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The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their
production, propagation, and interaction. The IceCube Collaboration has published the first experimental
determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new
results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results
will allow IceCube to more quickly identify when their data imply standard physics, a general class of new
physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that,
e.g., with terms that dominate the Hamiltonian at high energy.
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Introduction.—The discovery of astrophysical neutrinos
with energies up to a few PeV by the IceCube Collaboration
[1–4] is tremendously important for multimessenger
astronomy as well as for new tests of neutrino properties.
While the origin of these neutrinos is still unclear, there are
important clues in the energy spectrum and sky distribu-
tion, and a component from cosmic distances (∼Gpc) is
required [5–24]. These are the most extreme energies and
distances for detected neutrinos.
The flavor composition is also expected to be important,

because the ratio of flux in each flavor to the total cancels
the unknown normalization. The ratios depend on the
physical conditions at the source, the effects of standard
flavor mixing, and on potential new physics [5,25–36].
The first IceCube results on flavor composition have

been published recently [35], and were followed by results
obtained with a combined-likelihood analysis of several
data sets with more statistics [37]. Accordingly, there has
been intense interest in deducing flavor ratios from IceCube
data [9,31,34,38,39].
In this Letter, we use ternary plots or “flavor triangles” to

show the flavor composition at Earth. We systematically
explore which regions of this plot can be populated from
theoretical perspectives—without or with new physics—
including the uncertainties in source flavor composition
and neutrino mixing parameters. We also note prospects for
the proposed volume upgrade, IceCube-Gen2 [40].
We make no distinction between ν and ν̄, because,

except for yet-unobserved high-energy events, IceCube
cannot distinguish between them. (In addition, their
cross sections agree to better than ≃5% in this energy
range [41,42].)
All plots shown in the main text are for the normal

neutrino mass hierarchy (NH), in which ν1 is the lightest
mass eigenstate. Corresponding plots for the inverted

hierarchy (IH), in which ν3 is lightest, are given in the
Supplemental Material [43]; the differences are modest.
Flavor identification in IceCube.—IceCube can dis-

criminate between muon tracks (from νμ, mostly) and
cascades (from charged-current interactions of νe and ντ,
mainly, and from neutral-current interactions of all flavors).
If higher-energy events are observed, it will be possible to
isolate ν̄e cascades via the Glashow resonance [44–46], and
ντ and ν̄τ via double-bang and lollipop topologies [47–49].
In their absence, there is an experimental degeneracy
between the electron and tau neutrino flavor content at
Earth [34,35]. In contrast, theoretically predicted flavor
ratios, even in models with new physics, have a μ-τ
symmetry due to that mixing angle being near-maximal.
Flavor composition at the source.—The flavor compo-

sition at the source could be quite different depending on the
physical conditions. For the pion decay chain, which is often
used as standard (“pion beam”), one expects a composition
ðfe;S∶fμ;S∶fτ;SÞ ¼ ð1

3
∶ 2
3
∶0ÞS, with fα;S the ratio of να þ ν̄α

to the total flux, where fe;S þ fμ;S þ fτ;S ¼ 1. Synchrotron
cooling of secondary muons in strong magnetic fields leads
to a transition to ð0∶1∶0ÞS (“muon damped”) at higher
energies, which depends on the field strength; see, e.g.,
Refs. [5,38,50–52]. If these muons pile up at lower energies
[52],or if therearecontributions fromcharmedmesondecays
[29,53,54], then ð1

2
∶ 1
2
∶0ÞS is expected. Neutron decays [5]

lead to ð1∶0∶0ÞS. Small deviations,≲5% in the νe=νμ ratio,
are expected from effects such as the helicity dependence of
muon decays [5,55]. If several of the above processes in the
source compete, arbitrary flavor compositions ðfe;S∶1 −
fe;S∶0Þ can be obtained [52]. If, in addition, ντ are produced,
such as by oscillations in a matter envelope [56–58], even
ðfe;S∶fμ;S∶1 − fe;S − fμ;SÞ (with 0 ≤ fμ;S ≤ 1 − fe;S) could
be possible. Dark matter annihilation or decay could yield
any mixture, but ð1

