F3 and F}, see Eq. (5.51)).
There are three different charge channels for the K K7 decays of the 7~ lepton,
_ _ -0, _ _ _
namely K (py) K~ (p-) 7 (px), K°(po) K (Po) 7 (px) and K~ (p-) K°(po) 7°(px)-
The definitions of Eq. (E51]) correspond to the choice p3 = p, in all cases, and :

_ —0
(p1.p2) = (p+,p-) for the K" K~ case, (p1,p2) = (Pg, po) for K* K and (p1, p2) =
(p_,po) for K~ K° 1In general, form factors F; are functions of the kinematical
invariants : Q?, s = (p; + p2)? and t = (p; + p3)>.
The general structure of the form factors, within our model, arises from the diagrams
displayed in Figure [[.Il This provides the following decomposition :

Fy=F+ F' + %, i=1,2,24; (7.3)

where F* is given by the yPT Lagrangian [topologies a) and b) in Figure [],
and the rest are the contributions of one[Figure 1¢), d) and e)] or two resonances

[Figure 1f)]. -
In the isospin limit, form factors for the 7= = Kt K7 v, and 7= — K'Ko7 v,

! Again, the fact that the SM coulings are of the type V — A makes the spin-one resonances
to rule hadron tau decays. The contribution of scalar and pseudoscalar resonances to the relevant
four-point Green function should be minor for 7 — K Krv,. Indeed the lightest scalar, namely
f0(980), couples dominantly to two pions, and therefore its role in the K K7 final state should be
negligible. Heavier flavoured or unflavoured scalars and pseudoscalars are at least suppressed by
their masses, being heavier than the axial-vector meson a;(1260) (like Kj(1430) that couples to
K). The lightest pseudoscalar coupling to K is the K of x£(800). As we assume the No — oo
limit, the nonet of scalars corresponding to the (800) is not considered. This multiplet is generated
by rescattering of the ligthest pseudoscalars and then subleading in the 1/N¢ expansion [487]. In
addition the couplings of unflavoured states to KK (scalars) and K K7 (pseudoscalars) seem to
be very small [8]. Thus in our description we include J = 1 resonances only. Nevertheless, if the
study of these processes requires a more accurate description, additional resonances could also be
included in our scheme.
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& '\
d) e) f)

Figure 7.1: Topologies contributing to the final hadron state in 7 — KK v, decays in
the Ng — oo limit. A crossed circle indicates the QCD vector or axial-vector current
insertion. A single line represents a pseudoscalar meson (K, 7) while a double line stands
for a resonance intermediate state. Topologies b) and e) only contribute to the axial-vector
driven form factors, while diagram d) arises only (as explained in the text) from the vector
current.

decays are identical. The explicit expressions for these are :

V2

= 55
Fii(s,t) = — V2 By Gy [ AYQ?, s, u,mie,m2,mi)  B¥(s,u, mj, m2)
1 Y 6 F3 Mp2 — g MI2<* — t ,
2 FaGy Q7 ARR(Q?, 5, u, m2, m2, m2)
ar ;o S
. BRR(QZ’ s, u,t, m%(,mfﬂm%)
MIQ(* _t )

where the functions AR, BR ARR and BRR are

2G
AR(QQ,x,y,m%,mg,mg) = 3z +m%—m§+(1——v) [ZQZ—Zx—ermg—m%],

B emtnd) = 2 (- md) + (1= 20 - ormtomd 09
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ARR(Q? x y, m2 m3, m%) = N+X)(=3z+ mg —m?)
2

i m
+ (2Q2+x—y+mf—m§)F(@, Q—;) :

BRQ? 2y, 2, m?, m3, m%) = 2N+ ) (m% — m%)

z  ma
+(y—x+m§—m%)F(@,Q—g) .

The dependence of the form factors with ¢ follows from the relation v = Q? —
s —t + 2m3 + m2. Moreover resonance masses correspond to the lowest states,
M, = M,¢70), Mg = M-(s92) and My, = M, (1260). Resonance masses and widths
within our approach are discussed in Appendix C.

Analogously the F, form factor is given by :

B o= X (7.6)

Ffi(s,1) V2 By Gy [ Bt uymbmy)  ARQA t u, mie, b, m2)

s = ——
2 \5 6 3 Mp2 —s MIQ(* —t ’

Py = 2FaGv @ B Q% t,u, s, mG, mi, m?)

2 (S 3 F3 M2 —Q? M2 —s

ARR(QQ,t,u,m%,m%,mi)
M. —t

The Fj form factor arises from the chiral anomaly and the non-anomalous odd-
intrinsic-parity amplitude. We obtain :

Nc V2

X
k3 1272 F3
4GV . 1+\/§C0t¢9v
F3t(s,t) = T C*(Q?, 5, m3, m3.,m?) <sm2 HVW
1 —+/2tan6 CRQ?, t,m3., m2, m%)
20 \%4 s Uy HIURCy Ty TIU
+ cos” by Mf)—s + MZ. —i
2F, DX(Q?,s,t
A M<2Q ’52)} , (7.7)
1% b
1 1+x/§cot9v

G
Ff(s,t) = 4v2—~

RR ()2 2 .2
ME QP CHH (@7, s,m3) (sm Oy s

1 —/2tan 6y n CRR(Q?, t, m%)
M —s Mz, —t ’

+ cos? Oy
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where C®, D® and CRR are defined as

C’R(QQ,x, m%, mg,mg) = (1 —cy+cs) Q2 — (1 —ca—c5+2c6) T

+(c1 + c2 + 8¢z — c5) m3 + 8¢y (mi —m3),
CP(Q% z,m?) = ds(Q*+2)+ (dy + 8dy — ds) m?, (7.8)

DYQ*zy) = (g1 +292—g3) (x+ 1) — 292 (Q* + mi)
—(g1 — g3) BmE + m2) + 2 g4 (M3 + m2) 4 2 gs mi

and 6y is the mixing angle between the octet and singlet vector states wg and wy
that defines the mass eigenstates w(782) and ¢(1020) :

¢\ _ ([ cosby —sinfy Wy
( w )\ sinfy cosby wo ) (7.9)

For numerical evaluations we will assume ideal mixing, i.e. 6y = tan™'(1/v/2). In
this case the contribution of the ¢(1020) meson to Fj vanishes.

Finally, though we have not dwelled on specific contributions to the Fj; form
factor, we quote for completeness the result obtained from our Lagrangian. Its
structure is driven by the pion pole :

Fy, = EX+F}, (7.10)
1 m?2 m2 —u
Fi(<57t> = \/§Fm2—Q2 (1_'_ Q2 )7
Ry = G [ o) @)
V2 F3Q*(m2 —Q?) | M2 —s M. —t

7.2.2 Form factors in 7~ — K~ K7y, decays

The diagrams contributing to the 7= — K~ K% 7%, decay amplitude are also
those in Figure [[I] hence once again we can write F;, = FX + FR + FRR 4
.... However, the structure of the form factors for this process does not show the
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symmetry observed in 7 — KKrv,. We find :

1
FY = —%
FlR(S,t) = _vaGV BR(S7u7m%(7m72r) + 2 AR(QQ,S,U,m%Om?”m%()
6 F? M. —t 27— s
| ANQ s, m2 mi, mi)
M?(* — U !
FRR(g 4) = @FAGV Q? BRR(Q? s, u, t,m3%,m2, m%)
(s t) = 3 F3 M2 —(Q? MZ. — ¢t
) ARR(sz S, U, m%{, m72r, mﬁ()
Mp2 -5
N ARR(Q%UM?m,{,mZ}(,mﬁ()] )
K* — U
FX = 0,
K+~ =5
B AR(Q2’u,t,m%(,m%(,m72r)
MI2(* — U ’
PR g = Y2EaGr @ {ARR(QQ,t,u,m%m%mi)
3 P ME—Q MZ. —t
Lo BU@ 8 uy s, mi, mie, mz)
Mg — 5
- ARR(QQ’%’m%mi’mi)} (7.12)
K* —Uu

The form factor driven by the vector current is given by :

FY =0
FRag) — DV2CY[CH@ i mi) | CMQ wmi w2, )
S = —_
8 My I3 M%, —t Mi. —u
2FV ER(t,U)
Gy M2 —Q*|"’
Gy 1 CRR(Q% t,m3%)  CRR(Q? u,m%)
Ff(s,t) = —d———————s i K i K| (7.13)
F MP - Q MK* - t MK* — U



152

7~ — (KK7) v, decays

with E® is defined as

ER(w,y) = (91 +292—93) (z — ) . (7.14)
Finally for the pseudoscalar form factor we have :
1 m2(t—u)
Ff(s,t) = ——"——"—
4(57 ) QFQQ(mfr—QZ)’
Py _ LOE_mh [t =)= (mh = m)(@ = m) | 25(t—uw
LA 9 3 Q2 (m2 — Q?) M:. —t M2 —s
M. —u

7.2.3 Features of the form factors

Several remarks are needed in order to understand our previous results for the
form factors related with the vector and axial-vector QC'D currents analysed above :

1/

2/

Our evaluation corresponds to the tree level diagrams in Figure [[.1] that arise
from the No — oo limit of QC'D. Hence the masses of the resonances would
be reduced to My = M, = M, = Mg+ = My and M4 = M,, as they appear
in the resonance Lagrangian ([AIS]), i.e. the masses of the nonet of vector
and axial-vector resonances in the chiral and large -Ng limit. However it
is easy to introduce NLO corrections in the 1/Ng and chiral expansions on
the masses by including the physical ones : M,, Mg+, M,, My and M, for
the p(770), K*(892), w(782), ¢(1020) and a;(1260) states, respectively, as we
have done in the expressions of the form factors. In this setting resonances
also have zero width, which represents a drawback if we intend to analyse the
phenomenology of the processes : Due to the high mass of the tau lepton,
resonances do indeed resonate producing divergences if their width is ignored.
Hence we will include energy-dependent widths for the p(770), a;(1260) and
K*(892) resonances, that are rather wide, and a constant width for the w(782).
This issue is discussed in the Appendix C.

In summary, to account for the inclusion of NLO corrections we perform
the substitutions :

1 1

e H - ,
MIQ% - q2 M]?hys - q2 —1? Mphys thyS(QQ)

where R =V, A, and the subindex phys on the right hand side stands for the
corresponding physical state depending on the relevant Feynman diagram.

(7.16)

If we compare our results with those of Ref. [378], evaluated within the K.S
model, we notice that the structure of our form factors is fairly different and
much more intricate. This is due to the fact that the K'S model, i.e. a model
resulting from combinations of ad hoc products of Breit-Wigner functions, does
not meet higher order chiral constraints enforced in our approach.
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3/ As commented above the pseudoscalar form factors Fy vanishes in the chiral
limit. Indeed the results of Eqs. (TI0, [[I5H) show that they are proportional
to m2, which is tiny compared with any other scale in the amplitudes. Hence
the contribution of Fj to the structure of the spectra is actually marginal.

7.3 QCD constraints and determination of reso-
nance couplings

Our results for the form factors F; depend on several combinations of the coupling
constants in our Lagrangian Lg, 1, most of which are in principle unknown param-
eters. Now, if our theory offers an adequate effective description of QCD at hadron
energies, the underlying theory of the strong interactions should give information on
those constants. Unfortunately the determination of the effective parameters from
first principles is still an open problem in hadron physics.

A fruitful procedure when working with resonance Lagrangians has been to as-
sume that the resonance region, even when one does not include the full phenomeno-
logical spectrum, provides a bridge between the chiral and perturbative regimes [7].
The chiral constraints supply information on the structure of the interaction but do
not provide any hint on the coupling constants of the Lagrangian. Indeed, as in any
effective theory [142], the couplings encode information from high energy dynamics.
Our procedure amounts to match the high energy behaviour of Green functions (or
related form factors) evaluated within the resonance theory with the asymptotic
results of perturbative QCD. This strategy has proven to be phenomenologically
sound [7, 299, B10, B1T], B14, B15] 323] 488], and it will be applied here in order to
obtain information on the unknown couplings.

Two-point Green functions of vector and axial-vector currents Il 4(¢*) were stud-
ied within perturbative QCD in Ref. [297], where it was shown that both spectral
functions go to a constant value at infinite transfer of momenta :

N¢
Sm Il H S =
sm v,A(q ) e 127

(7.17)

By local duality interpretation the imaginary part of the quark loop can be un-
derstood as the sum of infinite positive contributions of intermediate hadron states.
Now, if the infinite sum is going to behave like a constant at ¢*> — oo, it is heuris-
tically sound to expect that each one of the infinite contributions vanishes in that
limit. This deduction stems from the fact that vector and axial-vector form factors
should behave smoothly at high ¢?, a result previously put forward from parton
dynamics in Ref. [279] 280} 281) 282]. Accordingly in the No — oo limit this result
applies to our form factors evaluated at tree level in our framework.

Other hints involving short-distance dynamics may also be considered. The anal-
yses of three-point Green functions of QC'D currents have become a useful procedure
to determine coupling constants of the intermediate energy (resonance) framework
[314, 315, B10, 299, BI1]. The idea is to use those functions (order parameters of
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the chiral symmetry breaking), evaluate them within the resonance framework and
match this result with the leading term in the OPFE of the Green function.

In the following we collect the information provided by these hints on our cou-
pling constants, attaching always to the No — oo case [274] (approximated with
only one nonet of vector and axial-vector resonances) :

i) By demanding that the two-pion vector form factor vanishes at high ¢? one
obtains the condition Fyy Gy = F? [7].

ii) The first Weinberg sum rule [302] leads to FZ — F3 = F?, and the second
Weinberg sum rule gives F2 Mg = F5 M3[6].

iii) The analysis of the VAP Green function [299] gives for the combinations of
couplings defined in Eq. (£.32) the following results :

Vo F? My
2vV2 F4 Gy 2V2 My’
Vo 2Gy —Fy _ Mj —2M}
2vV2 Fy 2V2 My My’
4hg = N+N, (7.18)

where, in the two first relations, the second equalities come from using relations
i) and ii) above. Here My and M4 are the masses appearing in the resonance
Lagrangian. Contrarily to what happens in the vector case where My is well
approximated by the p(770) mass, in Ref. [323] it was obtained M4 = 998(49)
MeV, hence M4 differs appreciably from the presently accepted value of M,,.
It is worth to notice that the two first relations in Eq. (TI8]) can also be
obtained from the requirement that the J = 1 axial spectral function in 7 —
37y, vanishes for large momentum transfer [309].

iv) Both vector form factors contributing to the final states K K7~ and K~ K°x°
in tau decays, when integrated over the available phase space, should also
vanish at high Q. Let us consider H3,(s,t,Q*) = T3T;*, where T} can be

inferred from Eq. (55I). Then we define Iy (Q?) by :

/ dH3 Hiu(svtaQQ) = (QQQ}W - QMQV) HV(QQ)’ (719)
Whereﬁ
3 3 3
/dH3 = %%%54 (Q —p1 —p2—p3)0 (5 —(Q —p3)2) 0 (t —(Q —p2)2)

2
= 102 /dsdt.

2See Section B.411

(7.20)
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Hence we find that

2

T
1204

Iy (Q?) = / dsdt g"” Hiy(s, t, Q%) , (7.21)

where the limits of integration can be obtained from Eq. (5.63), should vanish
at Q* — oo. This constraint determines several relations on the couplings that
appear in the F3 form factor, namely :

g —c+c = 0, (7.22)

¢ — e — 5+ 20 = — 9?;2 %A;Z , (7.23)
2

g1+ 292 —g3 = 0, (7.25)

P 192]\;0%2 Af{vv ' (7:20)

If these conditions are satisfied, ITy(Q?) vanishes at high transfer of mo-
menta for both KK7~ and K~ K7 final states. We notice that the result
in Eq. (C22) is in agreement with the corresponding relation in Ref. [310],
while Egs. (Z23) and (Z.24]) do not agree with the results in that work. In
this regard we point out that the relations in Ref. [310], though they satisfy
the leading matching to the OPE expansion of the (VV P) Green function
with the inclusion of one multiplet of vector mesons, do not reproduce the
right asymptotic behaviour of related form factors. Indeed it has been shown
[315], B23] that two multiplets of vector resonances are needed to satisfy both
constraints. Hence we will attach to our results above, which we consider more

reliable .

v) An analogous exercise to the one in iv) can be carried out for the axial-vector
form factors F} and F;. We have performed such an analysis and, using the
relations in i) and ii) above, it gives us back the results provided in Eq. (ZI8))
for A and \”. Hence both procedures give a consistent set of relations.

After imposing the above constraints, let us analyse which coupling combinations
appearing in our expressions for the form factors are still unknown. We intend to
write all the information on the couplings in terms of F', My and M4. From the

30ne of the form factors derived from the (VV P) Green function is Fr«,(g?), that does not
vanish at high ¢® with the set of relations in Ref. [310]. With our conditions in Eqs. (T23I7.24)
the asymptotic constraint on the form factor can be satisfied if the large- N masses, M4 and My,
fulfill the relation 2M% = 3Mg, that is again recovered in Chapter @ It is interesting to notice
the significant agreement with the numerical values for these masses mentioned above.
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relations involving Fy, F)4 and Gy we obtain :

Fo_ M
F? M5 — M2’
Fio_ My
F? M% — M2’
G? M?
A

Moreover we know that Fy, and Gy have the same sign, and we will assume that
it is also the sign of F4. Together with the relations in Eq. (TI8) this determines
completely the axial-vector form factors Fj 5. Now from Eqs. (Z22HZ.26]) one can fix
all the dominant pieces in the vector form factor Fj, i.e. those pieces that involve
factors of the kinematical variables s, t or Q*. The unknown terms, that carry
factors of m2 or m?%, are expected to be less relevant. They are given by the com-
binations of couplings : ¢; + ¢ + 8¢z — ¢35, di + 8 ds, ¢4 , g4 and g5. However small
they may be, we will not neglect these contributions, and we will proceed as follows.
Results in Ref. [310] determine the first and the second coupling combinations. As
commented above the constraints in that reference do not agree with those we have
obtained by requiring that the vector form factor vanishes at high Q2. However,
they provide us an estimate to evaluate terms that, we recall, are suppressed by
pseudoscalar masses. In this way, from a phenomenological analysis of w — 77~ 7°
(see Appendix [C.3)) it is possible to determine the combination 2 g4 + gs. Finally in
order to evaluate ¢4 and g4 we will combine the recent analysis of o (ete™ — KK)
by BaBar [507] with the information from the 7 — K K7v, width.

7.3.1 Determination of c¢; and g,

The separation of isoscalar and isovector components of the ete™ — KKm am-
plitudes, carried out by BaBar [507], provides us with an additional tool for the
estimation of the coupling constant ¢, that appears in the hadronization of the
vector current [508, 509]. Indeed, using SU(2); symmetry alone one can relate
the isovector contribution to o (eTe™ — K~ K ™) with the vector contribution to
['(r~ — K°K~7%;,) through the relation :

di)? (7= K'K 7%;)| = f(Q*) o= (ete” = K K1) | (7.28)
F3

where f(Q?) and further relations are given in Appendix E. Another relation similar

to Eq. (T.28) that has been widely used in the literature and the assumptions on

which it relies are also discussed in this Appendix. In order not to lose the thread

of our discourse, here we will complete the explanation of our methodology to de-

termine ¢4 and gy.
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Figure 7.2: Comparison of the experimental data [507] with the theoretical prediction for
the cross-section of the isovector component of eTe™ — K*(892)K — KgK*nT process,
for different values of the ¢4 coupling. The x? values are associated to the first 6 data
points only.

Hence we could use the isovector contribution to the cross-section for the process
ete” — KgK*rT determined by BaBar and Eq. (T.2]) to fit the ¢4 coupling that is
the only still undetermined constant in that process. However we have to take into
account that our description for the hadronization of the vector current in the tau
decay channel does not, necessarily, provide an adequate description of the cross-
section. Indeed the complete different kinematics of both observables suppresses the
high-energy behaviour of the bounded tau decay spectrum, while this suppression
does not occur in the cross-section. Accordingly, our description of the latter away
from the energy threshold can be much poorer. As can be seen in Figure [Z.2] there is
a clear structure in the experimental points of the cross-section that is not provided
by our description.

