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Parc Científic de Paterna. C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia), Spain

W. Rodejohann† and U. J. Saldaña-Salazar ‡

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

(Received 26 November 2019; accepted 23 January 2020; published 11 February 2020)

Two-Higgs-doublet models usually consider an ad-hoc Z2 discrete symmetry to avoid flavor changing
neutral currents. We consider a new class of two-Higgs-doublet models where Z2 is enlarged to the
symmetry group F⋊Z2, i.e., an inner semidirect product of a discrete symmetry group F and Z2. In such a
scenario, the symmetry constrains the Yukawa interactions but goes unnoticed by the scalar sector. In the
most minimal scenario, Z3⋊Z2 ¼ D3, flavor changing neutral currents mediated by scalars are absent at
tree and one-loop level, while at the same time predictions to quark and lepton mixing are obtained, namely
a trivial Cabibbo-Kobayashi-Maskawa matrix and a Pontecorvo-Maki-Nakagawa-Sakata matrix (upon
introduction of three heavy right-handed neutrinos) containing maximal atmospheric mixing. Small
extensions allow to fully reproduce mixing parameters, including cobimaximal mixing in the lepton sector
(maximal atmospheric mixing and a maximal charge-parity violating phase).
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I. INTRODUCTION

The discovery of a Higgs boson with a mass of mh ≃
125 GeV has opened the door to the possibility of having in
Nature multiple fundamental scalars. In principle, nothing
forbids their proliferation. Nonetheless, the amount of
parameters dramatically increases, both in the Yukawa
and scalar sector. Here, we consider a simple extension
to the standard model (SM) by only introducing a second
Higgs doublet (2HDM) with quantum numbers identical to
the SM Higgs and three right-handed neutrinos to generate
active neutrino masses. Furthermore, we mainly focus on
the problem of fermion mixing by first adopting the
common 2HDM framework with natural flavor conserva-
tion (NFC) [1,2], achieved through a Z2 reflection sym-
metry. Then, we add flavor to it via the enlargement of the
symmetry group in a very particular manner, F⋊Z2. This
denotes an inner semidirect product of a discrete symmetry
groupF and aZ2 symmetry. The non-Abelian nature of the
enlarged symmetry group then strongly reduces the number
of Yukawa couplings, thus providing a more predictive

theory. Moreover, the ad-hoc nature of the Z2 is explained
as a part of a larger group.1

To understand the need for the Z2 symmetry, we briefly
sketch its impact. In a general setup, one may immediately
write the Yukawa Lagrangian for a given fermion,

−LY ⊃ ψ̄LðYψ
1Φ1 þ Yψ

2Φ2ÞψR þ H:c:; ð1Þ

where ψR or ψL are three-dimensional vectors in flavor
space each denoting a weak singlet or a weak doublet,
respectively, and ψ representing any of the four fermion
types, ψ ¼ qu; qd;l; ν. Notice that the Higgs doublets must
be replaced by their charge-conjugate fields, Φ̃k ¼ iσ2Φ�

k,
for the up-type quark and neutrino cases.2 If the neutral
components of both scalar doublets acquire a vacuum
expectation value (VEV), hΦ0

1i ¼ v1 and hΦ0
2i ¼ v2, both

Yukawa matrices contribute to the fermion masses and
mixing. It is clear that diagonalization of the mass matrix,

M ¼ v1Y1 þ v2Y2; ð2Þ

cannot mean, in general, diagonalization of the individual
Yukawa matrices. This brings about dangerous tree-level
flavor-changing neutral currents (FCNCs). To avoid them,
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1There are other possibilities to explain the ad-hoc Z2, for
instance, by linking it to the remnant symmetry of a sponta-
neously broken Uð1Þ; see, e.g., [3–5].

2For brevity, we left aside the Majorana option. However, we
return to it later.
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it is sufficient to assume NFC by introducing a Z2 sym-
metry and by assigning a single scalar doublet for a given
fermion species such that only one of the two Yukawa
matrices contributes to the mass matrix. This is, the scalar
fields transform under the discrete symmetry such that

Φ1 → −Φ1; Φ2 → þΦ2; ð3Þ
while the left-handed quarks and leptons transform trivially
and the right-handed parts transform appropriately. The dif-
ferent assignment possibilities lead to four nonequivalent
types of 2HDMs3:

(i) Type I: all charged fermions couple to Φ2.
(ii) Type II: qd and l couple to Φ1 and qu to Φ2.
(iii) Type X: qu and qd couple to Φ2 and l to Φ1.
(iv) Type Y: qu and l couple to Φ2 and qd to Φ1.

Other possibilities are the Type III which is the general
2HDM with all couplings permitted and the inert doublet
model where Φ2 couples to all fermions while Φ1 has
no VEV, thus leaving unbroken the Z2 symmetry and
providing a viable dark matter candidate. Although other
approaches, such as Yukawa-alignment [6] or singular-
alignment [7], may also avoid tree-level FCNC, here we
only focus on those 2HDM employing the discrete sym-
metry Z2. Attempts to add flavor to 2HDMs have already
been made, e.g., [8–10]. However, our approach offers an
alternative and novel way to consider the NFC theories as
the starting point to build minimal extensions where the
patterns in fermion mixing are taken as a guide for new
physics. Note that the nonequivalence nature between the
four types comes from the fact that each framework ends
up having different effective Yukawa couplings of the
fermions to the various scalar particles; for a thorough
discussion on various phenomenological and theoretical
aspects of 2HDMs, see Ref. [11].
On the other hand, a general feature shared by the four

different types (I, II, X, and Y) is the Z2-invariant scalar
potential given by

VZ2

2HDM ¼
X
x¼1;2

�
m2

xxðΦ†
xΦxÞ þ

λx
2
ðΦ†

xΦxÞ2
�

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ 1

2
½λ5ðΦ†

1Φ2Þ2 þ λ�5ðΦ†
2Φ1Þ2�: ð4Þ

The hermiticity condition of the potential leaves λ5 as the
only complex coefficient while the rest, m2

11; m
2
22, and

λ1;2;3;4, are real. There are in total eight real parameters.
However, not all of them are physical. A phase redefini-
tion can make λ5 real and only seven parameters are
physical. Note that our potential has explicitly become
charge-parity (CP)-symmetric.