3
∶ 1
3
∶ 1
3
ÞS is the most natural.
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Flavor composition at Earth.—Here we focus on a
diffuse flux, which is composed of small contributions
from many sources over a wide range of distances, and
detected with energy resolution ≳10% (and binned more
coarsely). In this case, the neutrinos are, at least effectively,
an incoherent mixture of mass eigenstates. Even for the
solar Δm2⊙ ≈ 8 × 10−5 eV2 and PeV energies, the vacuum
oscillation length is only ∼10−13 Gpc, much smaller than
the complete baseline. (Depending on the physics in the
production region, there can be also wave packet
decoherence in the source [59–61].) As a consequence,
the flavor composition at Earth [59] is fβ;⊕ ¼P

i;αjUβij2jUαij2fα;S, with U the PMNS matrix [62],
implying

P
βfβ;⊕ ¼ 1. For a pion beam, the flavor com-

position evolves roughly into flavor equipartition at the
detector, ð1

3
∶ 1
3
∶ 1
3
Þ⊕.

New physics in neutrino propagation might modify the
flavor composition. We categorize classes of new-physics
models below.
Flavor content of the mass eigenstates.—Figure 1 shows

the flavor content jUαij2 of the mass eigenstates, which
is the fundamental input that determines flavor ratios at
Earth without or with new physics. It also illustrates the
underlying three-flavor unitarity of our analysis, i.e.,
jUα1j2 þ jUα2j2 þ jUα3j2 ¼ 1, which allows the flavor
content to be displayed in a ternary plot [63]. This is
appropriate because the mixing angles to sterile neutrinos
must be quite small [64,65].

The long axis of each region is set by the uncertainty in
θ23 and δCP, while the short axis is set by the uncertainty in
θ12. The effect of the uncertainty in θ13 is tiny. Even if θ23
were to be precisely determined soon, it is less likely that
δCP will be, and the uncertainty in the latter will still span a
large range in jUτ1j2 and jUτ2j2.
Standard flavor mixing.—Figure 2 shows the allowed

region for the flavor composition at Earth assuming
arbitrary flavor composition at the source and standard
neutrino mixing (including parameter uncertainties). The
region is quite small: even at 3σ it covers only about 10%
of the available space. There is little difference between
fτ;S ¼ 0 and fτ;S ≠ 0.
There is a theoretical symmetry along the line ½fe;⊕∶ð1 −

fe;⊕Þ=2∶ð1 − fe;⊕Þ=2� from nearly-maximal mixing. On
the other hand, the experimental degeneracy pulls towards
ðfe;⊕∶fμ;⊕∶1 − fμ;⊕ − fe;⊕Þ, with fe;⊕ ≤ 1 − fμ;⊕, on
account of the difficulty of distinguishing between
electromagnetic and hadronic cascades. Thus, theory
and experiment are complementary, which enhances
the discriminating power of flavor ratios.
The region shown includes the possibility of energy-

dependent flavor composition at the source; see the
Supplemental Material [43] for an example. It also includes
the possibility that the diffuse flux has contributions from
sources with different flavor compositions, because of the
linearmappingbetween those at the source and those at Earth.
Whereas the first IceCube flavor ratio analysis [35] used

only three years of contained-vertex events, the updated
analysis [37], whose exclusion curves are shown in Fig. 2,
combines several different data sets collected over four

FIG. 1 (color online). Flavor content of the three active mass
eigenstates. The regions are given by the best-fit values of the
mixing parameters (light yellow), and their 1σ (darker) and 3σ
(darkest) uncertainty regions [66], assuming a normal mass
hierarchy (NH). The tilt of the tick marks indicates the orientation
with which to read the flavor content.

