

Kaon Physics

Jorge Portolés

Instituto de Física Corpuscular CSIC-UVEG, Valencia (Spain)

K+ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	p (MeV/c)		
Leptonic	and semileptonic mod	es			
$e^+\nu_e$	(1.55 ±0.07)	× 10 ⁻⁵	247		
$\mu^+ \nu_{\mu}$	(63.44 ±0.14)	% S=1.2	236		
$\pi^0 e^+ \nu_e$	(4.98 ±0.07)	% S=1.3	228		
Called K_{e3}^+ .					
$\pi^{0}\mu^{+}\nu_{\mu}$	(3.32 ±0.06)	% S=1.2	215		
Called K ⁺ _{µ3} .					
$\pi^0 \pi^0 e^+ \nu_e$	(2.2 ±0.4)	× 10 ⁻⁵	206		
$\pi^{+}\pi^{-}e^{+}\nu_{e}$	(4.09 ±0.09)	× 10 ⁻⁵	203		
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	(1.4 ±0.9)	× 10 ⁻⁵	151		
$\pi^{0}\pi^{0}\pi^{0}e^{+}\nu_{e}$	< 3.5	$\times 10^{-6}$ CL=90%	135		
Hadronic modes					
$\pi^{+}\pi^{0}$	(20.92 ±0.12)	% S=1.1	205		
$\pi^{+}\pi^{0}\pi^{0}$	(1.757±0.024)	% S=1.1	133		
$\pi^{+}\pi^{+}\pi^{-}$	(5.590±0.031)	% S=1.1	125		
Leptonic and semileptonic modes with photons					
$\mu^+ \nu_\mu \gamma$	[y,z] (6.2 ±0.8)	× 10-3	236		
$\mu^+ \nu_\mu \gamma (SD^+)$	[aa] < 3.0	× 10 ⁻⁵ CL=90%	-		
$\mu^+ \nu_\mu \gamma (SD^+ INT)$	[aa] < 2.7	× 10 ⁻⁵ CL=90%	-		
$\mu^+ \nu_\mu \gamma (SD^- + SD^-INT)$	[aa] < 2.6	× 10 ⁻⁴ CL=90%	-		
$e^+\nu_e\gamma(SD^+)$	[aa] (1.52 ±0.23)	× 10 ⁻⁵	-		
$e^+\nu_e\gamma(SD^-)$	[aa] < 1.6	× 10 ⁻⁴ CL=90%	-		
$\pi^0 e^+ \nu_e \gamma$	[y,z] (2.69 ±0.20)	× 10 ⁻⁴	228		
$\pi^0 e^+ \nu_e \gamma(SD)$	[aa] < 5.3	× 10 ⁻⁵ CL=90%	228		
$\pi^0 \mu^+ \nu_\mu \gamma$	[y,z] (2.4 ±0.8)	× 10 ⁻⁵	215		
$\pi^0 \pi^0 e^+ \nu_e \gamma$	< 5	× 10 ⁻⁶ CL=90%	206		

 K^+

 $K^+ \to \mu^+ \nu_\mu$ $K^+ \to \pi^+ \pi^0$

	The second	COLC: NAME	-	1.00	CO.D.C.

 $\pi^+ \pi^0 \gamma \\ \pi^+ \pi^0 \gamma$ (DE)

 $\pi^+\pi^0\pi^0\gamma$

 $\begin{array}{c} \pi^+\pi^+\pi^-\gamma\\ \pi^+\gamma\gamma\\ \pi^+3\gamma\end{array}$

 $\begin{array}{c} e^{+}\,\nu_{e}\nu\nu\\ \mu^{+}\,\nu_{\mu}\nu\nu\\ e^{+}\,\nu_{e}\,e^{+}\,e^{-}\\ \mu^{+}\,\nu_{\mu}\,e^{+}\,e^{-}\\ e^{+}\,\nu_{e}\mu^{+}\mu^{-}\\ \mu^{+}\,\nu_{\mu}\mu^{+}\mu^{-} \end{array}$

[y,z]	(2.75	±0.15) × 10 ⁻⁴		205
[z,bb]	(4.4	±0.7) × 10 ⁻⁶		205
[y,z]	(7.6	+5.6) × 10 ⁻⁶		133
[y,z]	(1.04	±0.31) × 10 ⁻⁴		125
[z]	(1.10	±0.32) × 10 ⁻⁶		227
[z]	<	1.0		$\times 10^{-4}$	CL=90%	227

Leptonic modes with $\ell\ell$ pairs

<	6		×	10-5	CL=90%	247
<	6.0		×	10-6	CL=90%	236
(2.48	±0.20) ×	10-8		247
(7.06	±0.31) ×	10-8		236
(1.7	±0.5) ×	10-8		223
<	4.1		×	10-7	CL=90%	185

K ⁰ _S DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	p (MeV/c)
	Hadronic modes		
π ⁰ π ⁰	(30.69±0.05) %		209
$\pi^+\pi^-$	(69.20±0.05) %		206
$\pi^{+}\pi^{-}\pi^{0}$	$(3.5 + 1.1)_{-0.9} \times 1$	10-7	133
Mode	es with photons or $\ell \overline{\ell}$ pairs	5	
$\pi^+\pi^-\gamma$	[y,ff] (1.79±0.05)×1	0-3	206
$\pi^{+}\pi^{-}e^{+}e^{-}$	(4.69±0.30)×1	0-5	206
$\pi^0 \gamma \gamma$	[f7] (4.9 ±1.8)×1	0-8	231
$\gamma\gamma$	(2.84±0.07)×1	0-6	249
	Semileptonic modes		
$\pi^{\pm}e^{\mp}\nu_{e}$	[gg] (7.04±0.09) × 10	-4	229

