# $U(1)_{B_3-3L_{\mu}}$ Gauge Symmetry as the simplest description of b ightarrow s anomalies

Rahul Srivastava Work Done in Collaboration with Cesar Bonilla, Tanmoy Modak, José W. F. Valle arXiv: 1705.00915 [hep-ph]

> Journal Club, IFIC, Valencia 04th May 2017

• Several decay modes measured by LHCb show anomalous behavior compared to SM expectation

$$\begin{array}{rcl} R_{K} & = & \displaystyle \frac{B \to K \mu^{+} \mu^{-}}{B \to K e^{+} e^{-}}, & R_{K}^{\rm SM} = 1 \\ R_{K}^{\rm expt} & = & 0.745^{+0.090}_{-0.074} \; ({\rm stat}) \pm 0.036 \; ({\rm syst}) \; , & 1 \leq q^{2} \leq 6.0 \; {\rm GeV}^{2} \end{array}$$

$$\begin{aligned} R_{K}^{*} &= \frac{B \to K^{*} \mu^{+} \mu^{-}}{B \to K^{*} e^{+} e^{-}}, \qquad R_{K^{*}}^{\rm SM} = 1 \\ R_{K^{*}}^{\rm expt} &= \begin{cases} 0.660^{+0.110}_{-0.070} \, ({\rm stat}) \pm 0.024 \, ({\rm syst}) \, , & 0.045 \le q^{2} \le 1.1 \, {\rm GeV}^{2} \\ 0.685^{+0.113}_{-0.069} \, ({\rm stat}) \pm 0.047 \, ({\rm syst}) \, , & 1.1 \le q^{2} \le 6.0 \, {\rm GeV}^{2} \end{cases} \end{aligned}$$

- Anomalies also observed in angular distribution  $P_5'$  of  $B o K^* \mu^+ \mu^-$
- Similar anomalies in other decays involving  $b\to s\mu^+\mu^-$  such as  $B_s\to \phi\mu^+\mu^-$

向下 イヨト イヨト 三日

 Several decay modes measured by LHCb show anomalous behavior compared to SM expectation

 $\begin{array}{lll} R_{K} & = & \displaystyle \frac{B \to K \mu^{+} \mu^{-}}{B \to K e^{+} e^{-}}, & R_{K}^{\rm SM} = 1 \\ R_{K}^{\rm expt} & = & 0.745^{+0.090}_{-0.074} \; {\rm (stat)} \pm 0.036 \; {\rm (syst)} \; , & 1 \leq q^{2} \leq 6.0 \; {\rm GeV}^{2} \end{array}$ 

$$\begin{aligned} R_{K}^{*} &= \frac{B \to K^{*} \mu^{+} \mu^{-}}{B \to K^{*} e^{+} e^{-}}, \qquad R_{K^{*}}^{\rm SM} = 1 \\ R_{K^{*}}^{\rm expt} &= \begin{cases} 0.660^{+0.110}_{-0.070} \, ({\rm stat}) \pm 0.024 \, ({\rm syst}) \, , & 0.045 \le q^{2} \le 1.1 \, {\rm GeV}^{2} \\ 0.685^{+0.113}_{-0.069} \, ({\rm stat}) \pm 0.047 \, ({\rm syst}) \, , & 1.1 \le q^{2} \le 6.0 \, {\rm GeV}^{2} \end{cases} \end{aligned}$$

- Anomalies also observed in angular distribution  $P_5'$  of  $B o K^* \mu^+ \mu^-$
- Similar anomalies in other decays involving  $b\to s\mu^+\mu^-$  such as  $B_s\to \phi\mu^+\mu^-$