Taking into account the input parameters quoted in Eq. (634) we obtain :
cs = —0.047 £ 0.002. The fit has been carried out for the first 6 bins (up to
Eep ~ 1.52GeV) using MINUIT [510]. This result corresponds to x?/dof = 0.3
and the displayed error comes only from the fit.

We take into consideration now the measured branching ratios for the K K'r chan-
nels of Table [[]in order to extract information both from ¢4 and g4. We notice that
it is not possible to reconcile a prediction of the branching ratios of 7 — KKrv,
and 7 — K~ K%Yy, in spite of the noticeable size of the errors shown in the Ta-
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ble [[ 1l Considering that the second process was measured long ago and that the
7= — K"K 7 v, decay has been focused by both CLEO — III and BaBar we
intend to fit the branching ratio of the latter. For the parameter values :

ci = —0.07%£0.01,
g = —0.72+0.20, (7.29)

we find a good agreement with the measured widths I'(7- — KTK 7 v,) and
(7 — K~ K% ,) within errors (see Table [LT]). Notice that the value of |c4| is
larger than that obtained from the fit to the ete™ — KgK*nT data explained above.
In Figure[Z2 we show the first 8 bins in the isovector component of ee™ — KgK* 7T
and the theoretical curves for different values of the ¢4 coupling. As our preferred
result we choose the larger value of ¢, in Eq. (.29), since it provides a better agree-
ment with the present measurement of I'(7— — K~ K%%v.). Actually, one can
expect an incertitude in the splitting of isospin amplitudes in the eTe™ — KgK*rT
cross-section (as it is discussed in Appendix E). Taking into account this systematic
error, it could be likely that the theoretical curve with ¢4 = —0.07 falls within the
error bars for the first data points.

Using SU(2); symmetry, one can derive several relations between exclusive isovec-
tor hadron modes produced in e™e™ collisions and those related with the vector cur-
rent (F3 form factor) in 7 decays. One can read them in Appendix E, where other
relations for the three meson decays of interest are also derived.

7.4 Phenomenology of 7 — KKnv, : Results and
their analysis

Asymmetric B-factories span an ambitious 7 programme that includes the de-
termination of the hadron structure of semileptonic 7 decays such as the KK«
channel. As commented in the Introduction the latest study of 7= — KTK 7 v,
by the CLEO — III Collaboration [404] showed a disagreement between the K.S
model, included in TAUOLA, and the data. Experiments with higher statistics
such as BABAR and Belle should clarify the theoretical settings.

For the numerics in this section we use the following values

F =0.0924GeV | Fy = 0.180GeV , Fa = 0.149GeV ,
My = 0.775GeV |, Mg« = 0.8953GeV | M, = 1.120GeV. (7.30)

Then we get ', X and A\ from the first equalities in Eq. (.I8]).
At present no spectra for these channels is available and the determinations of
the widths are collected in Table [T [
We also notice that there is a discrepancy between the BaBar measurement of

4The Belle Collaboration has compared recently [512] their spectra [345] with our parametriza-
tion [304]. Good agreement is seen at low-energies and a manifest deviation at s > 2GeV? is
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Source ' K'Knwv) | I'(t— KOKOW*I/T) I'(r— — K- K°%,)
PDG [ 3.103 (136) 3.465 (770) 3.262 (521)
BaBar [400] 3.049 (85)
CLEO — 11 [404] 3.511 (245)
Belle [345] 3.465 (136)
Our prediction 3.4703 3.4%03 2.5103

Table 7.1: Comparison of the measurements of partial widths (in units of 107 GeV)
with our predictions for the set of values in Eq. (Z29]). For earlier references see [§].

I'(r— — K"K 7 v,) and the results by CLEO and Belle. Within SU(2) isospin
symmetry it is found that I'(7— - KK 7 v,) = T'(77 — KOFOW*I/T), which is
well reflected by the values in Table [[.J] within errors. Moreover, as commented
above, the PDG data []] indicate that I'(t— — K~ K°%,) should be similar to
['(r~ — KKrv,). It would be important to obtain a more accurate determination
of the 7= — K~ K% %, width (the measurements quoted by the PDG are rather
old) in the near future.

In our analyses we include the lightest resonances in both the vector and axial-
vector channels, namely p(775), K*(892) and a;(1260). It is clear that, as it happens
in the 7 — w7y, channel (see Chapter [f), a much lesser role, though noticeable,
can be played by higher excitations on the vector channel. As experimentally only
the branching ratios are available for the K K channel we think that the refinement
of including higher mass resonances should be taken into account in a later stage,
when the experimental situation improves.

In Figs. and [T4] we show our predictions for the normalized M3 ;. —spectrum
of the 7= — K*K 7 v, and 7~ — K~ K°7%v, decays, respectively. As discussed
above we have taken ¢y = —0.074+0.01 and g4 = —0.724+0.20 (notice that the second
process does not depend on g4). We conclude that the vector current contribution
(I'y') dominates over the axial-vector one (I'4) in both channels :

PA 1-‘A
— | _ =0.16£0.05, - = 0.18£0.04,
I'y |kKx I'y Ik-Kor
M~ > K"K 7 v,)
=14+0.3 7.31
(= - K- K%%,) ’ (7.31)
observed. Their comparison shows our prediction for ¢4 = —0.04 and g4 = —0.5 , that correspond

to the values presented in Ref. [430]. This points to a lower value of ¢4, as obtained in the fit to
ete” data (See Fig. [[2) and also to a possible destructive interference of the higher-resonance
states p’ and K*’. As soon as we can access definitive Belle data, we will investigate this issue in
detail.
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where the errors estimate the slight variation due to the range in ¢, and g,. These
ratios translate into a ratio of the vector current to all contributions of f, = 0.86 &+
0.04 for the K K7~ channel and f, = 0.85 £ 0.03 for K~ K°7° one, to be compared
with the result in Ref. [80], namely f,(KKr) = 0.20 + 0.03. Our results for the
relative contributions of vector and axial-vector currents deviate strongly from most
of the previous estimates, as one can see in Table [[2 Only Ref. [440] pointed
already to vector current dominance in these channels, although enforcing just the
leading chiral constraints and using experimental data at higher energies.

We conclude that for all 7 — K K7, channels the vector component dominates
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Figure 7.3: Normalized M?(Kﬂ—spectra for 7= — KTK 7 v,. Notice the dominance of
the axial-vector current at very low values of Q2.

by far over the axial- vector one, though, as can be seen in the spectra in Figs. [[.3]
[4], the axial- vector current is the dominant one in the very-low Q? regime.

Next we contrast our spectrum for 7= — KK 7 v, with that one arising
from the K'S model worked out in Refs. [378, [511]. This comparison is by no means
straight because in these references a second and even a third multiplet of resonances
are included in the analysis. As we consider that the spectrum is dominated by
the first multiplet, in principle we could start by switching off heavier resonances.
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Source Iy /T4
Our result 6+ 2
K S model [378] 0.6 0.7
K S model [511] 0.4—0.6
Breit-Wigner approach [440] ~9
CVC 80 0.20 = 0.03
Data analysis [404] 1.26 £ 0.35

Table 7.2: Comparison of the ratio of vector and axial-vector contribution for 7 — K Kmv;
partial widths. The last two lines correspond to the 7= — KTK 7 v, process only.

Results in Ref. [5I1] are an update of Ref. [378]. The result of Ref. [80] is obtained by
connecting the tau decay width with the CV C related ete™ — KgK*7T (see Appendix
[C3)). The analysis in [404] was performed with a parameterization that spoiled the chiral
normalization of the form factors.

However we notice that, in the K'S model, the p(1450) resonance plays a crucial role
in the vector contribution to the spectrum. This feature depends strongly on the
value of the p(1450) width, which has been changed from Ref. [378] to Ref. [511] )
In Figure we compare our results for the vector and axial-vector contributions
with those of the K'S model as specified in Ref. [511] (here we have switched off the
seemingly unimportant K*(1410)). As it can be seen there are large differences in
the structure of both approaches. Noticeably there is a large shift in the peak of
the vector spectrum owing to the inclusion of the p(1450) and p(1700) states in the
K S model together with its strong interference with the p(770) resonance. In our
scheme, including the lightest resonances only, the p(1450) and p(1700) information
has to be encoded in the values of ¢; and g4 couplings (that we have extracted in
Subsection [[.3.1]) and such an interference is not feasible. It will be a task for the
experimental data to settle this issue.

In Figure [[.6] we compare the normalized full M% . spectrum for the 7 — K K7,
channels in the K'S model [511] and in our scheme. The most salient feature is the
large effect of the vector contribution in our case compared with the leading role of
the axial-vector part in the KS model, as can be seen in Figure [[5 This is the
main reason for the differences between the shapes of M% .. spectra observed in
Figure We see in Figures [Z.7] and that similar patterns are observed in the
K~ K°® hadron mode.

As we have taken advantage of in Chapter [6 the plot of the differential
distribution of the decay rate versus the Mandelstam variables s, ¢ and wu is a very

®Moreover within Ref. [378] the authors use two different set of values for the p(1450) mass and
width, one of them in the axial-vector current and the other in the vector one. This appears to be
somewhat misleading.
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Figure 7.4: Normalized M, -spectra for 7= — K~ K°r%,. Notice the dominance of
the axial-vector current at very low values of Q2.

useful tool to learn about the dynamics of the process. In Figure we represent
dl'/ds for 7= — K+t K 7~ v,, both for our prediction -there is no experimental data
we can compare to- and the Finkemeier and Mirkes model. The latter has been
normalized to give a branching ratio consistent with PDG by multiplying it by 0.8.
Figure makes clear how different the dynamics contained in the K'S model and
in our parameterization are.

Similarly, we present in Figs. and [Tl the analogous plots for the ¢- and
u-spectra. Again, we observe that the physics contained in both approaches is pretty
different. This shows up more neatly in Figure that is thus another well-suited
observable we have found to discriminate between both parameterizations. The
observed pattern is analogous to that one shown in the s-, - and u- spectra in the
decays 7= — K~ K°7%v,.. These are very interesting observables in which we expect
data from the dedicated studies of B- and tau-charm-factories in the future.
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Figure 7.5: Comparison between the normalized M?( xr-Spectra for the vector and axial-
vector contributions to the 7= — K™K~ 7 v, channel in the KS model [511] and in our
approach.

7.5 Conclusions

Hadron decays of the tau lepton are an all-important tool in the study of the
hadronization process of QC'D currents, in a setting where resonances play the
leading role. In particular the final states of three mesons are the simplest ones
where one can test the interplay between different resonance states. At present
there are three parameterizations implemented in the TAUOLA library to describe
the hadronization process in tau decays. Two are based on experimental data. The
other alternative, namely the K.S model, though successfull in the account of the
mrw final state, has proven to be unsuitable [404] when applied to the decays into
K K7 hadron states. Our procedure, guided by large N¢, chiral symmetry and the
asymptotic behaviour of the form factors driven by QC'D, was already employed
in the analysis of 7 — 777y, in Refs. [309] and [322], which only concern the
axial-vector current. Here we have applied our methodology to the analysis of the
7 — K K7, channels where the vector current may also play a significant role.
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Figure 7.6: Comparison between the normalized M?(Kw—spectra for7™ - KTK 7 v, in
the K'S model [511] and in our approach.

We have constructed the relevant Lagrangian involving the lightest multiplets of
vector and axial-vector resonances. Then we have proceeded to the evaluation of
the vector and axial-vector currents in the large- N¢ limit of QCD, i.e. at tree level
within our model. Though the widths of resonances are a next-to-leading effect in
the 1/N¢ counting, they have to be included into the scheme since the resonances do
indeed resonate due to the high mass of the decaying tau lepton. We have been able
to estimate the values of the relevant new parameters appearing in the Lagrangian
with the exception of two, namely the couplings ¢4 and g4, which happen to be
important in the description of 7 — K Knv, decays. The range of values for these
couplings has been determined from the measured widths I'(7~ — KT K7~ v,) and
I'(r— — K K% "%,).

In this way we provide a prediction for the —still unmeasured— spectra of both
processes. We conclude that the vector current contribution dominates over the
axial-vector current, in fair disagreement with the corresponding conclusions from
the KS model [5I1] with which we have also compared our full spectra. On the
other hand, our result is also at variance with the analysis in Ref. [80]. There are
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Figure 7.7: Comparison between the normalized M7, -spectra for the vector and axial-
vector contributions to the 7= — K~ K%y, channel in the K'S model [511] and in our
approach.

two all-important differences that come out from the comparison. First, while in the
K S model the axial-vector contribution dominates the partial width and spectra, in
our results the vector current is the one that rules both spectrum and width. Sec-
ond, the KS model points out a strong interference between the p(770), the p(1450)
and the p(1700) resonances that modifies strongly the peak and shape of the Mg k.
distribution depending crucially on the included spectra. Not having a second mul-
tiplet of vector resonances in our approach, we cannot provide this feature. It seems
strange to us the overwhelming role of the p(1450) and p(1700) states but it is up
to the experimental measurements to settle this issue.

Even if our model provides a good deal of tools for the phenomenological analyses
of observables in tau lepton decays, it may seem that our approach is not able to
carry the large amount of input present in the K.S model, as the later includes easily
many multiplets of resonances. In fact, this is not the case, since the Lagrangian can
be systematically extended to include whatever spectra of particles are needed. If
such an extension is carried out the determination of couplings could be cumbersome
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the KS model [511] and in our approach.

or just not feasible, but, on the same footing as the K.S model, our approach would
provide a parameterization to be fitted by the experimental data. The present stage,
however, has its advantages. By including only one multiplet of resonances we have
a setting where the procedure of hadronization is controlled from the theory. This is
very satisfactory if our intention is to use these processes to learn about QC'D and
not only to fit the data to parameters whose relation with the underlying theory is
unclear when not directly missing.
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Chapter 8

T — 77/77/7T_7TOV7- and

7~ — n/n'nr" v, decays

8.1 Introduction

In this chapter we present the study of the three-meson 7 decay modes contain-
ing an 7. These are the decays 7= — nm~ 7'y, and 7= — nnn~v,. They are really
interesting: in the first one only the vector current participates allowing for a very
precise study of it and the second one is a rare decay, in which all contributions
from resonance exchange that we should consider within our formalism vanish, only
the Y PT part does not.

Although the computation of these modes is much simpler than that of the 2K
decay modes we can extract very precise information from them. As we advanced,
the 7= — nm~ 7%, can only be produced via vector current. This mode is measured
with an error ~ 13% [§] , therefore it should be an ideal benchmark to learn about
the hadronization of the vector current in presence of QCD interactions [327] and,
in particular, to test the determination of the couplings in the vector current res-
onance Lagrangian done in Chapter [] and to confront it to the results in Chapter
O However, the branching ratio for this mode in the PDG live disagrees with the
value in the PDG 2008 within errors (the earlier value was (1.81+0.24) - 1073 while
the new one is (1.39 4 0.10) - 1072), so one should be cautious about the strength of
the conclusions we reach. On the other side, the decay 7= — nnm~ v, is privileged.
There are no vector current contributions and the axial-vector current carries only
pseudoscalar degrees of freedom in this case, being suppressed as Fy ~ m?2/Q?, that
is, as ~ mi/Q" in_the spectral function and branching ratios. This observation
makes us to guess [1 a suppression at the level of four or five orders of magnitude
with respect to the same observables in 7= — nm~7’v,. This estimate would yield
a branching ratio of 10~" or smaller, four orders of magnitude less than the current

Tt is reduced to ~ 7% in the update on PDGlive, http://pdg.lbl.gov/2009/tables/rpp2009-
sum-leptons.pdf.

2We take into account the relative contribution of the pseudoscalar form factor in the 37 and
K K7 17 decay modes, where the relative suppression is identical.
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lowest branching fraction obtained (See Table B.1]). If we are able to give the lowest
order contribution to this decay and bound the value of the higher-order terms, this
will be a very appealing channel to look for new physics.

8.2 Form factors in 7= — nr 7',

We consider [514] the process 7= — n(p1) 7 (p2) 7°(p3) v». The labeling of mo-
menta corresponds to Eq. (552). The computation is made for n = ns. The rest of
definitions and normalizations are as usual.

Because of G-parity the axial-vector current form factors vanish

X _ 1R _ 2R _
TAI,QM - AI,Q,M - A172/.L - O . (8].)

In order to see this [327], one needs to consider the respective G—paritiesﬁ of
pion and eta: G, = +1, G = —1, and of the (axial-)vector currents G4, = —1
and Gy, = +1. Notwithstanding, one still has the contribution of the W ZW term,
Eq. (8.80) and the resonance exchange contributions in the odd-intrinsic parity sector
in Egs. (433), (£34) and (442) without any suppression factor vanishing in the
isospin limit. Since any isospin-correction to the G-parity forbidden terms would
contribute much less than all others we neglect it, as we did in any application
considered in this Thesis.

For the vector form factor one needs to consider the diagrams analogous to Figures
[[dla),[[lc), [[Ild) and [[1lf), where the solid single lines now correspond to 7 and

1 mesons. The vector form factors read

N¢
X _ . v, 0 O
TV}L - ZgMVQUp1p2p3 |:6\/67T2F3:| ) (82)
G 1
Ty = e p0p P3PS 4 - 2 8.3
Vi oo PIPAV 7 7 —u [(c1 — 2+ ¢5)Q* x (8.3)
—(c1 — ¢y — 5+ 2c)u+ (c1 + co + 8¢z — c5)m37 + 8cs (mfr — mi)} ,
16 F; 1
TE@ = e i pepS v + 295 — g3) u 8.4
Vi uvoo P1P2P3 /3 M, F3 M2 — Q2 [(g1 92 — g3) (8.4)
—g2 (Q* 4+ 2m2 — ml) — (¢1 — g3) 2m2 + (294 + g5) m] .
: V2 FyGy 1
T2 — e o0 PoPS X
Vi Hvoo P117213 \/g 3 M‘Q/ _Q2

1
Mg—u

(ds(Q* +u) + (dy + 8dy — d3)m? + 8da(m? — mi))} . (8.5)

3G-parity is only exact in the limit of conserved isospin.
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To obtain the 7; contribution one simply has to multiply the above amplitudes by
V2 because we consider the single-angle mixing scheme. Although a detailed study
would need the double-angle mixing framework between the mass eigenstates |n)

and |n) and the flavour eigenstates |n; ) and |ng) [515, 516, 517, 518, 519], for our
study this effect is irrelevant, so that we will simply use |n) = cosfp|ng ) —sinfp|n; ),
") = sinfp|ng ) + cosbp|n; ). We have

T, = cosOpT,, +sindpT,, = (cosﬁp + sinﬁp\/ﬁ) T ~ 0.600T

Ty = —sinfpT,, + costpT;,, = (—sinﬁp + COSQP\/§> T ~ 1.625T, (8.6)

where T' stands for the amplitudes in Eqs. (82), (83), (84]) and (&), calculated
for n = ng for a value of 0p ~ —15°.

8.3 Short-distance constraints on the couplings

Following the same procedure as in Sections and we have found the fol-
lowing constraints on the vector form factor:

Clas =¢p —ca+c5 = 0,
=y No My Fy
c =c—C—C g = —
1256 1 2 — Cs 6 0672 o F?
Ne M2
ds = — oo 57
19272 F
iz =01 + 292 — g3 = 0,
Ne My
— — 8.7
92 19272 /2 Fyy (8.7)

that are consistent with the values found in the 37 and 2K tau decay channels
previously analyzed and also to those to be found in the P~y decays in the next
Chapter.

84 71 —nnm v,

This mode is peculiar because in the chiral limit, it is not generated by the
axial-vector current. This [327] can be understood by noticing that the axial-vector
current coupling to three pGs is built up from the structure generating the two-
meson vector coupling that can not give either nn (because it vanishes due to the
antisymmetric structure in momenta) or nm that would have G-parity —1, while
that of the vector current is +1. This feature is preserved when passing from xPT
to RxT because it only depends on the couplings of spin-one currents to pGs and
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selection rules. Moreover, G-parity also forbids all contributions to F} including the
exchange of a vector or axial-vector resonance.
That is why we only get a contribution in the pseudoscalar form factor Fj, that
is nothing more than the yPT result at O(p?). That is
xPT . m?
TA4M Z3\/§F(Q2—m%) QM' (88)
This channel offers us the possibility to evaluate our assumption of neglecting the
effect of the exchange of spin-zero resonances. Since the yPT result at O(p?) will
give an irrelevantly small branching ratio, we can use this process to study in deep
the relevance of scalar and pseudoscalar resonances in an appropriate environment
where its role cannot be masked by any effect induced by vector or axial-vector
resonances.

