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High-energy cross sections of quantum chromodynamics can be computed entirely in terms of the
renormalization-group running coupling constant if these cross sections have no infrared mass singularities.
Since the theory is asymptotically free, at high energies the running coupling constant vanishes and such
cross sections can be computed perturbatively. Thus the theory of quantum chromodynamics may be
rigorously tested. We compute the angular distribution of the hadronic energy produced in high-energy
electron-positron annihilation to second order and find no mass singularities. Our result can be interpreted in
terms of a jet opening angle which vanishes logarithmically as the energy increases. We compute
phenomenological& the corrections to the energy pattern resulting from nonperturbative confinement effects.
They become small at the energies- of the colliding-beam machines now under construction.

Quantum chromodynamics® is a very promising
candidate for the underlying fundamental field
theory of hadronic physics. This theory is as-
ymptotically free at short distances,® but it ap-
pears to be a very strong coupling theory at long
distances. Thus, on the one hand, the theory
exhibits the scaling behavior observed at high
energies (up to small logarithmic corrections),
while on the other it may give very strong long-
range forces which confine the quarks. Clearly,
it is of great importance to devise methods to
test the theory of quantum chromodynamics in
a quantitative and unambiguous fashion.

In general, conventional high-energy scattering
processes are not immediately suitable for a pre-
cise test of the theory. Such reactions contain
hadrons in the initial state, and they necessarily
involve details of the confinement mechanism, de-
tails which are nonperturbative and intractable at
present and which spoil any attempt at a precise
perturbative test.?? High-energy electron-posi-
tron annihilation into hadronic final states
does not suffer from this defect. These re-
actions are suitable for testing the theory.
We shall be concerned only with them in
this paper. The total cross section can be com-
puted unambiguously by exploiting the asymptotic
freedom of the theory.® The leading term es-
sentially counts the sum of the squares of the
quark charges of different types (“flavors”),
and the first-order logarithmic correction can
also be computed exactly in terms of one free
parameter which sets the energy scale in the
logarithm. This rigorous computation uses the
renormalization-group method to evaluate the
high-energy behavior of the photon propagator.
The total cross section is identified with the
absorptive part of the propagation function. The
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same result can be obtained in a simpler manner.
It is obtained by calculating the total cross sec-
tion for the production of massless quarks and
massless gluons in renormalized perturbation
theory and then replacing the fixed renormalized
coupling constant by the running energy-dependent
coupling constant used in the renormalization-
group analysis. Since the running coupling con-
stant vanishes asymptotically, only the first few
terms of the perturbation series need be cal-
culated. The validity of this alternative procedure
suggests that the total cross section may be only
the most elementary of a whole hierarchy of more
finely defined partial cross sections which can
be calculated perturbatively in quantum chromo-
dynamics, using the asymptotically vanishing
running coupling constant. This is the method,
recently advocated by Sterman and Weinberg,?
which we follow.5

Let us, for the sake of clarity, review the basic
ideas of the method. We consider electron-
positron annihilation into a virtual photon of mass
W. The virtual photon produces a system of
quarks and gluons which eventually combine to
form the hadronic final state. We limit our
considerations to final-state measurements which
do not entail the properties of specific hadrons.
Thus we shall not consider, say, the probability
for the production of some number of pions, but
rather, for example, the amount of energy de-
posited in a certain solid angle. It is well known
empirically that hadrons are produced with limited
transverse momentin®(p ). Thus we shall assums
that the restricted immeasurements which concern
us here can be described by the basic partial
cross section for the production of the interme-
diate quarks and gluons. This approximation
should incur an error of relative order {p, ) /W
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which is much smaller at high energies than are.
the asymptotically free perturbative corrections
which vanish only logarithmically.

The functional form of the basic partial cross
section for quark and gluon production is displayed
by writing

1
A= 5 FW,m, Ky X) . M

A factor of W™ has been extracted to make the
function F dimensionless. The quantity m re-

- presents a quark or gluon renormalized mass,
while x stands for dimeusionless variables such
as energy ratios or angles. The renormalized
coupling constant g, is defined by the value of the
quark-quark-gluon vertex at the Euclidean-
momentum reference point . This coupling con-
stant is taken to be that of the theory with mass-
less quarks and gluons. We assume that the high-
energy limit W« is equivalent to the massless
limit m ~ 0. Thus at high energies the partial
cross section can be written in terms of a dimen-
sionless function of dimensionless parameters,

1 ;
Ao= -W-Z—f (H%,,gu,‘x) . )

We should note that this limit is valid only for
energies much higher than the quark threshold
energies.

