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Abstract

The CMS experiment at the Large Hadron Collider has reported a 2.8σ excess in the (2e)(2jets) channel
around 2.1 TeV. Interpretation of this data in terms of the production of a right-handed weak gauge
boson, WR, of the left-right symmetric model and in an SO(10) grand unified theory is reconsidered.
The left-right symmetric model can be consistent with this excess if (a) the heavy right-handed neutrino
has a mass near WR, or (b) if gL 6= gR, or (c) the right-handed CKM matrix is nontrivial. Combinations
of the above possibilities are also viable. A WR with a mass in the TeV region if embedded in SO(10)
is not compatible with gL = gR. Rather, it implies 0.64 ≤ gR/gL ≤ 0.78. Further, a unique symmetry-
breaking route – the order being left-right discrete symmetry breaking first followed by SU(4)C and
finally SU(2)R – to the standard model is picked out. The L↔ R discrete symmetry has to be broken
at around 1017 GeV. The grand unification scale is pushed to 1018 GeV making the detection of proton
decay in ongoing searches rather unlikely. The SU(4)C breaking scale can be at its allowed lower limit
of 106 GeV so that n − n̄ oscillation or flavour changing processes such as KL → µe and Bd,s → µe
may be detectable. The Higgs scalar multiplets responsible for symmetry breaking at various stages
are uniquely identified so long as one adheres to a minimalist principle. We also remark, en passant,
about a partially unified Pati-Salam model.
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I Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) at CERN is a major milestone
of the successes of the standard model (SM) of particle physics. Indeed, with all the quarks and leptons
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and force carriers of the SM now detected and the source of spontaneous symmetry breaking identified
there is a well-deserved sense of satisfaction. Nonetheless, there is a widely shared expectation that
there is new physics which may be around the corner and within striking range of the LHC. The
shortcomings of the standard model are well-known. There is no candidate for dark matter in the SM.
The neutrino is massless in the model but experiments indicate otherwise. At the same time the utter
smallness of this mass is itself a mystery. Neither is there any explanation of the matter-antimatter
asymmetry seen in the Universe. Besides, the lightness of the Higgs boson remains an enigma if there
is no physics between the electroweak and Planck scales.

Of the several alternatives of beyond the standard model extensions, the one on which we focus in
this work is the left-right symmetric (LRS) model [1, 2] and its embedding within a grand unified
theory (GUT). Here parity is a symmetry of the theory which is spontaneously broken resulting in the
observed left-handed weak interactions. The left-right symmetric model is based on the gauge group
SU(2)L×SU(2)R×U(1)B−L and has a natural embedding in the SU(4)C×SU(2)L×SU(2)R Pati-Salam
model [3] which unifies quarks and leptons in an SU(4)C symmetry. The Pati-Salam symmetry is a
subgroup of SO(10) [4, 5]. These extensions of the standard model provide avenues for the amelioration
of several of its shortcomings alluded to earlier.

The tell-tale signature of the LRS model would be observation of the WR. At the LHC the CMS
collaboration has searched for the on-shell production of a right-handed charged gauge boson [6] using
the process1:

pp→WR → 2j + ll . (1)

In the above l stands for a charged lepton, and j represents a hadronic jet.

The CMS collaboration has examined the implication of its findings in the context of a left-right
symmetric model where the left and right gauge couplings are equal (gL = gR) and also the WR

coupling to a charged lepton, l, and its associated right-handed neutrino, Nl, is diagonal with no
leptonic mixing2. In the l = e channel the data shows a 2.8σ excess near 2.1 TeV. Also, regions in the
MNl −MWR

plane disfavoured by the data, within an LRS theory with gL = gR, have been exhibited.
After production, the WR decays through WR → lNl in the first stage. An associated signal of this
process will be a peak at MNl in one of the ljj invariant mass combinations. CMS has not presented
results on this aspect and in their absence one must keep MNl as a parameter of the model.

Within the LRS model there is room to admit the possibility of gL 6= gR. Interpretation of the CMS
result in the presence of such a coupling asymmetry has also been taken up [9, 10] keeping MN = MWR

/2
and the implications for grand unification and baryogenesis explored. In [9] the coupling parameter
VNll is also allowed to deviate from unity. Other interpretations of the excess have also appeared, for
example, in [11] - [14].

