Il. Field Theory Background

This section reviews a number of relevant facts about QCD as a field theory, primarily its
Lagrange density and Feynman rules, amplitudes and their renormalization, and the concepts of
asymptotic freedom and infrared safety. We assume here a general familiarity with elementary
methods in field theory. More detailed discussions of field theory topics may be found in text-
books. Asymptotic freedom, infrared safety and the renormalization group applied to QCD are
also covered in a number of useful reviewdufa, 1987 Mueller, 1989 Sterman, 1991Dok-
shitzeret al,, 1997).

A. Lagrangian

The flurry of fields, indices, and labels in the telegraphic formulas that follow in this subsection
are probably accessible only after the benefit of a pedagogical introduction that must be found
elsewhere. We anticipate, however, that some number of readers may find these formulas a useful
refresher of memory. Others will be satisfied by the summary of perturbation theory rulesin Fig.
and will wish to skip to subsectioB., which begins a review of quantum theoretic concepts much
less dependent on the technical content of QCD, but which, toward the end of this section, explain
what is special about QCD.

Quantum Chromodynamics is defined as a field theory by its Lagrange density,

LeQﬁrCD [‘!’f (X)’ ‘//f (X), A(X)’ C(X)’ E(X); g, mf] = Linvar + ~£gauge+ ~£ghost P (2-1)

which is a function of fieldsy (quark),A (gluon), ancc (ghost)] and parametegsandm;, where

f labels distinct quark fields L. is the classical density, invariant under lo&lU(N.) gauge
transformations, witiN, = 3 for QCD. L is of the form that was originally written down by
Yang and Mills {rang and Mills, 195%

Linvar = Zl;f (iDIA] - me) s - %FZ[A]
G

Nt Nc

= Z Vi) (i(y)ZaDp,ji[A] - mf5,3a5ji) Yt

3
>0 Fual AIF7A[A] . (2.2)

In the second expression, we have written out all indices explicitly, using the notations
D.ij[Al = 8,61 + igAa(TaP)j (2.3)
and

F,uv,a[A] = a,uAva - 8vAya - gCabCAybAvc . (24)
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Let us describe what these formulas represent, working backwards fror.Bq. (

F.»a is the nonabeliafield strengthdefined in terms of thgluonvector fieldA;, with N2 — 1
group components. g is the QCD (“strong”) coupling and tH&,,., a,b,c = 1...N2 - 1, are real
numbers, called the structure constantSSaf(N;), which define itsLie algebra As mentioned
above, for QCD [ritzschet al, 1973 Gross and Wilczek, 1973Weinberg, 1978 N. = 3,
but for many purposes it is useful to exhibit tNe-dependence explicitlylN. is often called the
“number of colors”.

The Lie algebra is defined by the commutation relations ofthe 1, N x N, matrices TaP);;
that appear in the definition @, ;;, Eq. 2.3),

[Ta(F), Tb(F)] = iCabcTc(F) . (2-5)

These commutation relations define the algebra. Here we have tak@g(théo be hermitian,
which makes QCD look a lot like QED. Some useful facts about the algebra of generators are
listed in AppendixA:.

Df‘j[A] is the covariant derivativan the N.-dimensional representation 8fU(N;), which acts
on the spinomquarkfields in Eqg. €.2), with color indices = 1...N.. There arens independent
quark fields Qs = 6 in the standard model), labeled Bgvor f(= u,d,c, s t,b). In the QCD
Lagrangian, they are distinguished only by their masses.

The quark fields all transform as

Ut aj(X) = Ui (X¢1.ai(X) (2.6)

under local gauge transformations, where

NZ2-1
exp{i Zﬁa(x)Ta<F>}
a=1

with B,(X) real. Defined this wayJ;;(x) for eachx is an element of the group U(N.), which is
the local invariance that has been built into the theory. The corresponding transformation for the
gluon field is most easily expressed in terms ofNarx N matrix, A,(X),

Uji(X) = (27)

i,

N2-1

(AT = ), AT (2.8)

a=1

which is the form that occurs in the covariant derivative. The gluonic field is then defined to
transform as

A(¥) = UAMU(X) + i6[(9,,U(X)]U‘1(x). (2.9)

With these transformation rules, the gauge invariancg;@f; is not dificult to check.
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The gauge invariance dfj, . actually makes it somewhatfiicult to quantize. This problem
is solved by adding t&iar gauge-fixingandghostdensities,Lgyauge@Nd Lgnosy as in Eq. 2.1). The
former may be chosen almost freely; the two most common choices being

N2-1
A 2
Lyauge = 5 (6#A‘;) 1< A< o0,
a=1
PR
Lomge = —5 ) (A A e, (2.10)
a=1

wherent is a fixed vector. The first defines the set of “covariant” gauges, the most familiar having
A = 1, theFeynman gauge The second defines the “axial” or “physical’ gaugésibbrandt,
1987, since takingl to infinity eliminates the need for ghost fields. Here, pickividight-like,
n? = 0, defines thdight-cone gaugeFor 1 — oo, a nonzero value af - A leads to infinite action,
and for this reason the physical gauges are often called\"= 0” gauges.