It should be emphasized that an arbitrary partial
cross section Ao will not generally have a finite
massless limit; in perturbation theory it will
contain factors involving In(W /m). Such mass
singularities will arise if the cross section is
defined in a way that is sensitive to soft-gluon
emission or to the branching of a quark into
collinear quarks and gluons. If the partial cross
section refers to a specific particle type, then
it will generally have mass singularities. Thus,
if we try to ask questions having to do with the
quarklike character of an event, the theory will
produce a mass singularity showing that this
question cannot be answered. Indeed, such ques-
tions should not have an answer in this asymptotic
framework which applies only to measurements
where the details of quark confinement are not
relevant. However, if we ask questions which
are “physically sensible*”’ in a massless theory,
then the corresponding cross sections should be
free of infrared mass singularities.” We shall
adopt a pragmatic attitude where questions are
asked which one would intuitively believe to be
“physically sensible” and then calculate in per-
turbation theory to see if the relevant cross sec-
tions are, in fact, free of infrared mass diver-
gences. It should be stressed that we lack a
general proof that mass singularities will be
absent to all orders—we can only verify the self-
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consistency of the method in low orders of per-
turbation theory.

Assuming that the limit (2) does exist, then it
must be independent of the renormalization point
My

.;Ef(%,gu,x>=0, ®

and the method of the renormalization group can
be applied. Let us briefly review this method.®
Using the variation of g, with u given by the re-
normalization-group equation

Aag
“ﬁ=ﬁ(gu)9 ‘. (4)
‘Eq. (3) can be cast into
of _ of
WW_B(g“)'SEr:' G

The energy-dependent running coupling constant
gy is defined implicitly by

Fy dg Vo
f =10(W/p).. ©
s B8
* The variation of this definition yields
28y _p(z :
w oW B(Zy) (7&)
and
ag _ .
=P E/B(2). (7b)

Hence the solution of Eq. (5) is obtained by trans-
ferring the energy dependence in the argument
/W into the energy dependence in the running
coupling constant,; by setting u/W=1, and by
replacing g, with g,,. That is, the solution of

Eq. (5) gives

1 ‘
A0= oo f (%—’gu’x>: —Wl/ff(l’gw’x) K ®

In an asymptotically free theory, the 8 function
is negative for small g, and Eq. (6) forces the
running coupling constant g, to vanish as W,
Thus the high-energy limit can be computed per-
turbatively. The 8 function in asymptotically
free quantum chromodynamics has the lowest-
order form?

Blg)=- E}T (11-2N,)°, e

where N, is the number of flavors. Although
this lowest-order form (9) gives only the leading
asymptotic value of the running coupling constant
By, it is instructive to use Eq. (9) for all values
of g. Then the integral in Eq. (6) gives

2
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FIG. 1. Lowest-order Feynman graph fore*e™ —vy
—~qq. '

This form illustrates how the powers of In(W/u)
generated in the perturbative expansion of f(u/W,
&, ¥) with the fixed coupling constant g, are
transferred into the running coupling constant in
the function f(1,gy,x). Of course, Eq. (10) is

. accurate only in the high-energy limit, and one
should use only the limiting form

- 5 872 .
v == @3N/’

which is independent of g, 2, Present estimates
indicate that the renormalization point should be
chosen to have the value® i~ 500 MeV in order to
minimize the (InW/ )2 corrections to the leading
form (11).

We turn now to apply this method, the method
of asymptotically free perturbation theory, to the
simplest measurement beyond that of the total
cross section. This is the measurement of the
angular pattern of the hadronic energy radiated
in electron-positron annihilation. We define the
differential energy cross section dZ/dS2 to be
the power radiated into the solid angle d2 divided
by the energy flux in the incident e*e” colliding
beams. This quantity is the “antenna pattern”
for the annihilation process. It is normalized
so that its integral over all solid angle gives the
standard total cross section. The energy cross
section is not sensitive to the emission of soft
gluons or to the branching of a quark into collinear
quarks and gluons, Thus it should be calculable
by the asymptotically free perturbation method
that we have just described. We shall find that
it is indeed free of infrared mass singularities
in second order.