8.5 Phenomenological analyses

Unfortunately there is no available data for the spectra of any of the decays
7= = ()7 7, and 77 — n(n )7 v,.. We will be thus guided in our study only
by the figures given by the PDG live, that are: T' (7= — npr—7n%v,) = 3.15(23)-1071°
GeVand I' (77 — n/7 7%,) < 1.81-107'6 GeV. The first one is dominated by the
recent measurement made by the BELLE collaboration [393], 3.06(07) - 1071 GeV
with a high statistics 450 million 7-pair data sample. While this reference fixes an
upper limit on the branching ratio for the mode 7= — nn7~ v, consistent with the
values given above, it does not provide any figure for the decay 7= — n'm~7°v,.

We will use the short-distance constraints obtained in Sect. and complement
them with information got in Ref. [310] as discussed in Chapters [0l and [ We will
employ the relevant values of the coupling constants fixed in Eq.(634]) and also the
determination of 2 g4 + g5 = —0.60 £ 0.02 in Chapter [l Notice that the determi-
nation of ¢4 and g4 in Sect. [[.3.1] does not play any role here.

This way we are left with only two unknowns: the coupling constants c3 and ds,
so our phenomenological analyses will we aimed to gain some information on them
and on their relevance in the spectra of the considered decays.

First of all we notice that it is not possible to reach the PDG branching frac-
tion for the nwm mode with these couplings set to zero, since in this case we have
(7 = nr 7%,) ~ 6.970 - 10716 GeV.

Then, a detailed study of the allowed region in parameter space for c3 and dy
yields that many possibilities are opened for |c3| < 0.06 and |dy| < 0.5, meaning
that it is possible that one of them is zero while the other not and that it is possible
that both do not vanish. In this last case, all possibilities of signs and relative signs

are opened as we illustrate with the following eight benchmark points:

{c5, dy} = {0, —0.578}, {0, 0.461}, {—0.0643, 0}, {0.0560, 0}, (8.9)
{-0.060, —0.040} , {—0.067, 0.030}, {0.060, —0.038}, {0.055, 0.011} .
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For all of them we reproduce the PDG live value within less than one sigma.

We have checked that for all allowed values of the parameters we obtain a value
for the decay channel I' (77 — /7~ 7°v,) that is above the PDG bound. We believe
that the discovery of this mode will help to understand if that is a failure of our
model or an issue in the detection of this mode. For this purpose, the analyses of
the complete BaBar and Belle data samples will be useful. The values that we
obtain for I' (77 — /7~ 7%, ) in units of 1076 GeV for the eight benchmark points
are: 10.92, 8.035, 16.36, 13.32, 15.90, 16.45, 13.65 and 13.31 (in the same order as
given above).

In Figs. and we can see that the coupling that has a bigger impact in the
features of the spectrum is c3 while ds is only relevant when the former is close to
zero. This is the reason why in Figs. and [B.2] we are labeling only the curves with
values of c3 that are not close to each other and with dy only if ¢3 ~ 0. Analyzing
a spectrum it should be possible to determine which of the four labeled curves is
preferred. And even lacking of that, a measurement of the branching ratio for the
n'm~ 7% mode will serve for this purpose as well.

- -0
T >NV,

4e15 ‘

— d,=-0578 o=
..... d,=0.461 %

- ©,=-0.0643
—— ©¢,=0.0560

3e-15

2e-15—

dr/dQ? (Gev™)

le-15

Q* (Gev)

Figure 8.1: Spectral function for the decay 7= — nm~ 7y, using the values for the

unknown couplings corresponding to the eight benchmark points as we define and explain
in the text.

In Figure we show the one-sigma contour for the pdg live branching ratio
for the mode 7= — nm 7y, in the dy-cs plane. In Figure we check that the
branching ratio that we obtain for the mode 7= — /7~ 7’v, is above the pdg bound
for all allowed values of the parameters (labeled only by the parameter whose impact
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Figure 8.2: Spectral function for the decay 7= — 57~ 7%, using the values for the

unknown couplings corresponding to the eight benchmark points as we define and explain
in the text.

is bigger, c3).

Next, we have analyzed Belle data on the 7 — n7~7’v, decay spectra. In
Figure[R5 we can see the results of our fit, which yields the values dy = 0.585+0.006
and c3 = —0.0213£0.0026 that is also the one giving one of the smallest decay widths
for the n’m~7% mode, that is nevertheless a factor of three larger than the PDG upper
bound (last curve in Fig. B2]). Then, we conclude that the value of ds is much larger
(in magnitude) than that of ¢35 and the positive sign solution for dy is favoured by
data. This could be confirmed by fitting the low-energy data on o(ete™ — nrta™)
using the results in Appendix EHY . This possibility is illustrated in Figure 8.0l where
we see that four representative benchmark points produce different predictions for
this cross-section, probably enough to choose which scenario suits better if we had
some experimental cross-section data to compare with. In addition, we consider
also the curve obtained using the fit parameters for the spectrum of 7 — nr~7%v,.
One observes that the latter curve has a clearly smoother behaviour in the highest-
energy part of the figure, which is limited to E ~ 1.5 GeV since we cannot expect

4One can proceed conversely and use the data on ete™ annihilation into hadrons to predict the
corresponding semileptonic tau decays [520] [52T].
5 Although the 7' meson decays to nmTm~ about 45% of the time, there is no significant con-

tamination from the chain o(ete™ — 5’ — nrT77) since, because of C parity it must occur at
NLO in the a-expansion.



8.5 Phenomenological analyses 177

-1 S N\
= t“&‘-&g?_:é e
T —
-2 T T T T T T J
-0,2 -0,1 0,0 0,1 0,2
3
Figure 8.3: One-sigma contours for the branching ratio of the decay 7~ — nn~ 7%y, in

the c3-ds plane.

our parameterization to give a sensible description of the hadron e*e™ cross-section
much beyond this energy [304]. In Fig. we compare our prediction to low-energy
data from several experiments.

We will pursue in the the future a detailed analyses of the contributions from
spin zero resonances to the process 7 — nnm v, in order to exploit the possibility
of searching for new Physics in this decay once it is discovered. This task is neces-
sary since G-parity arguments do not forbid the contributions from the subprocesses
with the axial-vector current coupled to the following hadron currents b~ — nn,
™ = for — m)wﬁ and ™ — agn — nn.

SA Lorentz index and the Dirac structure are omitted.
"Here we consider that the o meson couples dominantly to two pions.
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Figure 8.4: The branching ratio for the mode 7= — /7~ 7'v; is plotted versus the value

of ¢3 for all values of c3 (and da, whose value is not plotted) that yield a branching ratio
for the decay 7= — nn~n'v, consistent within one sigma with the pdg live bound. The
horizontal line for a br = 0.8 - 10~% represents the current pdg bound and the dashed area
to the allowed region that excludes all our curves.

8.6 Conclusions

0 0

We have worked out the decays 7= — nr 7'v,, 77 — p'm n'v; and 77 — g,
within the framework of Resonance Chiral Theory guided by the large- No expan-
sion of QCD, the low-energy limit given by y P71 and the appropriate asymptotic
behaviour of the form factors that helps to fix most of the initially unknown cou-
plings. Indeed only two remain free after completing this procedure and having used
information acquired in the previous chapter.

We have seen that it is not possible to reproduce the decay width given by the
PDG on the former mode with both couplings vanishing. Then, we have observed
that it is quite easy to do that for natural values of these couplings in such a way
that there is a a whole zone of allowed values in the parameter space for them.
Using isospin symmetry, we provide a prediction for the low-energy behaviour of
o(efe” — nprtr). For any allowed value of the two unknowns in the previous
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Figure 8.5: The two free parameters of our description of the 7= — nm~ 7', decays are
fitted to Belle data.

study we can not, however, reconcile our prediction for ' (77 — n/7~7%,) with the
PDG upper bound. We conclude that maybe there was not enough statistics yet for
it to be detected and that this can happen soon analyzing the data from BaBar and
Belle. Finally, we find that until we characterize reliably the spin-zero contributions
through resonance exchange to the process 7 — nnm~ v, we cannot exploit the fact
that the spin-one analogous contributions vanish, making then this channel a very
promising place to search for new physics once it is first detected. We will tackle
this task elsewhere.
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Figure 8.6: Having some cross-section data to compare with, one could tell which is the
preferred scenario for ete™ — naTw~. Noticeably, the curve corresponding to the fit
parameters obtained in 7 — nm~ Vv, gives the smoothest behaviour in energy.
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Figure 8.7: Prediction for the low-energy behaviour of o(ete™ — nntn~) based on the
7= — nn v, decays analysis compared to DM1 [522], ND [523], DM2 [524], CMD-2
[525] and BaBar [526] data.



Chapter 9

7~ — P yvr decays (P =, K)

9.1 Introduction

In this chapter we will consider the structure dependent (SD) description of
the processes 7= — P~ yv, decays (P = 7, K) within the framework of RxT as
discussed in earlier chapters. Until today these channels have not been observed,
which is strange according to the most nave expectations of their decay rates. To
clarify this question is the main motivation of our study.

The structure independent part of the process has been discussed in Sect. B.2.11
We will compute the SD depending part using the Lagrangians in Eqs. (B.60),
(B:34), ([£19) [, (431)), (£33) and (£34). This chapter is based on Ref. [303].

As we recall in Sect. [5.2.2] the relative sign between the IB and SD dependent
part motivated an addendum to [336]. This confusion was motivated by the fact
that they did not used a Lagrangian approach for the SD part. In any Lagrangian
approach this should not be an issue. In order to facilitate any independent check,
we define the convention we follow as the one used by the PDG [§] in order to relate
the external fields r,, ¢, with the physical photon field

=L, =—eQA, + .., (9.1)

where e is the positron electric charge. Determining the relative sign between the
model independent and dependent contributions is an added interest of our compu-
tation.

'We refer only to the part involving A and V resonances, as in any application in this Thesis.
Given the vector character of the SM couplings of the hadron matrix elements in 7 decays, form
factors for these processes are ruled by vector and axial-vector resonances. In the 7 — P~ v,
decays the relevant form factors are given by a two-point Green function. The study of these [6]
showed that other quantum numbers play a negligible role.
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9.2 Structure dependent form factorsin 7= — 7 yv;

The Feynman diagrams, which are relevant to the vector current contributions to
the SD part of the 7= — 7~ vv, processes are given in Figure [0.Jl The analytical
result is found to be

iMsp, = iGr ViaeT, (q) 7" (1 = 75) tr(8)emap € (k) kp° FE(L) (9.2)
where the vector form-factor F{(t) is
_ N¢ 2V2Fy,
Fv<t) = _247T2F7T + 3F7|-MV |:<CQ — C1 — C5)t + (C5 — C] — Cy — 8C3)m72r:| X
cos®0 sin?6
2V2F
ﬁ D,(t) {(cl —cy— 5+ 2c6)t+ (5 — 1 — o — 803)m72r}
4F2 )
+3T Dp<t) dgt + <d1 + 8d2 — dg)mﬂ X
cos?0 sin?6
[ e (1 - ﬁtg@) + Ve (1 + \/ﬁcotg(?)] :
(9.3)
Here we have defined ¢ = (k + p)? = (s — ¢)*> and Dg(t) as
1
Drg(t) (9.4)

T M2 —t—iMpTa(t)

I'r(t) stands for the decay width of the resonance R.
For the vector resonances w and ¢, we will assume the ideal mixing case for them
in any numerical application:

wy = cost w —sinf ¢ ~ \/gw— \/gqﬁ,
: 2 1
wg = sinf w + cosf ¢ ~ \/;Qﬁ + \/;w. (9.5)

The Feynman diagrams related to the axial-vector current contribution to the
SD part are given in Figure 0.2 The corresponding result is

iMsp, = Gr VuaeTy, (9)7"(1 = 75) ur(s) € (k) [(t — m7) gy — 2kupy] FA(1), (9.6)

where the axial-vector form-factor F7(¢) is

F2 2G F? V2F 4\ F
Fi) = opap (1 V) — 25 D+ T D) <_ N Aom’%> ’
iy p s i p

(9.7)

Fy



9.3 Structure dependent form factors in 7= — K v, 183
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Figure 9.1: Vector current contributions to 7= — 7~ yv,.

where we have used the notation from Eq. (432) for the relevant combinations of
the couplings in £Y4P Eq. [@30).

T T ™ T
W,Y @—L ASAN, MJMN W’y

Figure 9.2: Axial-vector current contributions to 7= — 7~ vyv,.

9.3 Structure dependent form factorsin7— — K v,

Although one can read this from Eq.(5I2), let us emphasize that the model
independent part Mg . is the same as in the pion case by replacing the pion
decay constant F, with the kaon decay constant Fi. A brief explanation about
this replacement is in order. The difference of F, and Fk is generated by the low
energy constants and the chiral loops in x PT" [5], while in the large N limit of RxT'
this difference is due to the scalar resonances in an implicit way. Due to the scalar
tadpole, one can always attach a scalar resonance to any of the pG field, which will
cause the pG wave function renormalization. A convenient way to count this effect
is to make the scalar field redefinition before the explicit computation to eliminate
the scalar tadpole effects. In the latter method, one can easily get the difference
of F, and Fk. For details, see Ref. [527] and references therein. For the model
dependent parts, the simple replacements are not applicable and one needs to work
out the corresponding form factors explicitly.

The vector current contributions to the SD part of the 7= — K~ ~u, process are
given in Figure [0.3] The analytical result is found to be

iMsp, = iGr Viset, (q) Y (1 —75) ur(5)emap € (k) k:”‘pﬁ Fé((t) , (9.8)
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where the vector form-factor F{¥ (¢) is

Ne¢ . V2Fy,
247T2FK FKMV

1 sin?6 cos2f
_ 1— 22 te)— (1 22t6’>
[Mg 32 (1 2v2cotg sz \ vatg ]

FE@) = [(02 —c—c)t+ (5 —cp — g — 803)m%<} X

2V/2F,
3FKM“// Dpy+(t) [(cl —cy— 5+ 2c6)t+ (5 — 1 — o — 803)m§(
2 2 2F3 2
+24c4(mK — mw) + F— DK* (t) dgt + (d1 + 8d2 — dg)mK X
K
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Figure 9.3: Vector current contributions to 7= — K~ yv;.

R sin20 (1 B 2\/§C0tg9) - cos2f (1 n 2\/§tg9>] . (9.9)

The axial-vector current contributions to SD part are given in Figure
The corresponding analytical result is

iMsp, = Gp Visetw,_ (q) Y (1—5) ur(s) € (k) [(t— M) Gy — Qkﬂpy} FX(t), (9.10)

where the axial-vector form-factor F(¢) is

F? 2 1 29 sin?0 F?
FE(t) = —V <1_ GV)( g8z o ) —A{COS29ADK1H@)+Sin2¢9ADK1L(t)

4Fy Fy Mg Wd% M) 2F
FyF;
+ \/%Fv [COSQQADKlH () + sin*0a D, (t)]
K
1 cos?0 sin26’> <
o L cos® - X’t+Aom§<> : (9.11)
(Mp2 M3 M2

We have used the notations of Ky and K for the physical states of K7(1400)
and K;(1270) respectively and the mixing angle 64 is defined in Eq.([@I12) as we
explain in the following.

The K4 state appearing in Eq. ([@I4]) is related to the physical states K;(1270),
K(1400) through:

Kyy = cosfy K1(1400) + sinf, K;(1270). (9.12)
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About the nature of K;(1270) and K;(1400), it has been proposed in Ref. [52§]
that they result from the mixing of the states K;4 and Kip, where K;4 denotes
the strange partner of the axial vector resonance a; with J©¢ = 1 and K5 is
the corresponding strange partner of the axial vector resonance b; with J7¢ = 1+,
However in this work, we will not include the nonet of axial vector resonances with
JPC = 17= 283]. As argued in Ref. [528], the contributions from these kind of
resonances to tau decays are proportional to the SU(3) symmetry breaking effects.
Moreover, as one can see later, we will assume SU(3) symmetry for both vector
and axial-vector resonances in deriving the T-matrix always. For the pGs, physical
masses will arise through the chiral symmetry breaking mechanism in the same way
as it happens in QCD. For the (axial-)vector resonances, the experimental values
will be taken into account in the kinematics.

K~ K- K- K~
W,Y @—LK AN MJMN MAN

Figure 9.4: Axial-vector current contributions to 7= — K~ vv,.

9.4 Constraints from (QC'D asymptotic behavior

In this part, we will exploit the asymptotic results of the form factors from per-
turbative QC'D to constrain the resonance couplings. When discussing the high
energy constraints, we will work both in chiral and SU(3) limits, which indicates we
will not distinguish the form factors with pion and kaon, that are identical in this
case.

For the vector form factor, the asymptotic result of perturbative QC'D has been

derived in Ref. [281) 298]

F
FE(t — —o00) = - (9.13)

where F'is the pion decay constant in the chiral limit. From the above asymptotic
behavior, we find three constraints on the resonance couplings

C1—Cy+C5 = O, (914)

V2Nc My \/§de
327T2FV MV 3

3V2F?  \2F,
= + ds
AFy My My

Co — C1 + C5 — 206 = s (915)

, (9.16)

02—01+C5—206
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where the constraints in Egs.(@14), (@.I5) and (@I6) are derived from order of
O(th), O(t%) and O(t™1), respectively. Combining the above three constraints, we
have

Ne M F
Cs — Cg = eV v d3 (917)
32\/§7T2FV \/§MV
My+/ N,
F=YYc (9.18)

267 ’
where the constraint of Eq.(@I8]) has already been noticed in [281] 298, 336].
The high energy constraints on the resonance couplings ¢; and d; have been stud-
ied in different processes. The O PE analysis of the V'V P Green Function gives [310]

Ne M
Cy — Cg — eV s (919)
642121y,
NeMg — F?
ds = — + : (9.20)
64m2F2  8F%
The constraint from 7= — (V P) v, study leads to
Fv
5 —Cg = — ds , 9.21
5 — Co oM, 3 (9.21)
if one neglects the heavier vector resonance multiplet [529].
The results from the analysis of 7= — (K K7) v, are [321 [50§]
NeMy Fy
5 —Cp = —————
T 192v2r2 R
N M3
dy = ———. 22
S 192n2F? (6-22)

It is easy to check that the results of Eqgs.(@.21]) and (9.22)) are consistent. Combining

Eqgs.([@.I7) and (@.21)) leads to

Ne My,
Cs —Cg = —F—,
o 64212 F,
Ne M2
dys = ———V 9.23
3 64m2F2 (9.23)

where the constraint of ¢; — ¢4 is consistent with the result from the O PFE analysis
of the VV P Green Function [310], while the result of d3 is not E)

By demanding the consistency of the constraints derived from the processes of
77 — P v, and 7 — (VP) v, given in Eq.(@23) and the results form 7= —
(KK7)~ v, given in Eq.([@22]), we get the following constraint

Fy = V3F. (9.24)

2However, the difference on the numerical value of both predictions is small, ~ 16% and the
impact of such a difference in any observable in the considered processes is extremely tiny.
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If one combines the high energy constraint from the two pion vector form factor [7]
FyGy = F?, (9.25)
and the result of Eq.([@.24]) we get here, the modified K SRF will be derived
F =+3Gy, (9.26)

which is also obtained in the partial wave dispersion relation analysis of w7 scatter-
ing [530)] .

Although the branching ratios for the modes 7 — Pyv, we are discussing should
be higher than for some modes that have been already detected, they have not been
observed yet. Lacking of experimental data, we will make some theoretically and
phenomenologically based assumptions in order to present our predictions for the
spectra and branching ratios.

Taking into account the previous relations one would have F{(¢) in terms of
c1+ ¢ + 8¢z — ¢5 and dy + 8dy — ds. For the first combination, ¢; + ¢o + 8¢z — ¢5 =
¢1 +4es (1 — ea + ¢5 = 0 has been used), the prediction for ¢; + 4cg in [310] yields
c1+ o+ 8cz3 —cs = 0. In Ref. the other relevant combination of couplings
is also restricted: di + 8dy — d3 = ;Ta. In FJ(t) ¢4 appears, in addition. There is
a phenomenological determination of this coupling in our work on the K K7 decay
modes of the 7 [508]: ¢, = —0.07 + 0.01.