 Several decay modes measured by LHCb show anomalous behavior compared to SM expectation

$$\begin{array}{lll} R_{\mathcal{K}} & = & \displaystyle \frac{B \to \mathcal{K} \mu^+ \mu^-}{B \to \mathcal{K} e^+ e^-}, & R_{\mathcal{K}}^{\rm SM} = 1 \\ R_{\mathcal{K}}^{\rm expt} & = & 0.745^{+0.090}_{-0.074} \; ({\rm stat}) \pm 0.036 \; ({\rm syst}) \; , \; \; 1 \le q^2 \le 6.0 \; {\rm GeV}^2 \end{array}$$

$$\begin{array}{lll} R_{\mathcal{K}}^{*} & = & \displaystyle \frac{B \to \mathcal{K}^{*} \mu^{+} \mu^{-}}{B \to \mathcal{K}^{*} e^{+} e^{-}}, & R_{\mathcal{K}^{*}}^{\mathrm{SM}} = 1 \\ R_{\mathcal{K}^{*}}^{\mathrm{expt}} & = & \left\{ \begin{array}{c} 0.660^{+0.10}_{-0.070} \; (\mathrm{stat}) \pm 0.024 \; (\mathrm{syst}) \; , & 0.045 \leq q^{2} \leq 1.1 \; \mathrm{GeV}^{2} \\ 0.685^{+0.113}_{-0.069} \; (\mathrm{stat}) \pm 0.047 \; (\mathrm{syst}) \; , & 1.1 \leq q^{2} \leq 6.0 \; \mathrm{GeV}^{2} \end{array} \right. \end{array}$$

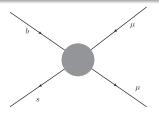
- Anomalies also observed in angular distribution  $P_5'$  of  $B o K^* \mu^+ \mu^-$
- Similar anomalies in other decays involving  $b\to s\mu^+\mu^-$  such as  $B_s\to \phi\mu^+\mu^-$

 Several decay modes measured by LHCb show anomalous behavior compared to SM expectation

$$egin{array}{rcl} R_{\mathcal{K}} &=& \displaystyle rac{B o \mathcal{K} \mu^+ \mu^-}{B o \mathcal{K} e^+ e^-}, & R_{\mathcal{K}}^{
m SM} = 1 \ R_{\mathcal{K}}^{
m expt} &=& \displaystyle 0.745^{+0.090}_{-0.074} \ ({
m stat}) \pm 0.036 \ ({
m syst}) \ , & 1 \le q^2 \le 6.0 \ {
m GeV}^2 \end{array}$$

$$\begin{array}{lll} {\cal R}^*_{{\cal K}} & = & \displaystyle \frac{B \to {\cal K}^* \mu^+ \mu^-}{B \to {\cal K}^* e^+ e^-}, \qquad {\cal R}^{\rm SM}_{{\cal K}^*} = 1 \\ {\cal R}^{\rm expt}_{{\cal K}^*} & = & \left\{ \begin{array}{l} 0.660^{+0.110}_{-0.070} \; ({\rm stat}) \pm 0.024 \; ({\rm syst}) \; , & 0.045 \le q^2 \le 1.1 \; {\rm GeV}^2 \\ 0.685^{+0.113}_{-0.069} \; ({\rm stat}) \pm 0.047 \; ({\rm syst}) \; , & 1.1 \le q^2 \le 6.0 \; {\rm GeV}^2 \end{array} \right. \end{array}$$

- Anomalies also observed in angular distribution  $P_5'$  of  $B o K^* \mu^+ \mu^-$
- Similar anomalies in other decays involving  $b\to s\mu^+\mu^-$  such as  $B_s\to \phi\mu^+\mu^-$


 Several decay modes measured by LHCb show anomalous behavior compared to SM expectation

$$egin{array}{rcl} R_{\mathcal{K}} &=& \displaystyle rac{B o \mathcal{K} \mu^+ \mu^-}{B o \mathcal{K} e^+ e^-}, & R_{\mathcal{K}}^{
m SM} = 1 \ R_{\mathcal{K}}^{
m expt} &=& \displaystyle 0.745^{+0.090}_{-0.074} \ ({
m stat}) \pm 0.036 \ ({
m syst}) \ , & 1 \le q^2 \le 6.0 \ {
m GeV}^2 \end{array}$$

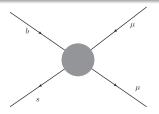
$$\begin{array}{lll} {\cal R}^*_{{\cal K}} & = & \displaystyle \frac{B \to {\cal K}^* \mu^+ \mu^-}{B \to {\cal K}^* e^+ e^-}, \qquad {\cal R}^{\rm SM}_{{\cal K}^*} = 1 \\ {\cal R}^{\rm expt}_{{\cal K}^*} & = & \left\{ \begin{array}{l} 0.660^{+0.110}_{-0.070} \; ({\rm stat}) \pm 0.024 \; ({\rm syst}) \; , & 0.045 \le q^2 \le 1.1 \; {\rm GeV}^2 \\ 0.685^{+0.113}_{-0.069} \; ({\rm stat}) \pm 0.047 \; ({\rm syst}) \; , & 1.1 \le q^2 \le 6.0 \; {\rm GeV}^2 \end{array} \right. \end{array}$$