In order to describe our results clearly, we
shall first consider the idealized case in which
the initial electrons and positrons are completely
polarized along a direction perpendicular to their
common beam axis. (We shall, of course, always
work in the laboratory frame where the electrons
and positrons have equal but oppositely directed
momenta.) The lowest-order process e*+e -~y
-~ g +7 is depicted in Fig. 1. Here the differential
energy cross section is identical to the ordinary
differential cross section since the quark (¢) or
antiquark (7) carries away precisely one-half
of the total incident energy W. A simple calcu~

11)

lation gives

ax () do (0) 2 : N ez .
W '—71?2— —(a /2W~)Sln Z/);:;Qf . (12)
Here a~ 3= is the fine-structure constant, ¢ is

the angle at which the radiated energy is detected
relative to the direction of the beam polarization
(the magnetic-field direction), Q; is the value of
the fractional quark charge of flavor f, and the
factor of 3 accounts for the sum over the three
colors. According to the asymptotically free
perturbation theory, the lowest-order cross sec-
tion (12) should be valid in the infinite energy '
limit. Its structure reflects the spin 3 carried
by the quarks, and its magnitude measures the
sum of the squares of the quark charges.

To obtain the first correction as the energy is
lowered, the order-g? terms in the perturbation
theory must be computed. These contributions
are displayed in Fig. 2. Some regularization
scheme must be introduced to deal with the in~-
frared mass singularities that appear in the in-
dividual diagrams. The simplest procedure here
is to introduce a finite gluon mass A while keeping
the quarks massless.? The energy cross section
dz/d? is computed by modifying the ordinary
cross section for the production of a particle a
into the solid angle d€? by inserting the factor
E,/W into the phase-space integrand, where E,
is the energy of the particle, and then summing
over all particle types a. We shall first calculate
the contributions to the cross section when the
energy is carried by the quark or antiquark,
dz,/dQ. The lowest-order production process
of Fig. 1 is altered by its interference with the
vertex correction shown in Fig. 2(a) (including
a wave-function renormalization not displayed).
The calculation of this interference contribution
is a standard one, ‘and we simply quote the result:

N
oI

=

7 P Z/
(b) (c)

FIG. 2. (a) Vertex modification. (b) and () are the
lowest-order Feynman graphs for gluon production.

oI
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(v1rtua1) =

2W2 A2

2 w2 T2 ‘
sme:anz gﬂz ( TR S _1>. (13)

A2 3 2

The calculation of the contribution of the real-gluon emission process displayed in Figs. 2(b) and 2(c) is

outlined in Appendix A. We find that

wa

az,
& T (real)= ZW’

[

Thus, to second order, the total contribution to
the energy cross section, with the energy being
carried by the quarks, is given by

dz,

79 (v1rtua1) + =t (real)

2Wﬂ Z 3Q,° 6 2[ (3cos®p-1)

oy 41, W° _9z>
+smzp(—-§1nh2 B/ |

(15)

Although the leading In? W?/x? mass singular-
ities have canceled between the real and virtual
gluon emission contributions, this cross section
still has a InW?/A2 mass singularity. We con-
clude that questions related to energy-weighted
measurements of quarklike (flavor-dependent)
properties cannot be answered within the context
of the asymptotically free perturbation theory.
Such properties are inextricably tied up with the
confinement mechanism which cannot be treated
perturbatively. It is worthwhile to give another
example to clarify this point. Naively, one might
expect to be able to reveal the underlying presence
of fractionally charged quarks by computing; say,
the energy-weighted, average squared charge to
be detected in some solid angle df2. The energy
weighting might.be expected to remove the am-
biguity caused by the transfer of charge from one
jet to the other by soft quarks.!® However, the
cross section for this measurement is obtained
by replacing @,* with @,* in Eq. (15), and we see
that it is not free of infrared mass singularities.'!
On the other hand, we should note that the or-
dinary cross section for finding a quark -in the
solid angle d@ is finite to qrder g2. As is dis-
cussed in Appendix A, the differential cross sec-
tion is given by '

do, a? - g
i T 2 2 _ 2
aQ " e 2. 34, L(“ 47 )Sm L4
g? |
+ 'E;?(fi cos?yP '".1)] . (18)
This cross section must have mass singularities

in higher order if the method which we are fol-
lowing is to be consistent.