Turning now to the axial-vector form factor, in both channels it still depends on
four couplings: F4, M4, A" and \g. If one invokes the once subtracted dispersion for
the axial vector form factor, as done in Ref. [336], one can not get any constraints
on the resonance couplings from the axial vector form factors given in Eqs.(@.7)) and
@Id). In fact by demanding the form factor to satisfy the unsubtracted disper-
sion relation, which guarantees a better high energy limit, we can get the following

constraint
)\,/ . QGV — FV

NG

which has been already noted in [299].

In order to constrain the free parameters as much as possible, we decide to exploit
the constraints from the Weinberg sum rules (WSR) [302]: FZ — F3 = F? and
MZFE: — M3F3 =0, yielding

(9.27)

omF
~

For the axial vector resonance coupling \g, we use the result from Ref. [299] [322]

F2=2F% | My =

(9.28)

Ao = Gy
VNG

To conclude this section, we summarize the previous discussion on the high energy

(9.29)
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constraints

F, = V3F, szﬁ’ Fia=+2F, M, = My =
1

N=—=, N=-r, c5—c= , dy3=——. 9.30
"= 33 3 5 — Co 3 (9.30)

In the above results, we have discarded the constraint in Eq.(9.20]), which is the only
inconsistent result with the others.

9.5 Phenomenological discussion

Apart from the parameters we mentioned in the last section, there is still one free
coupling 64, which describes the mixing of the strange axial vector resonances in
Eq.[@I2). The value of 64 has already been determined in literature [528] [529] 531].
We recapitulate the main results in the following.

In Ref. [528], it is determined 04 ~ 33°. In Ref. [529], |04] ~ 58.1° is determined
through the considered decays 7= — (V P) v,. In Ref. [5631], the study of 7 — Kjv,
gives |04] =2% as the two possible solutions. The decay D — K7 allows to conclude
that 0,4 must be negative and it is pointed out that the observation of DY — K, 7+
with a branching ratio ~ 5-107* would imply 84 ~ —58°. However, a later analyses
in Ref. [532] finds that the current measurement of B° — K, (1400)7* [8] favors a
mixing angle of —37° over —58°. In this respect, the relation

2

‘F <J/\I/ = K?(MOO)FO) ‘2 — tgb? ‘F (J/\I/ = K$(1270)F°> ‘ (9.31)

would be very useful to get 64, once these modes are detected.

9.5.1 Results including only the WZW contribution in the
SD part

As it was stated in Sects. and it is strange that these modes have not
been detected so far. The most nave and completely model independent estimate
would just include the I B part and the W ZW contribution to the V'V part, as the
latter is completely fixed by QC'D. We know that doing this way we are losing the
contribution of vector and axial-vector resonances, that should be important in the
high-x region. However, even doing so one is able to find that the radiative decay
T~ — m v, has a decay probability larger than the mode 7= — KT K~ K v, B. For
a reasonably low cut on the photon energy this conclusion holds for the 7= — K~ vyv;
as well.

3see Table LI I' (7~ — KK~ K~ v;) = 3.579(66) - 10717 GeV.
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Before seeing this, we will discuss briefly the meaning of cutting on the photon
energy. A cut on the photon energy was introduced in Sect. As it is well know
[533, 534] the IR divergences due to the vanishing photon mass cancel when consid-
ering at the same time the non-radiative and the radiative decays. In practice, this
translates into mathematical language the physical notion that the detectors have
a limited angular resolution that defines a threshold detection angle for photons. If
one considers a photon emitted with a smaller angle it should be counted together
with the non-radiative decay as it is effectively measured this way. The sum is of
course an I R safe observable. The splitting depends on the particular characteris-
tics of the experimental setting. Obviously, the branching fraction for the radiative
decay depends on this cut-off energy. We will consider here the case E, g, = 50
MeV, that corresponds to x = 0.0565. In order to illustrate the dependence on
this variable, we will also show the extremely conservative case of I, ., = 400
MeV (z = 0.45). In Figure we see the radiative 7 decay for a low value of
x, while in Figure we plot it for the high-z case. In the first case we obtain
L (7 — 7 qv,) = 3.182-107' GeV, and in the second one we are still above the
bound marked by the 3K decay, I' (77 — 7 vyv,) = 3.615- 1076 GeV. Proceeding
analogously for the decays with a K~, we find: T'(t7 — K~ qv,;) = 6.002- 10717
GeV for E gy = 50 MeV (Figure @), and I' (77 — K yr,) = 4.589-107'® GeV
for £, = 400 MeV. For any reasonable cut on E, these modes should have al-
ready been detected by the B-factories.

Already at this level of the phenomenological analysis, the question of the accu-
racy on the detection of soft photons at B-factories [535] arises. An error larger than
expected (here and in some undetected particle interpreted as missing energy, in ad-
dition to a gaussian treatment of systematic errors) could enlarge the uncertainty
claimed on the measurement of B~ — 7~ v, [§] when combining the Belle [536] and
BaBar measurements [537, [538] taking it closer to the standard model expectations.

9.5.2 Results including resonance contributions in the m chan-
nel

Next we include also the model-dependent contributions. Since in the Kaon
channel there are uncertainties associated to the strange axial-vector off-shell width
and to the mixing of the corresponding light and heavy states we will present first
the pion channel where there are not any uncertainty of these types and everything
is fixed in an analogous fashion to what discussed in the preceding chapters.

In Figs. the resulting photon spectrum in the process 7= — 7~ yv, is
displayed. In Figure@.9 all contributions are shown for a cutoff on the photon energy
of 50 MeV. For "soft” photons (zo < 0.3) the internal bremsstrahlung dominates
completely. One should note that for very soft photons the multi-photon production
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Figure 9.5: Differential decay width of the process 7= — 7~ vv; including only the
model independent contributions for a cut-off on the photon energy of 50 MeV. In
the vector form factor only the WZW term is considered for this estimate. The
interference contribution is negative. It can be appreciated in Fig. [0.6

rate becomes important, thus making that our O(«) results are not reliable too close
to the I R divergence x = 0. We agree with the results in DF papers, for the same
value of « to the three significant figures shown in Ref. [330].

The spectrum is significantly enhanced by SD contributions for hard photons
(xo 2 0.4), as we can see in the close-up of Figure 0.0 in Figure In Figure
we show that the vector current contribution mediated by vector resonances
dominates the S'D part, while in Figure we plot the interference term between
bremsstrahlung and SD part. If we compare the predicted curves to those in Ref.
[336] we see that the qualitative behaviour is similar: the I B contribution dominates
up to x ~ 0.75. For larger photon energies, the SD -that is predominantly due to
the V'V contribution- overcomes it. We confirm the peak and shoulder structure
shown at x ~ 1 in the interference contribution, that is essentially due to IB — V'
term, and also in the V' A term, that is in any case tiny.

While the integration over the IB needs an IR cut-off, the SD part does not.
We have performed the integration over the complete phase space, yielding (all
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Figure 9.6: Differential decay width of the process 7= — 7~ vv, including only the
model independent contributions for a cut-off on the photon energy of 400 MeV. In
the vector form factor only the W ZW term is considered for this estimate.

contributions to the partial decay width are given in units of the non-radiative
decay, here and in what follows):

Iyy =0.99-107%, Tya=145102~0, T4y =0.1510"2 = T'gp = 1.14-1073.
(9.32)
Our number for I'gp lies between the results for the monopole and tripole parametriza-
tions in Ref. [336]. However, they get a smaller(larger) V'V (AA) contribution than
we do by ~ 20%(~ 200%). This last discrepancy is due to the off-shell a; width
they use. In fact, if we use the constant width approximation we get a number very
close to theirs for the AA contribution. With our understanding of the a; width in
the 7 — 3mv, observables, we can say that their (relatively) high AA contribution
is an artifact of the ad-hoc off-shell width used. Since the numerical difference in
varied vector off-shell widths is not that high, the numbers for V'V are closer.
The numbers in Eq.([@32) are translated into the following branching ratios

BRyv (7 — myv,) = 1.05-107* | BRua (1 — myv,) = 0.15-107%. (9.33)

We can also compare the V'V value with the narrow width estimate: taking into
account the lowest lying resonance p we get

BRyv (1 — mwv,;) ~ BR(T — pv;) x BR(p — my) ~ BR(T — 7 7°v,)BR(p — )
~ 2552% x4.5-107*=1.15-10"*, (9.34)
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Figure 9.7: Differential decay width of the process 7= — K~ ~v, including only the
model independent contributions for a cut-off on the photon energy of 50 MeV. In
the vector form factor only the WZW term (where the axial-vector contribution is
absent) is considered for this estimate. The interference contribution is negative. It
can be appreciated in Fig.

which is quite a good approximation.

In Table we give the display for two values of the photon energy cut-off how the
different parts contribute to the total rate. For a low-energy cut-off the most of the
rate comes from /B while for a higher-energy one the SD parts (and particularly
the V'V contribution) gains importance. While the V' A contribution is always neg-
ligible, the IB — V', IB — A and the SD parts V'V and AA have some relevance for
a higher-energy cut-off.

In Figs. we show the pion-photon invariant spectrum. We find a much
better separation between the I B and SD contributions as compared with the pho-
ton spectrum in the previous Figs. to[@I2 Then, the pion-photon spectrum is
better suited to study the SD effects. In this case, the V' A is identically zero, since
this interference vanishes in the invariant mass spectrum after integration over the
other kinematic variable. Of course, in the V'V spectrum we see the shape of the
p contribution neatly, as one can see in Figure where, on the contrary, the a;
exchange in AA has a softer and broader effect. The I B — SD radiation near the
ay is dominated by I B — A, which gives the positive contribution to the decay rate.
While near the energy region of the p resonance, we find the I B — SD contribution
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Figure 9.8: Differential decay width of the process 7= — K~ ~v, including only the
model independent contributions for a cut-off on the photon energy of 400 MeV. In
the vector form factor only the WZW term (where the axial-vector contribution is
absent) is considered for this estimate.

zo = 0.0565 | zo = 0.45
IB 13.09-107% | 1.48-107°
IB—V | 0.02-107% | 0.04-1073
IB—A| 034-107% [0.29-1073
VvV 0.99-107% | 0.73-1073
VA ~ 0 0.02-1073
AA 0.15-1073 | 0.14-1073
ALL | 1459-1073 | 2.70-1073

Table 9.1: Contribution of the different parts to the total rate, using two different cut-offs
for the photon energy: E, = 50 MeV (z( = 0.0565) and E, = 400 MeV (z = 0.45).

to be negative as driven by IB — V there. In the whole spectrum only the p reso-
nance manifests as a peak and one can barely see the signal of the ay, mainly due
to its broad width and to the counter effect of interferences.
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Figure 9.9: Differential decay width of the process 7= — 7~ ~vv, including all con-
tributions for a cut-off on the photon energy of 50 MeV.

9.5.3 Results including resonance contributions in the K
channel

Next we turn to the 7= — K~ ~v, channel. In this case, there are several sources
of uncertainty that make our prediction less controlled than in the 7= — 7y,
case. We comment them in turn.

Concerning the vector form factor contribution, there is no uncertainty associ-
ated to the vector resonances off-shell widths, that are implemented as done in
previous applications and described in Appendix C. It turns out that the SD part
is extremely sensitive to cs. We have observed that the V'V contribution is much
larger (up to one order of magnitude, even for a low-energy cut-off) than the IB
one for ¢4 ~ —0.07, a feature that is unexpected. In this case, one would also see
a prominent bump in the spectrum, contrary to the typical monotonous fall driven
by the IB term. For smaller values of |c4| (which are suggested by the comparison
to Belle data on 7 — K K7v, decays) this bump reduces its magnitude and finally
disappears. One should also not forget that the addition of a second multiplet of
resonances may vary this conclusion.
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Figure 9.10: Differential decay width of the process 7= — 7 v, including all
contributions for a cut-off on the photon energy of 400 MeV.

The uncertainty in the axial-vector form factors is two-folded: on one side there
is a broad band of allowed values for 6,4, as discussed at the beginning of this sec-
tion. On the other hand, since we have not performed the analyses of the decay
7 — Knmv, modes yet, we do not have an off-shell width derived from a Lagrangian
for the Kj4 resonances. In the 7 — 3wy, decays, [',, has the starring role. Since
the K74 meson widths are much smaller (90 + 20 MeV and 174 4+ 13 MeV, for the
K;(1270) and K7(1400), respectively) and they are hardly close to the on-shell con-
dition, the rigorous description of the width is not an unavoidable ingredient for a
reasonable estimate.

With respect to the two uncertainties just commented, we have checked that the
branching ratio contribution by AA (that is subdominant) is ~ 20% higher for the
|04] ~ 37° solution. In this case, the corresponding AA differential distribution
peaks at a slightly larger x, and the curve is lower in the 0.40 <+ 0.55 region. In
any case, different choices of |04] can barely influence the final conclusions, as it is
illustrated in Table

For the K74 off-shell widths we will follow Ref. [529] and use

Tra(®) = T (M2, ) Mhoa__ it () Oty (0
Kia\l) = 2 KA\l Ky 3 2 3 7
t g (MK1A> + JMme (MKIA)

MK*mﬂ-

(9.35)
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Figure 9.11: Differential decay width of the process 7= — 7~ vy, including only the
structure dependent contributions for a cut-off on the photon energy of 50 MeV.

xo = 0.0565 xo = 0.0565 xg = 0.45 xo = 0.45
cy = —0.07 cy =0 ¢y = —0.07 ¢y =0

04 = 58°(37°) | 164l =58°(37°) | [0 = 58°(37°) | |64l = 58°(37°)

IB 3.64-1073 3.64-1073 0.31-1073 0.31-1073

IB-V 0.69 - 1073 0.10-1073 0.83-1073 0.12-1073
IB—A| 0.22(0.25)-107% | 0.22(0.25)- 1073 | 0.15(0.18)-107* | 0.15(0.18) - 1073

Vv 58.55- 1073 1.30-1073 29.04-1073 0.66 - 1073
VA ~ 0(~0) ~ 0(~0) 0.09(0.09) - 10=* | 0.01(0.01) - 1073
AA 0.13(0.16) - 1072 | 0.13(0.16) - 1073 | 0.12(0.15) - 1072 | 0.12(0.15) - 1073
ALL | 63.23(63.29) - 1072 | 5.39(5.45) - 1072 | 30.54(30.60) - 1072 | 1.37(1.43) - 1073

Table 9.2: Contribution of the different parts to the total rate in the decay 7= — K v,
(in unit of I'; k), using two different cut-offs for the photon energy: E, = 50 MeV
(zo = 0.0565) and E, = 400 MeV (x¢ = 0.45) and also different values of the resonance
The numbers inside the parentheses denote the corresponding results with
|60.4] = 37°, while the other numbers are obtained with [04| = 58°.

couplings.

where

opq(z)

a PR (PP [ (P Q)

(9.36)
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Figure 9.12: Differential decay width of the process 7= — 7w~ yv, including only the
interference contributions for a cut-off on the photon energy of 50 MeV.

Considering all the sources of uncertainty commented, we will content ourselves
with giving our predictions for the two limiting cases of ¢, = —0.07 and ¢, = 0. We
present the analogous plots to those we discussed in the 7= — 7~ ~vv, channel for

both ¢4 values.

9.6 Conclusions

In this chapter we have studied [303] the radiative one-meson decays of the 7:
7~ = (7/K) yv,. We have computed the relevant form factors for both channels
and obtained the asymptotic conditions on the couplings imposed by the high-energy

behaviour of these form factors, dictated by QCD. The relations that we have
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Figure 9.13: Pion-photon invariant mass spectrum of the process 7= — 7 v,
including all contributions. The V' A contribution vanishes identically as explained
in the main text.

found here are compatible with those obtained in previous chapters in the other
phenomenological applications considered in this Thesis.

One of our motivations to examine these processes is that they have not been
detected yet, according to naive estimates or to Breit-Wigner parametrizations. We
have checked the existing computations for the IB part. Adding to it the WZW
contribution, that is the LO contribution in xy PT" coming from the QC'D anomaly,
we have estimated the model independent contribution to both decays, that could
be taken as a lower bound. The values that we obtain for the 7 channel are at least
one order of magnitude above the already-observed 3K decay channel even for a
high-energy cut-off on the photon energy. In the K channel, the model independent
contribution gives a BR larger than that of the 3K decay channel, as well. Only
imposing a large cut-off on £, one could understand that the latter mode has not
been detected so far. We expect, then, that future measurements at B-factories will
bring us the discovery of these tau decay modes in the near future.

We do not have any free parameter in the 7= — 7~ yv, decay and that allowed
us to make a complete study. Since the I B contribution dominates, it will require
some statistics to study the SD effects. In this sense, the analysis of the 7 —
spectrum (t-spectrum) is more promising than that of the pure photon spectrum
(z-spectrum), as we have shown. We are eager to see if the discovery of this mode
confirms our findings, since we believe that the uncertainties of our study are small
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Figure 9.14: Close-up of the pion-photon invariant mass spectrum of the process
7~ — 7 v, including all contributions for v/ > 1 GeV. The VA contribution
vanishes identically as explained in the main text.

for this channel.

As expected, the higher mass of the Kaon makes easier the observation of SD
effects. However, there are several sources of uncertainty in the 7= — K~ ~v, decays
that prevent us from having done any quantitative analysis. The most important
one either rises some doubts about the value of ¢4, a parameter describing the SU(3)
breaking effect, obtained in Ref. [304] or on the sufficiency of one multiplet of vector
resonances to describe this decay. As we have shown, the value of this coupling
affects drastically the strength of the V'V (and thus the whole SD) contribution.
Besides, there is an uncertainty associated to the broad band of allowed values for
0 4. However since the AA contribution is anyway subleading, that one is negligible
with respect to that on ¢;. Even smaller is the error associated to the off-shell width
behaviour of the axial-vector neutral resonance with strangeness, Kjp . Since we
have not calculated the relevant three meson decay of the tau, we do not have this
expression within Rx7T" yet. We took a simple parametrization including the on-shell
cuts corresponding to the decay chains Ky, — (pK/K*m). Since the effect of ¢, is
so large, we expect that once it is discovered we will be able to bound this coupling.

As an application of this work, we are working out [303] the consequences of our
study in lepton universality tests through the ratios I' (17 — 77 v.) /I' (7~ — p~1v,7)
and I' (77 — K~ v,y) /T (K~ — p~v,7) that were also considered by DF' [342] and
Marciano and Sirlin [30} 539, 540]. The ratio between the decays in the denomi-
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Figure 9.15: Pion-photon invariant mass spectrum of the process 7= — 7 v,
including only the SD contributions. The V A contribution vanishes identically as
explained in the main text.

nators within yPT have been studied by Cirigliano and Rosell [541} [542] and the
radiative pion decay within RyxT by Mateu and Portolés [323] recently.
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Figure 9.16: Pion-photon invariant mass spectrum of the process 7= — 7 v,
including only the interference contributions .
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Figure 9.17: Differential decay width of the process 7= — K~ ~vv, including all
contributions for a cut-off on the photon energy of 50 MeV and ¢4, = 0 (left pane)

and ¢y = —0.07 (right pane).
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Figure 9.23: Kaon-photon invariant mass spectrum of the process 7= — K~ yv,
including only the SD contributions for ¢y = 0 (left pane) and ¢4, = —0.07 (right
pane). The V A contribution vanishes identically as explained in the main text.
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Figure 9.24: Kaon-photon invariant mass spectrum of the process 7= — 7 v,
including only the interference contributions for ¢y = 0 (left pane) and ¢y = —0.07
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Conclusions

In this Thesis we have studied some decays of the 7 into hadrons. Besides
their intrinsic interest we were motivated by the possibility of learning about QCD
hadronization in a clean environment provided by the 7 — v, — W coupling that
keeps part of the process unpolluted from QQC'D. Moreover, since the resonances
are not asymptotic states this kind of processes is an ideal tool to learn about their
properties since its influence through exchange between the L* current and the final
state mesons is sizable. Another target of our study was to provide the experimen-
tal community with an adequate theoretical tool to analyze these decays, in a time
where there has been a lot of works from the B-factories BaBar and BELLE and
the upgrade of the latter and the future results from BES — I seem to point to
an even more productive era. Since the description of hadron currents in the Monte
Carlo generator TAUO LA needed an improvement we wanted to work in this direc-
tion, as well. Finally, the low-energy ete™ cross section in the Monte Carlo generator
PHOKHARA [543] did not have all desirable low-energy constraints implemented
for some modes [445], [544], 545, [546]. With the new efforts to measure with great
precision this cross section exclusively in VEPP, DA®N E and the B-factories there
was also a need to improve this low-energy interval of the form factors. We have
worked in all these directions with the results that are summarized in the following.