No matter the amount of Higgs doublets one employs,
the full mass matrix for any given fermion is parametrized
by nine complex parameters. The initial arbitrariness may
then be reduced via weak-basis transformations (unitary
transformations leaving invariant the kinetic terms), but not
enough to claim predictivity. In the mass basis, for either
quarks or leptons, one has six fermion masses and four (six
for Majorana neutrinos) mixing parameters, plus arbitrary
Yukawa couplings. The flavor sector thus gives to the SM
and its extensions (without symmetries) the highest amount
of arbitrariness. It is only when symmetries are introduced
that the initial arbitrariness can be drastically reduced.
Here, we intend to explore the effect of symmetries in the
flavor sector such that we find correlations among the quark
and lepton mixing parameters.
The paper is organized as follows: in Sec. II, we discuss

the meaning of adding flavor to Z2. Next, in Sec. III, we
provide the most minimal scenario realizing the features of
our approach. Also, we highlight the main differences when
compared to the four types of 2HDMs. Thereafter, in
Sec. IV, we take the incompleteness of fermion mixing in
our simple model as a hint to the presence of additional new
physics and introduce a flavor doublet of real scalar gauge
singlets. Finally, in Sec. V, we conclude. Some technical
details are delegated to appendices.

II. ADDING FLAVOR TO Z2

We are interested in those finite symmetry groups, G,
which can be written as an inner semidirect product of an
arbitrary group F and Z2,

G ¼ F⋊Z2: ð5Þ

There are in fact many examples of such groups (see
Ref. [12] for more details): DN ¼ Δð2NÞ ≃ ZN⋊Z2,
Σð2N2Þ ≃ ðZN × Z0

NÞ⋊Z2, Σð24Þ ≃ Z2 × Z6⋊Z2, etc.
The main property of this kind of groups is that they

contain two one-dimensional irreducible representations
(denoted singlets), which behave exactly as if we only had a
Z2 symmetry. Thus, by assigning each Higgs doublet to
one of these singlets, we are mimicking in the scalar sector
any of the NFC models with a Z2 symmetry. On the other
hand, the non-Abelian nature of the symmetry only impacts
the Yukawa interactions, thus providing a way to approach
the problem of mixing while simultaneously tackling
minimal scalar extensions to the SM.
An additional feature of this approach is the following.

Since the number of Higgs doublets in a theory restricts
the maximum group order of allowed symmetries (“real-
izable symmetries”) that would otherwise imply massless
Goldstone bosons [13], then by implementing symmetry
groups as here proposed we avoid these constrictions.
Let us take as a first example the Klein group given by

Z2⋊Z2. It is the smallest possibility within this approach. It
has four elements and four irreducible representations

3The types X and Y are also called the lepton-specific and
flipped scenarios, respectively.
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(irreps): 1þþ, 1þ−, 1−þ, and 1−−. However, as it is still an
Abelian group, its effect on the Yukawa couplings is only of
reduction but not of relation. For example, we could assign
the Higgs doublets as Φ1 ∼ 1−− and Φ2 ∼ 1þþ, while the
third, second, and first fermion families as 1−þ, 1þ−, and
1þþ, respectively. In return, the mass matrix for Dirac
fermions would take the generic form

M ¼

0
B@

y1vþþ y4v−− 0

y5v−− y2vþþ 0

0 0 y3vþþ

1
CA; ð6Þ

where hΦ0
1i ¼ v−− and hΦ0

2i ¼ vþþ. Therefore, although
we have reduced the number of complex parameters from
nine to five, we yet have no predictions except for the fact
that we only expect mixing between the first two gener-
ations. Nevertheless, it demonstrates that the combination
of the flavor-safe Z2 with an additional group will simplify
the Yukawa sector. Going to the non-Abelian case will
result in predictive scenarios, and we will study a very
minimal approach in what follows.

III. THE MINIMAL CASE: Z3⋊Z2

The smallest non-Abelian finite group has six elements
and is denoted by D3 ≡ Z3⋊Z2. This dihedral group
describes the symmetrical properties of an equilateral
triangle.4 It has three irreducible representations: two
singlets 1þ; 1− and one doublet 2. The product rules can
be found in Appendix A.
Although different assignments between the D3 irreps

and the fermion fields could be done, here we opt to
consider

QL;3 ∼ 1þ; QL;D ¼
�
QL;1

QL;2

�
∼ 2;

uR;3 ∼ 1þ; uR;D ¼
�
uR;1
uR;2

�
∼ 2;

dR;3 ∼ 1−; dR;D ¼
�
dR;1
dR;2

�
∼ 2; ð7Þ

whereas in the lepton sector

EL;1 ∼ 1þ; EL;D ¼
�
EL;2

EL;3

�
∼ 2;

eR;1 ∼ 1−; eR;D ¼
�
eR;2
eR;3

�
∼ 2;

NR;1 ∼ 1−; NR;D ¼
�
NR;2

NR;3

�
∼ 2: ð8Þ

We are motivated to this choice, as we will see, because the
dominant contributions to quark and lepton mixing are the
Cabibbo and atmospheric angle, correspondingly.
Recall that the scalar sector should be assigned to

Φ1 ∼ 1− and Φ2 ∼ 1þ: ð9Þ

The neutral component of both Higgs doublets acquires a
VEV, spontaneously breaking the electroweak symmetry;
we denote them as

v1 ≡ hΦ0
1i and v2 ≡ hΦ0

2i: ð10Þ

Note we are using the convention v2 ¼ v21 þ v22 ¼
ð174 GeVÞ2.
The Z3⋊Z2-symmetric Yukawa Lagrangian is

−LY ¼ LQ
Y þ LE

Y; ð11Þ

with

LQ
Y ¼ ytQ̄L;3Φ̃2uR;3 þ ybQ̄L;3Φ1dR;3

þ yu1½Q̄L;DuR;D�−Φ̃1 þ yu2½Q̄L;DuR;D�þΦ̃2

þ yd1½Q̄L;DdR;D�−Φ1 þ yd2½Q̄L;DdR;D�þΦ2

þ H:c: ð12Þ

and

LE
Y ¼ yν1ĒL;1Φ̃1NR;1 þ yeĒL;1Φ1eR;1

þ yν1½ĒL;DNR;D�−Φ̃1 þ yν2½ĒL;DNR;D�þΦ̃2

þ ye1½ĒL;DeR;D�−Φ1 þ ye2½ĒL;DeR;D�þΦ2

þ 1

2
M1Nc

R;1NR;1 þ
1

2
M2½Nc

R;DNR;D�þ
þ H:c:; ð13Þ

where ½ �k ¼ f1þ; 1−; 2g represents one of the three pos-
sible outputs from the D3 tensorial product. Also, notice
that we are now assumingMajorana neutrinos by virtue of a
standard seesaw.
In the quark sector, the resulting Yukawa matrices take

the form

Δ1 ¼

0
B@

0 yu1 0

−yu1 0 0

0 0 0

1
CA; Δ2 ¼

0
B@

yu2e
iγu 0 0

0 yu2e
iγu 0

0 0 yt

1
CA;

Γ1 ¼

0
B@

0 yd1 0

−yd1 0 0

0 0 yb

1
CA; Γ2 ¼

0
B@

yd2e
iγd 0 0

0 yd2e
iγd 0

0 0 0

1
CA;

ð14Þ
4D3 is isomorphic to S3, the group describing the permutations

of three indistinguishable objects.
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while in the lepton sector, we have