 $K_S \to \pi \pi$

KO DECAY MODES Eraction (F./F)	Scale factor/	p (MeV/c)	
	Compense rever	(met/c)	Charge conjugation \times Parity (CP) or Lepton Family number (LF)
Semileptonic modes			violating modes, or $\Delta S = 1$ weak neutral current (S1) modes
$\pi^{\pm}e^{\mp}v_{e}$ [gg] (40.53 ±0.15)?	% S=2.1	229	$\mu^+\mu^-$ 51 (6.87 ±0.11)×10 ⁻⁹ 225
Called K_{e3}^0 .			e^+e^- S1 $(9 \begin{array}{c} +6\\ -4 \end{array}) \times 10^{-12}$ 249
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$ [gg] (27.02 ±0.07) %	%	216	$\pi^+\pi^-e^+e^-$ S1 [ii] (3.11 ±0.19)×10 ⁻⁷ 206
Called K ⁰ _{µ3} .			$\pi^0 \pi^0 e^+ e^-$ 51 < 6.6 × 10 ⁻⁹ CL=90% 209
$(\pi \mu \text{atom})\nu$ (105 ±011)	× 10 ⁻⁷	188	$\mu^+\mu^-e^+e^-$ 51 (2.69 ±0.27)×10 ⁻⁹ 225
$\pi^0 \pi^{\pm} \rho^{\mp} \nu$ [ov] (5.20 ±0.11)	10-5	207	$e^+e^-e^+e^-$ S1 (3.56 ±0.21)×10 ⁻⁶ 249
[68] (0.10 10.11)		201	$\pi^{0} \mu^{+} \mu^{-}$ CP,S1 [$\tilde{\mu}$] < 3.8 × 10 ⁻¹⁰ CL=90% 177
Hadronic modes, including Charge conjugation × Parity	Violating (CPV) modes	$\pi^{\circ}e^{+}e^{-}$ CP,SI [μ] < 2.8 × 10 ⁻¹⁰ CL=90% 231
3π ⁰ (19.56 ±0.14) ?	% S=1.9	139	$\pi^{+}\nu\nu$ CP,SI[kk] < 5.9 × 10 ° CL=90% 231
$\pi^+\pi^-\pi^0$ (12.56 ±0.05) 9	%	133	$e^{\pm}\mu^{\pm}$ LF [gg] < 4.7 × 10 CL=90% 238 $e^{\pm}e^{\pm}\mu^{\pm}\mu^{\mp}$ LF [gg] < 4.12 × 10 11 CL=90% 238
$\pi^+\pi^-$ CPV (1.976±0.008)>	× 10 ⁻³	206	$\pi^0 \mu^{\pm} a^{\mp}$ <i>LF</i> [gg] < 4.12 × 10 - CL = 90% 225
$\pi^0 \pi^0$ CPV (8.69 ±0.04)	× 10 ⁻⁴ S=1.1	209	
Semileptonic modes with photon	15		
$\pi^{\pm} \rho \mp \nu_{-} \gamma$ [y or ii] (379 ±0.08)	× 10-3	220	
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$ (5.64 ±0.23)	× 10-4	216	
Hadronic modes with photons or //	nairs		
	10-6	200	
$\pi^+\pi^-$	10-5	209	
π ⁰ 2α [7,1] (4.17 ±0.15) >	10-6 5-20	200	
$\pi^{0}\gamma e^{+}e^{-}$ (2.3 ±0.4)	× 10 ⁻⁸	231	
Other modes with photons or // n	oirs		
	10-4 5-12	240	
27 (5.46 ± 0.05)	10-7 CI -00%	245	$K_T \rightarrow \pi \ell \nu_0$
	10-6 CL=90%	249	$\mathbf{T} \mathbf{L} \mathbf{V} \neq \mathbf{V} \neq \mathbf{V}$
	10 5=1.5	249	
$e^+e^-\gamma\gamma$ [ii] (5.95 ± 0.11)	× 10 ⁻⁷	249	$K_{I} \rightarrow \pi \pi \pi$ $ $
$\mu^+\mu^-\gamma\gamma$ [ii] (1.0 +0.8)	× 10 ⁻⁸	225	

Discovery of kaon meson (strangeness)

Rochester, Butler (1947) [2]

- Cosmic ray particles which were just like pions except for their long lifetime. -
- Always produced in pairs
- Mass $\sim 0.5 \text{ GeV}$

 $K_S \to \pi^+ \pi^- \qquad K^+ \to \mu^+ \nu_\mu$

$$K^+ \to \pi^+ \pi^+ \pi^- \qquad \text{[3]}$$

$$\begin{aligned} \tau^{\pm} &\to \pi^{\pm} \pi^{+} \pi^{-} & \tau^{'\pm} \to \pi^{\pm} \pi^{0} \pi^{0} \\ \theta^{\pm} &\to \pi^{\pm} \pi^{0} & \theta^{0} \to \pi^{+} \pi^{-} \\ V^{0} &\to \pi^{+} \pi^{-} & V^{+} \to \nu^{+} \nu_{\mu} \end{aligned}$$

 $M_{\tau} \simeq M_{\tau'} \simeq M_{\theta^+} \simeq M_{\theta^0} \simeq M_{V^0} \simeq M_{V^+}$ $M \simeq 0.5 \,\mathrm{GeV}$

The
$$\tau - \theta$$
 puzzle
 $M_{\tau} \simeq M_{\theta}$
 $\tau = \theta$
 $\tau = \theta$
 ?

 $\theta^{\pm} \to \pi^{\pm} \pi^{0}$
 $\Gamma_{\tau} \simeq \Gamma_{\theta}$
 $\tau = \theta$
 ?