{%(3 cos?) —1) + sin?) (In? —— =2 In —mpm

= (14)

W2 13, W _vj_so'y
T3 T8 Ty J

To complete the calculation of the energy cross
section, we need also the contribution when the
energy is carried by the gluon. As is discussed
in Appendix A, this contribution is given by

dz a? g? [ .
an T IWT 6 Z; Qy*| (eosy-1)

w _ié)]
A2 9 :

)
The appearance here of the infrared mass sin-
gularity shows that questions such as: “What
is the fraction of the energy carried off by the
gluons ?”’ cannot be answered within the context
of the asymptotically free perturbation theory.
The complete energy differential cross section
is, as was expected, finite. We add together
Egs. (12), (15), and (17), and replace g* with
the running coupling g,° to secure

+ sin® zp(% In

dz
" T Z3Qf <Sm ¢+

cos? > (18)

Inserting the value (11) of the running coupling
constant gives

dz
”d’sz'z

4cos?y
(“n VT @AIN] 1nW/u>

(19)

We recall that ¢ is the angle between the direction
of the detected energy and the direction of the
(complete) polarization of the incident clashing
beams. We see that the valley of the sin?y dis-
tribution is filled in at lower energies by the cos?y
perturbative correction.

The fragmentation of the quarks into the ob-
served hadrons modifies our result. We can
estimate this effect with a simple phenomenological
model. We suppose that a quark, produced with
momentum P making an angle y relative to the
polarization axis, fragments into hadrons with
one hadron of momentum h coming out with an
opening angle 71 relative to the quark direction
D. This configuration is illustrated in Fig. 3.

The hadron will deposit energy at the angle ¥
with respect to the polarization direction. We
assume that the quark is produced with the lowest-
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FIG. 3. Geometry for the fragmentation of a quark
of momentum P into a hadron of momentum h. The
beam-polarization direction (the direction of the mag-
netic field) is denoted by b.

order sin®y distribution. Using the law of cosines,

the branching process makes the replacement
sin®yx =~ sin® P + 3 sin®n(3 cos? P - 1), (20)

where an average over the azimuthal angle ¢ has
been performed. Thus the quark fragmentation
modifies the basic cross section to read

Z 3Q/*[ sin?

+3 (sm ) (3cos2yp-1)],

(21)
where (sin®7n) involves an energy-weighted av-
erage opening angle. This averaged quantity is
computed in Appendix B using an energy-scaling
quark fragmentation function f(z, 2, ), where 2z
=2h,/W with &, and &, the components of the ha-
dronic momentum h that are parallel and per-
pendicular to the quark momentum p. By em-
ploying an energy sum rule for f(z,%,), and the
integral relating f(0, %,) to the cecefficient C of
the logarithmic rise of the fotal hadronic multi-
plicity {(»),

%
7 (rag)= gy

() =C InW +const, (22)
we find that
. C(h
(stnty = TS0 (23)

where (#,) is the average transverse momentum.
We see that the spreading of the energy dis-

tribution by the fragmentation effect vanishes as

1/W as the energy increases, while the asymp-

totically free perturbation corrections vanish
much more slowly as 1/InW. Thus at sufficiently
high energies only the asymptot;cally free per-
turbation corrections are significant. We can get
a rough picture of the variation of the energy
pattern with energy by simply adding the two ef-
fects and, at the same time, putting our results
in a suggestive form. We add the fragmentation
correction exhibited in Eg. (21) to the perturbative
result (18) and write the sum in the form

dﬂ ?W? ;3% <1+ )

X[sin? P+ 3(sin® ) o0y (Beos?y~1)].  (24) ’

Here we identify {sin®n),,, in terms of a full jet
opening angle. It is given by

s A2 — 4
(sin® 7)o = [TT-@/3)N]JInW/p
mCChy )
) {25)

To assess the size of this total opening angle,
we take' N, =4, =500 MeV, C=2.5, and (%,)
=300 MeV. Then, with W in GeV units,

-0.48 1.2

(Sinf = et W (26)
giving, for example,

W=10 GeV: (sin?1),,,=0.16+0.12, (@7a)

W=30 GeV: (sin®n),,=0.12+0.04. 27b)

The discussion thus far has dealt with the ide-
alized case of perfectly polarized colliding beams.
In practice, the electron-positron clashing beams
will be partially polarwed along the direction of
the magnetic field b a dlrecuon which is per-
pendicular to the bea.m axis [, Denoting the degree
of polarization by P, the annihilation of an elec~
tron-positron pair produces a virtual photon with
a photon-spin density matrix-