- Anomalies also observed in angular distribution  $P_5'$  of  $B o K^* \mu^+ \mu^-$
- Similar anomalies in other decays involving  $b\to s\mu^+\mu^-$  such as  $B_s\to \phi\mu^+\mu^-$

## Effective Field Theory Description



• These transitions can be described by the an effective Hamiltonian,


$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} \frac{e^2}{16\pi^2} V_{tb} V_{ts}^* \sum_i \left( \mathcal{C}_i(\Lambda) \mathcal{O}_i(\Lambda) + \mathcal{C}'_i(\Lambda) \mathcal{O}'_i(\Lambda) \right)$$

where  $\mathcal{C}_i^{(\prime)} = C_i^{(\prime)SM} + C_i^{(\prime)NP}.$ 

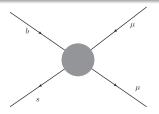
• Relevant operators required to account for the anomalies are of the restricted type,

$$\mathcal{O}_{9} = (s\gamma_{\alpha}P_{L}b)(\bar{\ell}\gamma^{lpha}\ell), \ \mathcal{O}_{10} = (s\gamma_{lpha}P_{L}b)(\bar{\ell}\gamma^{lpha}\gamma_{5}\ell),$$

## Effective Field Theory Description



• These transitions can be described by the an effective Hamiltonian,


$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} \frac{e^2}{16\pi^2} V_{tb} V_{ts}^* \sum_i \left( \mathcal{C}_i(\Lambda) O_i(\Lambda) + \mathcal{C}'_i(\Lambda) O_i'(\Lambda) \right)$$

where  $C_{i}^{(\prime)} = C_{i}^{(\prime)SM} + C_{i}^{(\prime)NP}$ .

• Relevant operators required to account for the anomalies are of the restricted type,

 $\mathcal{O}_9 = (s\gamma_lpha P_L b)(ar{\ell}\gamma^lpha \ell), \ \mathcal{O}_{10} = (s\gamma_lpha P_L b)(ar{\ell}\gamma^lpha\gamma_5 \ell),$ 

## Effective Field Theory Description



• These transitions can be described by the an effective Hamiltonian,

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} \frac{e^2}{16\pi^2} V_{tb} V_{ts}^* \sum_i \left( \mathcal{C}_i(\Lambda) O_i(\Lambda) + \mathcal{C}'_i(\Lambda) O_i'(\Lambda) \right)$$

where  $C_{i}^{(\prime)} = C_{i}^{(\prime)SM} + C_{i}^{(\prime)NP}$ .

• Relevant operators required to account for the anomalies are of the restricted type,

 $\mathcal{O}_{9} = (s\gamma_{\alpha}P_{L}b)(\bar{\ell}\gamma^{\alpha}\ell), \\ \mathcal{O}_{10} = (s\gamma_{\alpha}P_{L}b)(\bar{\ell}\gamma^{\alpha}\gamma_{5}\ell),$ 

$$\mathcal{O}'_9 = (s\gamma_{lpha} P_R b)(\bar{\ell}\gamma^{lpha}\ell)$$
  
 $\mathcal{O}'_{10} = (s\gamma_{lpha} P_R b)(\bar{\ell}\gamma^{lpha}\gamma_5\ell)$ .

