Authors^a,

^a Departament de Fisica Teòrica and Instituto de Física Corpuscular (IFIC), Universitat de València – CSIC, E-46100 Valencia, Spain.

Abstract

Abstract

Esquema básico

- <u>Motivation</u>: strengthened δa_{μ} deviation from SM expectation together with two very different δa_e values
- "arguments"
 - simple class of models: 2HDM's with tree level neutral flavour conservation (+CP conservation)
 - reproducing δa_{μ} alone appears to be feasible in \mathbb{Z}_2 models (I, II, X, Y) or in Aligned model, BUT already in conflict with perturbativity since $\frac{n_{\tau}}{n_{\mu}} = \frac{m_{\tau}}{m_{\mu}}$ in these models
 - next simple model is $g\ell FC$, more parameters and no perturbativity problem, δa_{μ} and "old" value of δa_e (-8.7×10^{-13}) can be reproduced in certain regions of parameter space
 - one can consider a "new" value of δa_e (4.8 × 10⁻¹³) and an "average" value (-2.0×10^{-13}) in addition to the "old" value: they cover ± signs and different sizes (a factor $\frac{1}{4}$ between "old" and "average")
 - one can consider different perturbativity assumptions for n_{ℓ} (relevant for example to analyse if δa_e can be obtained at one loop)
- analyses
 - for 2 different perturbativity assumptions (same bound $\simeq 100$ GeV as in previous paper, or bound $\simeq 246$ GeV); it is not just the allowed regions in the different n_{ℓ} that change, allowed regions in other parameters ALSO CHANGE
 - for 4 different δa_e hypotheses (using the same prescription as in previous paper), "old", "new" "average" and "no constraint on δa_e " (to see the constraints from δa_{μ} alone)

- "minimal results": updated analysis with results that illustrate that non-SM δa_{μ} AND δa_{e} can be obtained for different scenarios concerning δa_{e} , in different allowed regions of parameter space in each case; impact of perturbativity "tolerance".
- "would be important": further interesting consequences in addition to ILC type results at the end of the previous paper.

Point	$m_{ m H}$	$m_{\rm A}$	$m_{\mathrm{H}^{\pm}}$	t_{β}	$\operatorname{Re}\left(\mu_{12}^2\right)$	$\operatorname{Re}(n_e)$	$\operatorname{Re}\left(n_{\mu}\right)$	$\operatorname{Re}(n_{\tau})$
1	1351	1547	1560	1.34	$-8.49 \cdot 10^{5}$	6.08	-95.0	-40.79
2	1522	1567	1485	1.90	$-9.17 \cdot 10^{5}$	9.09	-158.9	126.5
3	1049	1322	1332	6.88	$-1.56 \cdot 10^{5}$	29.86	-245.0	-75.75
4	663	876	888	11.9	$-3.67 \cdot 10^4$	22.09	-172.9	224.6
5	621	938	946	21.5	$-1.79 \cdot 10^4$	54.26	238.1	-74.57
6	350	855	860	22.7	$-5.38 \cdot 10^{3}$	17.31	-87.22	94.99
7	372	815	362	34.6	$-3.99 \cdot 10^{3}$	25.44	-98.21	85.64
*	360	810	352	186	$-6.99 \cdot 10^{2}$	-35.52	97.10	-119.2
8	364	812	355	100	$-1.32 \cdot 10^{3}$	46.18	-95.14	79.90
9	1573	1633	1540	1.70	$-9.89 \cdot 10^{5}$	-6.40	-130.2	152.6
10	1068	1184	1204	5.73	$-1.93 \cdot 10^{5}$	-14.47	-238.6	229.7
11	514	601	625	26.8	$-9.85 \cdot 10^{3}$	-23.06	-200.3	51.47
12	540	903	530	238	$-1.22 \cdot 10^{3}$	50.83	165.3	-123.1
12	566	919	556	190	$-1.68 \cdot 10^{3}$	79.07	171.5	-122.1
13	739	1127	1133	70.4	$-7.75 \cdot 10^{3}$	-103.1	230.9	-174.0
14	648	1074	1080	116	$-3.62 \cdot 10^{3}$	-58.76	-213.5	-37.76
15	499	885	891	152	$-1.64 \cdot 10^{3}$	-32.94	-161.8	-27.75
21	362	775	778	10.7	$-1.19 \cdot 10^{5}$	8.16	-72.8	222.5
22	277	494	502	10.8	$-6.6 \cdot 10^{4}$	9.12	-58.0	191.2
23	278	539	554	7.9	$-8.9 \cdot 10^{4}$	6.71	-53.1	189.7
24	450	790	798	13.6	$-1.47 \cdot 10^5$	12.7	-104.5	241.5
25	350	611	622	9.7	$-1.16 \cdot 10^{5}$	8.9	-71.5	231.2
26	367	810	817	10.8	$-1.23 \cdot 10^{5}$	10.3	-72.4	223.5
27	289	448	460	11.7	$-6.59 \cdot 10^4$	7.7	-68.8	219.0
28	294	538	549	8.5	$-9.05 \cdot 10^4$	7.4	-63.0	202.0

