
II. Field Theory Background

This section reviews a number of relevant facts about QCD as a field theory, primarily its
Lagrange density and Feynman rules, amplitudes and their renormalization, and the concepts of
asymptotic freedom and infrared safety. We assume here a general familiarity with elementary
methods in field theory. More detailed discussions of field theory topics may be found in text-
books. Asymptotic freedom, infrared safety and the renormalization group applied to QCD are
also covered in a number of useful reviews (Muta, 1987; Mueller, 1989; Sterman, 1991; Dok-
shitzeret al., 1991).

A. Lagrangian

The flurry of fields, indices, and labels in the telegraphic formulas that follow in this subsection
are probably accessible only after the benefit of a pedagogical introduction that must be found
elsewhere. We anticipate, however, that some number of readers may find these formulas a useful
refresher of memory. Others will be satisfied by the summary of perturbation theory rules in Fig.1,
and will wish to skip to subsectionB., which begins a review of quantum theoretic concepts much
less dependent on the technical content of QCD, but which, toward the end of this section, explain
what is special about QCD.

Quantum Chromodynamics is defined as a field theory by its Lagrange density,

LQCD
eff

[
ψ f (x), ψ̄ f (x),A(x), c(x), c̄(x); g,mf

]
= Linvar +Lgauge+Lghost , (2.1)

which is a function of fields [ψ f (quark),A (gluon), andc (ghost)] and parametersg andmf , where
f labels distinct quark fields.Linvar is the classical density, invariant under localS U(Nc) gauge
transformations, withNc = 3 for QCD.Linvar is of the form that was originally written down by
Yang and Mills (Yang and Mills, 1954),

Linvar =
∑

f

ψ̄ f

(
i /D[A] −mf

)
ψ f −

1
4

F2[A]

=

nf∑
f =1

4∑
α,β=1

Nc∑
i, j=1

ψ̄ f ,β, j

(
i(γ)µβαDµ, ji [A] −mfδβαδ ji

)
ψ f ,α,i

−1
4

3∑
µ,ν=0

N2
c−1∑

a=1

Fµν,a[A]Fµν
a[A] . (2.2)

In the second expression, we have written out all indices explicitly, using the notations

Dµ,i j [A] ≡ ∂µδi j + igAµa(Ta
(F))i j , (2.3)

and

Fµν,a[A] ≡ ∂µAνa − ∂νAµa − gCabcAµbAνc . (2.4)

16



Let us describe what these formulas represent, working backwards from Eq. (2.4).
Fµν,a is the nonabelianfield strengthdefined in terms of thegluonvector fieldAµ

b, with N2
c − 1

group componentsb. g is the QCD (“strong”) coupling and theCabc,a,b, c = 1 . . .N2
c − 1, are real

numbers, called the structure constants ofS U(Nc), which define itsLie algebra. As mentioned
above, for QCD (Fritzschet al., 1973; Gross and Wilczek, 1973b; Weinberg, 1973), Nc = 3,
but for many purposes it is useful to exhibit theNc-dependence explicitly.Nc is often called the
“number of colors”.

The Lie algebra is defined by the commutation relations of theN2
c −1,Nc×Nc matrices (Ta

(F))i j

that appear in the definition ofDµ,i j , Eq. (2.3),

[Ta
(F),Tb

(F)] = iCabcTc
(F) . (2.5)

These commutation relations define the algebra. Here we have taken theTa
(F) to be hermitian,

which makes QCD look a lot like QED. Some useful facts about the algebra of generators are
listed in AppendixA:.

Dµ
i j [A] is thecovariant derivativein theNc-dimensional representation ofS U(Nc), which acts

on the spinorquarkfields in Eq. (2.2), with color indicesi = 1 . . .Nc. There arenf independent
quark fields (nf = 6 in the standard model), labeled byflavor f(= u,d, c, s, t,b). In the QCD
Lagrangian, they are distinguished only by their masses.