Ly =(=P% (6, ~iyi,)+2P%b,b,. (28)

Thus, in additibn to the angle ¢ between the direc-
tion of the detected energy and the direction of
the magnetic field

cosp=heob, (29)

we must now introduce the angle § between the
detected energy direction and the beam axis

cosf=h1. (30)

The previous result (24) holds for the P=1 limit
of the tensor (28). The ge,neral result is obtained

' by obvious substitutions & —»lk, b b 0,0, and

we find that



dT 4W2 ZsQf (1"
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){(1 P2)[(1+cos?8) +35{sin?n), (1 ~ 3 cos?9)]

+2 P sin® p+3(sin® ), (3 cos?y — 1)]}. (31)

In summary, the method of asymptotically free
perturbation theory offers the promise of precise,
unambiguous tests of an underlying, fundamental
field theory of hadronic physics, the theory of
quantum chromodynamics. We have worked out
the details of such a test, the energy dependence
of the hadronic energy pattern produced in elec-
tron-positron annihilation.

Note added in proof. It has been pointed out to us
by T. Burnett that an experimental evaluation of
the jet opening angle ({(sin®p),,,,,) can be obtained
from the present data on the inclusive production
of charged particles. This evaluation requires
only the assumption that the angular distribution
of the energy carried by neutrals is identical to
that carried by the charged particles. In terms
of the parameter a(x) defined by the angular dis-
tribution of the charged-particle inclusive cross
section,

do

~ 2
e [1+a(x)cos?d],

and the x =2k/W dependence of the cross section,
do/dx, we get, on comparing with Eq. (31) (for
P= 0),

. i dol-a 1 do
%(smzn)maﬁj; xdx = 3+a((j:))/fo % dx o
Here we have neglected the mass of the produced
hadrons which is permissible since they are mostly
pions. We have evaluated this formula at W="17.4
GeV using the values of a(x) given in Ref. 6 and the
recent analysis of do/dx performed by G. Hanson
(private communication). We find

(si0%1)y040 =0.34+0.06 (W="17.4 GeV).

This result is in remarkable agreement with the
sum of our perturbative result and the phenomeno-
logical confinement estimate; Eq. (26) evaluated
at W="7.4 GeV gives (sin®y), ,,, =0.34. One should
be troubled by this close agreement since a jet
model yields a good description of the data.® Why
then does our phenomenological jet term not give
the full contribution to (sin?;)? Part of the ex-
planation lies in the fact that we have determined
the coefficient C of the logarithmic rise in the mul-
tiplicity from the figures for the total multiplicity
presented in the literature.® However, these data
apparently contain a contamination in the two-
prong channel at higher energies that comes from
heavy-lepton production. Thus the average multi-
plicity determined in this way is smaller than that

T

found from the single-particle inclusive data
where this contamination has been removed. It
should be emphasized, however, that the estimate
of confinement effects made in the text was in-
tended only as a semiquantitative measure of these
effects. Furthermore, as noted in the text, in
order for the theory to rigorously apply, the en-
ergy must be well'away from any threshold. The
simple calculations in this note show that present
measurements of angular distributions are already
of sufficient accuracy to be sensitive to the per-
turbative contribution at 7.4 GeV. Hence measure-
ment of the angular distribution with comparable
accuracy at higher energies (beyond the 9.5-GeV
resonances) will provide a good test of the theory
of quantum chromodynamics.

We wish to thank G. Hanson for several useful
conversations.
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APPENDIX A

In this appendix, we shall sketch the method
used to calculate the second-order effects dis-
cussed in the text. We begin by displaying a gen-
eral formula for the energy cross section. We
consider electron-positron annihilation producing
N particles in the final state as indicated by the
energy-momentum balance

Dutbot e wpy=l+T. . (A1)

According to the definition of the energy cross
section, we insert a factor E,/W for each particle,
a=1,2,...N,into the usual expression for the
differential cross section and integrate over all
variables except for the solid angle of the de-
tected energy. Thus

az _ f: Do’dpq (d by) (2r)
aQ & f @ )32w (21ri§2E
X8(Z,p,-1=1)|T|? 2W2‘ .
(A2)
In general, one must in addition sum over the
total number of final particles N.