Parity

$$\tau^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$$

$$\eta_P(\tau) = \eta_P(\pi^{\pm}\pi^{+}\pi^{-}) = (-1)^3(-1)^{L+\ell} = (-1)^{\ell+1}$$

- $L \equiv$ relative orbital angular momentum of the two identical pions. L even (Bose symmetry) $\ell \equiv$ orbital angular momentum of the third ("odd") relative to the center of mass
 - of identical pions

JP	L	l	2π
0-	0	0	no
1+	0	1	no
1-	2	2	yes
2+	2	1	yes
2⁻	0	2	no
2⁻	2	0	no
3+	0	3	no
3+	2	1	no
3⁻	2	2	yes

$$L = 0, \ \ell = 0 \qquad \longrightarrow \qquad \eta_P(\tau) = -1$$

$$\eta_P(\theta) = +1 \qquad \eta_P(\tau) = -1$$

$$\eta_P(\theta) = \eta_P(\pi^{\pm}\pi^0) \qquad ??$$

$$\eta_P(\tau) = \eta_P(\pi^{\pm}\pi^{+}\pi^{-}) \qquad ??$$

Violation of Parity
Lee & Yang (1956) [4]

No convincing evidence of Parity Symmetry in β – decays

Wu et al (1957) ^[5] Experimental evidence of Parity Violation

The remainder of the lecture [1]

- 1. Survey on kaon decays
- 2. Nonleptonic decays: $\Delta I = 1/2$ rule
- 3. CP-violation
- 4. Rare decays: $K \to \pi \nu \overline{\nu}$, $K \to \pi \ell^+ \ell^-$

1. Survey on kaon decays

$BR \gtrsim 10^{-5}$

Decay	BR
$K^+ \to \pi^+ \nu_\mu$	0.6355 (11)
$K^+ \to \pi^0 \mu^+ \nu_\mu$	0.03353 (34)
$K_L \to \pi^{\pm} e^{\mp} \nu_e$	0.4055 (12)
$K^+ \to \pi^+ \pi^0$	0.2066 (8)
$K^+ \to \pi^+ \pi^+ \pi^-$	0.0559 (4)
$K_S \to \pi^0 \pi^0$	0.3069 (5)
$K_S \to \pi^+ \pi^-$	0.6920 (5)
$K_L \to \pi^0 \pi^0 \pi^0$	0.1952 (12)
$K_L \to \pi^+ \pi^- \pi^0$	0.1254 (5)
$K^+ \to \pi^+ \pi^0 \gamma$	2.75 (15) x 10 ⁻⁴
$K_L \to \gamma \gamma$	5.47 (4) x 10 ⁻⁴
$K_L \to \pi^+ \pi^- \gamma$	4.15 (15) x 10 ⁻⁵
$K_S \to \pi^+ \pi^- \gamma$	1.79 (5) x 10 ⁻³

Semileptonic Decays

Non-leptonic decays

Radiative decays

$BR \lesssim 10^{-5}$

Decay	BR x 10 ⁵
$K^+ \to \pi^+ \gamma \gamma$	0.110 (32)
$K^+ \to \pi^+ e^+ e^- \gamma$	1.19 (13) x 10 ⁻³
$K^+ \to \pi^+ e^+ e^-$	0.0300 (9)
$K_S \to \gamma \gamma$	0.263 (17)
$K_S \to \pi^0 \mu^+ \mu^-$	2.9 (1.5) x 10 ⁻⁴
$K_L \to \pi^0 \gamma \gamma$	0.1273 (34)
$K_L \to \mu^+ \mu^- \gamma$	0.0359 (11)
$K_L \to e^+ e^-$	9 (⁺⁶ ₋₄) x 10 ⁻⁷
$K_L \to \pi^+ \pi^- e^+ e^-$	0.0311 (19)
$K_L \rightarrow \mu^+ \mu^- e^+ e^-$	- 2.69 (27) x 10 ⁻⁴
$K_L \to \pi^0 \mu^+ \mu^-$	< 1.8 x 10 ⁻⁵ (90% c.l.)
$K^+ \to \pi^+ \nu \overline{\nu}$	1.7 (1.1) x 10 ⁻⁵
$K_L o \pi^0 \nu \overline{\nu}$	< 6.7 x 10 ⁻³ (90% C.L.)

$\mathsf{BR} \lesssim 10^{\text{-5}}$

Decay	BR x 10 ⁵
$K^+ \to \pi^+ \gamma \gamma$	0.110 (32)
$K^+ \to \pi^+ e^+ e^- \gamma$	1.19 (13) x 10 ⁻³
$K^+ \to \pi^+ e^+ e^-$	0.0300 (9)
$K_S \to \gamma \gamma$	0.263 (17)
$K_S \to \pi^0 \mu^+ \mu^-$	2.9 (1.5) x 10 ⁻⁴
$K_L o \pi^0 \gamma \gamma$	0.1273 (34)
$K_L \to \mu^+ \mu^- \gamma$	0.0359 (11)
$K_L \to e^+ e^-$	9 (⁺⁶ ₋₄) x 10 ⁻⁷
$K_L \to \pi^+ \pi^- e^+ e^-$	0.0311 (19)
$K_L \rightarrow \mu^+ \mu^- e^+ e^-$	- 2.69 (27) x 10 ⁻⁴
$K_L \to \pi^0 \mu^+ \mu^-$	< 1.8 x 10 ⁻⁵ (90% c.l.)
$K^+ \to \pi^+ \nu \overline{\nu}$	1.7 (1.1) x 10 ⁻⁵
$K_L \to \pi^0 \nu \overline{\nu}$	< 6.7 x 10 ⁻³ (90% C.L.)