Example points

Table 1: Example points, masses and $\operatorname{Re}(n_{\ell})$'s in GeV, $\operatorname{Re}(\mu_{12}^2)$ in GeV².

			1 loop		2 loop					
Point	δa_e	Н	А	H^{\pm}	tH	tA	au H	au A	μH	μA
1	-7.29	0	0	0	0.469	0.521	-0.012	0.011	-0.003	0.003
2	-7.06	0	0	0	0.445	0.559	0.047	-0.051	-0.007	0.008
3	-8.40	-0.001	0.001	0	0.524	0.526	-0.145	0.113	-0.060	0.044
4	-7.53	-0.002	0.001	0	0.410	0.407	0.764	-0.554	-0.078	0.053
5	-7.12	-0.016	0.007	0	0.627	0.541	-0.734	0.425	0.313	-0.167
6	-6.96	-0.005	0.001	0	0.330	0.186	0.776	-0.207	-0.102	0.024
7	-7.01	-0.009	0.002	0	0.300	0.187	0.926	-0.295	-0.151	0.042
*	-7.06	-0.019	0.004	0	-0.078	-0.049	1.879	-0.574	-0.219	0.058
8	-8.41	-0.027	0.006	0	0.161	0.098	1.352	-0.419	-0.230	0.062
9	5.32	0	0	0	0.448	0.556	0.050	-0.053	-0.005	0.005
10	5.49	0	0	0	0.457	0.535	0.317	-0.305	-0.042	0.038
11	4.11	0.007	-0.005	0	0.432	0.518	0.508	-0.456	-0.270	0.228
12	3.44	0.037	-0.014	0	-0.124	-0.099	2.956	-1.450	-0.539	0.241
12	4.26	0.067	-0.026	-0.001	-0.187	-0.153	3.407	-1.755	-0.647	0.304
13	-1.93	-0.150	0.065	0.001	-1.120	-0.936	8.997	-5.098	-1.566	0.821
14	-0.87	-0.139	0.051	0.001	-0.995	-0.760	3.067	-1.515	2.308	-1.044
15	-0.89	-0.071	0.023	0	-0.543	-0.400	1.911	-0.853	1.529	-0.616
21	-7.24	0.001	0	0	0.307	0.199	0.779	-0.259	0.036	0.011
22	-9.84	-0.001	0	0	0.310	0.258	0.845	-0.388	-0.038	0.015
23	-8.87	-0.001	0	0	0.347	0.264	0.683	-0.271	-0.028	0.010
24	-7.36	-0.001	0	0	0.306	0.235	0.910	-0.416	-0.055	0.023
25	-8.37	-0.001	0	0	0.328	0.265	0.806	-0.377	-0.036	0.015
26	-9.03	-0.001	0	0	0.307	0.191	0.778	-0.245	-0.036	0.010
27	-7.53	-0.001	0	0	0.310	0.291	1.004	-0.578	-0.046	0.024
28	-8.84	-0.001	0	0	0.339	0.271	0.732	-0.319	-0.034	0.013

Table 2: Example points, δa_e values; columns 3 to 11 show the relative contributions of the different 1 and 2 loop terms to the value of δa_e in the second column.