Our task is rather non-trivial from the theoretical point of view since: first, the
fundamental theory, QC'D is written in terms of hadrons, while we measure mesons.
Second, a perturbative expansion in the coupling constant of the QC'D Lagrangian
will not converge at the low and intermediate energies we are interested in so that
we need to find an alternative expansion parameter to work in an EFT framework
using the active fields in this range of energies as degrees of freedom and keeping
the symmetries of the fundamental theory. Third, although it is clear how to build
an FFT for low-energy QC'D based on the approximate chiral symmetry of this
subsector, it is not so when going to higher energies. Four, a promising parameter,
as it is 1/ N, succeeds in explaining qualitatively the most salient features of meson
phenomenology but it is difficult to apply it quantitatively since its predictions at
lowest order are contradictory to the Weinberg’s approach to EFT's: while LO in
the 1/N¢ expansion predicts an infinite tower of infinitely narrow resonances, the
EFTs require just the relevant fields. Besides, only a few excited resonances are
known for every set of quantum numbers so there is no model independent way to
satisfy the No — oo requirements, either. As a conclusion on this point we must
admit that it will be necessary to model the 1/N¢s expansion. One realizes that we
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have traded the problem of not having a suitable expansion parameter by having it,
although lacking an unambiguous way to perform the expansion even cutting it at
lowest order.

From the phenomenological point of view there are also some subtleties that re-
quire a caveat: while for some decay modes there is already a lot of very precise in-
formation that allow us to do a precision study (7 — 7n7v,, 7 — Knv,, 7 — nnnv,),
for other modes the situation is not that clear , like for instance the 7 — KKnv,
decays that would have helped to fix the vector current sector. Since that was not
possible we turned to the channels 7 — nmmwr, where there is only vector current
contribution in the isospin conserved limit that proved to be helpful. One should
also bear in mind that the interplay between Monte Carlo generation and signal
extraction is important and since the Monte Carlo relies on a given model for the
signal to background splitting this brings in additional uncertainties, specially in
the case where both currents can in principle contribute sizably to the decay as in
7 — KKrv,, or in rare decays where there can be an important background in
some phase space corners from other modes. All this would suggest the following
approach: The Monte Carlo generators having some variety of reasonable hadron
currents and the fit to all relevant modes being made at a time. Since this is not
possible yet, one should not take all conclusions from partial studies as definitive.

The considerations in the two previous paragraphs do not mean at all that there
is no point in carrying these investigations on. The essential thing will be to rec-
ognize which conclusions are firm and which can be affected by any of the errors
commented above. Our approach has as many QC'D features as we have been able
to capture and they are more than in other approaches which justifies our labor and
brings in its interest. We will emphasize its virtues next.

Our approach includes the right low-energy behaviour inherited from y P7T'. This
is essential because a mismatch there is carried on by the rest of the curves. It fol-
lows the ideas of the large- N limit of QC'D and implements them in order to have
a theory of mesons: including the lighter pGbs and the light-flavoured resonances.
Therefore it has the relevant degrees of freedom to describe the problem. The theory
built upon symmetries does not have yet all QC'D features we can implement. To
do so, we require a Brodsky-Lepage behaviour to the form factors. This warrants
the right short-distance behaviour and determines some couplings which makes the
theory more predictable. Our approach to the large-N¢ limit of QCD is guided
by simplicity on the spectrum (we include the least number of degrees of freedom
that allow for a description of the data) and by the off-shell widths that are derived
within Rx7T. In the remainder of the introduction we highlight the most relevant
contributions we have made during our study.

First of all, we have fixed the axial-vector current sector making theoretical pre-
dictions and the description of observables compatible. There was an inconsistency
between the relations obtained in the Green function < VAP > and the description
of the 7 — mrmy, observables. We have found the way to understand both at a time
and, remarkably, these relations do not only hold for all tau decays into three mesons
and for the (VAP) Green function but also for the radiative decays 7 — (7/K)yv;
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which we take as a confirmation of our picture and of the assumptions we have made
concerning the modelization of the large- N limit of QC'D in a meson theory.

A fundamental result coming from both the 7 — n7wnr, and 7 — K Knv, stud-
ies is the off-shell width of the axial-vector meson I',,. It incorporates all 37 and
KK cuts and it neglects the nmm cut that vanishes in the isospin limit because of
G-parity and the nnm cut whose upper br limit is tiny. Ty, (Q?) and the 7 — 7r7y,
form factors have been implemented in TAUOLA. The agreement is better than
the error associated to the statistical sampling and at the level of few per thousand.

We provide our prediction for additional observables both for 7 — w7y, and
7 — KK, that could be confronted to forthcoming data. On the latter channel
there is however some ambiguity because in addition to the short-distance relations
we obtained we borrowed two of them from the study of the < VV P > Green func-
tion and this is an assumption. However lacking of a prediction for the spectra (we
could not even digitize the published plots since they corresponded to raw mass data
without the efficiency corrections implemented) we decided to make them since we
have observed that the departure observed between short-distance relations affect-
ing the vector current couplings in three-point Green functions and three-meson tau
decays was small.

With this approach we have given our prediction for the relevant observables in
the K K7 channels and we showed that, contrary to some previous determinations,
the vector current contribution can not be neglected in these decays. Since we
have convincing reasons to believe that the description of the axial-vector current is
pretty accurate, we think that this conclusion is firm. On the contrary, there can be
some changes in the shape of the curves due to the assumption commented in the
previous paragraph. This only data will tell. Our parametrization for the hadron
form factors in the 7 — K K7v, has been implemented in TAUOLA to a great level
of precision. We have decided to allow for some freedom in the assumptions on the
relations among couplings that we commented before.

The study of the decays 7 — nmmv, has bring us information about two previously
undetermined couplings. We have determined an allowed ellipse where they can be
and illustrated with some benchmark points the impact of them on the spectra. The
experimental data has allowed us to favour one of the benchmark scenarios that we
considered and refine our determination fitting Belle data. If our description of the
former process is correct we believe that the upper bound on the decay 7 — n'nmwv,
is wrong, and should be detected with some five times more br. Finally we have
worked out isospin constraints and provided a prediction for the low-energy cross
section ee™ — nrtw~ that compares well to data in these regime. We have pro-
vided with our codes to the PHOK HARA team. Symmetries make the 7 — nnmuv,
decay a wonderful scenario to test the dominance of the spin-one resonances over
those of spin 0. All exchanges of vector and axial-vector resonances are forbidden
and then one only has the contribution from Y PT at O(p?). The discovery of this
mode would allow to estimate in a clean environment the effect of scalar and pseu-
doscalar resonances in the future.

Finally, we have studied the radiative decays 7 — (w/K)yv,. Since the axial-
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vector current is completely controlled we have very firm conclusions. First, we
have confirmed the earlier estimations: this mode has much larger br than some
that have indeed been measured. Second, we have obtained our predictions for the
observables. We obtain a V'V contribution similar to earlier works but we obtain
a much smaller AA contribution as corresponds to the well- behaved I',, that we
used.

If we assume that the I B contribution should dominate up to the hard photon
region, it seems that the channel 7 — K~v, suggests that the value of ¢, that was
obtained from 7 — K K7v, decays is too large. Since this coupling does not appear
in the 7 — n"nry, decays one should wait to analyze experimental data on the
K K7 mode to understand this issue.

Among the appendixes there is some technical material. For instance the formu-
lae needed to obtain the distributions dI'/ds;; that were requested by the BELLE
collaboration for an ongoing study they are doing on the substructure of the 7 —
KKrv, decays [547]. There are two other appendixes concerning the relation of
theoretical formulae to the experimental measurements. One can also find the com-
plete set of isospin relations for three meson modes between o(ete™) and 7 decays
and the computation of the process w — 777" that allowed us to fix another
combination of couplings in the Lagrangian. For this purpose we needed to derive
a new piece for the Resonance Chiral Theory Lagrangian. The other appendixes
summarize theoretical information that helps to understand better the contents of
this Thesis.

As final conclusions we would like to say that we are satisfied for many reasons: we
have fixed the couplings of the axial-vector current sector of the Rx7T Lagrangian
and we have provided a precise description of the 7 — mnmy, observables. This
includes a sound description of the a; resonance width. We have improved the
knowledge on the odd-intrinsic parity sector of the Resonance Lagrangian and ap-
plied it to some processes of interest. Future experimental data from BaBar, Belle
and BES could help us to proceed further in this direction. We have also worked
in the application of these findings to the Monte Carlo generators for low-energy
Physics. In particular, for TAUOLA in tau decays and PHOKHARA in the ete™
cross-section. Ideally this will result in a global fit to all relevant channels with an
adequate splitting of signal and background accounting well for the pollution from
other channels. We hope to be able to accomplish this program.



Appendix A: Structure functions
in tau decays

Hadron and lepton tensors are Hermitian and can be expanded in terms of a set
of 16 independent elements:

L M"Y = LOHYO — L0310 _ 0990 4 £l (A1)

In order to isolate the different angular dependencies, it is convenient to introduce
16 combinations of defined symmetry, the so-called lepton (Lx) and hadron (W)
structure functions. This way,

LoH"™ = LxWy = 2(M? - Q%)) LxWx, (A.2)
X X

where X stands for A, B, C, D, E, F, G, H and I -the structure functions that
collect (axial-)vector contributions- and also for the ones including information on
the pseudoscalar form factor: SA, SB, SC, SD, SE, SF and SG. All of them are
obtained through [346]:

£11 + £22

Ly=="—>"—, Wi = H" +H*,
Ly = L%, Wy = H®,

chﬁ, We = HY —H*2,

Ly = Lgﬁﬂ, Wy = H2 4+ H

Ly = S(£2 = £%), Wy = —i(H—#),
Lsz, W = H® +H,

Lo = (L%~ L), Wo = —i(H® —H"),
LHZ%, Wi = H® + H?,

L = %<£23 LY W = —i(HB —H?),
Lsa = L%, Wga = H”,
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Lsp = —%, Wsp = H™ + 1,

Lso = —%(501 C L), Wee = —i(HY — HY),

Lsp = —M, Wsp = H” + H*?,

Lsg = —%(502 — L) quad Wsp = —i(H” — H?),

Lor = —M, Wer = H® + HP

Lsg = —%(503 LY W = —i(H — 1) (A3)

In the hadron rest frame, with axis z and x aligned with the normal to the hadron
plane and g3, respectively; one has the relations:

qg - <E37Q§7070> ) qg - <E27q§7q370) ) QiL - (Elaqf7Qi/70) Wlth

Q* —si +m; /
Ei = : ) Q§ = E??_mga
24/ Q)2

. 2FyFEs3 — s +m3+mj -
% = Sy 3,q§’:—\/E§—(q2)2—m§,
a3
. 2E\E3— sy +m?+m} -
4 = o ' 3,613{:\/E%—(q1)2—m?:—q32’-
3

(A.4)
If we introduce the following variables:

v =Vi=qi—q, 20 = Vi =q—q5, x5 =V =q] = —q3 , x4 = V5 = Q13¢5 ,
(A5

it is straightforward to see that both descriptions either in terms of form factorsé
or structure functions are completely equivalent:

Wa = (] + 23 [F{'1P + (a3 + 23)°| B + 2(wwn — a)Re(FF F3Y)
Wy = ai|F) 7,

We = (af = @d)?|F{ P + (23 — 23)°| F'[* + 2(z1az + o3)Re(F F}),
Wp =2 [$19€3|F1A|2 - $2$3|F£4|2 + w3(w9 — $1)%6(Ff4F£4*)] )

Wg = —2x3(zy + 22)Sm(FAF™)

Wr = 2z [21Sm(FP ) + 2.Sm(F FY )]

Wo = —20, [mRe(FAEY) + aRe( R )]

4As defined in Eq. (551).
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Wir = Zaes [Sm(FARS) — Sm(FAEY)]

Wi = ey Re(F{FY) — Re( )]

Wsa = Q*|F,

Wsg = 2¢/Q? [11Re(F{AF{™) + woRe(Ff F{™)]

W = ~2y/@ [ Sm(FLFL) + mnSm(F{LF)]

Wsp = 2v/Q%s [Re(F{'F5™) — Re(F5'F37)]

Wer = —23/Q, [Sm(FAF) - Sm(FARS)]

Wsrp = —2\/7$4 [S FVFA* ]

Wsa = —2v/Q%xy [Re(F) F{™)] . (A.6)

The corresponding formulae for the two-meson decays of the tau can be found in
Eq. (547) and for the decays into one pG and a spin-one resonance in Ref. [347].
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in three-meson

Appendix B:

tau decays

In this appendix we start from the expressions for the structure functions in three-
meson tau decays derived in Sec. (.41l and derive from them the formulae for the

differential decay width with respect to the invariant masses of the different meson

o dl
pairs, 7.

We will obtain expressions allowing to exchange at will the role of the Mandelstam

variables s, ¢ and u, Egs. (B.10) and (B.II)).

Clearly, one cannot exchange the orders of integration for the variables s and Q?

in Eq. (5.63), since s™% = M ((Q?).
Therefore, it is useful to perform a change in the integration variables so that any
dependence in them is erased from the integration limits. It is the following:

/dx:/O(b—a)dy<—>x5a+y(b—a),dx:(b—a)dy. (B.1)

In our case, this would be (s = (my +me)?+y [(\/ Q% —mg3)* — (m + m2)2} )3

[ o [ [@ e @2

mi+mg)?

so we will have:

(M t(Q%y) ) )
r= [ /dy/ —mg)? = (ma + )] F(Q0.1)
(m14ma+ms3)? (@)

and we can exchange the y and Q? integrations to write:

(M-,— my t+(Q27y)
dr = / dy / 0? / (B.4)
1+ma+ms3)? t—(Q3%,y)
whence:

(Mr—my)? tH(Q%y)
. i@ [ (V@ mi o ma| @) (B3

dy mi1+ma+ms3)? t-(Q%y)
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In order to have for y the physical limits s has, we perform a second change of
variable, so that S, = (m1 + ma)?, but spee = (M, —m, — m3)?, that is: y =
s—(m14-ma)” 5. Explicitly:

(M7 —my —m3)%—(m1+m2)

(M —m,)? (/Q2-m2)? +(Q2,s)
/ 1 @/ F(Q2 s.t) =
)? t

(m1+ma+ms3)? (m1+mo —(Q%,s)

/@/an 2/MWWW@—%P%m+mfﬂ@%w=

1+m2 -i-ma)2 t—(Q%y)

—my (Mr—my)? tt(Q2,s)
:/ ds/ dQQ/ F(Q? s,t) x
(m1+m2)? (m1+ma+ms)? t_(Q3?,s)

(V@7 = w3 = (1 + m)?]

(M’T —m, — m3)2 - (ml + m2)2 .

(B.6)

If one is interested in obtaining dI'/ds, for instance, one may use the following
expression:

G2, |V CEM)|2 9 2 ,
j_l; - W /dQth (]52 ) J(@) [WSA<Q2,§¢)+3(1+2%)
(Wa(@Q%5,1) + Wa(Q%5,1)] (B7)

where s is defined asﬁ

s — (my +my)?

8(, @) = (matm;) +(MT —my, —mgz)?* — (my +my)

5 [(\/@ - m3>2 — (m1+ m2)2} :
(B.8)

and the factor J(Q?) is

(\/@ - m3)2 — (M1 +my)?

J(Q ) (MT_mV_m3)2—<ml+m2)2

(B.9)

The limits for the Q? remain unchanged, and ¢™%* remain the same, provided one
uses 5: tM9% = {mar(()2 5) In case one is interested in a projection different from the
s-one, the indices 1,2,3 can be permuted ciclically and one can use the integration

limits:

1
Sz;%frf = m {(Q2 - mi - m? + m?)Z — [)\1/2 (Q27 sjk,m?) + A2 (mﬁ,mi, Sjk)}Q} )
J
(B.10)
Sikmin = (M + M) 56 = (V/Q* —my)*
Qrin = (my+my+mg)* Q> = (M, —m,)*. (B.11)

5From the following Eq. it is evident how to proceed with just one change of variables. However,
I preferred to present it in two steps because of the general usefulness of the change in Eq. (B.J).
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1]

It may be convenient to use
ar
— B.12
T2 (B.12)

It is worth to notice that the proposed expression (B.7) is efficient and fast when
computing the integration, even with rather ellaborated structures for the form fac-
tors and realistic off-shell widths for the resonances.
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Appendix C: Off-shell width of

Vector resonances

C.1 Introduction

Resonance widths have a big importance in any process whose energy is able to
reach its on-mass shell, specially if they are rather wide. Any sensible modelization
of the process must take this into account. Masses and widths of particles depend
on the conventions one employs and on the chosen formalism. We will explain in
this appendix the approach we use and show that it is consistent with Ry7" and
general field theory arguments.

Since our work only includes spin-one resonances, we will not consider the case
of scalar and pseudoscalar resonances. We will start by the easier case of vector
resonances that involves, at lowest order, two-particle intemediate states. Then, we
will consider the case of axial-vector resonances, where the three particle cuts give
the first contribution.

C.2 Definition of a hadron off-shell width for vec-
tor resonances

In the antisymmetric tensor formulationﬁ the bare propagator of vector mesons
is given by

'k 2i 2i
(O (i), Ve }0) = [ S {2 at o Zoon L

(C.1)
with Qﬁﬂ)g the projectors over longitudinal (transverse) polarizations.

There is no doubt that physical observables are insensitive to the field represen-
tation. But here we are concerned about the off-shell behaviour of resonances so, in
principle, the issue of independence on field redefinitions should be studied for the
proposed width.

Ref. [491] proposes to define the spin-1 meson width as the imaginary part of
the pole generated by resuming those diagrams, with an absorptive contribution in

SFor further details, see Appendix
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the s channel, that contribute to the two-point function of the corresponding vector
current. That is, the pole of

Hfj; = i/d4xeiqx<O|T [Vg(x)x/;k(O)] 0), (C.2)
with
Vi = 5§§§T, (C.3)

J

where Sgyr is the action that generates the Lagrangian of RxT.
The widths obtained in this way are shown to satisfy the requirements of analyt-
icity, unitarity and chiral symmetry prescribed by QCD.

C.1 p off-shell width

In order to construct the dressed propagator of the p° (770) meson, we should con-
sider -for a definite intermediate state- all the contributions carrying the appropriate
quantum numbers. In this case, the first cut corresponds to a two-pGs absorptive
contribution that happens to saturate its width. We will neglect the contribution
of higher multiplicity states that is suppressed by phase space and ordinary chiral
counting. The procedure will not reduce to the computation of self-energy diagrams.
The counting in the EF'T will rule what effective vertices are to be used to obtain
the relevant contributions to the off-shell width.

The effective vertices that will contribute to 7 7 scattering and to the pion vector
form factor, are those corresponding to an external vector current coupled to two
pG's, and to a vector transition in the s channel contributing to the four pGs-vertex.
The construction of the effective vertices goes as sketched in Figure where, at
the lowest chiral order, the local vertices on the RHS of the equivalence are provided
by the O(p?) xPT Lagrangian. The diagrams contributing to the physical observ-
ables will be constructed taking into account all possible combinations of these two
effective vertices.