In a left-right symmetric model emerging from a grand unified theory, such as SO(10), one has a discrete
symmetry SU(2)L ↔ SU(2)R – referred to as D-parity [15] – which sets gL = gR. Both D-parity and
SU(2)R are broken during the descent of the GUT to the standard model, the first making the coupling
constants unequal and the second resulting in a massive WR. The possibility that the energy scale
of breaking of D-parity is different from that of SU(2)R breaking is admissible and well-examined.
The difference between these scales and the particle content of the theory controls the extent to which
gL 6= gR.

1Earlier searches at the LHC for the WR can be found in [7, 8].
2The existence of three right-handed neutrinos – Ne, Nµ and Nτ – is acknowledged.
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In this work we consider the different options of SO(10) symmetry breaking. It is shown that a
light WR goes hand-in-hand with the breaking of D-parity at a high scale, immediately excluding the
possibility of gL = gR. Breaking of D-parity above the scale of inflation, in fact, is usually considered
a good feature for getting rid of unwanted toplogical defects such as domain walls [16, 17]. The other
symmetries that are broken in the passage to the standard model are the SU(4)C and SU(2)R of the
Pati-Salam (PS) model. The stepwise breaking of these symmetries and the order of their energy scales
have many variants. There are also a variety of options for the scalar multiplets which are used to
trigger the spontaneous symmetry breaking at the different stages. We take a minimalist position of
(a) not including any scalar fields beyond the ones that are essential for symmetry breaking, and also
(b) impose the Extended Survival Hypothesis (ESH) corresponding to minimal fine-tuning to keep no
light extra scalars. With these twin requirements we find that only a single symmetry-breaking route
– the one in which the order of symmetry breaking is first D-parity, then SU(4)C , and finally SU(2)R
– can accommodate a light MWR

. We find that one must have 0.64 ≤ gR/gL ≤ 0.78.

The paper is divided as follows. In the following section we give details of the CMS result [6] which are
relevant for our discussion within the context of the left-right symmetric model. In the next section
we elaborate on the GUT symmetry-breaking chains, the extended survival hypothesis for light scalars,
and coupling constant evolution relations. Next we briefly note the implications of coupling constant
unification within the Pati-Salam and SO(10) models. The results which emerge for the different routes
of descent of SO(10) to the SM are presented in the next two sections. We end with our conclusions.

II CMS WR search result and the Left-Right Symmetric model

The results of the CMS collaboration for the search for a WR-boson that we use [6] are based on the
LHC run at

√
s = 8 TeV with an integrated luminosity of 19.7 fb−1. The focus is on the production

of a WR which then decays to a charged lepton (l) and a right-handed heavy neutrino (Nl), both
of which are on-shell. The Nl undergoes a three-body decay to a charged lepton (l) and a pair of
quarks which manifest as hadronic jets (2j), the process being mediated by a WR. CMS examines the
(2l)(2j) data within the framework of an LRS model with gL = gR and presents exclusion regions in
the MWR

−MNl plane3. Interpreting the four-object final state mass as that of a WR CMS presents,
in the supplementary material of [6], the 95% CL exclusion limits for the observed and expected
σ(pp → WR) × BR(WR → lljj) ≡ σBR as functions of MWR

for several MNl . From the data [6] one

finds that in the electron channel, irrespective of the value of r =
MNe
MWR

, σBRO (observed) exceeds twice

the expected exclusion limit (σBRE) for 1.8 . MWR
. 2.4 TeV. This excess is about ∼ 2.8σ around

2.1 TeV. Though not large enough for a firm conclusion, this can be taken as a tentative hint for a WR,
and if this is correct, one can expect confirmation in the new run of the LHC at

√
s = 13 TeV. The

CMS collaboration notes that this excess is not consistent with the LRS model with gL = gR, r = 0.5
and no leptonic mixing. As we stress later, relaxing these conditions – e.g., r = 0.5 – can make the
results agree with the left-right symmetric model. No such excess is seen in the (2µ)(2j) mode.

II.1 A WR signal?