			1 loop		2 loop					
Point	δa_{μ}	Н	А	H^{\pm}	tH	tA	au H	au A	μH	μA
1	2.40	0.085	-0.063	-0.001	0.459	0.511	-0.012	0.011	-0.003	0.003
2	2.58	0.177	-0.162	-0.003	0.439	0.553	0.046	-0.050	-0.007	0.007
3	2.24	0.988	-0.614	-0.012	0.334	0.336	-0.093	0.072	-0.038	0.023
4	2.31	1.124	-0.639	-0.013	0.216	0.215	0.403	-0.292	-0.041	0.028
5	2.41	2.316	-1.024	-0.021	-0.169	-0.145	0.197	-0.114	-0.084	0.045
6	2.51	0.870	-0.157	-0.003	0.095	0.054	0.224	-0.060	-0.030	0.007
7	2.43	1.016	-0.224	-0.024	0.069	0.043	0.213	-0.068	-0.035	0.010
*	2.37	1.081	-0.227	-0.025	-0.013	-0.008	0.317	-0.097	-0.037	0.010
8	2.21	1.093	-0.233	-0.025	0.026	0.016	0.219	-0.068	-0.037	0.010
9	2.26	0.128	-0.115	-0.002	0.443	0.550	0.049	-0.053	-0.005	0.005
10	2.26	0.891	-0.705	-0.013	0.378	0.443	0.262	-0.253	-0.034	0.032
11	2.25	2.487	-1.778	-0.036	0.142	0.170	0.166	-0.149	-0.089	0.075
12	2.37	1.475	-0.538	-0.032	-0.012	-0.010	0.289	-0.142	-0.053	0.024
12	2.22	1.549	-0.598	-0.033	-0.016	-0.013	0.294	-0.151	-0.056	0.026
13	2.205	1.717	-0.747	-0.015	-0.046	-0.038	0.366	-0.207	-0.064	0.033
14	2.49	1.656	-0.615	-0.012	0.026	0.020	-0.080	0.040	-0.061	0.027
15	2.49	1.557	-0.509	-0.010	0.020	0.014	-0.069	0.031	-0.055	0.022
21	2.42	0.588	-0.136	-0.003	0.169	0.110	0.429	0.143	-0.020	0.006
22	2.29	0.651	-0.212	-0.004	0.175	0.146	0.477	-0.219	-0.021	0.009
23	2.35	0.531	-0.147	-0.003	0.214	0.163	0.422	-0.168	-0.018	0.006
24	2.54	0.769	-0.257	-0.005	0.151	0.116	0.448	-0.205	-0.027	0.011
25	2.36	0.623	-0.210	-0.004	0.194	0.157	0.476	-0.223	-0.021	0.009
26	2.38	0.578	-0.126	-0.003	0.169	0.105	0.428	-0.135	-0.020	0.005
27	2.49	0.779	-0.328	-0.007	0.172	0.162	0.558	-0.322	-0.026	0.013
28	2.65	0.597	-0.184	-0.004	0.200	0.160	0.432	-0.189	-0.020	0.008

Table 3: Example points, δa_{μ} values; columns 3 to 11 show the relative contributions of the different 1 and 2 loop terms to the value of δa_{μ} in the second column.

		1 loop			2 loop					
Point	δa_{τ}	Н	А	H^{\pm}	tH	tA	au H	au A	μH	μA
21	$1.7 \cdot 10^{-6}$	1.378	-0.329	-0.011	-0.012	-0.008	-0.031	0.010	0.001	0
22	$1.8 \cdot 10^{-6}$	1.583	-0.526	-0.018	-0.013	-0.010	-0.034	0.016	0.001	0
23	$1.9 \cdot 10^{-6}$	1.481	-0.421	-0.014	-0.016	-0.014	-0.032	0.013	0.001	0
24	$1.2 \cdot 10^{-6}$	1.600	-0.543	-0.017	-0.013	-0.010	-0.038	0.017	0.002	0
25	$1.7 \cdot 10^{-6}$	1.617	-0.555	-0.018	-0.015	-0.012	-0.036	0.017	0.002	0
26	$1.7 \cdot 10^{-6}$	1.353	-0.305	-0.010	-0.012	-0.008	-0.031	0.010	0.001	0
27	$1.8 \cdot 10^{-6}$	1.856	-0.790	-0.027	-0.012	-0.012	-0.040	0.023	0.002	0
28	$1.8 \cdot 10^{-6}$	1.551	-0.489	-0.016	-0.016	-0.012	-0.034	0.015	0.001	0

Table 4: Example points, δa_{τ} values; columns 3 to 11 show the relative contributions of the different 1 and 2 loop terms to the value of δa_{τ} in the second column.