FIG. 2 (color online). Allowed flavor ratios at Earth with no new
physics. The flavor ratios at the source are arbitrary (gray) or
contain no tau flavor (red). The IceCube results are from Ref. [37].
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years, including through-going muons. The exclusion
curves of both analyses are compatible.
Figure 3 shows that if the flavor composition at the

source could be restricted from astrophysical arguments,
the allowed regions at Earth could become tiny (and will
shrink when the mixing parameters are better known). A
source composition of ð1∶0∶0ÞS is already disfavored at
≳2σ. While the current IceCube fit is compatible with the
standard ð1

3
∶ 1
3
∶ 1
3
Þ⊕ at 1σ, the best-fit point cannot be

reached within the Standard Model.
An upgrade of IceCube would have excellent discrimina-

tion power, as indicated by the projected sensitivity curveswe
estimate for IceCube-Gen2and showinFig.3.We reduced the
IceCube uncertainties by a factor of 5, corresponding to an
exposure increased by a factor∼25 (∼6 times larger effective
area [40] and twelve years instead of three). The true
sensitivity might be worse (due to sparser instrumentation)
or better (due to new techniques or to the discovery of
flavor-identifying signals [44,45,47,49,52,67–75]). To be
conservative, we assumed the best fit will correspond to the
most-frequently considered composition, ð1

3
∶ 1
3
∶ 1
3
Þ⊕, for

which it will be most difficult to test for new physics.
Flavor ratios with new physics.—New physics can

modify the flavor composition at production, during
propagation, or in interaction. In the first two cases, it
will affect the flavor composition that reaches the detector;
this is our focus. In the last case—which includes, e.g.,
nonstandard interactions [76] and renormalization group
running of the mixing parameters [77]—we assume that
new physics, possibly energy-dependent, can be separated

by probing the interaction length in Earth via the angular
dependence of the neutrino flux [78–81].
In extreme scenarios, there could be only one mass

eigenstate present at detection, and the flavor composition
would correspond to that of one eigenstate. This could
happen if all but one mass eigenstate completely decays or
if matter-affected mixing at the source singles out a specific
one for emission.
Figure 4 shows the allowed region if we restrict

ourselves to a general class of new-physics models—those
in which arbitrary combinations of incoherent mass eigen-
states are allowed (we give examples below of models
that can access the area outside this region). The α-flavor
content of an allowed point is computed as k1jUα1j2þ
k2jUα2j2 þ k3jUα3j2, where the ki are varied under the
constraint k1 þ k2 þ k3 ¼ 1 and the values of the mixing
parameters are fixed. To generate the complete region, we
repeat the procedure by varying the mixing parameters
within their uncertainties.
For a particular new-physics model, the functional forms

and values of the ki are determined by its parameters. The
most dramatic examples include all variants of neutrino
decay among mass eigenstates, both partial and complete
[25,82–85], and secret neutrino interactions [86–92];
the ki in these cases depend on neutrino lifetimes and
new coupling constants, respectively. Other examples are
pseudo-Dirac neutrinos [93–95] and decoherence on the
Planck-scale structure of spacetime [96–102].
Even with this general class of new-physics models, only

about 25% of the flavor triangle can be accessed. The

FIG. 3 (color online). Allowed flavor ratios at Earth for
different choices of source ratios, assuming standard mixing.
Projected 1σ, 2σ, and 3σ exclusion curves from IceCube-Gen2
are included for comparison (gray, dotted); see main text.

FIG. 4 (color online). Allowed flavor ratios at Earth in a general
class of new-physics models. These produce linear combinations
of the flavor content of ν3, ν2, and ν1, shown as yellow (dashed)
curves, from left to right. The standard mixing 3σ region from
Fig. 2 is shown as a magenta (dotted) curve.
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current IceCube best fit cannot be reached even by invoking
this class of physics models. IceCube-Gen2 will be needed
to strongly constrain such new-physics models.
Interestingly, there is more than one way in which the

standard ð1
3
∶ 1
3
∶ 1
3
Þ⊕ composition can be generated, such as

through the standard mixing of ð1
3
∶ 2
3
∶0ÞS, or through a

fortuitous incoherent mix of mass eigenstates due to decay.
Already, complete decay in the most often used neutrino