Π1 ¼

0
B@

ye 0 0

0 0 ye1
0 −ye1 0

1
CA; Π2 ¼

0
B@

0 0 0

0 ye2e
iγe 0

0 0 ye2e
iγe

1
CA;

Ω1 ¼

0
B@

yν1 0 0

0 0 yν1
0 −yν1 0

1
CA; Ω2 ¼

0
B@

0 0 0

0 yν2e
iγν 0

0 0 yν2e
iγν

1
CA;

ð15Þ

where all the parameters are real and positive and where we
have taken fyu1; yd1; yt; yb; ye1; yeg ∈ ℜþ without loss of
generality. All Dirac mass matrices satisfy

M ¼ v1Ξ1 þ v2Ξ2; ð16Þ

where Ξ ¼ Γ;Δ;Π, and Ω. Each mass matrix has three
complex parameters and possesses the feature of being
diagonalizable by the same transformation that brings to
diagonal form its individual Yukawa matrices. It is this
property that guarantees the absence of FCNC at tree level,
and it represents an explicit realization of the singular
alignment ansatz [7].
Note how we end up, in the quark sector, with only eight

real parameters, six of which correspond to the six quark
masses while the other two, being complex phases, are
forced to be nearly �π=2 due to the phenomenological
observation of hierarchical fermion masses. We return to
this point later.
The effective Majorana neutrino mass matrix can be

computed from the standard seesaw formula, Mν ¼
−MνM−1

R MT
ν , and is found to be diagonal,

Mν ¼ −

0
BBB@

ðyν1v1Þ2
M1

0 0

0
ðyν

2
Þ2v2

2
−ðyν

1
Þ2v2

1

M2
0

0 0
ðyν

2
Þ2v2

2
−ðyν

1
Þ2v2

1

M2

1
CCCA: ð17Þ

Here,MR ¼ diagðM1;M2;M2Þ, which is a consequence of
the D3 flavor symmetry. The mass matrix has a mass
degeneracy between the two neutrino states, νL;2 and νL;3,
while, since it is diagonal, it does not contribute to the
mixing.
Toward studying the phenomenology of this scenario,

we note that complex matrices of the form

m ¼ aI þ
�

0 b

−b 0

�
ð18Þ

are brought to diagonal shape via a maximal biunitary
transformation

uL ¼ 1ffiffiffi
2

p
�

1 �i

�i 1

�
; uR ¼

�
eiγ1 0

0 eiγ2

�
· uL;

ð19Þ

that is,

uL ·m · u†
R ¼

� ja ∓ ibj 0

0 ja� ibj

�
; ð20Þ

with γ1 ¼ argða ∓ ibÞ and γ2 ¼ argða� ibÞ implying real
and positive masses. The choice of the signs will depend on
the ordering of the masses. The singular values of such a
matrix m are given by

m1;2 ¼ ja� ibj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ jbj2 ∓ 2jajjbj sin ρ

q
; ð21Þ

where ρ ¼ argðaÞ − argðbÞ. Moreover, note that if the
parameters a and b are taken to be real (ρ ¼ 0), then the
masses would be degenerate. In particular, if ρ is in the first

quadrant, then ρ ∈ ½ArcSinðm2
2
−m2

1

m2
2
þm2

1

Þ; π=2�. The transforma-

tions ρ → �ρþ π and ρ → −ρwill lead to the same masses
as ρ. Additionally, when the masses are hierarchical,
m2 ≫ m1, the allowed interval for ρ shrinks to ρ ∈ ½π=2−
2m1=m2 þOðm3

1=m
3
2Þ; π=2�, essentially implying that

ρ ≃�π=2. We have chosen the off-diagonal Yukawas to
be real and positive without loss of generality. Therefore,
the complex phase of the diagonal Yukawas is found to
be γf ≃�π=2.
With these results in mind and looking at the form of the

mass matrices of the charged fermions shown in Eqs. (14)–
(16), we can extract the masses and mixing parameters,

mt ¼ ytv2; mb ¼ ybv1; me ¼ yev1;

mc;u ¼ jyu2v2 � yu1v1j; ms;d ¼ jyd2v2 � yd1v1j;
mτ;μ ¼ jye2v2 � ye1v1j; ð22Þ
with the Majorana neutrino masses as given in Eq. (17).
The quark Yukawa couplings can now be generically fixed
to (defining tan β ¼ v2=v1)

yuðdÞ1 ¼ mcðsÞ −muðdÞ
2v cos β

and yuðdÞ2 ¼ mcðsÞ þmuðdÞ
2v sin β

: ð23Þ

An alternative solution exists when one exchanges
yf1 ↔ yf2 . Similarly, for the charged leptons,

ye1 ¼
mτ −mμ

2v cos β
and ye2 ¼

mτ þmμ

2v sin β
; ð24Þ

and again it is possible to exchange ye1 ↔ ye2.
Turning to fermion mixing, we can parametrize the

relevant diagonalization matrices in terms of the complex
rotation matrices Uijðθ;ϕÞ, which are defined as
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U12ðθ;ϕÞ ¼

0
B@

cos θ sin θe−iϕ 0

− sin θeiϕ cos θ 0

0 0 1

1
CA ð25Þ

and similarly for U13 and U23. Then, the mixing matrices
for the up and down quarks and for the charged leptons are
simply given by

Uu
L ¼ U12ðπ=4;�π=2Þ; ð26Þ

Ud
L ¼ U12ðπ=4;�π=2Þ; ð27Þ

Ue
L ¼ U23ðπ=4;�π=2Þ: ð28Þ

We obtain for the Cabibbo-Kobayashi-Maskawa (CKM)
and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrices,

Vð0Þ
CKM ¼ Uu

LðUd
LÞ† ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA;

Uð0Þ
PMNS ¼ Ue

LðUν
LÞ† ¼

0
BB@

1 0 0

0 1ffiffi
2

p � iffiffi
2

p

0 � iffiffi
2

p 1ffiffi
2

p

1
CCA; ð29Þ

where one of the signs of the PMNSmatrix is realized when
Eq. (24) applies and the opposite when ye1 ↔ ye2.
This is, by enlarging Z2 to Z3⋊Z2, we are now able to

predict trivial mixing in the quark sector and a maximal
atmospheric mixing angle in the lepton sector. There is also
a maximal CP violation phase, which is unphysical if the
angles θ12 and θ13 remain 0, but it will become important
later. These features have to be understood as the dominant
characteristics of this model at leading order. Its incom-
pleteness points to further investigation on how the model
should be extended; see Sec. IV.