Fig. 1 shows the Feynman diagram for WR production and its decay in the channels under consideration
[18]. Note that the production of the WR will be suppressed compared to that of a left-handed W

3An alternate explanation of the excess in the data could be in terms of a charged Higgs boson of the LRS model.
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Figure 1: Feynman diagram of the process under discussion with the right-handed CKM-like mixing
matrix taken in a general, non-diagonal, form

boson of the same mass by a factor η2, where η = (gR/gL). The contribution from this diagram is
determined by S2 where S ≡ η|VNee|2. Neglecting the masses of the final state quarks and the charged
lepton, the branching ratio of the three-body decay of Ne, which we have calculated, is proportional to
(1 − r2)2(2 + r2), where, as noted earlier, r = MNe/MWR

. A clinching evidence of this process would
then be a peak in the (2e)(2j) invariant mass at MWR

– for which there is already a hint – along with
another around MNe in the invariant mass of one of the two e(2j) combinations in every event. The
latter is awaited.

It has to be borne in mind that the excess seen in the (2e)(2j) mode is not matched in the (2µ)(2j)
data. This would have to be interpreted as an indication that the right-handed neutrino associated
with the muon, Nµ, is significantly heavier than Ne and so its production in WR-decay suffers a large
kinematic suppression. Further, the coupling of Ne to µ has to be small, which implies that |VNeµ| � 1.
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Figure 2: The shaded region demarcates the range of MWR
for which the CMS data exceed twice the SM

expectation. The maximum excess is on the vertical straight line. The curves parametrised by S denote
the (r,MWR

) contours for which the prediction of the LRS model is compatible with the observation.

In Fig. 2 we place the excess observed by CMS in this channel – the shaded region in the MWR
− r

plane – in comparison with the LRS model predictions. This excess is maximum along the vertical
line. The expectations from the Left-Right Symmetric model (σBRT ) depend on S2 = η2|VNe|4 and
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Figure 3: Left: The CMS data compared with the LRS model predictions for r = 0.8 keeping gR/gL =1
and VNe = 1. Inset: r = 0.5. Right: η and VNe that fit the excess in the CMS data for r = 0.5 and
r=0.8. Only the region between the two vertical lines is permitted in SO(10) GUTs.

r = MNe/MWR
. The dashed curves in the figure, identified by the values of S, trace the points in the

(r −MWR
) plane for which the LRS expectations equal σBRO. To put the plot in context note that

CMS has stressed [6] that with η = 1 and VNe = 1 – i.e., S = 1 – the LRS model signal for r = 0.5 is
inconsistent with the excess. This is borne out from Fig. 2 which indicates that for the S = 1 contour,
the MWR

corresponding to r = 0.5 lies outside the excess region. Consistency of the excess in the
data with the LRS model can be accomplished in three ways. Firstly, if r = MNe/MWR

is larger than
0.5 the LRS model signal will be reduced. Indeed, with r > 0.75 the LRS model is consistent with
the excess even with S = 1. Alternatively, if η or VNe is less than unity, then too the signal will be
less, the suppression being determined by S2. In Fig. 2 it can be seen that for r = 0.5 the excess is
consistent with the model for 0.3 . S . 0.6. The upper limit has been pointed out in [9] and [10].
What we essentially find is that there are large sets of values of r and S for which the LRS expectation
is consistent with the excess.

Fig. 2 contains information in a somewhat condensed form. In the spirit of the path chosen by the CMS
collaboration, we use the exclusion data and plot in the left panel of Fig. 3 σBRE (red dotted curve)
and σBRO (blue dashed curve) as functions of MWR

for the fixed value of r = 0.8. The prediction of
the LRS model with η = gR/gL = 1 and VNee = 1 is the black solid straight line. Also, shown are the
bands which correspond to an enhancement of the expected cross section by 50% (green) and 100%
(yellow). In the inset the same results are presented but for r = 0.5. Notice that for r = 0.8 the LRS
model expectation passes right through the maximum of the excess while for r = 0.5 it entirely misses
the excess region.

The right panel of Fig. 3 utilises a complementary way of displaying the region in the LRS model
parameter space consistent with the result. Here the area in the η − VNee plane that fits the CMS
excess region is shown shaded for two values of r = 0.8 (dark, violet) and 0.5 (light, green). It is worth
stressing that, as in the left panel, for r = 0.8 the model is consistent with the data even for η = 1 and
VNee = 1. For r = 0.5 a suppression through the factor S = η|VNe|2 is required to bring the model in
harmony with the data. If the WR with a mass O(TeV) arises from the SO(10) GUT model we discuss
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below then η must lie within the two vertical lines.

III SO(10) Grand Unification

SO(10) is an attractive candidate for a unified theory [4, 5] as it is the simplest Lie group which includes
all the SM fermions and a right-handed neutrino of one generation in a single irreducible representation.
We do not include any exotic fermions in the model and deal with three generations.