In Ref. [491], it was proposed to construct a Dyson-Schwinger-like equation
through a perturbative loop expansion. At tree level, one has to take into account
the amplitude provided by Figs[C2(a) and [C2[(b) , that is, the effective vertex in
Figure . For the one-loop corrections, we are only interested in those contribu-
tions with absorptive parts in the s channel, generated by inserting a pG-loop using
the two effectives vertices in Figure[C.Ilwhich leads to the four contributions in Figs.
[C2c), [C2Ad), [C2Ae) and [C2(f). In this way the computation is complete up to
two loops. The resulting infinite series happens to be geometric and its resummation
gives

M2
F(¢) = -

= —— , (C.4)
M2 [1 + 2%@)%322] — @ — iMyT,(¢?)
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where My, is the common mass for all the multiplet of vector mesons in the chiral
limit,

. 1
By = Bas (¢%, mZ, m2) + 3 Ba(q*, m¥, m¥), (C.5)

and Bay(q?, m3., m2) is defined through

/ dPy i _ B b o B -
i(2m)D [2 — mA][(0 —q)2 — m%] 9uqv B21 + Q" Guw D22, )

Bt ) = g |(1-052) e+ 0 ()
2 5 _ 1
+875 — 2+ oln (J . )} : (C.7)
q 1

3 ™
where op = /1 — 42?’ and Ao = [555] P~ — [I'(1) + In(47) + 1].
0

Bl
The ¢*-dependent width of the p° (770) meson is given by

as

2
I,(¢%) = —2qu—$mB—22

F2
My ¢? 1
— gt oo - an) + Joko - wi)] . (c9)

WrF2 | "

in complete agreement with the expression in Ref. [359].

Il
_|_

(s — channel)

Figure C.1: Effective vertices contributing to vector transitions in the s channel that
are relevant for the vector form factor of the pion . The crossed circle stands for an
external vector current insertion. A double line indicates the vector meson and a
single one the pG. Local vertices on the RHS are provided, at LO, by L, at O(p?).

The real part of the pole of Fy/(¢?) in Eq. (C4]) needs still to be regulated through
wave function and mass renormalization of the vector field. The local part of e B
can be fixed by matching Eq. (C4) with the O(p*) xPT result.
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(d) (e) (f)

Figure C.2: Diagrams contributing to the vector form factor of the pion up to one
loop within Rx7T' that have an absorptive part in the s channel.

An analogous procedure can be applied to the study of the vector component of
7w scattering. We will be concerned about the s-channel amplitude of 7+ 7= —
777, that is dominated by p exchange, so that one can construct a Dyson-Schwinger
equation as in the case of the pion form factor. Consequently, analogous diagrams
to those in Figure are considered, replacing external vector current insertions
by two pion legs, according to all possible contributions in Figure . Projecting
the p wave, it is found a geometric series, which can be resummed to give

—1i
At r™ = otr )= = 372 (u—t) (C.9)
My

M3 |1+ 2faReB| — % — i My T, (c?)

X

)

where u and ¢ are the usual Mandelstam variables (¢*> = s). Remarkably, the pole
of the amplitude coincides with the one obtained for the vector form factor of pion
and, therefore, gives the same width for the p" meson.

When one applies the definition proposed at the beginning of the section for
spin-one meson widths to the case of the p® (770), its quantum numbers correspond
to 5 = k = 3 for the flavour index. Lorentz covariance and current conservation
allow to define the two-point function of the considered vector current in terms of
an invariant function of ¢* through

I3 = (¢ g — qua0) I°(6%)
(C.10)

I1°(¢%) = I, + 0 + 100, e

where Hfo) corresponds to the tree level contribution of Figure (a), Hfl) to the

one-loop amplitudes and so forth. Up to one loop, and considering again the two-
particle absorptive contributions only, all the diagrams generated by the effective
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vertices in Figure are shown in Figure [C3l One finds, in the isospin limit,

F?
p
My My =

(c) (d) (e)

Figure C.3: Diagrams contributing to the vector-vector correlator Hif’/ up to one

loop within RxT'.

(a) (b)

Figure C.4: One- and two-loop diagrams leading to Hfl) (a) and Hfz) (b). The
effective squared vertices are given in Figure

At this point, one realizes that the resummation procedure cannot consist only
of self-energy diagrams. QC'D predicts the two-point spectral function of vector
currents to go to a constant value as ¢*> — oo [297]. The loop diagram in Figure[C.3]
(b) behaves itself as a constant value in this limit, which is against of expectations
because it corresponds to only one of the infinite number of possible intermediate
states. In order to satisfy the QC D-ruled behaviour, one would foresee that all the
individual (positive) contributions from the intermediate states should vanish in the
infinite ¢ limit. Indeed, this is achieved when one adds the diagrams depicted in
Figs[C3lc), [C3(d) and [C3le). The requirement of vanishing at ¢> — oo for the
I17 is also fulfilled for i > 2 provided one considers, at a given order, all possible
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diagrams with absorptive contributions in the s-channel, and not just self-energies.
Iterating in all possible ways the one-loop diagrams in Figure [C.3] one obtains

all possible contributions to the two-loop computation, as sketched in Figure

The result of the calculation was found to be

{ ¢ M

- 1, [ 243—22] | (C.13)

p
II M

2)

In Ref. [491], it was checked explicitly up to three loops that the invariant
two-point function I1°(¢?), generated by resuming effective loop diagrams with an
absorptive amplitude in the s channel |1 is perturbatively given by

) 2 M2 n
"(¢") = ) T HP)Z[ FZIMZ — ¢ 4322]
¢\
=1, |1+ wz <W w) , (C.14)
n=0 Vv
where M2 M2

Using that FZ = 2F?  and substltutmg (m) for performing the resummation,
one finally gets

2F?

(¢*) = —
M (1 + 25 ReBr| — ¢ — i My T,(@?)

2
[1 - Q%Bn} , (C.16)

where the off-shell p° width T',(¢?) is given by (C4). The consistency of the re-
summation procedure shows up neatly because the residue in I1°(¢*) satisfies the
required unitarity condition

1 1
SmI(?) = 1o [GS;W — 4m?) + S 0% 0> — dmk)

x| Fy (), (C.17)

with Fy(¢?) given by (C4).

The last comment to be made concerns the independence of the definition of the
spin-one meson width on the chosen representation for the fields. To see this, it is
enough to realize that the effective vertices in Figure are universal. Different
theoretical descriptions of the spin-one mesons lead to resonance-exchange contribu-
tions that differ by local terms. Since the physical amplitudes are required to satisfy

"Note that the procedure employed implies that the only significant result of I17(¢?) is its
imaginary part.



Appendix C: Off-shell width of Vector resonances 225

the QC D-ruled behaviour at short distances, this difference is necessarily counter-
balanced by explicit local terms [7]. Including these local terms in the local vertices
of Figure , the resulting effective vertices (which are the building blocks of the
described resummation) are formulation independent and thus, the whole procedure
is.

C.2 K™ off-shell width

Being the definition of spin-one resonance width completely general, what is left
now is simply to employ it for any resonance we are interested in. In particular, for
the case of the K™ resonance, we have

MK* q2 m%( m?r
FK*(q2> = W |:)\3/2 <1, ?, ? 0 (q2 - (mK + mﬂ—)2)
2 m2
+)\3/2( , %, q—;) 0 (¢ — (mx + mn)Q)} , (C.18)

in agreement with [380].

C.3 w-¢ off-shell width

The full widths PDG [8] reports for the vector resonances we are interested in are:
I'y = 1494+ 1.0 MeV, I', = 849+£0.8 MeV, I'y = MeV, and '~ ~ 50.5 £ 1.0
MeV. Based on this, we have decided to neglect the off-shell width of the isospin
zero resonances w (782) and ®(1020), because it is a tiny effect compared both to
that of the p (770) and K* (892) widths and to the uncertainties we still have in the
determination of the coupling constants or the error introduced by other approxi-
mations. We have used the values reported as the constant w (782) and ¢ (1020)
widths in our study.
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Appendix D: w - 777 1 within

RxT

The decay of the w(782) into three pions, w — 7 (ky) 7 (k2) 7°(k3), has been
a useful source of information on the odd-intrinsic parity couplings. Within the
framework of RxT it was first studied in Ref. [310], where the contribution of the
V'V P vertices was already found and the need to account for VPPP vertices was
put forward.

We will denote the polarization vector of the w as €7 and use the kinematic
invariants s;; = (k; + k;)* In our work we have included for the first time the
contribution of the decay via a direct vertex.

The amplitude associated to the diagram of Figure[D.Il-that should be the leading
one according to vector meson dominance- including cyclic permutations among

k1, ko and ks, reads

8G m2(dy + 8dy — dg) + (M2 + s12) d
. VMD _ a1.B o |4 w\U1 2 3 w 12) a3
Z'MUJ*):‘ITF =1 GCVBPU kl kZ kgew Mng M‘Q/ — s19

+ {512 = s13} + {512 = 523} | . (D.1)

+ cyclic permutations of {7° 7 7~}

Figure D.1: The w — 7t7~7° decay amplitude via an intermediate p exchange.
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Now, the contribution via a direct vertex V PPP yields

. . N i 8Gy 82
ZMxiifﬂ'_ﬂ'O = 1€appoky k:gk‘ng {Mng F3M,, M, [(91 - 92 — 93)(Mu2; - 3m3r)

+3m2(294 + g5)]} - (D.2)
In the above expression, we have assumed ideal mixing between the states | wg) and
| wi):

2 1

|W>:\/;|W1>+\/;|W8>, (D.3)

and

0 =~y e+ /2 e (.4

The relation between the amplitudes of the singlet and octet states is the following
one:

-/\/lu.)l—>7r+7r*7r0 - ﬁng—Hﬁﬂrfwo . (D5)
The decay width is then obtained as
worra) = e [ ey [ Pl ) 09
Nw—7m"nrn = —— / d813/ dSQgP 513, S23) X D.6

mi(dl + 8d2 — d3) + (Mf} + 812) d
M‘Q/ — 5192

L {s12 = s13} + {512 = 523}

2

8v/2
(g1 — g2 — g3) (M2 — 3m2) + 3m2(294 + g5)] | .

+F3MwMV

where the function P is the polarization average of the tensor structure of M, 3,

1
—m2 (7’I’L72T - Mf})Q - 813833 + (37’)172T + Mf} - 813)813823} . (D?)

P(s13, S23) = 2 -

With Gy = F/v/2 and the relations obtained by the short-distance matching. In
the analyses of the V'V P Green function all couplings appearing in Eq. (D.I)) were
predicted

No M2 F?
di+8dy = — LT :
6472 F2 = 4F2
Ne M2 F?
dy = €V . (D.8)

64n2 F2 | SF2

Taking just this piece of the amplitude into account, one obtains a decay width
that is only one fifth [310] of the experimental value.
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Additionally, the following relations were obtained studying the decays 7= —

(KKn)~ v, [304, 321]:

g Ne M}
ST 192m2 By Gy
g+ 292 —g3 = 0,
Ne My
_ . D.9
92 19272 V2 Iy (D-9)

As explained in Chapter [ we find more reliable the determination of the cou-
pling d3 in Eq. (D.9), that we will follow. Taking all these information into
account we are able to match the experimental value reported by the PDG [§]
D(w = 777 7)) |exp = (7.57 £ 0.06) MeV with 294 + g5 = —0.60 £ 0.02 that has
been used in the hadron tau decays studied in this Thesis.
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Appendix E: Isospin relations
between 7~ and e'te” decay
channels

E.1 Introduction

In this appendix we provide the derivation of several relations between 7~ and
ete” decay channels that are related by an isospin rotation. Since SU(2) is a
very accurate symmetry whose violations are smaller than the typical errors of the
experimental measurements and our theoretical assumptions, the conclusions we
draw should hold. At the low energies we are interested in, one can safely neglect
the Z contributions to the hadron ete™ cross-section. In this limit, the process
will only be due to vector current via photon exchange. Therefore, the relations
that we obtain will relate o.+c— _hadrons 10 the vector current contribution in the
corresponding tau decay. Depending on the channel, the importance of the latter
will vary from being the only one to be forbidden by symmetry arguments, like G-
parity. Thus this study will be interesting for some of the channels and irrelevant
for others 3.

In this introduction we will first give the conventions we follow for the relations
between one-particle charge and isospin states and the ladder operators. Then we
will recall the general formula for the tau decay width into a given final state of three
mesons and the tau neutrino and give the derivation of the analogous expression for
the ete™ cross-section into a three-hadron system. We will finish this section with
the projection of the weak and electromagnetic currents into its isospin components.
Charge conjugated relations are understood and most of the times not written.

The triplet of pions is related to the isospin states, |1, I3), in the following way:

— au — dd
v du~ —|1,41), 1~ T L0), a ~ad~ L —1).  (E.1)

V2

8 As two immediate examples of this we quote the three pion tau decay channel where there is
no vector current contribution because of G-parity and the 37 state that cannot be a decay product
of the 7.
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It is important to understand that the four kaon states group into two doublets
according to its strangeness:

1 1 1 1
K* ~3 N’_ ) KO~sde | o) E.2
Su 2,+2 : sd 5 "5, (E.2)
and 1 1 1 1
_0 p—
K~ N—’—, —>, K~ ~7 N’_’">' E.3
s 5 +2 us ~ |53 (E.3)
Defining the isospin operators Ty = %, we get the following relations:
T.,T] =T T T dT}—“—T (E.4)
+5 £ = 3 +5 \/57 +5 \/57 .
- - uu — dd
Ttdul0) = [Ty, du] [0) = =)o) , (E.6)

V2

that will allow to relate the neutral and charged current weak decays.

Before analysing the most interesting channels, we will need Eq. (5.62]) for the
tau decay width into a given three meson and a tau-neutrino final state and the
analogous formula for the ete™ cross-section into a three hadron final state. The
latter is obtained in the following.

We consider the decay et (01, s1)e™ (la, s2) — hi(p1)ha(p2)hs(ps). The amplitude
of the process is splitted into its lepton and hadron tensors as in Chapter BlOne has

‘CW’ = Z 6(62, 52)7uu(€1, 81>ﬂ<€1, 81)"}@,’0(62, 82) . (E?)

51,52

Its transverse projection reads (Q = py + pa +p3 = {1 + £3)

,  QrQY
<9“ g )Fw = —4(Q* + 2mg). (E.8)
On the other hand, the hadron tensor is decomposed as
v Q"Q” ,  QrQY
HM =S5 (Q%, s, t) o8 + (g™ — 02 VI(Q% s, t) . (E.9)

Since the process is mediated by vector current only the scalar component vanishes

(S =0) and we have

V(Q% s, t) = H;V <g’“’ — Q;?V) : (E.10)
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Using the expression for [ dIl; in Eq. (558) one immediately has

) 1 [ e\’ 1 11
Octe—hihohs (@) = 22 @ INT2(Q2, m2, m?) 3270 107 dsdt x

4 *
2 (@ + 2m2) B (—V5,4)

052 2 *
So that the ete™ cross-section into three hadrons is given by
64 1 *
Teteshinohs (@) = W@/deﬂFﬂg (=VauV5™) (E.12)
This way one ends up with the desired relation
dI' (7= — (3h) v,
o) — @) o @), (E.13)
where (3h)~ and (3h)? are related via an isospin rotation and
G2 ‘VCKM‘Q M2 2 Q? a2\ !
2 Fl7ij T 6
= —— —1 1+2— — . E.14
T = 3ampa, <Q2 ) ( i ME) (%W) “ (E14

The W bosons can couple to us, su (that are two components of different multi-
plets with 7 = 1/2), and to du, ud. Both have I = 1 and differ by a relative global
sign. B

The Z boson can couple to the I = 0,1 combinations that are Miﬁdd where the
upper signs correspond to the neutral component of I = 1.

Now let us consider the electromagnetic current. One can decompose it into its
I =0 and [ =1 pieces:

=

(2uv'u — dytd — syMs) =T

(1)’

Wl =

where

1 — 1 —
Fé‘o) == (ﬂfy“u + dvyt'd — 237“3) , Fﬁ) =35 (ﬂfy“u — dfy“d) . (E.16)

As it is well-known, there are no tree level FC' NC. Moreover, the electromagnetic
current conserves strangeness. This implies that the strangeness changing channels
Knr, Kmn, Knn, KKK can only be reached via W*-mediated loops. Therefore,
they are very much suppressed -even more at the low-energies we are interested in-
and it makes no sense to analyze them in this context Bl. This short-hand writing

9A complementary reasoning in terms of isospin can also be made: Neither the Z nor the 7
couple to I = 1/2. This prevents a study of this type for the [nnK ) ~ |K) state -with I = 1/2-
because there is only one accesible state in 7~ decays, in addition, so that no relation can be
established. Similarly, the three kaon state has half-integer I, so it can only be produced in 7
decays. There is only a trivial isospin relation Ay __ = Ay 5_ in this case. The notation employed
uses as subscripts the electric charges of the particles involved for a given mode. In this case, for
instance, this would correspond to Ax+g-x- = Agogox—-
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will be used in the remainder of the chapter.

E.2 K Kx channels

One must realize that in all charge channels both kaons belong to different isospin
multiplets because they have opposite strangeness. At the practical level this implies
that there is an additional label implying that the ordering when writing the states
is irrelevant. We give an example to illustrate this: |[777~ ) and |[7~7" ) are different
isospin states corresponding to |1, +1)®|1,—1) and |1, —1) ® |1,+1), respectively.
However, K~ K% is | — 1, %, —% ) ® |1, %, —% ), where the first label is the strangeness
of the state (—1 for s) making manifest that they belong to different subspaces.

We will consider first the product of the two kaons states. This can give either the
isoscalar channel 'w’ or the isovector channel 'p’. Then we will consider the product
of the produced states with the remaining 7. Some signs may vary by considering
first the product of one of the kaons to the pion and then that of the resulting
states with the kaon left. However, the relations we will find are independent of the
procedure we follow.

The pair of kaons can couple as

1 —0
— K+K—+K0K> =0
KK’ T=1, 1= 41,
1 —0
— K*K*—K°K> [=1,1=0
\/5 ( ) )
KK~ I=11;=-1. (E.17)

Now we consider the direct product of the 'p” and 'w’ states with the appropriate
pion. We will have I =1 in 'w’ channel and I =0, 1, 2 in ’p’ channel. One has

(K*Kvﬁ + KOFOﬁ) [=1, 1= 41,

(K+K—7r° + KOF%O) [=1,1;=0,

Sl -8l

(K+K‘7T_ + KOF%—) [=1, 1= 1, (E.18)
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in w channel, while the states produced in p channel are

1 1 —0 —o0 |
| KKt — — (K*K*WO — KK WO) KK r [=0, I =0
1 —0 1 =0 .\ ]
KR (K+K—w+ _ KK 7r+) I=1 Iy —+1
1 —0 7
— | -KK ' — KK I=1,=0
\/5 [ ] ) )
1 [1 —0 |
— | — (K"K 7 - KK w*> — K°K 7" I=1 I ——1
KRt [=2 1= +2,
1 . .
5 (—\/§K+K07r0 F KK ot — K0K07r+) [=2, I3= 41,
1 _ .
G (—K+KO7T_ F VKK 10 — VOKYR A0 + KOK‘WJF) [=2 1,=0,
1 _
5 (K*K*f ~KK'r + \/iKOK*WO) [=2 I;— 1,
KK 7~ [=213=-2.
(E.19)
Since the operator dI'*u has I = 1 we have
- ( KKr|dl,ul0) = 0, (E.20)
for the charged weak current. Thus
KYK 7 — K'R'r~ 4+ V2K°K~7°/d T, ul0) = 0. E.21
I

: : +——  A00— 0-0
'If W(i denote the correponding hadron amplitudes as A==, APP~ and A)7°, Eq. (E.21)
implies

AFTT = AT = —2A070. (E.22)

ulyu—dlud
One can proceed analogously for the neutral current weak operator WT’ Since

it carries isospin I = 1, we have the relations

o KKruu — dd|0) = 0 KKr|uu—dd0) = 0. (E.23)

0K = 4k yl~s. Since the spinor structure is unrelated to isospin, one has separate relations
holding for both for the vector ans axial-vector currents. This will be understood in what follows.
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Therefore, writing the isospin states in terms of charge states one has

1
0 0— 000 _ g+-0) _
Au+ A: __E(Au_:)_o’
427+ 4:0* — —\/5 (A;rio — AgOO) = O, (E24)

where the respective amplitudes were denoted using the same convention for the

indices as before.
Finally, the relations (E.4), (E.D), (E.6) allow to write
al’,u —dl,d

(o ( K Kldl,ul0) = —(170)<KK7T’ = 0> . (E.25)

This yields relations for the hadron amplitudes in ’p’ and 'w’ channels, between the

charged and neutral current weak processes:

1
A = A = A = (AR ar)

n
— 00— _ 0 _ o 4000
A: _'_Au = 214;L = 2Au ) (E.26)

Now we consider also the electromagnetic processes with I = 1. We will factor
out the Lorentz structure in the hadron matrix elements:

((KKm)"|dv,ul0) = A”€upepip5ps

A, = 3
0 — o Wypt — dyud _ A0 v p o
A, = <(KK7T) ’T O> = A €0 D5DS - (E.27)
In general we will have
((KKm)™| = %(K+K—w—+K0FOW—|+%<K+K—w——K°F°7r—|+a3<KOK—WO| ,
(E.28)
in such a way that
A" = @AT + asAy + asA; = “1:/%“2 =y L\/;?AOO— b oag A" (E.29)
Since S go0-
— =" A0 = AT = A0 (E.30)
we can easily solve for the A;:
At—— A00— At— — A00—
= —+, A = T, Ay = A0, (E.31)

Al = NG

Following Eq. (E27)) for naming the amplitudes of the different charge channels we

have finally
A7 . (E.32)

+—— 00— _L
(AT + A )_\/§

N | —

A+O_ — AO_+ _ AO_O, A+—0 — AOOO _



Appendix E: Isospin relations between 7~ and ete~ decay channels 237

Summing over all 7~ charge channels one has
(AT AT AT = AT A P AP = 2045 P+ AP, (E33)

whereas doing it over the four neutral channels reached in eTe™ annihilations with
I =1 we have

1 2
|A+O_|2+|A0_+|2+|A+_0|2+|A000|2 _ 2|A0_0|2+2 (5) |A+__+AOO_|2 — 2|Ag|2+|A1_|2

(E.34)
Using the above relations one can obtain the isovector component of the process
ete” — K°K 7" using the form factors computed for T’ (77 — KK~ 7%,).

dl' (r— = K°K7%,)
dQ2 |Vector

= [(Q)0oli=i (ete” — KK~ nt) | (E.35)

where f(Q?) was defined in Eq. (EI4). One can also establish a similar relation
including linear combinations of decay channels. Namely

dl' (r— = K°K—7%,) dl' (r— = K°K—7%;,)
dQ2 ‘Vector + dQ2 ‘Vector -
(@) [oli=i (ete” = KK~ 7%) + 20|, (ete” — K°K71)] . (E.36)

Summing all charge channels one finds

i dr (-~ — (KK7) v,)

dQ?