The quark fields all transform as

ψ′f ,α, j(x) = U ji (x)ψ f ,α,i(x) , (2.6)

under local gauge transformations, where

U ji (x) =

exp

i
N2

c−1∑
a=1

βa(x)Ta
(F)




ji ,

(2.7)

with βa(x) real. Defined this way,Ui j (x) for eachx is an element of the groupS U(Nc), which is
the local invariance that has been built into the theory. The corresponding transformation for the
gluon field is most easily expressed in terms of anNc × Nc matrix,Aµ(x),

[Aµ(x)] i j ≡
N2

c−1∑
a=1

Aµa(x)(Ta
(F))i j , (2.8)

which is the form that occurs in the covariant derivative. The gluonic field is then defined to
transform as

A′µ(x) = U(x)Aµ(x)U−1(x) +
i
g

[∂µU(x)]U−1(x). (2.9)

With these transformation rules, the gauge invariance ofLinvar is not difficult to check.
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The gauge invariance ofLinvar actually makes it somewhat difficult to quantize. This problem
is solved by adding toLinvar gauge-fixingandghostdensities,LgaugeandLghost, as in Eq. (2.1). The
former may be chosen almost freely; the two most common choices being

Lgauge = −λ
2

N2
c−1∑

a=1

(
∂µA

µ
a

)2
1 < λ < ∞,

Lgauge = −λ
2

N2
c−1∑

a=1

(n · Aa)
2 λ→ ∞, (2.10)

wherenµ is a fixed vector. The first defines the set of “covariant” gauges, the most familiar having
λ = 1, theFeynman gauge. The second defines the “axial” or “physical” gauges (Leibbrandt,
1987), since takingλ to infinity eliminates the need for ghost fields. Here, pickingnµ light-like,
n2 = 0, defines thelight-cone gauge. Forλ → ∞, a nonzero value ofn · A leads to infinite action,
and for this reason the physical gauges are often called “n · A = 0” gauges.

Finally, in the covariant gauges we must add a ghost Lagrangian (Feynman, 1963; DeWitt,
1967; Faddeev and Popov, 1967; ’t Hooft and Veltman, 1972)

Lghost = (∂µc̄a)(∂
µδad − gCabdA

µ
b)cd, (2.11)

whereca(x) and c̄a(x) are scalar ghost and antighost fields. In the quantization procedure, ghost
fields anticommute, despite their spin. In anS U(Nc) theory, the ghost fields ensure that the gauge
fixing does not spoil the unitarity of the “physical” S-matrix that governs the scattering of quarks
and gluons in perturbation theory.

B. Feynman Rules and Green Functions

The perturbation theory (Feynman) rules for QCD are summarized in Fig.1. With our choice of
(hermitian) generatorsTa

(F), the quark–gluon coupling is just like the QED fermion-photon vertex,
except for the extra matrix factorTa

(F). The remaining rules for vertices are not difficult to derive in
detail, but their essential structure is already revealed by the correspondence (∂ρφ)→ −iqρ, where
qρ is the momentum flowing into the vertex at any fieldφ.

As for the propagators, we pause only to notice some special features of physical gauges. In
then · A = 0 gauge, we have, from the propagator in Fig.1,

kµGµ
ν(k,n) = i

(
nν

n · k −
n2kν

(n · k)2

)
· (2.12)

Note the lack of a pole atk2 = 0 on the right-hand side of this relation. This means that the
unphysical gluon polarization that is proportional to its momentum does not propagate as a particle
in these gauges. The lack of a pole for the gluon scalar polarization is the essential reason why
ghosts are not necessary in physical gauges. This simplification also makes these gauges useful for
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(a) Propagators: Gluon, quark, and ghost lines of momentumk

ν,a µ,b i δba
k2+iε

[−gµν +
(
1− 1

λ

)
kµkν

k2+iε
] covariant gauge

i δba
k2+iε

[−gµν + kµnν+nµkν
n·k − n2 kµkν

(n·k)2 ] physical gauge

α, i
k →

β, j i
δi j

k2−m2+iε
[/k + m]βα

a b i δba
k2+iε

(b) Vertices (all momenta defined to flow in)

(i) (ii)

(iii) (iv)

(i) −ig[T(F)
c ] ji [γµ]βα

(ii) gCabck′α

(iii) −gCa1a2a3[g
ν1ν2(p1 − p2)ν3 + gν2ν3(p2 − p3)ν1 + gν3ν1(p3 − p1)ν2]

