Computer tools in particle physics

- Lecture 5 : FlavorKit, odds and ends -

Avelino Vicente IFIC – CSIC / U. Valencia

Curso de doctorado de la U. València

IFIC February 1-5 2016

IFIC 2016

Step 1: Consider a lagrangian that includes all the operators relevant for the flavor observable

$$\mathcal{L}_{eff} = \sum_i C_i \mathcal{O}_i$$

Step 1: Consider a lagrangian that includes all the operators relevant for the flavor observable

$$\mathcal{L}_{eff} = \sum_i rac{C_i \mathcal{O}_i}{i}$$

Step 2: Compute the Wilson coefficients at a given loop order

Step 1: Consider a lagrangian that includes all the operators relevant for the flavor observable

$$\mathcal{L}_{eff} = \sum_i rac{C_i \mathcal{O}_i}{i}$$

Step 2: Compute the Wilson coefficients at a given loop order

Step 3: Plug the results for the Wilson coefficients into a general expression for the flavor observable

Example: $BR(\mu \rightarrow e\gamma)$

[In the SM extended with Dirac neutrino masses]

Step 1: Consider a lagrangian that includes all the operators relevant for the flavor observable

$$\mathcal{L}_{\mu e\gamma} = ie \, m_\mu \, \bar{e} \, \sigma^{\mu\nu} q_\nu \left(\frac{K_2^L P_L + K_2^R P_R}{\mu P_L} \right) \mu A_\mu + \text{h.c.}$$

Dipole interaction lagrangian

 K_2^L, K_2^R : Wilson coefficients

Example: $BR(\mu \rightarrow e\gamma)$

[In the SM extended with Dirac neutrino masses]

Step 2: Compute the Wilson coefficients at a given loop order

Example: BR($\mu \rightarrow e\gamma$)

[In the SM extended with Dirac neutrino masses]

Step 3: Plug the results for the Wilson coefficients into a general expression for the flavor observable

$$BR(\mu \to e\gamma) = \frac{\alpha m_{\mu}^{5}}{4 \Gamma_{\mu}} \left(|K_{2}^{L}|^{2} + |K_{2}^{R}|^{2} \right)$$

IFIC 2016

Step 1: Consider a lagrangian that includes all the operators relevant for the flavor observable

Some freedom. Requires a good understanding of the observable but technically easy

Step 2: Compute the Wilson coefficients at a given loop order

Complicated and model dependent part of the computation

Step 3: Plug the results for the Wilson coefficients into a general expression for the flavor observable

Model independent. Can make use of results in the literature

IFIC 2016

Usual approach

IFIC 2016

Usual approach

Poor student

IFIC 2016

Chuck Norris fact of the day

When Chuck Norris does a pushup, he isn't lifting himself up, he's pushing the Earth down

W. Porod, F. Staub, A. Vicente

Manual: arXiv:1405.1434 Website: http://sarah.hepforge.org/FlavorKit.html

IFIC 2016

FlavorKit

To compute flavor observables one needs:

- 1) Expressions for all vertices and masses
- 2) Expressions for the Wilson coefficients
- 3) Expressions for the observables
- 4) Numerical evaluation

FlavorKit

To compute flavor observables one needs:

- 1) Expressions for all vertices and masses ---- SARAH
 2) Expressions for the Wilson coefficients ---- FeynArts/ FormCalc
 3) Expressions for the observables ---- Literature
 - 3) Expressions for the observables
 - 4) Numerical evaluation

SPheno

FlavorKit is the combination of these tools

FlavorKit

How to use FlavorKit

Basic usage

For those who do not need any operator nor observable beyond what is already implemented in FlavorKit. In this case, FlavorKit reduces to the standard SARAH package.

Observables already in FlavorKit

Lepton flavor	Quark flavor
$\ell_lpha o \ell_eta \gamma$	$B^0_{s,d} \to \ell^+ \ell^-$
$\ell_{lpha} ightarrow 3 \ell_{eta}$	$\bar{B} \to X_s \gamma$
$\mu - e$ conversion in nuclei	$\bar{B} \to X_s \ell^+ \ell^-$
$\tau \to P\ell$	$\bar{B} \to X_{d,s} \nu \bar{\nu}$
$h \to \ell_{\alpha} \ell_{\beta}$	$B \to K \ell^+ \ell^-$
$Z \to \ell_{\alpha} \ell_{\beta}$	$K \to \pi \nu \bar{\nu}$
	$\Delta M_{B_{s,d}}$
	ΔM_K and ε_K
	$P \to \ell \nu$

Ready to be computed in your favourite model!

How to use FlavorKit

Basic usage

For those who do not need any operator nor observable beyond what is already implemented in FlavorKit. In this case, FlavorKit reduces to the standard SARAH package.