We need to apply this general formula to the
second-order gluon-emission process depicted
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in Figs. . 2(b) and 2(c). We shall only briefly dis-
cuss our calculation since similar computations
already exist in the published literature.® How-
ever, some of the expressions that we shall
write down are in a particularly simple form that
does not exist in the literature.” The squared
matrix element for the gluon-emission process
has the form

|T|%= L, H". (A3)

2W2
Here L, is the virtual-photon spin-density tensor
which is produced by the spin sum of the square
of the leptonic current (V2/W)#(l)y,v(1). It has
no time components and its spatial components
are identical with those of the tensor L,, given'in
Eq. (28) in the text. We denote the momentum of
the virtual photon by ¢,

g=1+I. (A4)

The conservation of the leptonic current is made
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explicit from the fact that L, obeys

q*L,,=0=L,,q4". (A5)

We denote the momenta of the produced quark

and antiquark by p and p, respectively, and the
momentum of the emitted gluon by k. We recall
that we are in 2 limit where the quarks are mass-
less, but the gluon is massive, The normalization
of the coupling constant is specifizd by the inter-
action Lagrangian

"GI :gq‘)/u, Kan: ’ (AG)

where the color SU(3) generating matrices A, have
an isospin normalization so that, for example,

+3 0 0
=l 0 o, (a7
0 00 '

Using these conventions, the hadron tensor H*"
is given by )

Z . av (1>+k) wy o (P+k) 5
oy g o - @ LD |
= vy (b +FR) y- (p+Fk)

XYP [Qf'y (p k)Z g a'y ] g)\a \o' (p ,)2 Qf ]}'P, (AB)

where we use a metric g,, withsignature (~+++)sothatk?=— 2%, and the Dirac matrices obey {y,, v, } = - 2g,,.
It is worthwhile displaying the result of calculating the traces in Eq. (A8) in 2 manner that makes the

current conservation

q,H"=0=H"q,

(A9)

manifest. ThlS gives us some assurance that the answer is correct. We find that H*"¥ can be put into the

form

1

, 1 ,
H*?=322%7,Q;" {(E—Jr—k): W{(ngw—quq J®+[ A% Avg

Po (@ A+ A ) A+ g (g A

+[k*e? ¢* = (q“k + R ") g~ k+g*” g+ F)?]}
1 1
- '3 2_ 0 v —
"¢~ 40" [ * Growp
222 ' ' ;
o [ g+ A= APgeR) (Vg A~ A% k) +(g"*"q® - q"¢") (g« A (A10)
+[(1)+k}2(p+k)z_[( q q-k)k"q a-k)+(g*"¢" - a"¢")(q+ V),
where A*AY L BPRY = 2(pHpY + D4 DY) . (A12)
A=p—p. (A11) We also specidlize to the laboratory frame and

Factors which are proportional to ¢* or ¢” can be
deleted. They do not contribute to the squared

matrix element (A3) since the lepton current is °
conserved [Eq. (A5)]. Thus we can, for example,
make the replacement :

use relations such as
(p+kP=(q-p)=-W(W-2E). (A13)
Finally, we neglect terms. which give a vanishing

contribution to the cross section in the massless
limit A~ 0. We get
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1 1
H-V=64 2 2 _
g ;Q” W-2E W-2E

x [(E2+E2)g‘“’ —P“p"—b_“l—)”]

122 [W-2F W-2E
X[I'EW<W_2E * W_zEﬂ'. (a14)

Some terms involving %£° in factors multiplying
A% have been omitted here since they do not con-
tribute in the A=~ 0 1imit Moreover, we have
used the fact that E2g*” — p*p” and E2gH? - p“p”
are equivalent in the )\2 term when A — 0. How-
ever, the remaining A? terms cannot be discarded
for they give finite contributions to the cross
sections in the A -0 limit.

Since the general case of arbitrary polarization
is easily obtained from that with pure polarization,
we shall compute the squared matrix element for

(d31>) @p) (dsk)
E

and its permutations. We denote the gluon energy
by w and the element of its solid angle by d2. The
angles 1 and ¢ descrlbe the orientation of P rela-
tive to k with cosn = p k. The limits of inte-
gration on the two energy integrals follow by
requiring that ~1 < cosn<+1. The evaluation of
the integrals in this manner yields the results
quoted in the text. .