### **Global Fits**

#### Global Fit of Effective Couplings<sup>1</sup>

|                                         | All      |                             |                |                               |         | LFUV     |                             |                             |                               |         |
|-----------------------------------------|----------|-----------------------------|----------------|-------------------------------|---------|----------|-----------------------------|-----------------------------|-------------------------------|---------|
| 1D Hyp.                                 | Best fit | 1 σ                         | 2 σ            | $\mathrm{Pull}_{\mathrm{SM}}$ | p-value | Best fit | 1 σ                         | 2 σ                         | $\mathrm{Pull}_{\mathrm{SM}}$ | p-value |
| $C_{9\mu}^{NP}$                         |          | [-1.27, -0.92]              |                |                               |         |          | [-2.36, -1.23]              |                             |                               | 69      |
|                                         |          | $\left[-0.73, -0.48\right]$ |                |                               | 61      | -0.66    | $\left[-0.84, -0.48\right]$ | $\left[-1.04, -0.32\right]$ | 4.1                           | 78      |
|                                         |          | [-1.18, -0.84]              |                |                               | 66      | -1.64    | $\left[-2.12, -1.05\right]$ | $\left[-2.52, -0.49\right]$ | 3.2                           | 31      |
| $C_{9\mu}^{\rm NP} = -3C_{9e}^{\rm NP}$ | -1.06    | [-1.23, -0.89]              | [-1.39, -0.71] | 5.8                           | 74      | -1.35    | [-1.82, -0.95]              | $\left[-2.38, -0.59 ight]$  | 4.0                           | 71      |

|                                   |                | All                                       |         | LFUV           |                                           |         |  |
|-----------------------------------|----------------|-------------------------------------------|---------|----------------|-------------------------------------------|---------|--|
| 2D Hyp.                           | Best fit       | $\operatorname{Pull}_{\operatorname{SM}}$ | p-value | Best fit       | $\operatorname{Pull}_{\operatorname{SM}}$ | p-value |  |
| $(C_{9\mu}^{NP}, C_{10\mu}^{NP})$ | (-1.17, 0.15)  | 5.5                                       | 74      | (-1.13, 0.40)  | 3.7                                       | 75      |  |
| $(C_{9\mu}^{NP}, C_7)$            | (-1.05, 0.02)  | 5.5                                       | 73      | (-1.75, -0.04) | 3.6                                       | 66      |  |
| $(C_{9\mu}^{NP}, C_{9'\mu})$      | (-1.09, 0.45)  | 5.6                                       | 75      | (-2.11, 0.83)  | 3.7                                       | 73      |  |
| $(C_{9\mu}^{NP}, C_{10'\mu})$     | (-1.10, -0.19) | 5.6                                       | 76      | (-2.43, -0.54) | 3.9                                       | 85      |  |
| $(C_{9\mu}^{NP}, C_{9e}^{NP})$    | (-0.97, 0.50)  | 5.4                                       | 72      | (-1.09, 0.66)  | 3.5                                       | 65      |  |
| Hyp. 1                            | (-1.08, 0.33)  | 5.6                                       | 77      | (-1.74, 0.53)  | 3.8                                       | 77      |  |
| Hyp. 2                            | (-1.00, 0.15)  | 4.9                                       | 61      | (-1.89, 0.27)  | 3.1                                       | 39      |  |
| Hyp. 3                            | (-0.65, -0.13) | 4.9                                       | 61      | (0.58, 2.53)   | 3.7                                       | 73      |  |
| Hyp. 4                            | (-0.65, 0.21)  | 4.8                                       | 59      | (-0.68, 0.28)  | 3.7                                       | 72      |  |

TABLE II: Most prominent patterns of New Physics in  $b \to s\mu\mu$  with high significances. The last four rows corresponds to hypothesis 1:  $(C_{9\mu}^{\rm NP} = -C_{9'\mu}, C_{10'\mu}^{\rm NP} = C_{10'\mu})$ , 2:  $(C_{9\mu}^{\rm NP} = -C_{10'\mu}, C_{3\mu}^{\rm NP} = -C_{10'\mu})$ , 3:  $(C_{9\mu}^{\rm NP} = -C_{10'\mu})$ , 5:  $(C_{9\mu}^{\rm NP} = -C_{10'\mu})$ , 7:  $(C_{9\mu}^{\rm NP} = -C_{10'\mu})$ , 8:  $(C_{9\mu}^{\rm NP} = -C_{10'\mu})$ , 8:  $(C_{9\mu}^{\rm NP} = -C_{10'\mu})$ , 7:  $(C_{10'\mu}^{\rm NP} = -C_{10'\mu})$ , 7:  $(C_{10'\mu}^{\rm NP} = -C_{10'\mu})$ , 7:  $(C_{10'\mu}^{\rm NP} = -C_{10'\mu})$ , 7:  $(C_{10'\mu}^{\rm$ 