$\Delta S = 1$ weak neutral current modes (FCNC)

$BR \lesssim 10^{\text{-5}}$

Decay	BR x 10 ⁵
$K^+ \to \pi^+ \gamma \gamma$	0.110 (32)
$K^+ \to \pi^+ e^+ e^- \gamma$	1.19 (13) x 10 ⁻³
$K^+ \to \pi^+ e^+ e^-$	0.0300 (9)
$K_S \to \gamma \gamma$	0.263 (17)
$K_S \to \pi^0 \mu^+ \mu^-$	2.9 (1.5) x 10 ⁻⁴
$K_L \to \pi^0 \gamma \gamma$	0.1273 (34)
$K_L \to \mu^+ \mu^- \gamma$	0.0359 (11)
$K_L \to e^+ e^-$	9 (⁺⁶ ₋₄) x 10 ⁻⁷
$K_L \to \pi^+ \pi^- e^+ e^-$	0.0311 (19)
$K_L \rightarrow \mu^+ \mu^- e^+ e^-$	- 2.69 (27) x 10 ⁻⁴
$K_L \to \pi^0 \mu^+ \mu^-$	< 1.8 x 10 ⁻⁵ (90% c.l.)
$K^+ \to \pi^+ \nu \overline{\nu}$	1.7 (1.1) x 10 ⁻⁵
$K_L \to \pi^0 \nu \overline{\nu}$	< 6.7 x 10 ⁻³ (90% C.L.)

Tiniest branching ratio ever measured as today (BNL E871)

BR ≳ 10 ⁻⁵				
Decay	BR			
$K^+ \to \pi^+ \nu_\mu$	0.6355 (11)			
$K^+ \to \pi^0 \mu^+ \nu_\mu$	0.03353 (34)			
$K_L \to \pi^\pm e^\mp \nu_e$	0.4055 (12)			
$K^+ \to \pi^+ \pi^0$	0.2066 (8)			
$K^+ \to \pi^+ \pi^+ \pi^-$	0.0559 (4)			
$K_S \to \pi^0 \pi^0$	0.3069 (5)			
$K_S \to \pi^+ \pi^-$	0.6920 (5)			
$K_L \to \pi^0 \pi^0 \pi^0$	0.1952 (12)			
$K_L \to \pi^+ \pi^- \pi^0$	0.1254 (5)			
$K^+ \to \pi^+ \pi^0 \gamma$	2.75 (15) x 10 ⁻⁴			
$K_L \to \gamma \gamma$	5.47 (4) x 10 ⁻⁴			
$K_L \to \pi^+ \pi^- \gamma$	4.15 (15) x 10⁻⁵			
$K_S \to \pi^+ \pi^- \gamma$	1.79 (5) x 10 ⁻³			

$\mathsf{BR} \lesssim 10^{\text{-5}}$

Decay	BR x 10 ⁵
$K^+ \to \pi^+ \gamma \gamma$	0.110 (32)
$K^+ \to \pi^+ e^+ e^- \gamma$	1.19 (13) x 10 ⁻³
$K^+ \to \pi^+ e^+ e^-$	0.0300 (9)
$K_S \to \gamma \gamma$	0.263 (17)
$K_S \to \pi^0 \mu^+ \mu^-$	2.9 (1.5) x 10 ⁻⁴
$K_L o \pi^0 \gamma \gamma$	0.1273 (34)
$K_L \to \mu^+ \mu^- \gamma$	0.0359 (11)
$K_L \to e^+ e^-$	9 (⁺⁶ ₋₄) x 10 ⁻⁷
$K_L \to \pi^+ \pi^- e^+ e^-$	0.0311 (19)
$K_L \to \mu^+ \mu^- e^+ e^-$	⁻ 2.69 (27) x 10 ⁻⁴
$K_L \to \pi^0 \mu^+ \mu^-$	< 1.8 x 10 ⁻⁵ (90% C.L.)
$K^+ \to \pi^+ \nu \overline{\nu}$	1.7 (1.1) x 10 ⁻⁵
$K_L \to \pi^0 \nu \overline{\nu}$	< 6.7 x 10 ⁻³ (90% C.L.)

A look on Kaon Decays

Processes

$$K^+ \to \ell^+ \nu_\ell (\gamma), \quad K \to \pi \ell^+ \nu_\ell (\gamma)$$

$$K \to \pi \pi \ell^+ \nu_\ell (\gamma), \quad K \to \pi \pi \pi e^+ \nu_e (\gamma)$$

Main Features

Low-energy dominated. Hadronization of electrically charged currents: χ PT

Processes

$$K \to \pi \pi \ell^+ \ell^-$$

Main Features

 $\gamma^* >> Z^* \rightarrow$ Low-energy dominated, FCNC

Processes

$$K \rightarrow \gamma \gamma^{(*)}, \quad K \rightarrow \pi \gamma \gamma^{(*)}$$

 $K \rightarrow \pi \pi \gamma^{(*)} \quad K \rightarrow \ell^+ \ell^- \ell^+ \ell^-$
Main Features
Low-energy dominated, FCNC

Processes

$$K \rightarrow \pi \nu \overline{\nu}, \quad K_L \rightarrow \gamma \nu \overline{\nu}$$

 $K \rightarrow \pi \pi \nu \overline{\nu}$
Main Features
High-energy dominated, FCNC

Short-distance kaon dynamics

Semileptonic effective lagrangian

 $|\Delta S| = 1$ Effective Lagrangian

Very different mass scales : $M_{\pi} < M_K \ll M_W$ \longrightarrow Large logs Operator Product Expansion and Renormalization Group \longrightarrow $M_W \rightarrow \mu < m_c$

$$\mathcal{L}_{\text{eff}}(|\Delta S| = 1) = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i}^{13} C_i(\mu) Q_i(\mu)$$

$$SU(3) : (\mathbf{8} \otimes \mathbf{8})_{\text{symm}} = \mathbf{X} \oplus \mathbf{8} \oplus \mathbf{27}$$

$$SU(2)_{I} : \mathbf{1} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{3}{2}$$

$$\mathbf{8} \left(\Delta I = \frac{1}{2} \right)$$

$$\mathbf{27} \left(\Delta I = \frac{1}{2}, \frac{3}{2} \right)$$

$$Q_{1} = \left[\overline{s}^{\alpha}\gamma^{\mu}(1-\gamma_{5})u^{\beta}\right] \left[\overline{u}^{\beta}\gamma_{\mu}(1-\gamma_{5})d^{\alpha}\right]$$