(iv)
−ig2[ Cea1a2Cea3a4(g

ν1ν3gν2ν4 − gν1ν4gν2ν3)
+ Cea1a3Cea4a2(g

ν1ν4gν3ν2 − gν1ν2gν3ν4)
+ Cea1a4Cea2a3(g

ν1ν2gν4ν3 − gν1ν3gν4ν2)]

Figure 1: Perturbation theory rules for QCD.
19



many all-order arguments in pQCD. The price, however, is the unphysical poles atn · k = 0, which
are often thought of as principal values,

P
1

(n · k)α
≡ 1

2

[
1

(n · k + iε)α
+

1
(n · k− iε)α

]
. (2.13)

This definition, however, is awkward beyond tree level (when loops are present) and other defini-
tions (Mandelstam, 1983; Leibbrandt, 1987) are necessary to carry out loop calculations correctly
(Bassetto, Nardelli, and Soldati, 1991; Bassettoet al., 1993). In any case, it is often desirable to
back up results derived in physical gauges with calculations or arguments based on covariant gauge
reasoning.

The Feynman rules allow us to defineGreen functionsin momentum space. These are the
vacuum expectation values of time-ordered products of fields,

(2π)4δ(p1 + . . . + pn)Gα1···αn(p1, . . . , pn) =

n∏
i=1

∫
d4xie

−ipi ·xi

×〈0| T[φα1(x1) . . . φαn(xn)] |0〉 , (2.14)

where theαi represent both space-time and group indices of the fields, collectively denoted byφ.
At any fixed order in perturbation theory,Gα1···αn is given by the sum of all diagrams constructed
according to the rules of Fig.1. Corresponding to each of the fields in the matrix element, every
diagram will have an external propagator carrying momentumpi into the diagram, with free exter-
nal indicesαi. Essentially all of the physical information of the theory is contained in its Green
functions.

C. From Green Functions to Experiment

The route from Feynman rules, through Green functions to experimentally observable quanti-
ties is straightforward, but involves a number of steps which it may be useful to outline. In what
follows, we shall briefly review the roles of the S-matrix, cross sections, renormalization schemes
and regularization.

We do not address yet the issue of whether perturbation theory is of any use for reliable calcu-
lations of physical quantities in QCD.

1. The S-matrix and Cross Sections

By themselves, Green functions are not always direct physical observables. For one thing,
their external lines are not necessarily on-mass-shell, and, in a gauge theory, the Green functions
are not even gauge invariant. The relation between Green functions and physical quantities like
cross sections is, however, quite simple. Let us review the basic steps in a generic situation with
fieldsφα.
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First, a two-point Green function has a pole atp2 = m2. Near the pole, it has the form of a
“free” propagator (Fig.1) times a scalar constantRφ,

Gαβ(p)→ RφGαβ(p) f ree + finite . (2.15)

If the particles under discussion are hadrons, thenRφ and the physical massM are not perturbatively
calculable. If, nevertheless, we discuss the perturbativeS-matrix for quarks and gluons, thenRφ

andM can be computed as a power series in the coupling

Rφ = 1 + O(g2)

M = m+ O(g2) . (2.16)

TheS-matrixis simply the amplitude for the scattering of momentum eigenstates into other mo-
mentum eigenstates. In particle physics, the most important S-matrix elements describe the scat-
tering of two incoming particles into some set of outgoing particles. The S-matrix is derived from
Green functions by “reduction formulas”, of the general form

S ((p1, s1) + (p2, s2)→ (p3, s3) + . . . (pn, sn)) =
∏

i

ψ(pi , si)αi

×
G−1

αiβi
(pi) f ree

R1/2
φ

Gβ1···βn(p1, p2,−p3, . . . ,−pn) , (2.17)

where nowsi represents the spin (and other quantum numbers) of particlei. Hereψ(pi , si)αi repre-
sents the wave function of external particlei, given by

u(p, s) for an incoming Dirac particle

ū(p, s) for an outgoing Dirac particle

v̄(p, s) for an incoming Dirac antiparticle

v(p, s) for an outgoing Dirac antiparticle

ε(p, s) for an incoming vector particle

ε∗(p, s) for an outgoing vector particle. (2.18)

Once again,Gαiβi (pi) f ree is the free propagator, for fieldi, but with the correct physical mass of the
corresponding particle.