There are a vast number of models characterised by different intermediate symmetries which have
SO(10) as the unifying group. In that respect SO(10) is more of an umbrella term, incorporating these
different models with alternate symmetry-breaking routes, scalar structures, and physics consequences.
What is important for this work is that SO(10) has the Pati-Salam symmetry (GPS) as a subgroup4 and
includes the discrete D-parity [15] which enforces left-right parity, gL = gR. The Left-Right Symmetric
group is embedded in GPS . Thus, having reviewed the CMS result in terms of the LRS model, both with
and without left-right parity, the obvious next step is to look at it through the lenses of the Pati-Salam
partial unified and SO(10) grand unified theories.

In this section we summarize the features of SO(10) GUTs which are relevant for our subsequent
discussions. We consider the non-supersymmetric version of this theory.

III.1 Symmetry breaking

Symmetry SO(10) D-Parity SU(4)C SU(2)R U(1)R × U(1)B−L SU(2)L × U(1)Y
Breaking Scale MU MD MC MR M0 MZ

Table 1: The different scales at which subgroups of SO(10) get broken.

The different ways in which SO(10) GUT can step-wise break to the SM are graphically represented
in Fig. 4. The intermediate energy scales of various stages of symmetry breaking will be denoted
according to Table 1. Among these, MD ≥ MR ≥ M0 > MZ always. In order to systematically study
the different ways in which SO(10) can descend to the SM, we first classify them into routes based on
the order of symmetry breaking. We will call the route with MC ≥MD ≥MR, CDR (Green, Dashed),
the one with MD ≥ MC ≥ MR, DCR (Red, Solid), and another with MD ≥ MR ≥ MC , DRC (Blue,
Dotted). Thus there are essentially three routes with a maximum number of four intermediate stages.
Among the intermediate stages the first and the last, namely, SU(4)C×(SU(2)L×SU(2)R)D (≡ G422D)
and SU(3)C × U(1)B−L × SU(2)L × U(1)R (≡ G3121), are common to all routes5. The other possible
intermediate symmetries, in this notation, are G422, G421, G3122D, and G3122 (see Fig. 4). All models of
SO(10) symmetry breaking (symmetry-breaking chains) are thus defined by the route it belongs to and
the Higgs multiplets that it includes. Figure 4 essentially shows the maximum-step chains (chains with
maximum number of intermediate symmetries) of each route. Other chains are essentially subcases
of these with multiple symmetries breaking at the same scale. This can be achieved if multiple Higgs

4SO(10) can break into GSM through two distinct routes, one through an intermediate SU(5) with no left-right
symmetry and another through the PS stage. A longer proton decay lifetime τp than predicted by minimal SU(5) and
the ease of incorporation of seesaw neutrino masses give the second option a slight preference.

5Detailed discussion of D-parity and its breaking at a different scale from SU(2)R in SO(10) models appears in [19].
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sub-multiplets gain vacuum expectation value (vev) at the same scale or if a single sub-multiplet breaks
more than one symmetry.

Figure 4: Symmetry breaking routes of SO(10) distinguished by the order of breaking of SU(2)R,
SU(4)C , and D-parity. The SO(10) scalar multiplets responsible for symmetry breaking at every stage
have been indicated. Only the DCR (red solid) route can accommodate the light WR scanario.

III.2 Scalar structure and the Extended Survival Hypothesis (ESH)

The gauge bosons in the model and their masses are determined by the symmetry group and its
sequential breaking to the SM. The fermions come in three generations in each of which there are the
SM quarks and leptons and a right-handed neutrino. Thus it is only the scalar sector which retains a
degree of flexibility.

The generation of quark and lepton masses requires a 10 of SO(10) while the see-saw mechanism for
neutrino masses relies on a 126. Their decompositions under the PS group are6:

10 = [1, 2, 2] + [6, 1, 1] , (2)

and
126 = [6, 1, 1] + [15, 2, 2] + [10, 3, 1] + [10, 1, 3] . (3)

These scalars also have important roles in gauge symmetry breakings. The vev of the 10, which is
O(MZ), breaks the standard model SU(2)L × U(1)Y symmetry while the 126 is responsible for the
breaking of U(1)B−L × U(1)R at the scale M0.