$$Q_{3} = \left[\overline{s}\gamma^{\mu}(1-\gamma_{5})d\right] \sum_{q=u,d,s} \left[\overline{q}\gamma_{\mu}(1-\gamma_{5})q\right]$$

$$Q_{4} = \left[\overline{s}^{\alpha}\gamma^{\mu}(1-\gamma_{5})d^{\beta}\right] \sum_{q=u,d,s} \left[\overline{q}^{\beta}\gamma_{\mu}(1-\gamma_{5})q^{\alpha}\right]$$

$$Q_{5} = \left[\overline{s}\gamma^{\mu}(1-\gamma_{5})d\right] \sum_{q=u,d,s} \left[\overline{q}\gamma_{\mu}(1+\gamma_{5})q\right]$$

$$Q_{6} = \left[\overline{s}^{\alpha}\gamma^{\mu}(1-\gamma_{5})d^{\beta}\right] \sum_{q=u,d,s} \left[\overline{q}^{\beta}\gamma_{\mu}(1+\gamma_{5})q^{\alpha}\right]$$

Electromagnetic and Z-penguins, W-boxes

$$Q_{7} = \frac{3}{2} \left[\overline{s} \gamma^{\mu} (1 - \gamma_{5}) d \right] \sum_{q=u,d,s} e_{q} \left[\overline{q} \gamma_{\mu} (1 + \gamma_{5}) q \right]$$

$$Q_{8} = \frac{3}{2} \left[\overline{s}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) d^{\beta} \right] \sum_{q=u,d,s} e_{q} \left[\overline{q}^{\beta} \gamma_{\mu} (1 + \gamma_{5}) q^{\alpha} \right]$$

$$Q_{9} = \frac{3}{2} \left[\overline{s} \gamma^{\mu} (1 - \gamma_{5}) d \right] \sum_{q=u,d,s} e_{q} \left[\overline{q} \gamma_{\mu} (1 - \gamma_{5}) q \right]$$

$$Q_{10} = \frac{3}{2} \left[\overline{s}^{\alpha} \gamma^{\mu} (1 - \gamma_{5}) d^{\beta} \right] \sum_{q=u,d,s} e_{q} \left[\overline{q}^{\beta} \gamma_{\mu} (1 - \gamma_{5}) q^{\alpha} \right]$$

 $e_q \equiv$ charge of the q quark in units of $e = \sqrt{4\pi\alpha}$

$E > \mu \qquad \text{Wilson coefficients}: \quad C_i(\mu)$ $C_i(\mu) = C_i(M_Z, M_W, m_t, m_b, m_c, \mu)$ $C_i(\mu) = z_i(\mu) + \tau y_i(\mu) \qquad \tau = -V_{td}V_{ts}^* / (V_{ud}V_{us}^*) \qquad \swarrow q_i(\mu)$ Known at the NLO : $\mathcal{O}(\alpha_S^n t^n), \mathcal{O}(\alpha_S^{n+1} t^n) \qquad t = \ln(M_1/M_2), \quad M_1, M_2 \ge \mu$

$E < \mu$ Matrix elements : $\langle h | \mathcal{O}_i(\mu) | K \rangle$

Methods : Lattice Gauge Theory, QCD sum rules, functional bosonization, dynamical models, $1/N_C$ expansion, ...

Operators	$SU(3)_L \otimes SU(3)_R$
$Q_2 - Q_1, Q_3, Q_4, Q_5, Q_6$	$(8_L, 1_R), \Delta I = 1/2$
$2Q_2 + 3Q_1 - Q_3$	$(27_L, 1_R), \Delta I = 1/2, 3/2$
Q_7, Q_8	$\left(8_L,1_R ight),\left(8_L,8_R ight)$
Q_9,Q_{10}	$\left(8_L,1_R ight),\left(27_L,1_R ight)$

Mixing $K^0 - \overline{K^0}$: $\Delta S = 2$ Effective Lagrangian

$$\mathcal{L}_{\text{eff}}\left(|\Delta S|=2\right) = -\frac{G_F^2 M_W^2}{(4\pi)^2} C_{\Delta S=2}(\mu) \left[\overline{s}\gamma^{\mu}(1-\gamma_5)d\right] \left[\overline{s}\gamma_{\mu}(1-\gamma_5)d\right]$$

$$C_{\Delta S=2}(\mu) \simeq \lambda_c^2 G_1(x_c) + \lambda_t^2 G_2(x_t) + 2\lambda_c \lambda_t G_3(x_c, x_t) \qquad \begin{array}{ll} x_i &=& m_i^2/M_W^2 \\ \lambda_i &=& V_{id}^* V_{is} \end{array}$$

$$\langle \overline{K^0} | Q_{\Delta S=2} | K^0 \rangle = \frac{16}{3} F_K^2 M_K^2 B_K(\mu) \qquad \hat{B}_K = \alpha_S(\mu^2)^{-2/9} B_K(\mu^2)$$

	Vacuum Saturation	$N_C \to \infty$	Lattice	Lattice	[6]
\hat{B}_K	1	3/4	0.724(30)	0.749(27)	

Long-distance kaon dynamics

Chiral Perturbation Theory (weak)

Chiral symmetry of massless QCD (spontaneously broken)