APPENDIX B

The fragmentation of a quark into hadrons may
be described phenomenologically by the function
flz,h,), where z=2h,/W. The number dr of hadrons
produced in a momentum interval (d*k) is given by

dn= (d ")

5z, n), (B1)
with the variable z limited to the range 0 < z2< 1.
In the e*e” annihilation, a quark and antiquark are
produced, giving a total multiplicity of

d?n,)f(z, n,)
(n) = Zf f 2+ @/WHk 2_*_7’42”1/2 »  (B2)

where m is the mass of the hadron with momem-
tum 2. The W~ limit of this expression gives

(ny =CInW + const, (B3)
where
c=2 f (@n)F0,h). (B4)

The amount of energy carried off by the hadrons

5(p+B+k—q)= dedwdecosndcpﬁ[cosn-

perfectly polarized beams. Putting P=1 in Eq.
(28) and also inserting Eq. (A14) into Eq. (A3)
gives
| 1 11
2_ 4,2 2
|T[?=64e'g w2 ;Qf W-2E w_2E%

X (E?sin®y + E?sin®Y)

x[ 1 a2 (W-ZE" W~2E>
"YW\ W-2E TW-2E /]
) (A15)

Here ¥ and ¥ are the angles which the momenta

of the quark and anthuark Iorm with, the polar-
izationdirection, cosx = p b cosy = p «b. To eval-
uate the integrals over the three~body phase space,
we use the identity

w2 — O 2 ]
2W(E + W)+ 2Ew + X ] (A16)

2E (w® = A\7)1/2

in the momentum interval (@°z) is given by A%dn.
Since this energy must add up to W, we have
the energy sum rule -

iw= f @nf(z,ny). (B5)

With these results in hand, we can now proceed
to the evaluation of the effect of quark fragmen-
tation on the energy cross section.

We assume that the final hadrons are produced
from a ¢g pair which has an angular distribution
proportional to sin?y, where e X is the angle be-
tween the quark momentum p and the beam polari-
zation direction b. With the hadron carrying off
a fraction #°/W of the total energy, the partlal
energy Cross sectlon is glven by

1=_g2_zf:3szj; (ih) <f_>f dQ, sin*y f(z, 1),
(B6)

where A indicates the phase-space volume of the
final hadron and df2, denotes- the solid angle in-
terval of the intermediate quark of momentum

P. The energy sum rule (B5) ensures that this

cross section is correctly normalized, gwmg
a total cross section

= 2_W_2 Zan fdsz sin’y (B7)

that agrees with Eg. (12). We use the law of co-
sines to write sin®y in terms of the jet opemng

angle n, which is the angle between hand P, and
the angle ¥ between hand b (the angles are dis-
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played in Fig. 3). Then, on writing (d%k) = dQh%dh
and averaging over an azimuthal angle, we get

dz _ of z
= - 3Q.2
ae ~ w3 & T

Xf dﬂpf h2dnh[sin®P +3 sin’n(3 cos?P — 1)]
*flz, ). (B8)
The integrand here now involves only the direc-
tion of the quark momentum D relative to the
hadronic momentum h—it involves only P -h.
Hence we may consider d@, to be an element of
solid angle of the hadronic momentum 1 rather

than that of the quark momentum p. We may
write

dz a? . L.
—_— 2 :3Q 2 | (@®h)[sin®Y + 3 sin®n(3 cos®p — 1)
a -~ wr G _[ [ 2 ]

xflz,h,), (B9)
or, using the energy sum rule (B5),

az
aa - 2W2

Z 3Q,%[sin%) + 3 (sin®n) (3 cos®y - 1)].
(B10)

Since
sin®n= . B11)
= DR 2 (
we have
in? 1d d?n,) hy? h
(sin 7)>~/0 Zf( Y 4)wa(5, Ny
(B12)

In the high-energy limit, the z integration produces

terms of order 1/W? except for the neighborhood
=0. Hence we can set z2=0 in f(z,%,) and

evaluate the resulting elementary integral over

z to obtain ’

. )/
(sin’n) =7 f (d®h,) 2 S 10,1y (B13)
In view of the normalization given in Eq. (B4),

we may write this as

(sin?n) = ZT—%(:;—J , (B14)

where {,) is the average hadronic transverse
momentum in the quark fragmentation. This is
the result quoted in Eq. (23) of the text.
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