A. FCNC

There are no tree level FCNCs since all Yukawa matrices
are simultaneously diagonalizable. However, at the one-loop
level, quantum corrections could induce misalignment in the
different Yukawa matrices and generate FCNC. To check
this effect, we employ the formulas obtained for a theory
with N-Higgs doublets [14] and given in Appendix B. It is
straightforward to see that for our particular model in all
cases the one-loop renormalization group equations may
only give place to flavor-conserving terms,5

16π2μ
d
dμ

Ξa ∝ Ξa; ða ¼ 1; 2Þ; ð30Þ

where μ is the renormalization scale and Ξ ¼ Γ;Δ;Π,
and Ω. More details can be found in Appendix B.6

B. Nonuniversal charged fermion-scalar couplings

In order to find the couplings between the charged
fermions and the Higgs scalars, we need to move both
of them to their mass basis. In our case, only the latter are
still in the symmetry adapted basis. We first introduce their
notation,

Φ1 ¼
 Φþ

1

v1 þ ϕ0
1
þiφ0

1ffiffi
2

p

!
; Φ2 ¼

 Φþ
2

v2 þ ϕ0
2
þiφ0

2ffiffi
2

p

!
: ð31Þ

Since the scalar potential is CP-symmetric, there are states
with definite CP-odd and CP-even quantum numbers. This
allows one to write two independent mass matrices,

M2
CP-even ¼

�
2v22λ2 2v1v2λ345

2v1v2λ345 2v21λ1

�
; ð32Þ

where λ345 ¼ λ3 þ λ4 þ λ5, and

M2
CP-odd ¼

�
2v22λ5 −2v1v2λ5

−2v1v2λ5 2v21λ5

�
: ð33Þ

The first case can be brought to diagonal form by means of
the orthogonal transformation

�
h

H

�
¼
�

cα sα
−sα cα

��
ϕ0
2

ϕ0
1

�
; ð34Þ

with tan 2α ¼ 2v1v2λ345=ðv21λ1 − v22λ2Þ, while the second
one by

�
G0

A

�
¼
�

cβ sβ
−sβ cβ

��
φ0
2

φ0
1

�
: ð35Þ

Here the latter angle of rotation satisfies tan β ¼ v2=v1, and
G0 is the neutral pseudo-Goldstone boson to be “eaten” by
the Z mass. Similarly, one has for the charged scalars a
mass matrix,

M2
charged ¼

�
2v22ðλ4 þ λ5Þ −2v1v2ðλ4 þ λ5Þ

−2v1v2ðλ4 þ λ5Þ 2v21ðλ4 þ λ5Þ

�
; ð36Þ

diagonalized by the same rotation as for the CP-odd neutral
scalars,

5As we are only interested in finding flavor-violating struc-
tures, we have not considered the quantum corrections to the
VEVs.

6Due to the fact that we are employing the standard seesaw,
FCNC with heavy sterile neutrinos are sufficiently suppressed
and are not discussed here.
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�
Gþ

Hþ

�
¼
�

cβ sβ
−sβ cβ

��Φþ
2

Φþ
1

�
: ð37Þ

The Yukawa Lagrangian related to the interactions to the
neutral scalars is

−LY ⊃
X
f

mf

ð246 GeVÞ ðξ
f
hf̄fhþ ξfHf̄fH − iξfAf̄γ5fAÞ;

ð38Þ

while the one related to the interactions to the charged
scalar is

−LY ⊃ −Hþ ½Vð0Þ
CKM�ij

ð246 GeVÞ ūiðmiξ
Hþ
qu PL þmjξ

Hþ
qd PRÞdj

−Hþ ml

ð246 GeVÞ ξ
Hþ
l ν̄L;ilR;j þ H:c:; ð39Þ

with PL;R ¼ ð1 ∓ γ5Þ=2. In order to compare this expres-
sion to that appearing in conventional 2HDMs, we have
assumed, for the moment, massless neutrinos.
We find that an important distinction between this

framework with typical 2HDMs with NFC (see Table I)
is that fermion couplings become nonuniversal; see
Table II. Furthermore, those fermions which initially talk
to both Higgs doublets (Φ1;2) have the following couplings:

f�ðα; β; y1; y2Þ ¼
y2cα ∓ y1sα
y2sβ � y1cβ

;

g�ðα; β; y1; y2Þ ¼
y2sα � y1cα
y2sβ � y1cβ

: ð40Þ

Note that cancellations can occur, which could make f� or
g� vanish. The observed hierarchy in the fermion masses,
m3 ≫ m2 ≫ m1, may be applied to Eq. (40) to obtain the
approximate relations

f� ≈
m2

2m2;1

�
cα
sβ

∓ sα
cβ

�
; g� ≈

m2

2m2;1

�
sα
sβ

� cα
cβ

�
: ð41Þ

For small or large tan β, both relations reduce to f− ≈ m2

m1
fþ

and g− ≈ m2

m1
gþ, meaning that the fermion with a lighter

mass (m1 < m2) has an Oð10 − 100Þ enhancement in its
coupling to the scalars compared to the heavier one.
Moreover, for α→β−π=2, all couplings to the 125 GeV
scalar state, h, including the new functions f�, are
automatically made SM-like, i.e., ξhqu;qd;l → 1, while the
other couplings end up only depending on tan β. A further
implication of the alignment limit is that the coupling
of the CP-even state H with the W and Z bosons
becomes null.
The resulting couplings have been grouped into different

sets corresponding to similar characteristics in Table II.
This also holds for couplings which depend on the Yukawa
parameters (and therefore, to the different fermion masses),
like ξHf ¼ gþðα; β; yf1 ; yf2Þ for f ¼ τ, s, c. As they have the
same functional dependence, they are grouped under the
category ξHτ;s;c.

TABLE I. Flavor universal Yukawa couplings of the charged
fermions to the Higgs bosons h,H, A, andHþ in the conventional
2HDMs with only Z2.

Type

I II X Y

ξhqu cα=sβ cα=sβ cα=sβ cα=sβ
ξhqd cα=sβ −sα=cβ cα=sβ −sα=cβ
ξhl cα=sβ −sα=cβ −sα=cβ cα=sβ

ξHqu sα=sβ sα=sβ sα=sβ sα=sβ
ξHqd sα=sβ cα=cβ sα=sβ cα=cβ
ξHl sα=sβ cα=cβ cα=cβ sα=sβ

ξAqu cot β cot β cot β cot β
ξAqd − cot β tan β − cot β tan β
ξAl − cot β tan β tan β − cot β

ξH
þ

qu
cot β cot β cot β cot β

ξH
þ

qd
cot β − tan β cot β − tan β

ξH
þ

l
cot β − tan β − tan β cot β

TABLE II. Flavor nonuniversal Yukawa couplings, cf. Eqs. (38)
and (39), of the charged fermions to the Higgs bosons h, H, A,
and Hþ in the 2HDM with Z3⋊Z2. We have grouped the
couplings into different sets with equal or similar characteristics.