In a grand unified theory masses of fermions in the same multiplet are related. In particular, the
10 of SO(10) implies Md = M †l , where Md is the mass matrix of d-type quarks and Ml that of the
charged leptons. Though these relations are valid only at the scale of unification and at lower energies
corrections have to be included, even then they are not in consistency with the measured masses. One
way to address this issue is to invoke a [15,2,2] submultiplet which is present in the 126 and the 120 of
SO(10) to bring the masses closer to their actual values [20, 21]. As we discuss later, a light [15,2,2]
scalar submultiplet can help lower the unification scale.

Two other SO(10) representations which turn out to be useful for symmetry breaking and whose
submultiplet structure will be important are the 45 and 210. Under the PS group they consist of:

45 = [15, 1, 1] + [6, 2, 2] + [1, 3, 1] + [1, 1, 3] , (4)

6We will use the notation [φ4, φL, φR] to specify the behaviour of SO(10) submultiplets under the Pati-Salam symmetry.
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210 = [1, 1, 1] + [15, 1, 1] + [6, 2, 2] + [15, 3, 1] + [15, 1, 3] + [10, 2, 2] + [10, 2, 2] . (5)

Even using these limited SO(10) scalar multiplets7, there remains a variety of options for the scalar
submultiplets that can be used for the different stages of symmetry breaking indicated in Fig. 4.
They affect the unification and intermediate energy scales through their role in the evolution of gauge
couplings. We make two restrictions: (a) Only renormalisable terms will be kept in the SO(10)-
symmetric lagrangian8, and (b) The Extended Survival Hypothesis, which is a consequence of minimal
fine-tuning, is taken to be valid.

According to ESH [22, 23], at any intermediate energy scale only those scalar submultiplets (under
the unbroken symmetry at that stage) which are required to spontaneously break a symmetry at that
or any lower energy remain massless. All other submultiplets become massive. Because the normal
expectation of scalar masses is to be at the highest energy scale the extended survival hypothesis posits
the minimal number of fine-tunings in the scalar sector.

With these guiding principles we now turn to the scalar multiplets that are employed for the descent
of SO(10) to the SM. The first (at MU ) and last (at M0) stages of the symmetry breaking in Fig. 4,
which are common to all alternate channels, utilise a 54-plet and a 126-plet of scalar fields, respectively.
D-parity is broken through the vev of D-odd scalars. There is a D-odd PS singlet in the 210 of SO(10)
which can be utilised for this purpose.

III.3 Renormalisation Group Equations

The one-loop RG evolution for the coupling αg(µ) corresponding to a gauge symmetry g can be written
as:

1

αg(µi)
=

1

αg(µj)
+
bgji
2π

ln

(
µj
µi

)
. (6)

bgji is the coefficient of the β-function between the scales µi and µj :

bg = −11

3
Ng +

2

3

∑
F

T (Fg)d(Fg′)nG +
1

6

∑
S

δST (Sg)d(Sg′), (7)

where the three terms are contributions from gauge bosons, chiral fermions, and scalars respectively.
Ng is the quadratic Casimir corresponding to the particular symmetry group g, Ng is 0 for U(1) and
N for SU(N). T (Fg) and d(Fg) are the index and the dimension of the representation of the chiral
fermion multiplet F under the group g and the sum is over all fermion multiplets of one generation.
nG is the number of fermion generations, 3 in our case. Similarly T (Sg) and d(Sg) are the index and
the dimension of the representation Sg of the scalar S under g. δS takes the value 1 or 2 depending on
whether the scalar representation is real or complex.

It is worth noting that bg is positive for U(1) subgroups and negative9 for SU(n). Therefore, U(1)
couplings grow with increasing energy while SU(n) couplings decrease.

7A 54 is used for the first step of GUT symmetry breaking. It does not affect the RG running of the couplings.
8This excludes, for example, using scalar 16-plets to mimic the SO(10) 126 for neutrino mass through effective

dimension-5 terms in the Lagrangian.
9Contributions from large scalar multiplets can make the beta-function positive. This does happen for SU(2)R in the

example we discuss later.
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For ease of use, we will rewrite eq. (6) as:

wgi = wgj +
1

2π
bgji∆ji , (8)

where wgi ≡ 1
αg(µi)

and ∆ji ≡ ln
(
µj
µi

)
.