From the S-matrix, it is customary to define thetransition matrix Tby

S = I + iT , (2.19)

with I the identity matrix in the space of states. For momentum eigenstates,T contains an explicit
momentum-conservation delta function, which it is convenient to separate explicitly,

iT ((p1, s1) + (p2, s2) → (p3, s3) + . . . (pn, sn)) =

(2π)4δ4(p1 + p2 − p3 − . . . − pn)

×M((p1, s1) + (p2, s2)→ (p3, s3) + . . . (pn, sn)) .

(2.20)
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It isM-matrix elements that are used to derive cross sections, by integrating the general infinitesi-
mal cross section,

dσ ((p1, s1) + (p2, s2)→ (p3, s3) + . . . (pn, sn))

=
1

4
√

(p1.p2)2 −m2
1m

2
2

dPSn

× |M ((p1, s1) + (p2, s2)→ (p3, s3) + . . . (pn, sn))|2 ,

(2.21)

overn-particle phase space,

dPSn =
∏

i

( d3pi

2ωi(2π)3

)
Ni(2π)4δ4(p1 + p2 −

n∑
j=3

pj) . (2.22)

HereNi = 1 for vector and scalar particles, as well as for Dirac particles when we normalize their
wave functions according tou(p, s)u(p, s) = 2m. For the other common choice,u(p, s)u(p, s) = 1,
we haveNi = 2m for Dirac fermions. If one integrates a differential cross section over the phase
space forn identical particles, then one should include an additional factor ofSn = 1/n! that
compensates for counting the same physical staten! times. When discussing the perturbative
expansion of a cross section, it is often useful to work directly with diagrams for|M|2. The rules
for this expansion are almost the same as for the S-matrix, and are summarized in AppendixB:.

2. UV Divergences, Renormalization and Schemes

Green functions, and consequently cross sections, calculated according to the unmodified Feyn-
man rules described above suffer a severe problem when we include diagrams with loops. These
are the ultraviolet (UV) divergences, associated with infinite loop momenta. We may think of
these divergences as due to virtual states in which energy conservation is violated by an arbitrarily
large amount. Let us see how these problems come about, and review how they can be solved in
perturbative calculations.

A typical one-loop integral UV divergence is illustrated by the diagram with scalar lines in
Fig. 2. For scalar lines the diagram is given, before renormalization, by

Γ(un)(p) =

∫
d4k

(2π)4

1
(k2 −m2)((p− k)2 −m2)

=

∫ 1

0
dx

∫
d4k

(2π)4

1(
k2 − 2xp · k + xp2 −m2

)2

=

∫ 1

0
dx

∫
d4k′

(2π)4

1(
k′2 + x(1− x)p2 −m2

)2
. (2.23)
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A: Color Matrix Identities and Invariants

Only a few identities are necessary for the calculations described in the text. In general, for
representationR, S U(N) generators can be picked to satisfy

Tr [ T(R)
a T(R)

b ] = T(R)δab , (1.1)

with T(R) a number characteristic of the representation. Also of special interest is the representation-
dependent invariant,C2(R), defined by

N2−1∑
a=1

(T(R)
a )

2
= C2(R)I , (1.2)

with I the identity matrix.
We encounter only two representations here, theN-dimensional “defining” representation,F,

and theN2 − 1-dimensional adjoint representation,A. The generatorsT(F)
a are a complete set of

N × N traceless hermitian matrices, while the generatorsT(A)
a are defined by theS U(N) structure

constantsCabc (Eq. (2.5)) as
(T(A)

a )bc = −iCabc . (1.3)

For these two representations, the relevant constants are

T(F) =
1
2

C2(F) =
N2 − 1

2N
T(A) = N C2(A) = N . (1.4)

Another useful identity, special to the defining representation, enables us to work with simple
products of the generators,

T(F)
a T(F)

b = 1
2[iCabcT

(F)
c + dabcT

(F)
c ] + 1

6δabI , (1.5)

with I the 3×3 identity, and thedabc real. Unlike the previous equations, this and the following
equation apply only toS U(3). A numerical value that occurs in the three-loop correction to the
totale+e− annihilation cross section is

D =
∑
abc

d2
abc =

40
3
. (1.6)
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