4

Vector = f(Q?) 20\1:1 (efe” = (KKm)°) . (E.37)

i=1

i=1

As a byproduct we have obtained the relations

F; (7'7 — KJFK*W*UT) — F; (7‘7 — KOFOW*VJ = —V2F, (T* — KOK*WOUT) )
(E.38)
We have checked that our form factors in Chapter [1 satisfy this constraint.

We emphasize that isospin symmetry alone is not able to relate the isovector
component of o (ete™ — KgK*nT) with the sum of all KK7 [ = 1 contributions
of the e~et cross section. For that, the experimental collaborations use to employ
the relation

o(ete” = KKn) = 30 (ete” = KgK*nT) . (E.39)

However, even using all available isospin relations it is not possible to express
o(ete” — KKm) in terms of the corresponding cross section for a single charge
channel. However, Eq. (E39) can be justified following the arguments that we
explain at the end of this section.

For this we will need to take into account not only the I = 1 component of the
electromagnetic current -as before- but also the isoscalar part. The application of
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the corresponding current, Fé‘o) in Eq. (E.IG), on the |2,0) and |1, 0) states allows to

obtain nontrivial relations between the corresponding isoscalar () electromagnetic
amplitudes:

0 0 0 0 0 0 0 0
Ay = —AQy, A% = AL, VEAY, - AR = AG - AL, (B0
which yields " " " o
0 0 0 0
V2AY = AL = —AY, = —V24. (E.41)

Adding this information to the relations found previously one is still unable to re-
produce Eq. (E39).

However, now we proceed in a different way. We do not consider the K K7 state
as a 1/2 x 1/2 x 1 isospin state in our reasoning. Since the K* contribution dom-
inates over that of the p, w and ¢ in the hadronic matrix elements of interest, we
can consider the composition K x 7 and then keep only its I = 1/2 component,
corresponding to the K*. In addition, the processes with charged and neutral pi-
ons can be distinguished at detection, which makes that the following amplitudes
should be considered independently [507] (we will be writing the K7 pair making
the K* as the last two particles until the end of this section): K*K—7° K°K%z,
K°K—7t and KTK% . In addition, we will considered the C-parity conjugated
decays. Proceeding this way one finds the following amplitudes (we call By and B,
the participating isoscalar and isovector amplitudes):

By + B _ By~ B
AKTE %) = -2, A(K'R°7") = 22—

( T ) \/6 ’ ( m ) \/6 )
A(K'K—nt) = B~ Bo A(KTK'7) = St 5 (E.42)

V3 V3
while for the C-conjugated amplitudes one finds (we introduce the amplitudes Cj
and C):

B Cy — Cy . Co + C
A(K-K*n°%) = A(K°K %) =
( T ) \/6 ) ( T ) \/6 )
A(K°K*7n™) = Gty (K~K'7) = G —Co (E.43)

V3 V3o
Summing up the first, second, third and four relations in Eqs. (E.42) and (E.43)) in
pairs one obtains the relations

_ 1
o(efe” - KTK'n +ete” » K K'n’) = G |Ag — AL]?,
_ _ 1
o(efe” = K'K'n’ + efe” — K'K'7°) = 6 |Ag + A1)?,
_ 1
o(efe” - K'K nt +ete” » K'KTr) = 3 |Ag + Ay %,

_ 1
o(efe” 5 K'K'n +ete” » K K'77) = 3 |Ag — AL]?,  (E.44)
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where Ay = By + Cy and A; = By + C have been introduced. Summing up all Egs.

in (E.44) gives

o(efe” = KKn) = |Ao)* + |Ai|*, (E.45)

and adding the last two Eqs. in ([E.44) yields
2
o(ete” - KKn™) = 3 (J4o|* + |A1]?) (E.46)

and using that Kg = (K° — K°) /v/2 one gets finally
30 (efe” = KsK*nT) = |Ao]? + |Ai]? =0 (efe” — KK7) | (E.AT)

which is Eq. (E39). Since BaBar [507] manages to split the I = 0 and [ = 1
components of o (eTe™ — KgK*7F), and thus to measure |Ay|?/3 and |A;|?/3, it is
straightforward to obtain o|;—; (eTe™ — KK).

What are the approximations employed in order to get this relation? In addition to
the well supported SU(2) symmetry and K* dominance, there is a source of error
given by the definition employed for the K*. To give an example, and as commented
at the beginning of this section, the states K+ K ~7% and K~ K*7% are the same in
a K Km analysis while this is not the case in a K K* study. One could argue that
since the K™ is quite narrow, this approximation is justified.

E.3 nmrm channels

Since both the ng and the 7, are SU(2)-singlets, we can compute the isospin
relations between 7, w7 channels just by taking into account the isospin of the 7w
states. We will use 1 to denote either state irrespectively. The first study of isospin
relations for this and related modes was carried out in Ref. [490]. Our results are,
to our knowledge, new.

The different states n; gmm that can be produced in 7 decays and e*e™ collisions
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are the following:

) = L4l ® 1, 1) = f|2 0)+ %u,ow !
r ) = [L-1)@|L+1) = f\20> 2510} + 5
Im97%) = [1,0) ®[1,0) = \[|20 |0 0),
77 = |1,-1)®|1,0) = 7 (12,—1) —|1,-1)),
707y = |L0)® L, -1) = %02 1)+ [1,-1)),
I7tr%) = |1, +1)®|1,0) = 7(|2 LY+ (1, +1)),
M) = LO)® L1} = - (2+1) — L +1)).

Solving for the |, I3) states yields:

2,0)
1,0)
0,0)
2,-1)
1, -1)
12,4+1)

1,+1)

(|7T+7T_ Y+ |mm ) + 2|70n0 >) ,

—10,0
\/§|
—10,0
\/g\

)
2

(E.48)

(E.49)

(E.50)
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Now if we denote by T ¢, To_, T, T, Ty the amplitudes (nmm|dl,ul0) and

<n7r7r MJEEFM O> for charge nmm states, we obtain the following relations
L T+ T ) = - (T 4T, — 2Th) = 0
NG —0 + Lo Jo —+ 00 )
1 1
— (To- —T o) =—F= Ty -T4),
\/5 ( 0 0) \/5 ( + + )
V3(Ty_ +T_y —Ty) =0, (E.51)
which lead to
TOO - O ,TJF, - —T,Jr - TO* - —T,O . <E52)

Now let us consider the electromagnetic current. One can decompose it into I = 0
and I = 1 pieces:

1
r~ =3 (2t7"u — dy*d — S59"'s) = F?) + F(1) , (E.53)
where
= L @yt dyrd — 25y0s) L T = & (P — dytd E.54
(0)—6(u7u+7 —373) (1) é(uvu—y ) (E.54)
In general we will have
((rm)’| = Ay n ™| + Ay (nm 7| + Aoo (7] (E.55)

Using the decomposition in Eq. (E48) one can relate the amplitudes (nmm|[*|0)
for charge and isospin |nmm ) states as:

1 1
Ay :_A1+ 3Ao, Ay =— \/—A1+7A0, Aooz—ﬁ

Moreover the vanishing of the amplitude A, implies

Ay.  (E.56)

21400 —|— AJF, + A,Jr — O . <E57)

In this way one obtains the following relations:

1 1 Al — A,
Aio+Ap=—F741, At +Ap=—"FA, 44=—]F7—,
+ 0 = 54 + 00 Vo V2
A +A - A 3
P +\/§+ 00:_\/§A00:§(A+—|—A+), (E.58)

which lead to
(Ao + AP+ A = AP =2 (JA P+ AL ?) = 4]Agl* + 2|1 A1*, (E.59)

[ A = AP+ AP = 2] Ao (E.60)
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The corresponding cross sections are related by

tem — 777T7T) ;=1 = o (6+6_ — 777T+7T_) +o (6+6_ — 777T_7T+)

—2x20 (efe” = nr'n?)
= 20 (e+e_ — 777r+7r_) —4do (e e — 7]71'071'0) ~

~ 20 (ete” > prtnT), (E.61)

0'(6

+

where the additional factor of 2 in the above relation comes from the identity of
particles in the final state, introducing a factor of 1/2 in the angular integration.
For the isoscalar part we have

o(efe” = nrm) |10 =60 (eTe” = nr’n°) ~ 0. (E.62)
Finally, one has

1 0 oy - _ uu — dd
E(T ~T7%) =21 = <1,0|7\/§

Taking into account Eq. (E.12)) the cross-sections for the different modes read

2 2
(1At = BE = Lol

0) = —V24, . (B.63)

B B a? 1 .
e o) = g [T ()
_ a? 1 1 .
o(efe” = nr'n’) = E@/dsdtaﬁooﬁ(%uv?’“)wo, (E.64)

where the additional factor of 1/2 in the second line comes from having identical
particles in the final state.
Using the former isospin relations one finally obtains

dl(7 — nn— ;)

dQ2

= f(@)alete” = nam)|im
= f(@Q) [o(eTe” = nrta™) —20(eTe” — nr'n?)]
~ f(@)o(ete” = natnT) (E.65)

where f(Q?) is given in Eq. (EI4).

E.4 Other channels

E.1 nnm channels

Since the 1y g are SU(2) singlets it is as if it was just nym ~ 7, where n will be
referring either to the singlet or the octet state here and in following sections.

HBecause of C-parity, o (e+e_ — 777r07r0) = 0 to O(a), since C, = — and Cro,, ,» = +. Al-
though it is non-vanishing at higher orders, it can be safely neglected in all the low-energy appli-
cations we are considering.
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Here we are concerned with the processes ete™ — nnn® ~ [1,0) and 7= —
nmmm vy ~ |1, —1). Considering that

HFMU—EF“d‘

@-n{mmldTuul0) = —q0) <7m7r‘ 7 0> , (E.66)

the respective amplitudes (7, and 7_) are the same up to a sign. Using also that
there is only isovector component in the considered ete™ cross section we have
dI' (7 — mmm~v;)
dQ?

E.2 nKK channels

Again, the n can be ignored as far as isospin is concerned, so that we have
ete™ = K*Kn ~ |KYK™), ete™ — KKy ~ |K°K') and 7 — nK~K°® ~
|[K~K°). Note that both kaons belong to different isospin multiplets, so the order
is not important. Using the results in Eq. (EI17) we see that

= f(Q*) o (efe” —mr?) . (E.67)

KtK— + KK KtK- — KK’
0,0) = * > |1,0):‘ > 1,-1) = |[K-K°).
V2 V2

(E.68)

Using that

_ ul,u—dTl,d
vy KK7[dT,ul0) = —(LO)<KK7T‘u plt " )0>, (E.69)
V2
one gets
1

Ty = —=(To — Ts-) , (E.70)

V2
for the weak amplitudes. Since the quark operators carry I = 1, the amplitude

associated to the production of |0,0) vanishes, so that 7', + T = 0 and we have
the following relations between the weak amplitudes

To = —V2T,_ = 2Ty, (E.71)

that one can use to obtain the low-energy description of ete~ — nK K using the
vector form factor computed in the C'V C-related 7 decay, 7 — nK~ K, with am-
plitude T'.

Now we consider the electromagnetic current. The isospin amplitudes are

Ay — Ag A+ Ag

A = = L0y
' V2 " V2

The isoscalar piece vanishes and we are only left with the isovector one. We have
thus

(E.72)

o(efe” = KKn) = 20 (efe” - K"K ) . (E.73)
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Appendix F: Antisymmetric
tensor formalism for meson
resonances

The antisymmetric tensor formalism for spin-one fields was already developed in
the sixties [548] [549], although its generalization needed to wait until Gasser and
Leutwyler proposed it to introduce the starring p resonance in the chiral Lagrangian
[M] and a few years later, Ecker et al. [6] took adventage of it for including the
resonances in Ry7T. These benefits will be explained throughout this Appendix
together with the main features of the formalism.

A crucial understanding was that -provided consistency with QC'D asymptotic
behaviour- the physics given by the EF'T" does not depend on the chosen formalism
[7], which authorizes us to choose the tensor formalism for convenience.

In Ref. [550, B51] it was proved that for massive antisymmetric tensor fields
there are (up to multiplicative factors and a total divergence) only two possible
Lagrangians of second order in derivatives, if one assumes the existence of a Klein-
Gordon divisor. They correspond to having either the Lorentz condition or else the
Bianchi identity satisfied by the fields. In the case of spin-1 particles one has the
following two options (W, = —W,,,),

1. The subsidiary condition is the Bianchi identity, i.e. e“)‘p"a)\Wpa, and W, are
frozen, so the three dynamical degrees of freedom are Wy, where ¢ = 1, 2, 3.

2. The subsidiary condition is the Lorentz condition, 0’W,, = 0 and W;, are
frozen, so the degrees of freedom are W;;.

For historical reasons the first option was chosen, as we will see in the following.
We consider a Lagrangian quadratic in the antisymmetric tensor field W,,,

L = ad"W,0,W?"” + bo*W,,0,W" + cW,, W (F.1)

where a, b and ¢ are arbitrary constants. The field W* contains six degrees of
freedom. To describe massive spin-one particle we must reduce them to three corre-
sponding to the physical polarizations these particles have. This can be done with
a clever choice of a and b. Indeed, consider the FOM

a(o"o,W — 0"0,W°) 4+ 260°0,WH — 2¢WH = 0, (F.2)
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that can be splitted up into the time-spatial and spatial-spatial components:
(a+20)W% + ad W' — ad'oW° — 2000 + )W = 0,

W + q [ai(WO’f + a,w”f)] — 200 + )W =0, (F.3)
where the dots denote time derivatives and [ stands for the Dalembertian operator.
For a + 2b = 0, the three fields W% do not propagate (b = 0 freezes the spatial-
spatial components, on the contrary). The W propagator, defined to be the inverse
of the differential operator in (EZ1)) contains poles in k? = —c/b and k? = —2c¢/(a+
2b), which disappear for b = 0, or a + 2b = 0, respectively. To maintain only one
pole and reduce the number of degrees of freedom to three, we must choose among
these two options. In [6], it was preferred to fix b = 0, and to choose a and ¢ for the

pole to correspond to the particle mass, that is, @ = —1/2, and ¢ = M?/4. Then,
the Lagrangian (E.1)) becomes

1 1
L= =50 Wuo,W" + ZM?WWWW, (F.4)
from which the free-case FOM is
OMO,We — 9O,WH + M*WH = 0, (F.5)

where only three degrees of freedom corresponding to a spin-one particle resonance
of mass M are described. Notice that the definition

1 174
W, = M@ Wou, (F.6)
allows to recover from ([E.3]) the familiar Proca equation
D,(PWH — W) + M*WH = 0. (F.7)

From the Lagrangian (E.4]), one can derive the explicit expression for the reso-
nance propagator

kg 2i 2i
(O|T {Wy(z), Woe(y)}[0) = / et {mQﬁu,pa + WQZMM} )

(2m)!
(F.8)
where the antisymmetric tensors
1
O, .(q) = 37 oo = Gputute = (p 2 0))
1
QZI/,pU(Q) = _2—q2 (gupQI/qG — 9w quqde — q2g,upgl/o - (p — O')) , (F9)

have been defined. Upper-indices mean longitudinal or transversal polarizations. In

order to identify the preceding operators with projectors over these polarizations,

one needs to consider as a generalized identity in this space the tensor Z,, ..,
1

qu,pa - 5 (gupgua - guagup) > (FlO)
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because any antisymmetric tensor, A,, = —A,,, fulfills
AT =T - A=A, (F.11)
and therefore the Q) indeed verify projector properties

Of + Qb =7, QT.QF = QL. 0T = 0,
Or.0f =, F.ob = Q. (F.12)

The propagator (E.§)) corresponds to the normalization

(01 Wou [ W) = = lmmes(p) — poca(p)] (F.13)

Once we have seen the general properties of the antisymmetric tensor formalism
and how it works, let us move to the second important issue: What is the advan-
tage of using it instead of the more familiar Proca formalism? Working with the
antisymmetric tensor formalism there is no need to consider £, from yP7T to give
the EFT the asymptotic behaviour ruled by QCD.

As an example of that, I will consider the same taken in [7]: the vector form
factor of the pion.

Tree-level computation with (4I9) -with antisymmetric tensor formalism, then-
gives:

Gy ¢
F?2 M2 —q¢*

F(@®) =1+ (F.14)

Let us consider now the corresponding Lagrangian written in the Proca formalism
that describes meson resonances [552] 553],

[Proca — pProca | pProca (F.15)
where it has been defined
£ = VT - 27,07
AL = = (R V£ + oVl ) )
Vi = ViV, = V.V, (F.16)

and the hat identifies Proca formalism. For simplicity, only that part of the La-
grangian contributing to the considered form factor has been written. The result
(E.16) gives for the vector form factor of the pion is

Jvgv (q2)2

fProca 2 -1 )

(F.17)




248 Appendix F: Antisymmetric tensor formalism for meson resonances

QCD short-distance behaviour (¢> — oo) dictates that the pion form factor
must vanish in this limit [4. For (ELI4) this relates three LEC's as in Eq. ({21]),
FyGy = F?, but for (EIT) this behaviour is not possible unless we add to (E.IG)
a local term. This one must have the structure of the term whose coefficient is
Ly in Eq. (BX1). One then needs at the same time that L§™% = % frgy and

fvgv = F?/MZ happen

Proca/ 2 o ngV (q2)2 2 Proca 2
1
Ly = Sfvav, (F.18)

where the tilde over the form factor has been removed because it has been corrected
by the needed local terms discussed previously to guarantee the right asymptotic
behaviour.

It can be shown [7] that this finding in the case of the pion vector form factor
is a general fact: Working with the tensor formalism there is no need to include the
terms of £, from xPT,

Li=0 i=1,2,3,910, (F.19)

whereas for the Proca case we must include them fulfilling

roca 1 roca 1 roca 3
roca 1 roca 1
Ly = §fV9V, Lo = —Zf% (F.20)

for vector resonances. Something similar [7] happens for the axial-vectors, the other
resonances that dominate phenomenology whenever they can be involved. Then, it
is clear we can choose the formalism for describing resonances, and justify that it is
more convenient to take the antisymmetric tensor formalism.