If the symmetry g is broken to g′ at the scale µi then the coupling constant matching condition is

simply wgi = wg
′

i unless two groups combine to yield a residual symmetry. As an example of the latter,
for U(1)Y of the standard model, which results from a linear combination of U(1)R and U(1)B−L at
the scale M0:

wY0 =
3

5
wR0 +

2

5
wB−L0 . (9)

Matching all the couplings at the boundaries and imposing the unification condition one arrives at three
equations:

w3
Z = wU +

1

2π

∑
i

bCi,i−1∆i,i−1 ,

w2L
Z = wU +

1

2π

∑
i

b2Li,i−1∆i,i−1 ,

wYZ = wU +
3

5

1

2π

∑
i

b1Ri,i−1∆i,i−1 +
2

5

1

2π

∑
i

bB−Li,i−1∆i,i−1 , (10)

where wU is the reciprocal of the coupling strength at unification. i runs from the unification scale to
M0. C stands for SU(3)C or SU(4)C depending on the energy scale µ. Similarly, 1R (B − L) in the
last equation represents U(1)R or SU(2)R (U(1)B−L or SU(4)C).

The left-hand-sides of the three equations in (10) are the inputs fixed by experiments. The equations
are linear in wU and ln(µi) – the logarithms of the mass-scales. There are 2+m variables: m, the
number of scales intermediate to MU and MZ , wU , the magnitude of the coupling at unification, and
the GUT scale MU itself. Thus, an SO(10) chain with one intermediate scale (m = 1) is a determined
system while those with more steps are underdetermined.

IV Coupling unification and low energy expectations

In the LRS model the energy scales of symmetry breaking can be freely chosen to be consistent with the
low energy data. Once embedded in GUTs one must also verify that such choices of intermediate scales
are consistent with perturbative unificiation of the couplings at sub-Planck energies and check their
implications for other symmetry-breaking scales. In this section we look at the restrictions imposed by
gauge coupling unification together with the CMS result interpreted as a signal of WR.

SO(10) can descend to the SM through a maximum of four intermediate stages (Fig. 4). Such four-step
symmetry breakings are underdetermined. Accordingly, one is permitted to choose the scale MR in the
TeV range, as required by the CMS data, and to check the consistency of the equations. M0 is always
below MR and thus keeping the latter at a few TeV sets the former to an even lower value.
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IV.1 Pati-Salam partial unification

The PS symmetry with D-parity, G422D, is a common intermediate stage for all the SO(10) symmetry-
breaking options. When D-parity is intact, this model has two-independent couplings, namely, g4C

and g2L = g2R = g2, which achieve equality at the grand unification scale MU . In the DCR and DRC
routes the Pati-Salam G422 survives at the next step but D-parity no longer holds. In contrast, for the
CDR route the PS symmetry is broken before D-parity. Needless to say, so long as D-parity remains
unbroken η = 1.

In Pati-Salam partial unification one has a set of three equations similar to eq. (10) sans the constraint
of grand unification. In place of an inverse GUT coupling wU one gets two separate couplings – w4

C

(= wB−LC = w3
C) at MC and w2

D (= w2R
D = w2L

D ) at MD. Thus, the two variables – the GUT coupling
and the GUT scale – are replaced by the SU(4)C unification coupling and a D-parity symmetric SU(2)
coupling. In the following sections we will look at the results that arise from RG evolution for both PS
partial unification and SO(10) grand unification.

IV.2 Left-right symmetry and unification

The scalar field contributions to gauge coupling evolution play a significant role in achieving coupling
unification while keeping a low MR. This has led to a plethora of models where scalar fields have been
incorporated in the theory solely for this purpose. This is not the path that we choose. Indeed, the
scalar fields which we do include become indispensible in some cases. For example, a subcase which
one might imagine from Fig. 4 will have MR = M0. The one-step symmetry breaking of G3122 → G321

can be realized through the vev of just a [10, 1, 3] ⊂ 126, dispensing off the submultiplet which breaks
SU(2)R → U(1)R. However, without this latter contribution the coupling constants no longer unify.
So, MR = M0 ∼ O(TeV) cannot be accommodated without at least the scalar multiplets that we keep.

As mentioned earlier, the three key ingredients in interpreting the CMS result are the ratio between the
left- and right-handed gauge couplings, η, the Majorana mass of the right-handed electron neutrino,
MNe , and the right-handed leptonic mixing VNll. The Majorana mass of the right-handed neutrino
of the l-th flavour, in the TeV range, is obtained through the Yukawa coupling Y l

126. The mass is
proportional to the ∆L = 2 vev, v126, of the (1,−2, 1, 1) ⊂ [10, 1, 3] ⊂ 126. The latter also breaks the
G3121 symmetry. Hence, one has MNl ∼ (Y l

126/gB−L)M0. The Yukawa coupling, Y l
126, can be chosen

to obtain a desired value of MNl without affecting other physics. Thus the choice of r = MN/MWR
is

decoupled from the analysis of coupling unification.

