Outline/Comments

November 10, 2021

Outline

- <u>Motivation</u>: strengthened δa_{μ} deviation from SM expectation (no significant change in central value, reduced uncertainty), together with different δa_e scenarios
- "arguments"
 - simple class of models: 2HDM's with tree level neutral flavour conservation (+CP conservation)
 - reproducing δa_{μ} alone appears to be feasible in \mathbb{Z}_2 models (I, II, X, Y) or in Aligned model, BUT already in conflict with perturbativity since $\frac{n_{\tau}}{n_{\mu}} = \frac{m_{\tau}}{m_{\mu}}$ in these models
 - next simple model is gl/FC, more parameters and no perturbativity problem, δa_{μ} and "old" value of δa_e (-8.7 × 10⁻¹³) can be reproduced in certain regions of parameter space (previous paper)
 - one can consider a "new" value of δa_e (4.8 × 10⁻¹³) and an "average" value (-2.0 × 10⁻¹³) in addition to the "old" value: they cover ± signs and different sizes (a factor $\frac{1}{4}$ between "old" and "average")
 - one can consider different perturbativity assumptions for n_{ℓ} (relevant for example to analyse if δa_e can be obtained at one loop)
 - one can address the excess in $pp_{ggF} \to S \to \tau^+ \tau^-$, in which case we have non-SM hints related to e and μ through the g-2's, and to τ through this excess, 3 anomalies for 3 n_{ℓ} couplings
- analyses
 - for 2 different perturbativity assumptions (same bound $\simeq 100$ GeV as in previous paper, or bound $\simeq 246$ GeV); it is not just the allowed regions in the different n_{ℓ} that might change
 - for 4 different δa_e hypotheses (using the same prescription as in previous paper), "old", "new" "average" and "no constraint on δa_e ", the last one in order to see the constraints from δa_{μ} alone (not exactly alone, there is just a bound on δa_e)
 - specific analysis with old δa_e , large perturbativity "tolerance", and forcing the appearance of an excess in $pp_{ggF} \rightarrow S \rightarrow \tau^+ \tau^-$
- "minimal results": updated analysis with results that illustrate that non-SM δa_{μ} AND δa_{e} can be obtained for different scenarios concerning δa_{e} , in different allowed regions of parameter space in each case; impact of perturbativity "tolerance".

Collected results

- File SUMMARY_MuPh reproduces δa_{μ} and for δa_{e} there is only a bound $|\delta a_{e}| < 20 \times 10^{-13}$
- File SUMMARY_AoPh reproduces δa_{μ} and "old" value of δa_e considering two different perturbativity requirements on n_{ℓ} 's, and the results with an excess in $pp_{ggF} \to S \to \tau^+ \tau^-$
- File SUMMARY_APh reproduces δa_{μ} and three different possibilities for δa_e ("old", "new", "average")

Detailed results for each single analysis in separate files.

Comments on SUMMARY_MuPh

- $\operatorname{Re}(n_e)$ is constrained even if there is only a loose bound on $|\delta a_e|$ (effect of other constraints, check if universality alone explains this):
 - $-\operatorname{Re}(n_e)$ vs. $m_{\rm H}$, tan β regions are non-trivial
 - $|\operatorname{Re}(n_e)| < |\operatorname{Re}(n_{\mu})|$
- Re (n_{μ}) vs. $m_{\rm H}$ regions enlarged in Re (n_{μ}) due to enlarged perturbativity allowed range and also new regions in $m_{\rm H}$, in particular region around 1 TeV.
- $\sigma(pp \to H \to \mu^+ \mu^-)$ around 1 TeV has a rather narrow range

Comments on $\texttt{SUMMARY_AoPh}$

- Much larger allowed regions for new perturbativity requirement, not only in n_{ℓ} 's, but also in other parameters, for example the scalar masses
- Appearance of new "peculiar" regions which can reproduce δ_{ℓ} 's only with large n_{ℓ} 's
- Regions with $pp_{ggF} \to S \to \tau^+ \tau^-$ are small, require large $\operatorname{Re}(n_\tau)$ and give narrow ranges for other observables

Comments on SUMMARY_APh

- No big differences in $\operatorname{Re}(n_{\mu})$ vs. $m_{\mathrm{H}}, m_{\mathrm{H}}$ vs. $\tan\beta$ for different δa_{e} assumptions
- $\operatorname{Re}(n_e)$ necessarily different
- differences related to $\operatorname{Re}(n_e)$ might be expected (?) (rescaling of $\operatorname{Re}(n_e)$ to obtain δa_e); some "peculiar" region for the average δa_e which can correspond to a 1-loop explanation?