Point	$S \rightarrow$	$e\bar{e}$	$\mu\bar{\mu}$	$ auar{ au}$	$t\bar{t}$	HZ	AZ	$\mathrm{H}^{\pm}W^{\mp}$
1	Н	$7 \cdot 10^{-4}$	0.170	0.031	0.797	_	0	0
	А	$6 \cdot 10^{-4}$	0.134	0.025	0.678	0.163	_	0
2	Н	0.001	0.400	0.253	0.345	_	0	0
	А	0.001	0.393	0.249	0.357	0	_	10^{-4}
3	Н	0.013	0.881	0.084	0.022	—	0	0
	А	0.008	0.570	0.054	0.016	0.351	—	0
4	Н	0.006	0.368	0.621	0.005	—	0	0
1 4	А	0.005	0.289	0.488	0.005	0.213	—	0
5	Н	0.045	0.868	0.085	0.002	_	0	0
0	А	0.022	0.424	0.042	0.001	0.511	_	0
6	Н	0.018	0.449	0.533	$2 \cdot 10^{-4}$	—	0	0
0	А	0.001	0.035	0.042	$7 \cdot 10^{-4}$	0.921	_	0
7	Н	0.037	0.547	0.416	$3 \cdot 10^{-4}$	—	0	0
1	А	0.002	0.029	0.022	$2 \cdot 10^{-4}$	0.460	_	0.487
*	Н	0.051	0.379	0.571	$4 \cdot 10^{-6}$	—	0	0
	А	0.004	0.027	0.041	$6 \cdot 10^{-6}$	0.452	_	0.477
8	Н	0.121	0.515	0.363	$3 \cdot 10^{-5}$	—	0	0
0	А	0.006	0.027	0.019	$2 \cdot 10^{-5}$	0.461	—	0.487
0	Н	$6 \cdot 10^{-4}$	0.250	0.344	0.405	_	0	0
9	А	$6 \cdot 10^{-4}$	0.244	0.336	0.415	0	_	0.003
10	Н	0.002	0.508	0.471	0.020	—	0	0
10	А	0.002	0.502	0.465	0.022	0.010	_	0
11	Н	0.012	0.926	0.061	0.001	—	0	0
	А	0.012	0.924	0.061	0.002	0	_	0
12	Н	0.124	0.582	0.295	$2 \cdot 10^{-5}$	—	0	0
12	А	0.026	0.122	0.062	$9 \cdot 10^{-6}$	0.377	—	0.412
19	Н	0.113	0.566	0.321	10^{-4}	_	0	0
15	А	0.053	0.264	0.150	$8 \cdot 10^{-5}$	0.533	_	0
14	Н	0.068	0.903	0.028	$8\cdot 10^{-5}$	—	0	0
14	А	0.018	0.242	0.008	$3 \cdot 10^{-5}$	0.732	_	0
15	Н	0.039	0.934	0.027	$5\cdot 10^{-5}$	_	0	0
61	А	0.008	0.185	0.005	$2 \cdot 10^{-5}$	0.802	—	0

Table 5: Example points, decay branching ratios of H, A.

Point	$S \rightarrow$	$e\bar{e}$	$\mu ar{\mu}$	$ auar{ au}$	$t\bar{t}$	HZ	AZ	$\mathrm{H}^{\pm}W^{\mp}$
91	Н	$1.2 \cdot 10^{-3}$	0.096	0.902	$7 \cdot 10^{-4}$	_	0	0
21	А	$3.6 \cdot 10^{-4}$	0.028	0.265	0.0036	0.703	_	0
<u></u>	Н	0.0021	0.084	0.9138	0	—	0	0
22	А	0.0012	0.0486	0.5280	0.0076	0.4146	—	0
93	Н	0.0011	0.0727	0.9261	0	—	0	0
20	А	0.0005	0.0326	0.4152	0.0121	0.5396	_	0
24	H	0.0023	0.1569	0.8388	0.00195	—	0	0
24	А	0.001	0.07	0.3759	0.0027	0.550	_	0
25	Н	0.0013	0.0872	0.9111	0.0003	_	0	0
20	А	0.00075	0.0484	0.5062	0.0071	0.4375	_	0
26	Н	0.0019	0.0946	0.9026	0.00086	_	0	0
20	А	0.0005	0.0251	0.2393	0.0032	0.7319	_	0
97	Н	0.0011	0.0897	0.9092	0	—	0	0
21	А	0.0009	0.0740	0.750	0.0064	0.1686	_	0
28	Н	0.0012	0.0886	0.910	0	_	0	0
20	А	0.0006	0.047	0.479	0.011	0.463	_	0