The mixing in the right-handed lepton sector – VNll – is the second relevant quantity in this analysis.
It is determined by the generation structure of the Yukawa matrix. Since this does not affect the
evolution of couplings, which is the focus, our analysis does not impose any restriction on the choice of
this mixing.

The relative strength of the right-handed coupling vis-à-vis the left-handed one at the SU(2)R-breaking
scale – η = gR

gL
– is, however, intimately related to the RG running of the gauge couplings.

w2R
R =

1

η2
w2L
R . (11)

The magnitude of η will vary for symmetry-breaking chains depending on the scalar content of the
theory and the energy scales at which different symmetries break. Nonetheless, the minimum value

10



that can be attained by η is almost independent of the way in which SO(10) or GPS descends to the
standard model, as we now discuss. Firstly the requirement that MR is O(TeV) and M0 even lower,
keeps them close to each other and the two are not too far from MZ either. The other feature, noted
earlier, is that U(1) couplings increase as the energy scale µ increases while SU(n) couplings do the
opposite.

One starts from eq. (9) which relates the U(1) couplings when the symmetry breaking G3121 → G321

occurs at M0. Obviously,

w1R
0 > w1R

R = w2R
R =

(
1

η2

)
w2L
R , (12)

and from wB−LC = w3C
C

wB−L0 > wB−LR > w3C
R . (13)

From eq. (9) together with eqs. (12) and (13) one has

η2 >
3w2L

R

5wY0 − 2w3C
R

' 3w2L
0

5wY0 − 2w3C
0

. (14)

The inequality in the first step in eq. (12) is due to the evolution of w1R from M0 to MR. Since these
two energy scales are both in the TeV range this effect is not large. A similar reasoning is also valid
for the first inequality in eq. (13) but the second could be much more substantial. Using the current
values of the low energy couplings10 and extrapolating them to µ = M0 one gets

ηmin ∼ 0.59 . (15)

We stress that eq. (15) is an artefact of the LRS model so long as there is a merging of the U(1)B−L
with SU(3)C , and so is valid for both PS (partial) and SO(10) (grand) unification. However, this is
a limit in principle, accomplishing it will depend on the details of symmetry breaking and the scalar
content of the theory. We have previously seen that that the CMS result is compatible with the LRS
model for S as low as ∼ 0.25. From the preceding discussion we see that S lower than ∼ 0.59 cannot
be attained by η alone.

V The three routes of SO(10) symmetry breaking

In this section we consider one by one the three routes depicted in Fig. 4 by which SO(10) can descend
to the SM. We focus on the scalar fields that are required and the intermediate energy scales involved.
We use one-loop renormalisation group equations here but have checked that including two-loop effects
does not change the results drastically. Since the equations are usually underdetermined, motivated by
the CMS data, we will keep 4 TeV ≤MR ≤ 10 TeV and 1 TeV ≤M0 ≤ 4 TeV for the chains of descent.

V.1 The DRC route

Restricting MR to the TeV range automatically eliminates the DRC route (Blue dotted in Fig. 4) –
SU(4)C breaking after MR – because then the leptoquark gauge bosons of SU(4)C achieve a mass of

10We use α3 = 0.1185(6), sin2 θW = 0.23126(5), and α = 1/127.916 at µ = MZ [24].
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the TeV order. Light leptoquarks below 106 GeV are forbidden from rare decays of strange mesons,
such as KL → µe [3, 25, 26]. The DRC route of symmetry breaking is thus not compatible with the
CMS result.