<sup>1</sup>Taken from: B. Capdevila et.al; arXiv:1704.05340

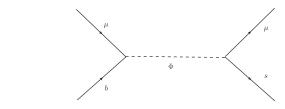
Rahul Srivastava

 $U(1)_{B_3} - 3L_{\mu}$  Gauge Symmetry

・ロン ・四 と ・ ヨ と ・ ヨ と …

- Two simple options
- Add a leptoquark

• Add a Z' boson

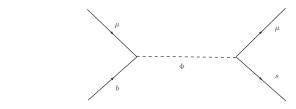

回 と く ヨ と く ヨ と

- Two simple options
- Add a leptoquark

• Add a Z' boson

白 ト イヨト イヨト

- Two simple options
- Add a leptoquark

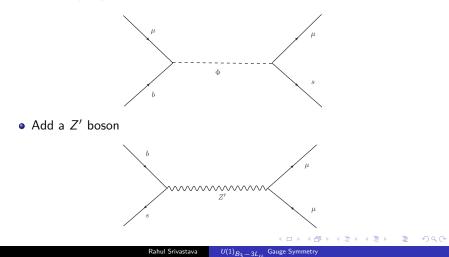


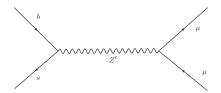

• Add a Z' boson

★ E ► < E ►</p>

æ

- Two simple options
- Add a leptoquark

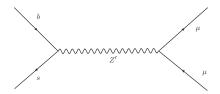




• Add a Z' boson

< 注→ < 注→

æ

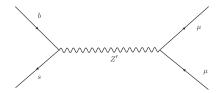
- Two simple options
- Add a leptoquark





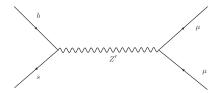

• The Z' boson should satisfy following criterion

- Violate Lepton Flavor Universality: Must not couple democratically all charged lepton, in particular to e and μ
- FCNC in quark sector: Should induce FCNC in b 
  ightarrow s transitions
- No dangerous FCNC: Should not induce large FCNC in highly constrained processes like μ → 3e or in K systems e.g. K<sup>0</sup> − K<sup>0</sup> oscillations
- Should be consistent with other flavor, precision and collider constraints


向下 イヨト イヨト



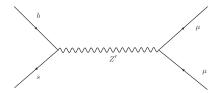
#### • The Z' boson should satisfy following criterion


- Violate Lepton Flavor Universality: Must not couple democratically all charged lepton, in particular to e and  $\mu$
- FCNC in quark sector: Should induce FCNC in  $b \rightarrow s$  transitions
- No dangerous FCNC: Should not induce large FCNC in highly constrained processes like  $\mu \to 3e$  or in K systems e.g.  $K^0 \bar{K}^0$  oscillations
- Should be consistent with other flavor, precision and collider constraints

< ∃> < ∃>



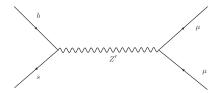
- The Z' boson should satisfy following criterion
  - Violate Lepton Flavor Universality: Must not couple democratically all charged lepton, in particular to e and  $\mu$
  - FCNC in quark sector: Should induce FCNC in  $b \rightarrow s$  transitions
  - No dangerous FCNC: Should not induce large FCNC in highly constrained processes like  $\mu \rightarrow 3e$  or in K systems e.g.  $K^0 \bar{K}^0$  oscillations
  - Should be consistent with other flavor, precision and collider constraints


< ∃> < ∃>



• The Z' boson should satisfy following criterion

- Violate Lepton Flavor Universality: Must not couple democratically all charged lepton, in particular to e and  $\mu$
- FCNC in quark sector: Should induce FCNC in  $b \rightarrow s$  transitions
- No dangerous FCNC: Should not induce large FCNC in highly constrained processes like  $\mu \rightarrow 3e$  or in K systems e.g.  $K^0 \bar{K}^0$  oscillations
- Should be consistent with other flavor, precision and collider constraints


A B M A B M



• The Z' boson should satisfy following criterion

- Violate Lepton Flavor Universality: Must not couple democratically all charged lepton, in particular to e and  $\mu$
- FCNC in quark sector: Should induce FCNC in  $b \rightarrow s$  transitions
- No dangerous FCNC: Should not induce large FCNC in highly constrained processes like  $\mu \rightarrow 3e$  or in K systems e.g.  $K^0 \bar{K}^0$  oscillations
- Should be consistent with other flavor, precision and collider constraints