Z3⋊Z2 model

ξht cα=sβ
ξhb;e −sα=cβ
ξhτ;s;c fþðα; β; y1; y2Þ
ξhμ;d;u f−ðα; β; y1; y2Þ
ξHt sα=sβ
ξHb;e cα=cβ
ξHτ;s;c gþðα; β; y1; y2Þ
ξHμ;d;u g−ðα; β; y1; y2Þ
ξAt cot β
ξAb;e tan β

ξAτ;s;c fþðβ; β; y1; y2Þ
ξAμ;d;u f−ðβ; β; y1; y2Þ
ξH

þ
t cot β

ξH
þ

b;e
− tan β

ξH
þ

τ;s −fþðβ; β; y1; y2Þ
ξH

þ
μ;d

−f−ðβ; β; y1; y2Þ
ξH

þ
c fþðβ; β; y1; y2Þ
ξH

þ
u f−ðβ; β; y1; y2Þ
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In general, conventional 2HDMs with NFC have a
moderate behavior for moderate values of tan β. Their
main differences appear in the small (or large) tan β limits.
For example, take the couplings to the charged scalar, Hþ.
In the type-II scenario, its coupling to tb̄ is large (philic) at
large tan β, whereas in the same limit, it is always small
(phobic) for the type-I case. In contrast to this typical
situation, the Z3⋊Z2 model shows already at moderate
values of tan β either phobic or philic behavior; see
Figs. 1–3. Also, it can be seen that for a given value of

β, a given fermion may completely decouple from one of
the four scalars and accidentally become inert to that scalar.

IV. COMPLETING MIXING AS A GUIDE
FOR NEW PHYSICS

While possessing attractive features, the minimal Z3⋊Z2

model presented so far does not fully reproduce the fermion
mixing and masses. We take this “incomplete mixing” as a
hint pointing toward new physics. In the quark sector, the
vanishing mixing points to the introduction of a dim > 4
operator that generates small corrections. In a similar
fashion, the Majorana nature of neutrinos could allow
dim-4 operators and therefore large contributions to mix-
ing. The simplest possibility is obtained by introducing a
real singlet scalar field, which is assumed to transform
under D3 as a doublet,

η ∼ 2: ð42Þ

This field acquires a VEV,

hηi ¼
�
w1

w2

�
: ð43Þ

Note that by introducing η and its nonrenormalizable
interactions we have allowed at tree level the appearance
of FCNC. We may assume a large mass and later decouple
it from the theory. While perturbing 2HDMs is typically
done to explain anomalies [15,16], here we need it to
complete fermion mixing. Note however that our approach
uses an explicit model, i.e., the symmetry and field content

FIG. 1. Effective couplings to the 125 GeV scalar (h), as a
function of β, in any of the 2HDM types and the Z3⋊Z2 model.
We considered α ¼ 0.7. The blue and red continuous lines
represent any of the conventional 2HDMs couplings with
NFC, whereas the black (dotted) and gray (dashed) lines the
new couplings of our model. The left and right (magenta) shaded
regions depict the small and large tan β limits, while the upper
(cyan) and lower (yellow) regions the philic (jξhfj > 1.5) and
phobic (jξhfj < 0.5) limits, respectively. The middle (green) line is
the SM limit. Note that the funnel is a consequence of plotting the
absolute values of the coupling ξhf .

FIG. 2. Effective couplings to the heavy CP-even scalar (H), as
a function of β, in any of the 2HDM types and the Z3⋊Z2 model.
We considered α ¼ 0.7. The blue and red continuous lines
represent any of the conventional 2HDMs couplings with
NFC, whereas the black (dotted) and gray (dashed) lines the
new couplings of our model. The left and right (magenta) shaded
regions depict the small and large tan β limits, while the upper
(cyan) and lower (yellow) regions the philic (jξHf j > 1.5) and
phobic (jξHf j < 0.5) limits, respectively. Note that the funnel is a
consequence of plotting the absolute values of the coupling ξHf .

FIG. 3. Effective couplings to the neutral CP-odd (A) and
charged (Hþ) scalars, as a function of β, in any of the 2HDM
types and the Z3⋊Z2 model. The blue and red continuous lines
represent any of the conventional 2HDMs couplings with NFC,
whereas the black (dotted) and gray (dashed) lines the new
couplings of our model. The left and right (magenta) shaded
regions depict the small and large tan β limits, while the upper
(cyan) and lower (yellow) regions the philic (jξA;Hþ

f j > 1.5) and

phobic (jξA;Hþ
f j < 0.5) limits, respectively. Note that the funnel

is a consequence of plotting the absolute values of the
coupling ξA;H

þ
f .
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of our model determine the type of Yukawa matrices to be
added. At last, notice that integrating out the singlet scalar
means that our theory has become a 2HDM of type III.
Wewill later demonstrate that the model can be easily made
flavor safe. An explicit numerical example will be provided
in Sec. IV D.

A. Quark mixing

In the quark sector, the nonrenormalizable dim-5 oper-
ators leading to a correct CKM matrix requires a complete
UV formulation to be realized. As a simple example that
serves as a plausibility argument, consider the following
dim-5 effective interactions, invariant under the SM gauge
group and the flavor symmetry,

−ΔLQ
Y ¼ gd1

Λ
½Q̄L;Dη�−dR;3Φ2 þ

gd2
Λ
½Q̄L;Dη�þdR;3Φ1

þ gd3
Λ
Q̄L;3½dR;Dη�þΦ2 þ

gd4
Λ
Q̄L;3½dR;Dη�−Φ1

þ gd5
Λ
½Q̄L;DdR;Dη�þΦ2 þ

gd6
Λ
½Q̄L;DdR;Dη�−Φ1

þ H:c: ð44Þ

These contributions give rise to small corrections in quark
mixing through perturbations to the down quark mass
matrix of the form

ΔMd ¼

0
B@

ϵ1 ϵ2 ϵ3

ϵ2 −ϵ1 ϵ4

ϵ03 ϵ04 0

1
CA; ð45Þ

i.e., the six new parameters gdi , the scale of the dimension-
five operators Λ, and the two new VEVs hηii ¼ ωi can be
absorbed intofour4 parameters ϵi in the down quark mass
matrix, which are enough to perturb our initial identity
matrix and reproduce the CKM mixing. These effective
operators can be realized in a UV-complete model just by
adding a vectorlike pair of colored particles with the same
gauge quantum numbers as the right-handed down quarks.
In the basis where Mu and Md are diagonal, the

perturbation matrix becomes

ΔM̃d ¼

0
BBB@

0 −ðϵ1 − iϵ2Þ ϵ3−iϵ4ffiffi
2

p

ϵ1 þ iϵ2 0
−iðϵ3þiϵ4Þffiffi

2
p

iðϵ5þiϵ6Þffiffi
2

p −ðϵ5−iϵ6Þffiffi
2

p 0

1
CCCA: ð46Þ

Recall that here we still have trivial quark mixing. In order
to obtain a realistic mixing scenario, the perturbations need
to be sufficiently small compared to the bottom quark mass
but large enough compared to the down and strange quark
masses. This implies that the Yukawa parameters yd1;2 are no

longer completely satisfying Eq. (23). Through a qualita-
tive analysis, we find that for