For completeness, I mention that there is another way of treating resonances: the
so-called hidden-gauge formalism [554] [555] [556] [557]. This method is based on the
freedom that exists to choose the representative of the coset G/H of the chiral group
G over the vector subgroup. In the Hidden Local Symmetry model, vector mesons
are regarded as authentic gauge bosons of a hidden symmetry of the Lagrangian
that relates the different possible choices of the coset representative. However, it
is not clear at all that vector mesons stand out from axial-vectors (in fact, VMD
involves both), nor the gauge nature of resonances is not an artifact. At the end
of the day, (pseudo)scalar resonances do exist and there is no natural procedure to

12Formally, this comes from the analysis of the spectral function Sm Iy (¢?) of the I = 1
vector current two-point function. In the framework of QCD, one finds [297] SmIly(¢?) —
constant as ¢ — oo, from which it follows that F(q?) obeys a dispersion relation with at most
one subtraction. In the narrow-width approximation for the exchanged p, all this drives directly

to F(¢?) = 1 + Cj’;;/t'_xqu, as (E14).




Appendix F: Antisymmetric tensor formalism for meson resonances 249

include them in this model. The loop corrections in these theories [558, 559 give
an ultraviolet behaviour that is much simpler than the one found in RxT [192].
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Appendix G: Successes of the
large- N limit of QCD

G.1 Introduction

In this appendix we will review the most important phenomenological successes
of the large-N¢ limit of QCD. First we will consider the results obtained in the
limit No — oo limit of QCD to understand some characteristic features of meson
phenomenology. After that, we will review the rle of the 1/N¢ expansion in the
effective theories of QC'D for low and intermediate energies: yPT and RxT. They
come to complement the most relevant success of the large-Ng limit of QC'D for
us, namely that it provides us with a framework able to describe exclusive hadron
decays of the 7 as we have seen in this Thesis.

G.2 Phenomenological successes of the large-Ng
expansion

e There is a supression in hadron physics of the sea quark pairs, §gq. Therefore,
mesons are pure ¢ q states, thus exotic states such as §gqq are eliminated in
practice. In short, this is due to the fact that there are much more gluon
than quark states. In the large- N limit sea quarks are negligible. Apart from
that, in this limit, mesons do not interact, so any candidate to an exotic state
must be, in fact, a set of ordinary states. Being exotic requires interaction for
the state to be seen as a composite one; but mesons do not interact in the
Ng — oo limit.

e Confinement restricts hadron states to be singlets of colour. From the group
theoretical point of view, it is clear [560] that a quark -antiquark state can be
decomposed into a direct sum in the following way (all representations are in
colour space):

33 =1@8. (G.1)

Of course, the octet 8 cannot live as meson non-singlet of colour state. Still,
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it can combine with a partner to become 1:
88 =2T010610®88® 1. (G.2)

Zweig rule [561] states that this possibility is strongly suppressed, being
greatly exceeded by one-gluon exchange among a meson and a sea quark-
antiquark pair. For instance, this together with the conservation of all internal
quantum numbers explains why the J/W has such a narrow decay width: six
strong vertices are required for its decay. Zweig rule has the consequence that
mesons are better described, in the large-N¢ limit, as flavour U(3)-nonets,
rather than as singlets plus octets, because this splitting involves annihilation
diagrams among them that are suppressed in this limit . To conclude, gluon
states decoupling is a result of all that: because they cannot be produced at
LO in 1/N¢ as a product of reactions starting from hadrons or electroweak
currents. Therefore, these states are not seen experimentally.

e Meson decays are mostly of two-body type, because many final-state particle
processes are less probable than those resonant decays into two intermediate
particles. This is a natural consequence in the 1/Ng-expansion. For a particle
decaying into three mesons both processes are globally O(1/N¢); the point
is that decaying directly is O(1/N¢), while the first vertex in the two-step
process is O(1/y/N¢), and thus the two-body intermediate decay dominates
over the direct one.

e At first sight, it seemed a strange feature that the number of resonances be-
comes infinite in this limit. The big number of resonances that has been discov-
ered and their relatively thin width can be taken as another phenomenological
support of the large- N arguments.

e Last but not least, the success of phenomenology describing strong interaction
in the intermediate-energy region in terms of tree-level Feynman diagrams
with hadrons as degrees of freedom, that is, the success of EFF'T's -and partic-
ularly of RxT-, based on large—N¢ arguments; is a recognition of the 1/N¢g
-expansion. N LO corrections correspond to loop diagrams involving hadrons
and provide the resonances with a finite width.

G.3 1/N¢ expansion for yPT

The 1/N¢ expansion provides a well-defined counting scheme for EFT's of QCD,
exactly what we needed to develop an E'F'T of the strong interaction in the intermediate-
energy region involving light quarks. Although we do not need 1/N¢ as an expansion

3For Ne — oo, the axial anomaly disappears and U(nys)r, @ U(ny)g is restored. Moreover,
under very general assumptions, it can be shown that in the large-N¢ limit, U(ns)r @ U(ns)g is
broken down to U(nys)y [662].
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parameter at very-low energies, it is justified to apply it to xPT', to check the con-
sistency of the expansion with a theory known to be successful. After that, we will
have a strong test for any new EF'T extending to higher energies. As we will see,
for RxT one gets reasonable results when subjected to this exam.

The main features of the effective theory relevant for the meson sector of QC'D in
the large-N¢ limit were discovered long ago [271] 270, [563] 564, [565]. The system-
atic analysis in the framework of yPT was taken up in Ref. [5], where the Green
functions of QC'D were studied by means of a simultaneous expansion in powers of
momenta, quark masses and 1/N¢ (with 1/Ng ~ p* ~m,).

The dominant terms should be O(N¢), as they are the corresponding correlation
functions among quark bilinears. A quark loop means a trace in Dirac, colour and
flavour space. The last one supresses these kind of terms with respect to those with-
out quark loops. One quark loop is needed to provide the quantum numbers of a
meson, but each additional quark loop will be suppressed by a 1/N¢ factor.

In the large- N limit of QC' D the axial anomaly disappears, so that the spectrum
does not correspond to SU(3)-multiplets anymore (octet and singlet, each one on
its own), but to U(3)-multiplets, that is, nonets.

Therefore, at LO in 1/N¢ the axial anomaly vanishes and the eta singlet becomes
the ninth pG:

d(z) = %ZA,@“ (G.3)

T+ el + Tz ™t K+
- - ST N
_ 20
K K _%778 + %771

where the set of Gell-Mann matrices that are the generators of SU(3) in the funda-
mental representation, has been enlarged by including the extra-generator of U(3)
proportional to the identity matrix: \g = \/g_fg E

At LO in the chiral expansion, £, has only two LEC's: F and B. The first one
was defined in (353), and it is the analogue of f, in the above discussion, so it is
F ~ O(y/N¢). B was defined in (3.55). Both the LHS and the RHS [ are O(Ng),
so B ~ O(1). With these dependencies, we can check that scattering amplitudes
behave as explained before. For instance, for 7 7 scattering, we have:

s — m? 1

T = T~ — 4
5~ A (G4)

s = (pra + pw,2)2, and has the right dependence. We conclude also that £, has a

global dependence of O(N¢) due to the common factor FTQ. Each Goldstone field

4One can work however the large-N¢ limit either for a SU(3) ® SU(3) theory [5] of for a
U(3)®U(3) theory [566]. The first approach is taken in what follows. The matching between both

was studied in Refs. [275] [667].

15The matrix element is of order O (\/NCQ), exactly the same as F2.
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we add comes from the exponential divided by a factor F', giving thus the expected
suppresion of O(y/N¢) for every additional pG. m-meson interaction vertices go
with F27™ so they are O(Né_n/Q). Because of the global N¢ factor in £, and
the independence of the exponential on N¢, the expansion in 1/N¢ is equivalent
to a semiclassical expansion for an E'F'T" whose degrees of freedom are hadrons [q
Quantum corrections computed with this Effective Lagrangian are suppressed by
1/N¢ for each loop.

The ten phenomenologically relevant LEC's at this chiral order are not expected
to be of the same order in this expansion, because there are terms with only one trace
in flavour space, and others with two; as it has been explained, each additional loop
receives a supression of 1/N¢g. Therefore, Ls, Ls, Lg, Lg and L1y would be O(Ng),
whereas Ly, Lo, Ly, Lg and L; would be O(1) -see Eq. BX10)-. There is, however,
a relation holding for traces of 3 x 3 matrices that modifies this naive reasoning
warning us that although L; and Lo are, separately, O(1); when considering the
relation mentioned before, they get modified by L;:

1

Deciding not to consider the new term, both L; and Ly become O(N¢), but their
combination 2L; — Lo persists to be O(1). Table displays how the experimental
values obtained for the O(p*) LEC's do agree with large-N¢ predictions [143], 274].

Summing up, all the LEC's appearing at LO and N LO in the chiral Lagrangians
obey the following 1/N¢ counting (the case of L; will be commented later on):

Bo, M, mﬂ-,Km, 2L1 — LQ, L4, L6 ~ O(l),
L17 L27 L37 L57 L87 L97 LIO ~ O(NC)7

F~O (m) . (G.6)

The LO chiral Lagrangian in the odd-intrinsic parity sector does not introduce
any new LEC, but it has a global factor of No generated by the triangular quark
loop over which the different number of colours run.

G.4 1/N¢ expansion for RyT

There are three kinds of checks we can perform for Rx7. On the one hand,
we can restore to phenomenology to fit the couplings entering its Lagrangian and
predict another observables with the obtained values. This way has been exploited

16 At first glance, ([@4]) seems to imply -because of the global N¢ factor- that QC'D also reduces
to a semiclassical theory in terms of quark and gluon fields in the large-N¢ limit, but this is not
true, because the number of them increases as No and ~ N, respectively. This is not the case
for xPT. As commented, the exponential including the pG's does not introduce additional factors
of N¢ as we include more and more of them.
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i Liy(M,) | O(N¢) source Lyeee
201 — Ly | —06+£06 | O(1) | Key, mm — 7w 0.0
L, 14+03 | O(Ng) | Key, mm — 7w 1.8
L —35+1.1| O(Ng) | Key, mm — 7w | —4.3
Ly —-0.3+05| O(1) Zweig’s rule 0.0
Ls 14+05 | O(Ne) | Fy : F, 2.1
Lg —-0.2+03| O(1) Zweig’s rule 0.0
L, | —04+02| O1) | GMO, Ls, Ly | —0.3
Ls 0.9+0.3 | ONe) | M, Ls 0.8
Lo 6.9+0.7 | O(Ne) (r2)7, 7.1
Lo —5.5+0.7 | O(N¢) T — evy —54

Table G.1: Experimental values of the coupling constants L[ (M) from the Lagrangian
L4 in units of 1073 [274]. The fourth column shows the experimental source employed.
The fifth column shows the predictions that are obtained in the large- N¢o limit using the
one-resonance approximation.

throughout the Thesis with optimistic results. On the other hand, as we have de-
rived the 1/N¢ expansion for QC D, we can apply it to Rx7 in much the same way
we did it for xPT and verify that large- N estimates are not at variance with phe-
nomenology. Finally, one can also explicitly check the convergence of the expansion
by comparing the leading and next-to-leading orders in 1/N¢, whenever the latter
are available.

First of all, we will see the 1/N¢ expansion for RxT and the relations that are
derived among RxT couplings in (A1), (£I9). The theory built upon the symme-
tries of QC' D™ =3 that reproduces its low-energy behaviour is still not complete. A
capital step is the matching procedure, as we have explained in Sec. B.Al We must
enforce the theory to yield the asymptotic behaviour of the underlying theory, as it
has been done repeatedly throughout this Thesis.

We aim to characterize the couplings appearing in Lg. One can work with (A5,
({19]) written in a way that splits the singlet and the octet terms [6]. The obtained
result is in complete agreement with convergence of octet plus singlet into nonet.

First of all, and according to the fact that meson decay constants are O (\/N—C),
and decay processes are given at LO by tree level amplitudes, it is clear that cou-
plings creating a resonance from the vacuum will be O (v/N¢): Fy, Fa, ¢, Gy di
and Jm

The other kind of processes we need to consider for completing the study are
decays of resonances into pGs. Again, the decay of one vector or scalar resonance
into two pGs is O (\/N—C), so Gy, ¢g and ¢, will be also of this order.

It was shown that masses have smooth limits in the large- N limit: they are

o(1).
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In summary, the couplings entering Rx7 Lagrangian are:
FV7 GV7 FA7 Cd7 Edu Cm7 ém? deJm ~ O ( \% NC) ? MZ ~ O<1) : <G7)

At LO in 1/N¢ Zweig rule becomes exact, the axial anomaly disappears and
U(3)r, ® U(3)g is restored. For hadron spectroscopy this implies that particles fill
nonet representations of U(3) instead of octet plus singlet of SU(3). In the large-N¢
limit one has the relations
e . lenl A

Ms, = Mg, ¢4 = 3’ |em| = NCh Mp, = Mp, |dp] el (G.8)
Now, I turn to examine how (axial-)vector contributions to O(p*) saturate the

LECs L; when integrated out, reproducing the notion of Vector meson dominance,

proposed long ago [318]. In fact, independent large-No analyses of xPT and RxT

yielded that most of the L; were O(N¢) and those in Lp were O(v/N¢). Because

resonance exchange is then giving an O(N¢) contribution coming from the two ver-

tices, it is plausible that in the large- N limit Rx7T LEC's saturate xy PT couplings.
Considering the sra, the obtained contributions are all O(N¢)

GQ 2 ~2 GQ 302 2
Ll = V2 - Cd2 + Cd2 ) L2 - V2 ) L3 = - ‘g Cd2 )
8M;; 6ME QMS1 4N, 4 M, 2M3
~ ~ 2 ~
CdCm CdCm CdCm, C C
L, = —— — L= —= Ly = ——2 LU
4 sz Tzt Tz T ez ez
d2 > 2 d2 F,Gy
L, = mQ——mQ,LSZ—mQ——mgagziga
6M5 2MP1 2M5 2M5 2M,
F2 2 2 F? c d?
Ly = ——% + -4 m=-—Y 4 =" 4+ ™ (G9)
4M‘2/ 4]\431 SM‘Q/ 8Mf1 Mé MI%

Taking into account the large-N¢ relations (G.8)); Ly, Lg and L; contributions
vanish, while for L; only that coming from vectors survives. The suppresion of these
LEC's and the saturation of all L; by (axial-)vector contributions are shown in Table

Due to the U(1) anomaly, even in the chiral limit, the 7, has -apart from the
common contribution coming from the trace anomaly [569]- the anomalous extra-
term which motivates that commonly it is also integrated out from the standard
xPT Lagrangian. Using the same notation for this coupling both in yPT and in
its large- N¢ limit we can say that this provokes a change in L; due to pseudoscalar
m-exchange. With the notation introduced before, we can simply write

dz, . F

L, = o dy = ——— : (G.10)
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i L7 (M,) Vv Al S m | Total | Total® Total®

1] 04+£03 0.6 0.0} 0.0 | 0.0 0.6 0.9 0.9

2 1.4+0.3 1.2 0.0 0.0 | 0.0 1.2 1.8 1.8

3 |-35+11| =36 (00| 06 | 00 | =3.0| —4.9 | {-3.2,—-4.3,-5.0}
4 1 -03£05] 00 |00 00| 0.0 0.0 0.0 0.0

> 1.4£0.5 0.0 |00]14*] 0.0 14 1.4 2.2

6 | -02+£03| 00 |00]| 00 | 0.0 0.0 0.0 0.0
71-04+02| 00 |00 00 |-03]| —-0.3]| =03 | {-0.2,-0.3,—-0.3}
81 09403 | 00 |00]09]| 00| 09 | 09 {0.6,0.8,1.5}

9 | 69+0.7 6.9 10.0] 0.0 | 0.0 6.9 7.3 7.2

10 | =5.5£0.7| -10.0 | 40| 0.0 | 0.0 | —=6.0 | —=5.5 —5.4

Table G.2: Comparison between phenomenological values of the coupling constants
LT(M,) in units of 1072 and the contributions given by resonance exchange [I35]. For
scalar resonances it is considered a nonet and the contribution of pseudoscalar resonances
@ stands for inputs and °,° means that
short-distance QCD corrections have been taken into account. The last column corre-
sponds to the reanalysis of Ref.[319], where three different values for the parameter d,,
are considered. Essentially this is possible because there are less restrictions from high-
energy QCD behaviour in the spin-zero sector than in that with spin-one [274] [568].

is neglected with respect to the n; contribution.

being the extra contribution to M,, ~ O(1/N¢), L7 -that is O(1) in 1/N¢- grows
to reach the value O(NZ) for what we have written as Ly in the previous equation.
Still, the 1/N¢g-counting is not so clear at this point [570]: T have explained how out
of the chiral limit M, receives three comparable contributions: from explicit chiral
symmetry breaking, from the singlet-axial anomaly and from the trace anomaly.
To integrate the n; out amounts to admit that the axial anomaly contribution is
much greater than the other two and this does not seem to be the case. For further
discussions on 7 /ng and their mixings n/7’, see [515, [H16, [H17, [HI8, (71, 572].

In Table the experimental value of these couplings and the contributions got
from resonance exchange [I35] are presented. We see that there is good agreement
between them and that Vector meson dominance emerges as a natural result of the
analyses. There is no reason to include additional multiplets of resonances looking
only at YPT at O(p*). The comparison has been made at a renormalization scale
= M, -for the xPT loops-, but similar results are found for any value belonging
to the region of interest: 0.5 GeV < u <1 GeV.

Finally, we can see how these conclusions change when considering the evalua-
tions of the L; at NLO in 1/N¢ within RxT. The most important acquaintance we
gain is that now one keeps full control of the renormalization scale dependence of
these LEC's. References [287, 288] 290, 292] constitute the study of this question
within Rx7T'. By imposing QC'D short-distance constraints, the chiral couplings can
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be written in terms of the resonance masses and couplings and do not depend explic-
itly on the coefficients of the chiral operators in the Goldstone boson sector of RxT'.
This is the counterpart formulation of the resonance saturation statement in the
context of the resonance lagrangian. As an illustration, the values of the couplings
Lg and Lip at NLO in 1/N¢ evaluated at p = M, are given: L(M,) = 0.6 £ 0.4,
Lio(M,) = —4.4 £ 0.9 (always in units of 107%). We see that the corrections of the
NLO term amount to a reasonable (20 <> 30) %.



Appendix H: Comparing theory to
data

We include a brief note on how we have normalized our theoretical spectrum
in order to compare it with experimental measurements. Let P be the process
7~ — (mmm) " v, and z (an energy) the variable in which the spectrum is given. The
experiment provides us with the total number of events of process P, Np, and its
spectrum in z, i.e., % versus z, where bin = Aux.

Our theoretical computation yields dg—mp, whose integral over the whole x-spectrum
gives the partial width of process P:

de— =T dr—— =1 H.1
Lmaw ! dx " o Tmax xFP dx ’ ( )
and this allow us to compare with the experiment provided
Tmin- — Fyents
d =N H.2
/11:maw ! A'T " ( )
and therefore . L ar _ Event
min Tmin vents
N dr——L = d H.3
or in differential form:
1 dI'p Fuvents
Np |——— = H.4
\’I'D/ [PP dz :|th |: Az }exp ’ ( )
erp

where exp and th are a reminder of the source of each term: either the experiment,
or the theoretical computation.
Usually, z is a dimensionful variable, so we can write Az = n[z], where the z

in square brackets stands for the dimensions of Az. Thus, the LHS of (H4) has
dimension 2! and, finally:

1 dr’ Fvent
an{——P} - { ven 3} , (H.5)
th Az erp

and n is chosen according to the experimental information as we will see next.
77*)7r+7l'77l'7V7—

AToE , so what we have for comparing with the

Our computation yields



260 Appendix H: Comparing theory to data

experiment is
1 dFT*—>(7r7r7r)*VT . Z drz
FT*—>(7r7r7r)*VT dQ2 i—SA A sz .

One can reason similarly for other three meson modes and for other observables,

like dF/dS”

(HL.6)
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