< ∃ > < ∃ >



• The Z' boson should satisfy following criterion

- Violate Lepton Flavor Universality: Must not couple democratically all charged lepton, in particular to e and  $\mu$
- FCNC in quark sector: Should induce FCNC in  $b \rightarrow s$  transitions
- No dangerous FCNC: Should not induce large FCNC in highly constrained processes like  $\mu \rightarrow 3e$  or in K systems e.g.  $K^0 \bar{K}^0$  oscillations
- Should be consistent with other flavor, precision and collider constraints

## • B - L is the simplest symmetry one can think of.

- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}$ ; i = 1, 2, 3
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $\nu_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}$ ; i = 1, 2, 3
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $\nu_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}; i = 1, 2, 3$
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $\nu_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}$ ; i = 1, 2, 3
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $u_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of *Z*':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}; i = 1, 2, 3$
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $\nu_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}; i=1,2,3$
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $\nu_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}; i=1,2,3$
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $\nu_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

<sup>&</sup>lt;sup>2</sup>E.Ma, R.Srivastava; arxiv:1411.5042; E. Ma, N. Pollard, R. Srivastava, M. Zakeri; arxiv:1507.03943 <u > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}$ ; i = 1, 2, 3
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $u_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

U(1)<sub>B3-3L</sub> Gauge Symmetry

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}$ ; i = 1, 2, 3
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $\nu_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

<sup>&</sup>lt;sup>2</sup>E.Ma, R.Srivastava; arxiv:1411.5042; E. Ma, N. Pollard, R. Srivastava, M. Zakeri; arxiv:1507.03943

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}$ ; i = 1, 2, 3
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $\nu_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

U(1)<sub>B3-3L</sub> Gauge Symmetry

<sup>&</sup>lt;sup>2</sup>E.Ma, R.Srivastava; arxiv:1411.5042; E. Ma, N. Pollard, R. Srivastava, M. Zakeri; arxiv:1507.03943

- B L is the simplest symmetry one can think of.
- Under B L:
  - All Quarks (left+right)  $\sim \frac{1}{3}$
  - All Leptons (left+right)  $\sim -1$
- Anomaly cancellation: Needs addition of right handed neutrinos  $\nu_{i,R}$ ; i=1,2,3
- Two solutions:
  - $\nu_{i,R} \sim -1$ : Know since antiquity
  - $u_{i,R} \sim (-4, -4, +5)$ : Recently discussed<sup>2</sup>
- Not Good Type of Z':
  - Couples Democratically to Charged Leptons
  - Doesn't induce FCNC

<sup>&</sup>lt;sup>2</sup>E.Ma, R.Srivastava; arxiv:1411.5042; E. Ma, N. Pollard, R. Srivastava, M. Zakeri; arxiv:1507.03943

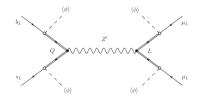
- Don't charge SM particles under the new  $U(1)_X$  i.e. All SM particles  $\sim 0$  under  $U(1)_X$
- Add Vector Quarks + Vector Leptons transforming nontrivially under  $U(1)_X$
- Can achieve desired  $Z^\prime$  properties by mixing of the vector fermions with SM fermions^3

• Can have other interesting implications like Dark Matter stability<sup>4</sup>

<sup>3</sup>Fig from: D. A. Sierra, F. Staub, A. Vicente; arxiv: 1503.06077 <sup>4</sup>D. A. Sierra, F. Staub, A. Vicente; arxiv: 1503.06077 < □ > <፼ > < ≧ > < ≧ > < ≧ > ○ <

- Don't charge SM particles under the new  $U(1)_X$  i.e. All SM particles  $\sim 0$  under  $U(1)_X$
- Add Vector Quarks + Vector Leptons transforming nontrivially under  $U(1)_X$
- Can achieve desired  $Z^\prime$  properties by mixing of the vector fermions with SM fermions^3