decay scenario (only ν1 stable) for the NH can be ruled out
at ≳2σ (see Ref. [85] for a weaker exclusion at 1σ based on
their own analysis of tracks and cascades), and bounds on
the neutrino lifetimes can be set [103].
To access the white region in Fig. 4, a broader class of

new-physics models is required. Possible examples are
models with violation of CPT and/or Lorentz invariance
(which alter the dispersion relations) [25,101,104–107], or
the equivalence principle [108–110], and coupling to a
torsion field [111].
All these have in common that they either invalidate the

concept of decoherence in the astrophysical neutrino flavor
composition or they change the values of the mixing param-
eters. Ref. [112] adopted a generic effective theory approach
in which the new-physics terms dominate the propagation
Hamiltonian at high energies, and showed that such models
are indeed able to populate almost the full triangle.
Another possibility is the existence of extra dimensions,

which could lead to matterlike resonant mixing between
active and sterile flavors [113]. Boosted dark matter
[19,114,115] could generate neutrinolike events, even
mimicking pure-flavor signatures.
Conclusions.—We have demonstrated that the allowed

region of neutrino flavor composition at Earth under stan-
dard mixing is quite small, in spite of the uncertainties in the
mixing parameters and flavor composition at the sources.
The allowed region remains small even in the presence of a
general class of new-physics models whose effect is to
change the incoherent mix of mass eigenstates during
propagation (e.g., neutrino decay and secret interactions).
These results hardly depend on the mass hierarchy, and they
hold for energy-dependent flavor compositions at the source
or energy-dependent new physics, even when simultane-
ously present [116]; see the Supplemental Material [43].
In order to access the larger space of possible flavor

combinations, a broader class of new physics during
propagation—flavor-violating or capable of modifying
the values of the mixing parameters—or at detection is
required. Interestingly, the current IceCube best-fit com-
position lies in this region, though the standard ð1

3
∶ 1
3
∶ 1
3
Þ⊕

case is not excluded.
The power of IceCube to determine the composition is

enhanced by the complementarity between its experimental
νe-ντ degeneracy and the theoretical νμ-ντ symmetry
coming from nearly-maximal mixing. The current bounds
are not only compatible with most source compositions, but
also with many potential new physics effects. However, the

most favored neutrino decay scenario (only ν1 stable) can
be already ruled out at ≳2σ.
The smaller the allowed region with only standard mixing

shown in Fig. 2 and Fig. 3, the more sensitive IceCube is to
new physics. Likewise, the smaller the new-physics region
shown in Fig. 4, the more sensitive IceCube is to the broader
class of new physics. The recent successes in measuring
neutrino mixing parameters have been essential to making
these regions small. Our results provide new perspectives that
will sharpen and accelerate tests of flavor ratios.
Ideally, flavor ratios would be determined using a single

class of point sources at known distances. No high-energy
astrophysical sources have been resolved yet, however. We
have shown that, even using a diffuse flux, flavor ratios
can reveal information about source conditions and neutrino
properties.
Data from a volume upgrade of IceCube in combination

with improved measurements of the mixing parameters,
including δCP, have the potential to nail down the flavor
composition at the source or to identify new physics in
propagation. However, it is not possible to extract the value
of δCP from astrophysical data alone if the flavor compo-
sition at the source is not known; see the Supplemental
Material [43].
To fully exploit the power of neutrino flavors, advances in

four directions are needed: (i) A volume upgrade of IceCube
(IceCube-Gen2 [40]) or a corresponding experiment in sea-
water (e.g., KM3NeT, an abbreviation for Cubic Kilometre
Neutrino Telescope [117]). (ii) Reduction of the uncertainties
in thevaluesof themixingparameters (especiallyθ23 andδCP).
(iii) Improvements in experimental techniques to reconstruct
neutrino flavor and energy. (iv) More systematic model
building to better understand, or constrain, the region of
flavor ratios at Earth that could be accessed by new physics.
Given the wealth of information about neutrino produc-

tion, propagation, and interaction that flavor composition
provides, its precise determination should become a
high-priority goal of ongoing and near-future experimental
analyses.
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