Table 6: Example points, decay branching ratios of H, A.

Point	$S \rightarrow$	$\mu ar{\mu}$	$\sigma^{\mu}_{ m Obs}$	$ auar{ au}$	$\sigma_{ m Exp}^{ au}$	$\sigma_{\mathrm{Obs}}^{\tau}$
91	Н	8.94	9.52	83.6	54.9	106.1
21	А	0.16	2.8	1.50	3.25	3.25
22	Н	7.72	15.3	83.9	136.3	164.0
	А	2.51	5.9	27.3	20.8	50.6
23	Н	12.6	15.2	160.0	135.3	164.0
20	A	2.16	5.0	27.6	17.7	35.4
24	Н	5.77	6.5	30.8	27.8	65.3
24	A	0.22	2.7	1.17	2.9	2.9
25	Н	9.44	10.0	98.7	59.9	113.6
20	A	1.16	4.0	12.2	13.6	13.6
26	Н	8.70	9.3	83.0	52.8	102.9
20	A	0.107	2.5	1.026	2.70	2.70
27	Н	6.78	14.1	68.7	124.5	164.5
21	A	4.87	6.56	49.3	28.3	66.0
28	H	12.3	13.6	126.4	119.6	164.6
20	А	2.71	5.0	27.8	17.7	35.7

Table 7: Example points, $\sigma([pp]_{ggF} \to S \to \ell \bar{\ell})$ (fb), S = H, A; σ^{μ}_{Obs} (fb) is the observed bound on $\sigma([pp]_{ggF} \to S \to \mu \bar{\mu})$, σ^{τ}_{Exp} (fb) is the expected bound and σ^{τ}_{Obs} (fb) is the observed bound on $\sigma([pp]_{ggF} \to S \to \tau \bar{\tau})$.

Point	$e\bar{\nu}$	$\mu \bar{ u}$	$ auar{ u}$	$b\bar{t}$	HW^-
1	$5 \cdot 10^{-4}$	0.126	0.023	0.640	0.209
2	0.001	0.393	0.249	0.356	0
3	0.008	0.542	0.051	0.015	0.383
4	0.004	0.274	0.462	0.005	0.254
5	0.021	0.405	0.040	0.001	0.533
6	0.001	0.034	0.041	0.001	0.923
7	0.037	0.546	0.415	0.002	0
*	0.051	0.379	0.571	$6 \cdot 10^{-5}$	0
8	0.121	0.515	0.363	$3 \cdot 10^{-4}$	0
9	$6 \cdot 10^{-4}$	0.245	0.337	0.416	0
10	0.002	0.490	0.454	0.021	0.032
11	0.012	0.882	0.058	0.002	0.046
12	0.124	0.582	0.295	$4 \cdot 10^{-5}$	0
13	0.051	0.256	0.145	$8\cdot 10^{-5}$	0.547
14	0.018	0.233	0.007	$3 \cdot 10^{-5}$	0.742
15	0.007	0.177	0.005	$2 \cdot 10^{-5}$	0.811
21	$3.5 \cdot 10^{-4}$	0.0276	0.2578	0.0035	0.7107
22	0.0011	0.0452	0.4913	0.00762.	0.4548
23	0.00047	0.0295	0.3755	0.01157	0.5829
24	0.0010	0.067	0.360	0.0026	0.569
25	0.0007	0.0453	0.4739	0.0068	0.4733
26	0.0005	0.0241	0.2305	0.0031	0.7418
27	0.0009	0.0686	0.6957	0.0067	0.2281
28	0.0006	0.043	0.444	0.010	0.502

Table 8: Example points, decay branching ratios $\mathrm{H}^{\pm}.$