 $SU(3)_L \otimes SU(3)_R \to SU(3)_{L+R}$

- Perturbative expansion : p^2/Λ_{χ}^2 , $\Lambda_{\chi} \sim 4\pi F$, $M_{
 ho} \longrightarrow 1 \,{
 m GeV}$
- $\mathcal{O}(p^2)$ Lagrangian :

$$\mathcal{L}^{(2)} = G_8 F^4 \langle \lambda (D^{\mu} U)^{\dagger} D_{\mu} U \rangle \qquad (8_L, 1_R) + G_{27} F^4 \left([L_{\mu}]_{23} [L^{\mu}]_{11} + \frac{2}{3} [L_{\mu}]_{21} [L^{\mu}]_{13} \right) \qquad (27_L, 1_R)$$

$$U = \exp\left(i\frac{\sqrt{2}}{F}\Phi\right), \qquad D_{\mu}U = \partial_{\mu}U - ir_{\mu}U + iU\ell_{\mu}$$
$$L_{\mu} = iU^{\dagger}D_{\mu}U, \qquad \lambda = (\lambda_{6} - i\lambda_{7})/2 \quad \left[\overline{s} \to \overline{d}\right]$$

G_8, G_{27} determined from phenomenology

$$\left[G_{8,27} = -\frac{G_F}{\sqrt{2}} \, V_{ud} \, V_{us}^* \, g_{8,27} \right]$$

Chiral order	Isospin	g_8	g_{27}
LO	IC	4.96	0.285
LO	IV	4.99	0.253
NLO	IC	3.62 (28)	0.286 (28)
NLO	IV	3.61 (28)	0.297 (28)

IC = Isospin conserving, IV = Isospin violating

$$\frac{g_8}{g_{27}}\Big|_{_{\rm NLO}} \simeq 13$$

Octet enhancement

$$\Delta I = \frac{1}{2} \text{ rule}$$

$$\Delta S = 2$$

$$\mathcal{L}_{\Delta S=2}^{(2)} = \frac{G_F^2 M_W^2}{(4\pi)^2} g_{\Delta S=2} F^4 \left\langle \lambda U^{\dagger} D^{\mu} U \right\rangle \left\langle \lambda U^{\dagger} D_{\mu} U \right\rangle \qquad (27_L, 1_R)$$

2. Nonleptonic kaon decays : $\Delta I = 1/2$ rule

$$\begin{split} & \overline{K \to \pi\pi} \\ \text{(isospin limit)} \\ & \mathcal{A}(K^0 \to \pi^+\pi^-) = A_0 e^{i\chi_0} + \frac{1}{\sqrt{2}} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^0 \to \pi^0\pi^0) = A_0 e^{i\chi_0} - \sqrt{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^+\pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^0) = \frac{3}{2} A_2 e^{i\chi_2} \\ & \mathcal{A}(K^+ \to \pi^0) =$$

$$\begin{split} \chi PT & \mathcal{L}^{(2)} = \frac{F^2}{4} \langle u_{\mu} u^{\mu} + \chi_{+} \rangle & v_{\mu} = v_{\mu}^{i} \frac{\lambda^{i}}{2} \\ u_{\mu} = i \left[u^{\dagger} (\partial_{\mu} - i (v + a)_{\mu}) u - u (\partial_{\mu} - i (v - a)_{\mu}) u^{\dagger} \right] & v_{\mu} = v_{\mu}^{i} \frac{\lambda^{i}}{2} \\ V^{\mu i} &= \left\{ \frac{\delta \mathcal{L}^{(2)}}{\delta v_{\mu}^{i}} = \frac{F^2}{4} \langle \lambda^{i} (u u_{\mu} u^{\dagger} - u^{\dagger} u_{\mu} u) \rangle \\ A^{\mu i} &= \left\{ \frac{\delta \mathcal{L}^{(2)}}{\delta a_{\mu}^{i}} = \frac{F^2}{4} \langle \lambda^{i} (u u_{\mu} u^{\dagger} + u^{\dagger} u_{\mu} u) \rangle \right\} \\ A_{0} &= \left\{ \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us}^{*} \frac{2\sqrt{2}}{3} F \left(M_{K}^{2} - M_{\pi}^{2} \right) \right\} \\ A_{2} &= \left\{ \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us}^{*} \frac{2}{3} F \left(M_{K}^{2} - M_{\pi}^{2} \right) \right\} \\ A_{2} &= \left\{ \frac{10^{8} A_{0}}{\sqrt{2}} V_{ud} V_{us}^{*} \frac{2}{3} F \left(M_{K}^{2} - M_{\pi}^{2} \right) \right\} \\ A_{1} &= \left\{ \frac{10^{8} A_{0}}{\sqrt{2}} V_{ud} V_{us}^{*} \frac{2}{3} F \left(M_{K}^{2} - M_{\pi}^{2} \right) \right\} \\ A_{2} &= \left\{ \frac{10^{8} A_{0}}{\sqrt{2}} V_{ud} V_{us}^{*} \frac{2}{3} F \left(M_{K}^{2} - M_{\pi}^{2} \right) \right\} \\ A_{2} &= \left\{ \frac{10^{8} A_{0}}{\sqrt{2}} V_{ud} V_{us}^{*} \frac{2}{3} F \left(M_{K}^{2} - M_{\pi}^{2} \right) \right\} \\ A_{1} &= 1/2 \left\{ \begin{array}{c} \text{rule} \\ \text{problem} \end{array} \right\} \end{split}$$

1

3. CP Violation

Kaon CP-violating observables :
$$\varepsilon, \varepsilon' \mid CP \mid K^0 \rangle = + \mid \overline{K^0} \rangle$$

$$|K_{1}\rangle = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle + |\overline{K^{0}}\rangle \right)$$

$$CP |K_{1}\rangle = + |K_{1}\rangle \longrightarrow \pi\pi$$

$$|K_{2}\rangle = \frac{1}{\sqrt{2}} \left(|K^{0}\rangle - |\overline{K^{0}}\rangle \right)$$

$$CP |K_{2}\rangle = -|K_{2}\rangle \longrightarrow \pi\pi\pi$$

$$|K_{S}\rangle = \frac{1}{\sqrt{1+|\tilde{\epsilon}|^{2}}} (|K_{1}\rangle + \tilde{\epsilon} |K_{2}\rangle) \longrightarrow \pi\pi$$

$$|K_{L}\rangle = \frac{1}{\sqrt{1+|\tilde{\epsilon}|^{2}}} (|K_{2}\rangle + \tilde{\epsilon} |K_{2}\rangle) \longrightarrow \pi\pi\pi$$