Finally, in the covariant gauges we must add a ghost Lagrangiayn(man, 1963DeWitt,
1967 Faddeev and Popov, 1967Hooft and Veltman, 197

Lyghost = (0,Ca)(0"6ad — 9CanaA,)Ca (2.11)

wherec,(X) andc,(x) are scalar ghost and antighost fields. In the quantization procedure, ghost
fields anticommute, despite their spin. In&(N,) theory, the ghost fields ensure that the gauge
fixing does not spoil the unitarity of the “physical” S-matrix that governs the scattering of quarks
and gluons in perturbation theory.

B. Feynman Rules and Green Functions

The perturbation theory (Feynman) rules for QCD are summarized il Flgith our choice of
(hermitian) generatofE,(", the quark—gluon coupling is just like the QED fermion-photon vertex,
except for the extra matrix factd ™. The remaining rules for vertices are noffidiult to derive in
detail, but their essential structure is already revealed by the correspondgpices(—iq,, where
g, is the momentum flowing into the vertex at any field

As for the propagators, we pause only to notice some special features of physical gauges. In
then- A = 0 gauge, we have, from the propagator in Hig.

n2k” )

s (2.12)

nV
K'G,"(k,n) =i|—
S =i
Note the lack of a pole at? = 0 on the right-hand side of this relation. This means that the
unphysical gluon polarization that is proportional to its momentum does not propagate as a particle
in these gauges. The lack of a pole for the gluon scalar polarization is the essential reason why
ghosts are not necessary in physical gauges. This simplification also makes these gauges useful for
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Figure 1: Perturbation theory rules for QCD.
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many all-order arguments in pQCD. The price, however, is the unphysical palek at0, which
are often thought of as principal values,

1 1 1 1
P(n'k)“ - 2 (n-k+ie) * (n-k—iee | (2.13)

This definition, however, is awkward beyond tree level (when loops are present) and other defini-
tions (Mandelstam, 1983 eibbrandt, 198yare necessary to carry out loop calculations correctly
(Bassetto, Nardelli, and Soldati, 19%assettcet al, 1993. In any case, it is often desirable to
back up results derived in physical gauges with calculations or arguments based on covariant gauge
reasoning.

The Feynman rules allow us to defi@een functionsn momentum space. These are the
vacuum expectation values of time-ordered products of fields,

(27T)45(p1 +...+ pn)Ga/l---(yn(pl’ s pn) = l_l fd4xie—ipi.xi
i=1
(0 T [y (X0) - - - B (%0)] 10) (2.14)

where then; represent both space-time and group indices of the fields, collectively denoged by
At any fixed order in perturbation theor@,, ..., is given by the sum of all diagrams constructed
according to the rules of Fid.. Corresponding to each of the fields in the matrix element, every
diagram will have an external propagator carrying momenpumto the diagram, with free exter-
nal indicese;. Essentially all of the physical information of the theory is contained in its Green
functions.

C. From Green Functions to Experiment

The route from Feynman rules, through Green functions to experimentally observable quanti-
ties is straightforward, but involves a number of steps which it may be useful to outline. In what
follows, we shall briefly review the roles of the S-matrix, cross sections, renormalization schemes
and regularization.

We do not address yet the issue of whether perturbation theory is of any use for reliable calcu-
lations of physical quantities in QCD.

1. The S-matrix and Cross Sections

By themselves, Green functions are not always direct physical observables. For one thing,
their external lines are not necessarily on-mass-shell, and, in a gauge theory, the Green functions
are not even gauge invariant. The relation between Green functions and physical quantities like
cross sections is, however, quite simple. Let us review the basic steps in a generic situation with
fields ¢,.
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First, a two-point Green function has a polepdt= n?. Near the pole, it has the form of a
“free” propagator (Figl) times a scalar constaRy;,

Gop(P) — RsGap(p) " + finite . (2.15)

If the particles under discussion are hadrons, Rgand the physical madd are not perturbatively
calculable. If, nevertheless, we discuss the perturb&iweatrix for quarks and gluons, thd®y
andM can be computed as a power series in the coupling

Ry 1+0()