Advanced usage

For those with further requirements:

- New observables
- New operators

2nd Chuck Norris fact of the day

Chuck Norris can run collider simulations with MadGraph on an abacus

New observables

Implementing a new observable

Two files: steering file "observable.m" + Fortran code "observable.f90"

```
NameProcess = "LLpGamma";
NameObservables = {{muEgamma, 701, "BR(mu->e gamma)"},
{tauEgamma, 702, "BR(tau->e gamma)"},
{tauMuGamma, 703, "BR(tau->mu gamma)"}};
NeededOperators = {K2L, K2R}; Steering file
Body = "LLpGamma.f90"; LLpGamma.m
```

Reminder:

$$\mathcal{L}_{\mu e\gamma} = ie \, m_\mu \, \bar{e} \, \sigma^{\mu\nu} q_\nu \left(\frac{K_2^L P_L + K_2^R P_R}{\mu P_L} \right) \mu A_\mu + \text{h.c.}$$

New observables

```
Real(dp) :: width
Integer :: i1, gt1, gt2
                                                            Fortran code
                                                          LLpGamma.f90
Do i1=1,3
 If (i1.eq.1) Then ! mu -> e gamma
     gt1 = 2
     gt2 = 1
Elseif (i1.eq.2) Then
End if
width = 0.25_dp^{mf}(gt1)^{*5}(Abs(K2L(gt1,gt2))^{*2} + Abs(K2R(gt1,gt2))^{*2})^{Alpha}
 If (i1.eq.1) Then
     muEgamma = width/(width+GammaMu)
Elseif (i1.eq.2) Then
End if
End do
```

New operators

Implementing a new operator

One file: PreSARAH input file "operator.m"

Generic expressions for the Wilson coefficients of new operators can be computed with the help of an additional package (PreSARAH):

- User friendly definition of new operators
- Uses FeynArts/FormCalc [by T. Hahn] to obtain the generic expressions
- Writes all necessary files for SARAH

Example:

$$\mathcal{L}_{2d2\ell} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} \frac{E_{XY}^{I} \, \bar{d}_{\beta} \Gamma_{I} P_{X} d_{\alpha} \, \bar{\ell}_{\gamma} \, \Gamma_{I} P_{Y} \ell_{\gamma} + \text{h.c.}}{(\Gamma_{S,V,T} = 1, \gamma_{\mu}, \sigma_{\mu\nu})}$$

New operators

```
NameProcess="2d2L";
                                                        PreSARAH input file
ConsideredProcess = "4Fermion";
                                                                2d2L.m
FermionOrderExternal={2,1,4,3};
NeglectMasses={1,2,3,4};
ExternalFields= {DownQuark,bar[DownQuark],ChargedLepton,bar[ChargedLepton]};
CombinationGenerations = \{\{3,1,1,1\}, \{3,1,2,2\}, \{3,1,3,3\}, \{3,2,1,1\}, \{3,2,2,2\}, \{3,2,3,3\}\};
                                                                         Note:
AllOperators={{OddllSLL,Op[7].Op[7]},
               {OddllSRL,Op[6].Op[7]},
                                                                Op[7], Op[6] = P_{L,R}
                                                                      \operatorname{Lor}[1] = \gamma_{\mu}
               {OddllVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
               {OddIITLL,Op[-7,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
               ...};
```

Summary

FlavorKit is a combination of computer tools that allow the user to get predictions for his/her favourite flavor observables in the model of his/her choice.

No more lengthy loop computations!

It combines the analytical power of SARAH with the numerical routines of SPheno.

Perfect for phenomenological studies!

Easily extendable: new observables and new operators (thanks to FeynArts/FormCalc).

What are you waiting for? Use FlavorKit!

Backup slides

IFIC 2016

Other flavor codes

- MicrOmegas
- NMSSM-Tools
- SPheno
- SuperIso
- SuSeFLAV
- SUSY_FLAVOR

- [Belanger, Boudjema, Pukhov, Semenov]
- [Ellwanger, Hugonie]
 - [Porod, Staub]
 - [Mahmoudi]
- [Chowdhury, Garani, Vempati]
 - [Rosiek, Chankowski, Dedes, Jäger, Tanedo] [Crivellin, Rosiek]

Restrictions: Only specific models + hard to extend

Validation

FlavorKit, SPhenoMSSM (dashed), SPheno 3.3, SUSY Flavor 1, SUSY Flavor 2, MicrOmegas, Superlso

IFIC 2016

Models already in SARAH

Supersymmetric Models

- MSSM [in several versions]
- NMSSM
- Near-to-minimal SSM (near-MSSM)
- General singlet extended SSM (SMSSM)
- DiracNMSSM
- Triplet extended MSSM/NMSSM
- Several models with R-parity violation
- U(1)-extended MSSM (UMSSM)
- Secluded MSSM
- Several B-L extended models
- Inverse and linear seesaws [several embeddings]
- MSSM/NMSSM with Dirac Gauginos
- Minimal R-Symmetric SSM
- Minimal Dirac Gaugino SSM
- Seesaws I-II-III [SU(5) versions]
- Left-right symmetric model
- Quiver model

Non-Supersymmetric Models

- Standard Model
- Inert Higgs doublet model
- B-L extended SM
- B-L extended SM with inverse seesaw
- SM extended by a scalar color octet
- Two Higgs doublet model
- Singlet extended SM
- Singlet Scalar DM

http://sarah.hepforge.org/

Limitations

FlavorKit is a tool intended to be as general as possible. For this reason, there are some limitations compared to codes which perform specific calculations in a specific model:

- Chiral resummation is not included because of its large model dependence
- Higher order corrections cannot be computed (although they can be included in a parametric way)