$K \to \pi\pi$ within factorization

The amplitudes for the decays of the kaons into two pions are given, in the isospin limit, by:

$$\mathcal{A}\left(K^{0} \to \pi^{+}\pi^{-}\right) = A_{0} e^{i\chi_{0}} + \frac{1}{\sqrt{2}} A_{2} e^{i\chi_{2}},
\mathcal{A}\left(K^{0} \to \pi^{0}\pi^{0}\right) = A_{0} e^{i\chi_{0}} - \sqrt{2} A_{2} e^{i\chi_{2}},
\mathcal{A}\left(K^{+} \to \pi^{+}\pi^{0}\right) = \frac{3}{2} A_{2} e^{i\chi_{2}},$$

in terms of the isospin amplitudes A_0 and A_2 and the corresponding phase-shifts χ_0, χ_2 :

• By evaluating the leading Feynman diagram in the Standard Model, given by Figure 1, obtain the result:

$$\mathcal{A} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left(\overline{s} \gamma_\mu (1 - \gamma_5) u \right) \left(\overline{u} \gamma^\mu (1 - \gamma_5) d \right),$$

in the limit of $M_W^2 \gg q^2$.

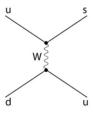


Figure 1:

• This result can be hadronized by assuming factorization of the SU(3) currents. Show that one can write:

$$\mathcal{A} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left(V_{\mu}^{4-i5} - A_{\mu}^{4-i5} \right) \left(V^{\mu(1+i2)} - A^{\mu(1+i2)} \right),$$

where $V^i_\mu=\overline{q}\gamma_\mu\frac{\lambda^i}{2}q$ and $A^i_\mu=\overline{q}\gamma_\mu\gamma_5\frac{\lambda^i}{2}q$.

• Obtain the isospin amplitudes A_0 and A_2 using the $\mathcal{O}(p^2)$ chiral Lagrangian:

$$\mathcal{L} = \frac{F^2}{4} \langle u_{\mu} u^{\mu} + \chi_{+} \rangle.$$

The notation is the one in the slides of the Kaon Physics talk. To hadronize the currents you can use that $V^i_\mu = \frac{\delta \mathcal{L}}{\delta v^\mu_i}$ and, analogously, for the axial-vector current.

• Check that $A_0/A_2 = \sqrt{2}$.