Br	$\pi^0\pi^0$	$\pi^+\pi^-$	$\pi^+\pi^-\pi^0$	$\pi^0\pi^0\pi^0$
K_S	30.69(5)%	69.20(5)%	$3.5(1.1) \times 10^{-7}$	$< 1.2 \times 10^{-7}$
K_L	$8.64(6) \times 10^{-4}$	$1.967(10) \times 10^{-3}$	12.54(5)%	19.52(12)%

$$\eta_{+-} \equiv \frac{\mathcal{A}\left(K_L \to \pi^+ \pi^-\right)}{\mathcal{A}\left(K_S \to \pi^+ \pi^-\right)} = \varepsilon + \varepsilon'$$

$$\eta_{00} \equiv \frac{\mathcal{A}\left(K_L \to \pi^0 \pi^0\right)}{\mathcal{A}\left(K_S \to \pi^0 \pi^0\right)} = \varepsilon - 2\varepsilon'$$

$$\varepsilon \simeq \tilde{\epsilon} + i \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} = \tilde{\epsilon}_{WY}$$

Indirect CP violation

$$\varepsilon' \simeq \frac{i}{\sqrt{2}} e^{i(\delta_2 - \delta_0)} \frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right]$$
 Direct CP violation

Indirect CP violation

$$\boldsymbol{\varepsilon} = f\left(\hat{B}_{K}, V_{\text{CKM}}, m_{c}, m_{t}, \ldots\right) \xrightarrow{\text{Theory}} [\boldsymbol{\varepsilon}| = 1.90(26) \times 10^{-3}]$$
$$|\boldsymbol{\varepsilon}|_{\text{exp}} = 2.228(11) \times 10^{-3} \qquad \arg\left(\boldsymbol{\varepsilon}\right)|_{\text{exp}} = 44(7)^{\circ}$$

$$\frac{\Gamma\left(K_L \to \pi^- \ell^+ \nu_\ell\right) - \Gamma\left(K_L \to \pi^+ \ell^- \overline{\nu}_\ell\right)}{\Gamma\left(K_L \to \pi^- \ell^+ \nu_\ell\right) + \Gamma\left(K_L \to \pi^+ \ell^- \overline{\nu}_\ell\right)} = \frac{2\operatorname{Re}\varepsilon}{1 + |\varepsilon|^2}$$

Direct CP violation

$$\varepsilon' \simeq \frac{i}{\sqrt{2}} e^{i(\delta_2 - \delta_0)} \frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \left[\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right]$$

$$\operatorname{Re} \left(\frac{\varepsilon'}{\varepsilon} \right) = \frac{1}{3} \left(1 - \left| \frac{\eta_{00}}{\eta_{+-}} \right| \right)$$

$$\operatorname{Re} \left(\frac{\varepsilon'}{\varepsilon} \right)_{\exp} = 16.8 (1.4) \times 10^{-4}$$

$$\operatorname{Re} \left(\frac{\varepsilon'}{\varepsilon} \right)_{\operatorname{theo} SM} = 19 (11) \times 10^{-4}$$

$$\operatorname{Re} \left(\frac{\varepsilon'}{\varepsilon} \right)_{\operatorname{theo} SM} = 19 (11) \times 10^{-4}$$

$$\operatorname{Re} \left(\frac{\varepsilon'}{\varepsilon} \right)_{\operatorname{theo} SM} = 42.5 (9)^{\circ}$$

4. Rare decays: $K \rightarrow \pi \nu \overline{\nu}$

$$\mathcal{L}_{\text{eff}}^{\Delta S=1} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* C_{13}(\mu) \left[\overline{s}\gamma^{\mu}(1-\gamma_5)d\right] \left[\overline{\nu}\gamma_{\mu}(1-\gamma_5)\nu\right]$$

NLO QCD effects (top) Our knowledge on
 $C_{13}(\mu)$ Two-loop electroweak corrections (top)
NNLO QCD effects (charm) NLO electroweak corrections (charm)

 $Q_{13}(\mu)$

Long-distance corrections

$$BR\left(\frac{K_L}{K_L} \to \pi^0 \nu \overline{\nu}\right) = \kappa_L \left(\frac{\operatorname{Im} \lambda_t}{\lambda^5} X\right)^2 (1 - \delta_{\epsilon})$$

 $\kappa_L = (2.231 \pm 0.013) \times 10^{-10} (\lambda/0.225)^8$ $X = 1.469 \pm 0.017$

$$\delta_{\epsilon} = \sqrt{2}|\varepsilon| \left[1 + P_c / (A^2 \lambda) - \rho \right] / \eta$$

 $P_c = 0.38 \pm 0.04$

Hadronic matrix element $K_{\ell 3}$ Top-quark contribution $K^0 - \overline{K}^0$ contribution

Dimension-6 charm contribution

$$\mathrm{BR}(K_L \to \pi^0 \nu \overline{\nu})\big|_{\mathrm{theo}} = (2.4 \pm 0.4) \times 10^{-11}$$

BR
$$(K_L \to \pi^0 \nu \overline{\nu}) < 2.6 \times 10^{-8}$$
 (90% C.L.)

$$\operatorname{BR}\left(\frac{K^{+} \to \pi^{+} \nu \overline{\nu}\right) = \kappa_{+} \left(1 + \Delta_{EM}\right) \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X\right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X + \frac{\operatorname{Re} \lambda_{c}}{\lambda} \left(P_{c} + \delta P_{c,u}\right)\right)^{2} \right]$$

 $\kappa_{+} = (5.173 \pm 0.025) \times 10^{-11} (\lambda/0.225)^{8}$ $X = 1.469 \pm 0.017$