• Can have other interesting implications like Dark Matter stability<sup>4</sup>


<sup>3</sup>Fig from: D. A. Sierra, F. Staub, A. Vicente; arxiv: 1503.06077 <sup>4</sup>D. A. Sierra, F. Staub, A. Vicente; arxiv: 1503.06077<□> <@> < ≧> < ≧> < ≧> < ≥ < ♡<

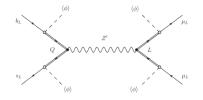
- Don't charge SM particles under the new  $U(1)_X$  i.e. All SM particles  $\sim 0$  under  $U(1)_X$
- Add Vector Quarks + Vector Leptons transforming nontrivially under  $U(1)_X$
- $\bullet\,$  Can achieve desired Z' properties by mixing of the vector fermions with SM fermions^3

• Can have other interesting implications like Dark Matter stability<sup>4</sup>

U(1)B2-3L, Gauge Symmetry

- Don't charge SM particles under the new  $U(1)_X$  i.e. All SM particles  $\sim 0$  under  $U(1)_X$
- Add Vector Quarks + Vector Leptons transforming nontrivially under U(1)<sub>X</sub>
- Can achieve desired  $Z^\prime$  properties by mixing of the vector fermions with SM fermions^3




U(1)B2-3L, Gauge Symmetry

(人間) システン イラン

• Can have other interesting implications like Dark Matter stability<sup>4</sup>

<sup>3</sup>Fig from: D. A. Sierra, F. Staub, A. Vicente; arxiv: 1503.06077

- Don't charge SM particles under the new  $U(1)_X$  i.e. All SM particles  $\sim 0$  under  $U(1)_X$
- Add Vector Quarks + Vector Leptons transforming nontrivially under U(1)<sub>X</sub>
- Can achieve desired  $Z^\prime$  properties by mixing of the vector fermions with SM fermions^3



#### • Can have other interesting implications like Dark Matter stability<sup>4</sup>

- Is there other anomaly free gauge symmetry possible with SM particle content: Yes! U(1)<sub>l<sub>i</sub>-l<sub>i</sub>;i,j = e, μ, τ; i ≠ j symmetries
  </sub>
- $U(1)_{\mu-\tau}$  a good candidate symmetry; All quarks + e  $\sim$  0,  $L_{\mu}, \mu_R \sim 1, L_{\tau}, \tau_R \sim -1$
- By construction Z' couples preferentially to only  $\mu,\tau$
- What about coupling to quarks?
- Have to add additional vector quarks transforming nontrivially
- FCNC is generated through mixing between SM quarks and the new vector quarks<sup>5</sup>

## • $U(1)_{\mu- au}$ very popular: Quite a few variants of the theme developed

<sup>5</sup>Fig from: W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin; @Xiv:担03.1全60 🚊 つへの

- Is there other anomaly free gauge symmetry possible with SM particle content: Yes! U(1)<sub>li-li</sub>; i, j = e, μ, τ; i ≠ j symmetries
- $U(1)_{\mu-\tau}$  a good candidate symmetry; All quarks + e  $\sim$  0,  $L_{\mu}, \mu_R \sim$  1,  $L_{\tau}, \tau_R \sim -1$
- By construction Z' couples preferentially to only  $\mu,\tau$
- What about coupling to quarks?
- Have to add additional vector quarks transforming nontrivially
- FCNC is generated through mixing between SM quarks and the new vector quarks<sup>5</sup>

## • $U(1)_{\mu- au}$ very popular: Quite a few variants of the theme developed

<sup>5</sup>Fig from: W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin; **g**Xiv:国の3.1皇60 🚊 のへ

- Is there other anomaly free gauge symmetry possible with SM particle content: Yes! U(1)<sub>li−li</sub>; i, j = e, μ, τ; i ≠ j symmetries
- $U(1)_{\mu- au}$  a good candidate symmetry; All quarks + e  $\sim$  0,  $L_{\mu}, \mu_R \sim$  1,  $L_{\tau}, \tau_R \sim -1$
- $\bullet\,$  By construction Z' couples preferentially to only  $\mu,\tau$
- What about coupling to quarks?
- Have to add additional vector quarks transforming nontrivially
- FCNC is generated through mixing between SM quarks and the new vector quarks<sup>5</sup>

## • $U(1)_{\mu- au}$ very popular: Quite a few variants of the theme developed

<sup>5</sup>Fig from: W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin; 
のXiv:国の3.1全の ミークへ

