Final Project

Radiation of Gluon Jets

Although we have discussed QED radiative corrections at length in the last
two chapters, so far we have made no attempt to compute a full radiatively
corrected cross section. The reason is of course that such calculations are quite
lengthy. Nevertheless it would be dishonest to pretend that one understands
radiative corrections after computing only isolated effects as we have done.
This “final project” is an attempt to remedy this situation. The project is the
computation of one of the simplest, but most important, radiatively corrected
cross sections. You should finish Chapter 6 before starting this project, but
you need not have read Chapter 7.

Strongly interacting particles—pions, kaons, and protons—are produced
in eTe~ annihilation when the virtual photon creates a pair of quarks. If one
ignores the effects of the strong interactions, it is easy to calculate the total
cross section for quark pair production. In this final project, we will analyze
the first corrections to this formula due to the strong interactions.

Let us represent the strong interactions by the following simple model:
Introduce a new massless vector particle, the gluon, which couples universally
to quarks:

AH == fd%:g?j)ﬁ'y“zpﬁB#.

Here f labels the type (“flavor”) of the quark (u, d, s, ¢, etc.) and i =1,2,3
labels the color. The strong coupling constant g is independent of flavor and
color. The electromagnetic coupling of quarks depends on the flavor, since the
u and ¢ quarks have charge Q; = +2/3 while the d and s quarks have charge
(s = —1/3. By analogy to «, let us define
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In this exercise, we will compute the radiative corrections to quark pair pro-
duction proportional to ay.

This model of the strong interactions of quarks does not quite agree with
the currently accepted theory of the strong interactions, quantum chromody-
namics (QCD). However, all of the results that we will derive here are also
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correct in QCD with the replacement
4

Qg — gOés.

We will verify this claim in Chapter 17.

Throughout this exercise, you may ignore the masses of quarks. You may
also ignore the mass of the electron, and average over electron and positron
polarizations. To control infrared divergences, it will be necessary to assume
that the gluons have a small nonzero mass u, which can be taken to zero
only at the end of the calculation. However (as we discussed in Problem 5.5),
it is consistent to sum over polarization states of this massive boson by the

replacement:
Z Hel* _g.u,u;
this also implies that we may use the propagator
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(a) Recall from Section 5.1 that, to lowest order in « and neglecting the
effects of gluons, the total cross section for production of a pair of quarks
of flavor f is
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Compute the diagram contributing to e"e — gq involving one virtual
gluon. Reduce this expression to an integral over Feynman parameters,
and renormalize it by subtraction at ¢°> = 0, following the prescription
used in Eq. (6.55). Notice that the resulting expression can be considered
as a correction to Fy(¢?) for the quark. Argue that, for massless quarks,
to all orders in «y, the total cross section for production of a quark pair

unaccompanied by gluons is

2
" Amex

_ _ 2
e~ —qq) = P

3[F(g® = 5)[,

ole

with Fi(¢* = 0) = Q;.

(b) Before we attempt to evaluate the Feynman parameter integrals in part
(a), let us put this contribution aside and study the process ete™ —
gqg, quark pair production with an additional gluon emitted. Before we
compute the cross section, it will be useful to work out some kinematics.
Let g be the total 4-momentum of the reaction, let k; and ks be the 4-
momenta of the final quark and antiquark, and let k3 be the 4-momentum
of the gluon. Define

T t=1,2,3;
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this is the ratio of the center-of-mass energy of particle ¢ to the maximum
available energy. Then show (i) > x; = 2, (i) all other Lorentz scalars
involving only the final-state momenta can be computed in terms of the
x; and the particle masses, and (iii) the complete integral over 3-body
phase space can be written as

d>k; q°
deg H/ 32E (2m) 5(4)((1_2]@) 128 P— ]d:nl dxs.

Find the region of integration for x; and x4 if the quark and antiquark
are massless but the gluon has mass p.

Draw the Feynman diagrams for the process ete™ — gqg, to leading
order in « and ey, and compute the differential cross section. You may
throw away the information concerning the correlation between the initial
beam axis and the directions of the final particles. This is conveniently
done as follows: The usual trace tricks for evaluating the square of the
matrix element give for this process a result of the structure

]' v
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where L, represents the electron trace and H*" represents the quark
trace. If we integrate over all parameters of the final state except x; and
2o, which are scalars, the only preferred 4-vector characterizing the final
state is ¢#. On the other hand, H,,, satisfies

quH;,w = uuqy = 0.

Why is this true? (There is an argument based on general principles;
however, you might find it a useful check on your calculation to verify
this property explicitly.} Since, after integrating over final-state vectors,
[ H*” depends only on ¢* and scalars, it can only have the form

y o
/dHBH'u :(QM - PE )-H,

where H is a scalar. With this information, show that

v 1 124 (o g
Llﬂ/ /dﬂg HW = :?;(g,u LILU) ]ng (gp Hpcr)-
Using this trick, derive the differential cross section

do
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in the limit p — 0. If we assume that each original final-state particle is
realized physically as a jet of strongly interacting particles, this formula
gives the probability for observing three-jet events in e*e™ annihilation
and the kinematic distribution of these events. The form of the distribu-
tion in the x; is an absolute prediction, and it agrees with experiment. The
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normalization of this distribution is a measure of the strong-interaction
coupling constant.

Now replace g # 0 in the formula of part (¢) for the differential cross
section, and carefully integrate over the region found in part (b). You
may assume ¢ < ¢2. In this limit, you will find infrared-divergent terms
of order log(q?/p?) and also log®(¢?/u?), finite terms of order 1, and
terms explicitly suppressed by powers of (12/q?). You may drop terms
of the last type throughout this calculation. For the moment, collect and
evaluate only the infrared-divergent terms.

Now analyze the Feynman parameter integral obtained in part (a), again
working in the limit y? < ¢?. Note that this integral has singularities in
the region of integration. These should be controlled by evaluating the
integral for g spacelike and then analytically continuing into the physical
region. That is, write Q2 = —¢?, evaluate the integral for Q2 > 0, and
then carefully analytically continue the result to Q? = —g? — ie. Combine
the result with the answer from part {d) to form the total cross section for
ete™ — strongly interacting particles, to order crg. Show that all infrared-
divergent logarithms cancel out of this quantity, so that this total cross
section is well-defined in the limit p — 0.

Finally, collect the terms of order 1 from the integrations of parts (d) and
(e) and combine them. To evaluate certain of these terms, you may find
the following formula useful:

1

/dm log(1—x) _ _ZT_Q_
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(It is not hard to prove this.) Show that the total cross section is given,
to this order in o, by

+ — _ _ 47T0(2
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8
This formula gives a second way of measuring the strong-interaction cou-
pling constant. The experimental results agree (within the current exper-
imental errors) with the results obtained by the method of part (c). We
will discuss the measurement of ey more fully in Section 17.6.

-3Q§-(1+1—O‘2).
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