M m+ O(g?) . (2.16)
The S-matrixis simply the amplitude for the scattering of momentum eigenstates into other mo-
mentum eigenstates. In particle physics, the most important S-matrix elements describe the scat-

tering of two incoming particles into some set of outgoing particles. The S-matrix is derived from
Green functions by “reduction formulas”, of the general form

S ((Pr.S0) + (P2 %) = (P2 S8) +-.. (Pn. &) = | [w(pr. )
G;ili(pi)free
Jo

where nows represents the spin (and other quantum numbers) of partiderey(pi, s)., repre-
sents the wave function of external particlgiven by

Gﬁl"‘ﬁn(pla p27 _p3’ D) _pn) ’ (2.17)

u(p,s) for anincoming Dirac particle
u(p,s)  for an outgoing Dirac particle
v(p,s)  for an incoming Dirac antiparticle
v(p,s)  for an outgoing Dirac antiparticle
e(p,s) for anincoming vector particle
€'(p,s) for an outgoing vector particle (2.18)
Once againG,; (pi) "¢ is the free propagator, for fieldbut with the correct physical mass of the
corresponding patrticle.
From the S-matrix, it is customary to define tin@nsition matrix Thy
S=1+iT, (2.19)
with | the identity matrix in the space of states. For momentum eigenstates)tains an explicit
momentum-conservation delta function, which it is convenient to separate explicitly,
T((P1, 1) + (P2 %) = (P3,S8) + - (Po, &) =
(2n)*6*(pL+ P2 = Pa ... = P)
XM((Pr. S1) + (P2 $2) = (P3, S) + -+ (P &) -
(2.20)
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It is M-matrix elements that are used to derive cross sections, by integrating the general infinitesi-
mal cross section,
do ((P1, 81) + (P2, S2) = (P3, S6) + - - (Pn, Sn))

= ! dPS,
4\/(p1.p2)2 - mimé

X IM((P1. 1) + (P2s S2) = (Ps. S8) + -« (Pn, SO

(2.21)

overn-particle phase space,

3N n
4PS, = [ ] (g ogs N0 (Pr P2 ) 222)

=3

HereN; = 1 for vector and scalar particles, as well as for Dirac particles when we normalize their
wave functions according @(p, s)u(p, s) = 2m. For the other common choice(p, s)u(p, s) = 1,

we haveN; = 2mfor Dirac fermions. If one integrates afffirential cross section over the phase
space fom identical particles, then one should include an additional facta$0f 1/n! that
compensates for counting the same physical stattmes. When discussing the perturbative
expansion of a cross section, it is often useful to work directly with diagramgigt The rules

for this expansion are almost the same as for the S-matrix, and are summarized in Afgendix

2. UV Divergences, Renormalization and Schemes

Green functions, and consequently cross sections, calculated according to the unmodified Feyn-
man rules described aboveffar a severe problem when we include diagrams with loops. These
are the ultraviolet (UV) divergences, associated with infinite loop momenta. We may think of
these divergences as due to virtual states in which energy conservation is violated by an arbitrarily
large amount. Let us see how these problems come about, and review how they can be solved in
perturbative calculations.

A typical one-loop integral UV divergence is illustrated by the diagram with scalar lines in
Fig. 2. For scalar lines the diagram is given, before renormalization, by

d*k 1
(21)* (K2 = m?)((p — K)? — n¥)

1 d*k 1
fo dxf (27)* (K2 — 2xp- k + Xp? — MR)?

! d*K’ 1
j; dxf (27)* (k2 + x(1 - X)p? — mR)* (2.23)
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A: Color Matrix ldentities and Invariants

Only a few identities are necessary for the calculations described in the text. In general, for
representatioR, S U(N) generators can be picked to satisfy

Tr[TRTP] = T(RGab » (1.1)

with T(R) a number characteristic of the representation. Also of special interest is the representation-
dependent invarian€,(R), defined by

N2-1
> TR =C(RI, (1.2)
a=1

with | the identity matrix.

We encounter only two representations here,Nkhéimensional “defining” representatioR,
and theN? — 1-dimensional adjoint representatiok, The generatoréfé(f) are a complete set of
N x N traceless hermitian matrices, while the generaTé’?éare defined by th& U(N) structure
constant,,. (Eq. 2.5) as

(TéA))bc = —iCanc - (13)

For these two representations, the relevant constants are
N2 -1
Cy(F) =
C(A)=N. (1.4)

T(F) =
T(A) =

Z NIl

Another useful identity, special to the defining representation, enables us to work with simple
products of the generators,

TOTE = iCarc T + dane T + 26l (1.5)

with | the 33 identity, and thed,,. real. Unlike the previous equations, this and the following
equation apply only t& U(3). A numerical value that occurs in the three-loop correction to the
total e*e” annihilation cross section is

40
D= dg= = - (1.6)

abc
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