M̃d ¼ diagðjyd2jv2 − yd1v1; jyd2jv2 þ yd1v1; ybv1Þ þ ΔM̃d

∼

0
B@

md λms λ3mb

λms ms λ2mb

− − mb

1
CA; ð47Þ

where λ ≃ 0.225, it is possible to fully reproduce quark
mixing without introducing unacceptably large amounts of
flavor violation at tree level. The (3,1) and (3,2) matrix
elements could be taken as zero or of the same order that
their transpose counterparts. On the other hand, all entries
are given up to Oð1Þ complex factors. It is interesting to
note that Eq. (47) shows an approximate Uð2Þ flavor
symmetry for the first two generations, mb ≫ md;s (analo-
gously for the up-type quarks). The above resulting mass
matrix is a similar realization of the “flavorful” 2HDMs
investigated in Ref. [10] wherein Yukawa couplings, for
all charged fermions, are chosen as to approximately
preserve a Uð2Þ5 flavor symmetry acting on the first two
generations.
Alternatively, we could have introduced perturbations

through the up-type quarks; however, to reproduce the
CKM mixing would have required a larger modification of
the initial Yukawa parameters, jyu2j and yu1 , by at least 1
order of magnitude. This may be easily appreciated by
considering that a perturbation to the 1–2 sector of the sizeffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
is enough in the down quark sector,

ffiffiffiffiffiffiffiffiffiffiffiffi
mdms

p ∼
10 MeV, to generate Cabibbo mixing, while for the up-type
quarks it would still require an additional order of magni-
tude,Oð10Þ ffiffiffiffiffiffiffiffiffiffiffiffi

mumc
p ∼ 100 MeV, plus some extra tuning in

the Yukawa parameters to get the correct light quark
masses, mu and mc.

B. Lepton mixing

In the lepton sector, the dominant perturbation contri-
butions come through the right-handed neutrinos,

−ΔLN
Y ¼ 1

2
gN1 N̄

c
R;1½ηNR;D�− þ gN2 ½η½N̄c

R;DNR;D�2�þ þ H:c:;

ð48Þ

producing

ΔMR ¼

0
B@

0 δN1 rδN1

δN1 rδN2 δN2

rδN1 δN2 −rδN2

1
CA; ð49Þ

where we have defined r ¼ ω1=ω2, δN1 ¼ gN1 ω2 and
δN2 ¼ gN2 ω1, i.e., we can rewrite the four new parameters
given by gN1 , g

N
2 , ω1, and ω2 in terms of only three: r, δN1,

and δN2.
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The charged lepton contribution remains untouched by
the addition of the scalar η and is given by Eq. (27). Once
we consider the contributions to the mass matrix of the
right-handed neutrinos shown in Eq. (49), the initial lepton
mixing given by Eq. (29) gets modified. If the Yukawa
couplings appearing in the neutrino mass matrix are taken
real, then we have

Ue
L ¼ U23ðπ=4;�π=2Þ;

Uν
L ¼ O23ðθν23ÞO13ðθν13ÞO12ðθν12Þ; ð50Þ

where OijðθÞ is the usual rotation matrix in the (i; j) plane.
It can be shown that

U23ðπ=4;�π=2ÞO23ðθν23Þ ¼ P · U23ðπ=4;∓π=2Þ; ð51Þ

where P is a diagonal unitary matrix which is unphysical.
Therefore, if the neutrino sector is real, we obtain cobi-
maximal mixing [17] with θ23 ¼ π=4 and δCP ¼ �π=2 in
the lepton sector. While the sign of δCP is not fixed, data
seem to favor the negative option [18]. Note that this is a
particular case of the general theorem derived in Ref. [19],
i.e., if cobimaximal mixing is present in the charged lepton
sector and the neutrino sector is real, then the full PMNS
matrix is also cobimaximal. In particular, the full lepton
mixing parameters are given by

θ12 ¼ θν12; θ13 ¼ θν13; θ23 ¼ π=4;

δCP ¼ �π=2; ϕ12 ¼ 0; π=2 ¼ ϕ13; ð52Þ

irrespective of θν23. That is, the large hierarchy between the
charged lepton masses coupled with the assumption that the
neutrino Yukawas are real leads to cobimaximal mixing,
i.e., maximal atmospheric mixing angle and δCP ¼ �π=2.
For the other two mixing angles θ12 and θ13, no predictions
can be made, but the parameters can be chosen in such a
way that they lie inside the experimental constraints.
Moreover, the Majorana phases relevant for neutrinoless
double beta decay maintain their CP-conserving values.
We remark that of course there is no need to assume the

neutrino sector to remain real; in the most general scenario
with complex parameters, there is enough freedom to fit all
the mixing parameters. The assumption that the neutrino
Yukawas are real, while the charged lepton Yukawas are
forced to be complex due to hierarchical masses, may seem
ad-hoc but can actually be justified in many different
scenarios. For example, in Ref. [20], the author derives a
general loop mechanism in which the neutrino mass matrix
is complex but diagonalized by a real orthogonal matrix.
This same mechanism could be applied here by changing
the type I seesaw neutrino mass generation by an inverted
loop seesaw mediated by three real scalars. Then, the
cobimaximal nature of the PMNS would remain. Another

option would be to explicitly impose a remnant CP
symmetry in the neutrino sector.
It is worth to note that our scenario is minimal and quite

simple, yet it leads to such a restricted scenario. The SM
symmetry group is extended by just D3 while the particle
content is enlarged by an extra Higgs gauge doublet and an
D3 doublet η which is a gauge singlet.