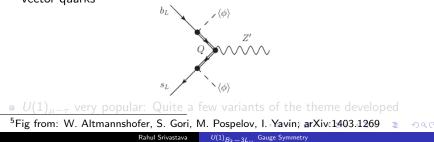
- Is there other anomaly free gauge symmetry possible with SM particle content: Yes! U(1)<sub>li−li</sub>; i, j = e, μ, τ; i ≠ j symmetries
- $U(1)_{\mu-\tau}$  a good candidate symmetry; All quarks + e  $\sim$  0,  $L_{\mu}, \mu_R \sim$  1,  $L_{\tau}, \tau_R \sim -1$
- By construction Z' couples preferentially to only  $\mu, au$
- What about coupling to quarks?
- Have to add additional vector quarks transforming nontrivially
- FCNC is generated through mixing between SM quarks and the new vector quarks<sup>5</sup>

## • $U(1)_{\mu- au}$ very popular: Quite a few variants of the theme developed

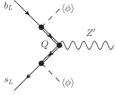
<sup>5</sup>Fig from: W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin; **g**Xiv:国の3.1皇60 🚊 のへ

- Is there other anomaly free gauge symmetry possible with SM particle content: Yes! U(1)<sub>li-li</sub>; i, j = e, μ, τ; i ≠ j symmetries
- $U(1)_{\mu-\tau}$  a good candidate symmetry; All quarks + e  $\sim$  0,  $L_{\mu}, \mu_R \sim$  1,  $L_{\tau}, \tau_R \sim -1$
- By construction Z' couples preferentially to only  $\mu, au$
- What about coupling to quarks?
- Have to add additional vector quarks transforming nontrivially
- FCNC is generated through mixing between SM quarks and the new vector quarks<sup>5</sup>

## • $U(1)_{\mu- au}$ very popular: Quite a few variants of the theme developed


<sup>5</sup>Fig from: W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin; @Xiv:1回03:1全のので

- Is there other anomaly free gauge symmetry possible with SM particle content: Yes! U(1)<sub>li-li</sub>; i, j = e, μ, τ; i ≠ j symmetries
- $U(1)_{\mu-\tau}$  a good candidate symmetry; All quarks + e  $\sim$  0,  $L_{\mu}, \mu_R \sim$  1,  $L_{\tau}, \tau_R \sim -1$
- By construction Z' couples preferentially to only  $\mu, au$
- What about coupling to quarks?
- Have to add additional vector quarks transforming nontrivially
- $\bullet\,$  FCNC is generated through mixing between SM quarks and the new vector quarks^5  $\,$


#### • $U(1)_{\mu- au}$ very popular: Quite a few variants of the theme developed

<sup>5</sup>Fig from: W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin; arXiv:1403.1269 🚊 🗠 🔍

- Is there other anomaly free gauge symmetry possible with SM particle content: Yes! U(1)<sub>li-li</sub>; i, j = e, μ, τ; i ≠ j symmetries
- $U(1)_{\mu-\tau}$  a good candidate symmetry; All quarks + e  $\sim$  0,  $L_{\mu}, \mu_R \sim$  1,  $L_{\tau}, \tau_R \sim -1$
- By construction Z' couples preferentially to only  $\mu, \tau$
- What about coupling to quarks?
- Have to add additional vector quarks transforming nontrivially
- $\bullet\,$  FCNC is generated through mixing between SM quarks and the new vector quarks^5



- Is there other anomaly free gauge symmetry possible with SM particle content: Yes! U(1)<sub>li-li</sub>; i, j = e, μ, τ; i ≠ j symmetries
- $U(1)_{\mu-\tau}$  a good candidate symmetry; All quarks + e  $\sim$  0,  $L_{\mu}, \mu_R \sim$  1,  $L_{\tau}, \tau_R \sim -1$
- By construction Z' couples preferentially to only  $\mu, \tau$
- What about coupling to quarks?
- Have to add additional vector quarks transforming nontrivially
- $\bullet\,$  FCNC is generated through mixing between SM quarks and the new vector quarks^5



•  $U(1)_{\mu-\tau}$  very popular: Quite a few variants of the theme developed

<sup>5</sup>Fig from: W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin; arXiv:1403.1269 E S