 $\Delta_{EM} = -0.003$

 $P_c = 0.38 \pm 0.04$

 $\delta P_{c,u} = 0.04 \pm 0.02$

Hadronic matrix element $K_{\ell 3}$

Top-quark contribution

EM correction ($E_{\gamma}^{
m cms} < 20\,{
m MeV}$)

Dimension-6 charm contribution

Long-distance + dimension-8 charm

$$\text{BR}(K^+ \to \pi^+ \nu \overline{\nu}) \Big|_{\text{theo}} = (0.78 \pm 0.08) \times 10^{-10}$$

$$\mathrm{BR}(K^+ \to \pi^+ \nu \overline{\nu})\big|_{\mathrm{exp}} = \left(1.73^{+1.15}_{-1.05}\right) \times 10^{-10}$$

4. Rare decays: $K_L \rightarrow \pi^0 \ell^+ \ell^-$

$$K_L \to \pi^0 \ell^+ \ell^-$$

1. Direct CP-violating transition

$$\mathcal{L}_{\text{eff}}^{\Delta S=1} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left[C_{7V}(\mu) \left[\overline{s} \gamma^{\mu} (1 - \gamma_5) d \right] \sum_{\ell=e,\mu} \left[\overline{\ell} \gamma_{\mu} \ell \right] \right] \\ + C_{7A}(\mu) \left[\overline{s} \gamma^{\mu} (1 - \gamma_5) d \right] \sum_{\ell=e,\mu} \left[\overline{\ell} \gamma_{\mu} \gamma_5 \ell \right]$$
2. Indirect CP-violating transition due to $K^0 - \overline{K}^0$ oscillation

$$A_2\left(K_L \to \pi^0 \ell^+ \ell^-\right) = \varepsilon \times$$

$$BR\left(K_{L} \to \pi^{0}e^{+}e^{-}\right)\Big|_{CPV} = 10^{-12} \times \left[15.7 |a_{S}|^{2} \pm 6.2 |a_{S}| \left(\frac{\mathrm{Im} \lambda_{t}}{10^{-4}}\right) + 2.4 \left(\frac{\mathrm{Im} \lambda_{t}}{10^{-4}}\right)^{2}\right]$$
$$BR\left(K_{L} \to \pi^{0}\mu^{+}\mu^{-}\right)\Big|_{CPV} = 10^{-12} \times \left[3.7 |a_{S}|^{2} \pm 1.6 |a_{S}| \left(\frac{\mathrm{Im} \lambda_{t}}{10^{-4}}\right) + 1.0 \left(\frac{\mathrm{Im} \lambda_{t}}{10^{-4}}\right)^{2}\right]$$

$$K_S \to \pi^0 \ell^+ \ell^- \longrightarrow a_S \sim 1$$

3. CP-conserving contribution from $K_L \to \pi^0 \gamma \gamma \to \pi^0 \ell^+ \ell^-$

Assuming positive interference between the CP-V contributions (theoretically preferred) ...

	$BR\left(K_L \to \pi^0 e^+ e^-\right)$	$BR(K_L \to \pi^0 \mu^+ \mu^-)$
CP-V	$(3.1 \pm 0.9) \times 10^{-11}$	$(1.4 \pm 0.5) \times 10^{-11}$
CP-C	~ 0	$(5.2 \pm 1.6) \times 10^{-12}$
KTeV (90% C.L.)	$< 2.8 \times 10^{-10}$	$< 3.8 \times 10^{-10}$

Present and Future Experiments

Experiment	Kaon Physics Main Goal
NA48 (CERN), KTeV (Fermilab)	$\begin{array}{l} K_{\ell 3}, \ K_{\ell 4}, \ K \to \pi \pi / \pi \pi \pi, \ K \to \pi \gamma \gamma, \\ K \to \pi \ell^+ \ell^-, \ \varepsilon' \end{array}$
NA62 (CERN)	$K^+ \to \pi^+ \nu \overline{\nu} , \ K^+ \to \pi^+ \gamma \gamma$
K ⁰ TO (J-PARC)	$K_L \to \pi^0 \nu \overline{\nu}$
TREK (J-PARC)	$K^+ \to \pi^0 \mu^+ \nu_\mu$
KLOE-2 (KLOE) (DAΦNE)	CP issues, radiative decays
KLOD (IHEP, Protvino)	$K_L \to \pi^0 \nu \overline{\nu}$
OKA (ISTRA+) (IHEP, Protvino)	Kaon decays (BR $\sim 10^{-3} - 10^{-8}$)
Project – X (Fermilab)	$K \to \pi \nu \overline{\nu}, \ K_L \to \pi^0 \ell^+ \ell^-$

- 1. Kaon decays provide an excellent framework to settle SM predictions and, consequently, might foresee hints of BSM effects.
- 2. Short-distance dominated processes (namely with a "neutrino Dalitz pair") are clean and can be predicted accurately. They are/will be the goal of present/future flavour facilities.
- 3. Most of long-distance dominated rare decays can also be predicted within a 30 % in the branching ratios. This is not precision physics but enough for the present and foreseen experimental status. In general, it will be difficult to increase the accuracy in the theoretical predictions of these processes.
- 4. Semileptonic (charged current) processes have an excellent status. Theoretical analyses reach a few percent accuracy in most cases.
- 5. Non-leptonic kaon decays are still an open issue.

References

- [1] V. Cirigliano et al., Rev. Mod. Phys. 84 (2012) 399.
- [2] G.D. Rochester, C.C. Butler, Naure 160 (1947) 855.
- [3] R. Brown et al, Nature 163 (1949) 82.
- [4] T.D. Lee, C.N. Yang, Phys. Rev. 104 (1956) 254.
- [5] C.S. Wu et al, Phys. Rev. 105 (1957) 1413.
- [6] G. Colangelo et al., Eur. Phys. J. C71 (2011) 1695.