C. The scalar potential

The most general scalar potential invariant under Z3⋊Z2

is

V ¼ VZ2

2HDM þ VZ3⋊Z2
η þ VZ3⋊Z2

Φη ; ð53Þ

with the first term given in Eq. (4) and

VZ3⋊Z2
η ¼ μ2η

2
½ηη�þ þ λη1

2
½ηη�2þ þ λη2

2
½½ηη�2½ηη�2�þ;

VZ3⋊Z2

Φη ¼ ½ζ1ðΦ†
1Φ1Þ þ ζ2ðΦ†

2Φ2Þ�ðηηÞþ; ð54Þ

where ½ηη�k represents one of the three possible choices
(1þ, 1−, 2), all couplings are real (due to hermiticity)
ensuring a CP-conserving potential and we have omitted
those terms involving ½ηη�− as it is zero. This potential
has an extra Goldstone boson due to the fact that
½ηη�þ ¼ η21 þ η22 is equivalent to ðη1 − iη2Þðη1 þ iη2Þ and
½½ηη�2½ηη�2�þ ¼ ð½ηη�þÞ2. Then, Eq. (54) is accidentally
invariant under a global Uð1Þ symmetry originated from
the two components of the flavor doublet scalar, η. To avoid
its appearance, we softly break the accidental symmetry by
introducing

Vsoft ¼
μ21
2
η21 þ

μ22
2
η22 − μ212η1η2: ð55Þ

Additionally, the fact that the heavy quark masses are
simply given by mt ≃ ytv2 and mb ≃ ybv1 naturally points
to having order one Yukawas and hierarchical VEVs in the
range

v2 ≃ v and v1 ∼ ½1; 10� GeV; ð56Þ

meaning that tan β ∈ ð10; 100Þ. To create such a hierarchy
while maintaining all scalar masses around the electroweak
scale, we need to consider m2

22 < 0, m2
11 > 0 and introduce

the soft-breaking term

−m2
12ðΦ†

1Φ2 þ H:c:Þ; ð57Þ

where m12 ∼Oð10Þ GeV. By assuming jm11j; jm22j∼
100 GeV, a straightforward calculation then leads to
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v2 ≃

ffiffiffiffiffiffiffiffiffiffiffi
−m2

22

λ2

s
and v1 ≃

m2
12v2

m2
11 þ λ345v22

: ð58Þ

The smallness of v1 is thus natural as one recovers a larger
symmetry when setting it to zero.
The minimization conditions read

−m2
11 ¼ λ1v21 þ λ345v22 þ ðw2

1 þ w2
2Þζ2 −m2

12 tan β;

−m2
22 ¼ λ2v22 þ λ345v21 þ 2ðw2

1 þ w2
2Þζ1 −m2

12 cot β;

−μ2η ¼ 2ðw2
1 þ w2

2Þλ̄þ 2v21ζ2 þ 2v22ζ1 þ μ22 −
w1

w2

μ212;

−μ2η ¼ 2ðw2
1 þ w2

2Þλ̄þ 2v21ζ2 þ 2v22ζ1 þ μ21 −
w2

w1

μ212;

where λ̄ ¼ λη1 þ λη2. The latter two conditions can only be
met if

μ212 ¼ −
w1w2

w2
1 − w2

2

ðμ21 − μ22Þ: ð59Þ

The general expressions for the squared mass matrices are
given in Appendix C.
In order to decouple η from the 2HDM, we assume its

mass (or VEV) to be large enough and ζ1;2 → 0. Then, for
the full potential, V þ Vsoft, to be bounded from below, we
require the well-known relations

λ1 ≥ 0; λ2 ≥ 0; λ3 ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ3 þ λ4 − jλ5j ≥ −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; ð60Þ

while for the new contributions

λη1 ≥ 0 and λη2 ≥ 0; ð61Þ

which all are sufficient and necessary conditions.

D. Numerical example

In the following, we give a numerical example of how
the perturbations brought by the addition of η modify our
initial 2HDM setup. We assign a best-fit value to our set of
complex parameters fϵ1; ϵ2; ϵ3; ϵ4; ϵ5; ϵ6g by virtue of a χ2

fit to the three down quark masses and four quark mixing
parameters,

χ2 ¼
X

f¼d;s;b

ðmth
f −mexp

f Þ2
σ2f

þ ðjVth
12j − jVCKM

12 jÞ2
σ212

þ ðjVth
23j − jVCKM

23 jÞ2
σ223

þ ðjVth
13j − jVCKM

13 jÞ2
σ213

þ ðJthq − Jexpq Þ2
σ2J

; ð62Þ

where the value of the masses is taken at the Z boson mass
scale, MZ, using the RunDec package [21],

mexp
d ðMZÞ ¼ 0.0027þ0.0003

−0.0002 GeV;

mexp
s ðMZÞ ¼ 0.055þ0.004

−0.002 GeV;

mexp
b ðMZÞ ¼ 2.86� 0.02 GeV ð63Þ

and

jVCKM
12 j ¼ 0.22452� 0.00044;

jVCKM
23 j ¼ 0.04214� 0.00076;

jVCKM
13 j ¼ 0.00365� 0.00012;

Jexpq ¼ ð3.18� 0.15Þ × 10−5; ð64Þ

as shown in the most recent global fit from the particle data
group [22]. As a proof of principle, we consider a minimal
scenario with the least number of parameters. We assume
all of them real except for ϵ4 which we consider it as purely
imaginary and set ϵ5;6 ¼ 0. Also, we allow for small
variations in the initial down quark Yukawa couplings
appearing in Eq. (22).
The following best-fit values:

ϵ1 ¼ 4.4634 MeV; ϵ2 ¼ 12.1428 MeV;

ϵ3 ¼ 103.6520 MeV; ϵ4 ¼ −i60.9786 MeV ð65Þ

reproduce the down quark masses and the observed CKM
mixing at the 1σ level with a quality of fit of χ2d:o:f: ¼ 0.49.
Besides their role in mixing, the introduction of pertur-

bations has also brought FCNC at tree level. We now show
how the size of the contributions is still sufficiently small.
Through the best-fit values, we calculate the unitary
transformations for the left- and right-handed fields.
With them, the corresponding down quark Yukawa matri-
ces, in the mass basis, are

Γ̃1 ≲
0
B@

10−4 10−4 10−7

10−4 10−3 10−5

10−5 10−5 10−1

1
CAþ i

0
B@

10−9 10−7 10−7

10−7 10−8 10−6

10−6 10−5 10−9

1
CA;

Γ̃2 ≲
0
B@

10−4 10−5 10−8

10−5 10−4 10−7

10−6 10−6 10−9

1
CAþ i

0
B@

10−10 10−8 10−8

10−8 10−8 10−8

10−7 10−6 10−10

1
CA;

ð66Þ

where we have assumed v1 ∼ 10mb and v2 ∼mt to estimate
the upper bounds and which are all consistent with those
presented in Refs. [10,23]. There are in fact three different
scenarios from which Eq. (66) represents one of them. As
all the independent perturbations defined in Eq. (45)
originate from both Higgs doublets, Φ1 and Φ2, we can
define three different benchmark scenarios as follows: all
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the perturbations come from (i) Φ1, (ii) Φ2, or (iii) both.
Our choice in Eq. (66) depicts the first case. We left for
future work a detailed study of the differences between this
approach and the conventional 2HDMs.

V. CONCLUSIONS

We have considered a new class of 2HDM where the
conventional Z2 symmetry, by which FCNC can be
naturally avoided, has been enlarged to F⋊Z2 such that
symmetry constrains the Yukawa sector but goes unnoticed
by the scalar sector. In particular, we have shown that the
minimal case with Z3⋊Z2 is able to provide trivial quark
and maximal atmospheric mixing at leading order. A
further implication to this class of models is that couplings
between the fermions to the scalars are nonuniversal,
compared to the conventional types where couplings are
universal. At last, we have taken the incompleteness of
fermion mixing as a hint pointing toward new physics. To
this end, we have included two real scalar gauge singlets
which transform as a flavor doublet and are later integrated
out by assuming them to be properly heavy. We have shown
that quark mixing can be set in agreement with the latest
global fits while the lepton mixing can become cobimax-
imal, i.e., maximal atmospheric mixing and maximal CP
violation. We have treated the introduction of the real
scalars as a new way of adding perturbations to 2HDMs in a
systematic manner by demanding them to be invariant
under the flavor symmetry. In general, these additions have
the effect of breaking flavor conservation and tree level
FCNC, mediated by the neutral scalars, are induced.
However, the size of the contributions remains sufficiently
small thanks to the approximate presence of a Uð2Þ3 global
flavor symmetry in the light quark sector.

ACKNOWLEDGMENTS

The authors thank Andreas Trautner and Rahul Srivastava
for useful conversations. S. C. C’s work is supported
by Grants No. FPA2017-85216-P (AEI/FEDER, UE),
No. SEV-2014-0398, No. PROMETEO/2018/165
(Generalitat Valenciana), Spanish Red Consolider
MultiDark Grant No. FPA2017-90566-REDC, and the
Formación Personal Investigador (FPI) Grant No. BES-
2016-076643. The work of W. R. is supported by the DFG
with Grant No. RO 2516/7-1 in the Heisenberg program. U.
J. S. S. acknowledges support from CONACYT (México).
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APPENDIX A: PRODUCT RULES OF D3 ≃ Z3⋊Z2

D3 is the smallest non-Abelian discrete symmetry group.
It describes the symmetrical properties of an equilateral
triangle. It has three irreducible representations: two sing-
lets, 1þ and 1−, and one doublet, 2. Their product rules are

1þ × 1þ ¼ 1þ; 1− × 1− ¼ 1þ; 1− × 1þ ¼ 1−;

1þ × 2 ¼ 2; 1− × 2 ¼ 2; 2 × 2 ¼ 1þ þ 1− þ 2: ðA1Þ
In particular, the tensor product of two doublets, a ¼
ða1; a2ÞT and b ¼ ðb1; b2ÞT , is explicitly given as

a × b ¼ ða1b1 þ a2b2Þ1þ þ ða1b2 − a2b1Þ1−
þ
�
a1b2 þ a2b1
a1b1 − a2b2

�
2

: ðA2Þ

APPENDIX B: RENORMALIZATION
GROUP EQUATIONS

In a model with N Higgs doublets, wherein all Higgses
couple to all fermions, the fermion mass matrices are
expressed as a linear combination of N Yukawa matrices
times a VEV. Given an initial setup, the one-loop renorm-
alization group equations (RGEs) tell us how stable are the
initial mass matrices at higher scales and if new flavor
structures may appear, giving rise to misalignments. The
one-loop RGE has been calculated in Ref. [14] and reads

16π2μ
d
dμ

Γk ¼ aΓΓk

þ
XN
l¼1

½3TrðΓkΓ†
l þ Δ†

kΔlÞ þ TrðΠkΠ†
l Þ�Γl

þ
XN
l¼1

ð−2ΔlΔ†
kΓl þ ΓkΓ†

lΓlÞ

þ 1

2

XN
l¼1

ðΔlΔ†
lΓk þ ΓlΓ†

lΓkÞ; ðB1Þ

16π2μ
d
dμ

Δk ¼ aΔΔk

þ
XN
l¼1

½3TrðΔkΔ†
l þ Γ†

kΓlÞ þ TrðΠkΠ†
l Þ�Δl

þ
XN
l¼1

ð−2ΓlΓ†
kΔl þ ΔkΔ†

lΔlÞ

þ 1

2

XN
l¼1

ðΓlΓ†
lΔk þ ΔlΔ†

lΔkÞ; ðB2Þ

16π2μ
d
dμ

Πk ¼ aΠΠk

þ
XN
l¼1

½3TrðΔkΔ†
l þ Γ†

kΓlÞ þ TrðΠkΠ†
l Þ�Πl

þ
XN
l¼1

�
ΠkΠ†

lΠl þ
1

2
ΠlΠ†

lΠk

�
; ðB3Þ

where we have followed the notation introduced in [14].
Here μ denotes the renormalization scale and
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aΓ ¼ −8g2s −
9

4
g2 −

5

12
g02;

aΔ ¼ −8g2s −
9

4
g2 −

17

12
g02;

aΠ ¼ −
9

4
g2 −

15

4
g02; ðB4Þ

where gs, g, and g0 are the gauge couplings of the SM gauge
group, SUð3ÞC × SUð2ÞL ×Uð1ÞY , respectively.

APPENDIX C: SQUARED MASS MATRICES

The squared mass matrix for the CP-even scalars reads

M2
CP-even ¼

�m2
ϕϕ m2

ϕη

m2
ϕη m2

ηη

�
; ðC1Þ

where

m2
ϕϕ ¼

�
2v22λ2 þm2

12 cot β 2v1v2λ345 −m2
12

2v1v2λ345 −m2
12 2v21λ1 þm2

12 tan β

�
; ðC2Þ

m2
ϕη ¼

�
2
ffiffiffi
2

p
ζ1v2w1 2

ffiffiffi
2

p
ζ2v1w1

2
ffiffiffi
2

p
ζ1v2w2 2

ffiffiffi
2

p
ζ2v1w2

�
; ðC3Þ

m2
ηη ¼

0
B@ 4λ̄w1w2 −

w1w2ðμ21−μ22Þ
w2
2
−w2

1

4λ̄w2
2 þ w2

1
ðμ2

1
−μ2

2
Þ

w2
2
−w2

1

4λ̄w2
1 þ w2

2
ðμ2

1
−μ2

2
Þ

w2
2
−w2

1

4λ̄w1w2 −
w1w2ðμ21−μ22Þ

w2
2
−w2

1

1
CA;

ðC4Þ

whereas for the CP-odd and charged scalars, we have

M2
CP-odd ¼

�
2v22λ5 −m2

12 tan β −2v1v2λ5 þm2
12

−2v1v2λ5 þm2
12 2v21λ5 −m2

12 cot β

�

ðC5Þ

and

M2
�¼

�
2v22ðλ4þλ5Þ−m2

12 tanβ −2v1v2ðλ4þλ5Þþm2
12

−2v1v2ðλ4þλ5Þþm2
12 2v21ðλ4þλ5Þ−m2

12 cotβ

�
:

ðC6Þ

Note that the mass matrices for the CP-odd and charged
scalars are rank one while rank four for the CP-even case.
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