V.2 The CDR route

SO(10) Symmetry Scalars contributing to RG
repn. breaking MZ ↔M0 M0 ↔MR MR ↔MD MD ↔MC MC ↔MU

G321 G3121 G3122 G3122D G422D

10 G321 → EM (1,2,±1) (1,0,2,±1
2) (1,0,2,2) (1,0,2,2)+ [1,2,2]+

126 G3121 → G321 - (1,-2,1,1) (1,-2,1,3) (1,-2,1,3)+ [10,1,3]+
- - - (1,2,3,1)+ [10,3,1]+

210 G3122 → G3121 - - (1,0,1,3) (1,0,1,3)+ [15,1,3]+
- - - (1,0,3,1)+ [15,3,1]+

210 G3122D → G3122 - - - (1,0,1,1)− [1,1,1]−

210 G422D → G3122D - - - - [15,1,1]+

Table 2: Scalar fields considered when the ordering of symmetry-breaking scales is MC ≥ MD ≥ MR.
The submultiplets contributing to the RG evolution at different stages according to the ESH are shown.
D-parity (±) is indicated as a subscript.

With all intermediate stages distinct, for this route (Green dashed in Fig. 4) one has:

SO(10)
MU−−→
54
G422D

MC−−→
210
G3122D

MD−−→
210
G3122

MR−−→
210
G3121

M0−−→
126
G321 . (16)

The scalar submultiplets responsible for the symmetry breaking are shown in Table 2. An alternative
to the above would be to break G3122 → G3121 using a [1,1,3] ⊂ 45 in place of the [15, 1, 3] ⊂ 210. We
also comment about this option.

In order to proceed with an elaboration of the consequences associated with this route it is helpful to
list the one-loop beta-function coefficients for the stages MR ↔ MD and MD ↔ MC . Including the
contributions from the scalars in Table 2, fermions, and gauge bosons one finds from eq. (6)

b3DR = −7 , bB−LDR =
11

2
, b2LDR = −3 , b2RDR = −2 ,

b3CD = −7 , bB−LCD = 7 , b2LCD = −2 , b2RCD = −2 . (17)

The SU(2)L and SU(2)R couplings evolve from MR to become equal at MD. This requires (∆AB =
ln MA

MB
):

w2L
R − w2R

R =
1

2π

{
(b2LDR − b2RDR)∆DR

}
. (18)

Similarly the SU(3)C and U(1)B−L couplings become equal at MC , i.e.,

w3
R − wB−LR =

1

2π

{
(b3DR − bB−LDR )∆DR + (b3CD − bB−LCD )∆CD

}
. (19)
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The left-hand-sides of eqs. (18) and (19) are given in terms of the various couplings at MR. Since
MR ∼ O(TeV) and the RG evolution is logarithmic in energy it is not a bad approximation to assume
that they do not change significantly from MZ to MR, i.e., wiR ' wiO ' wiZ . Then recalling eq. (9)
which relates wY0 with wR0 and wB−L0 one can obtain:

3w2L
Z + 2w3

Z − 5wYZ '
1

2π

{[
3(b2LDR − b2RDR) + 2(b3DR − bB−L

DR )
]

∆DR + 2(b3CD − bB−L
CD )∆CD

}
. (20)

Using the beta-function coefficients from eq. (17), one can reexpress eq. (20) as:

3w2L
Z + 2w3

Z − 5wYZ '
1

2π
{28 ∆CR} . (21)

Notice that MD has dropped out. Further, the low energy values of α, αs and sin2 θW [24] then imply
MC ∼ 1018MR, i.e., way beyond the Planck scale. The low energy SM paramters are now quite well-
measured and offer no escape route from this impasse. Two-loop contributions also do not change the
situation drastically. We have checked that if one breaks G3122 → G3121 through a [1,1,3] ⊂ 45 rather
than the [15, 1, 3] ⊂ 210 (see Table 2), the change is in the evolution of the couplings in the MC ↔MU

sector which does not affect this conclusion.

The above analysis does not resort to the constraint of grand unification at all. The results hold for PS
partial unification as well. So, the CDR route of descent also has to be abandoned for MR ∼ O(TeV).

V.3 The DCR route

SO(10) Symmetry Scalars contributing to RG
repn. breaking MZ ↔M0 M0 ↔MR MR ↔MC MC ↔MD MD ↔MU

G321 G3121 G3122 G422 G422D

10 G321 → EM (1,2,±1) (1,0,2,±1
2) (1,0,2,2) [1,2,2] [1,2,2]+

126 G3121 → G321 - (1,-2,1,1) (1,-2,1,3) [10,1,3] [10,1,3]+
- - - - [10,3,1]+

210 G3122 → G3121 - - (1,0,1,3) [15,1,3] [15,1,3]+
- - - - [15,3,1]+

210 G422 → G3122 - - - [15,1,1] [15,1,1]+

210 G422D → G422 - - - - [1,1,1]−

Table 3: Scalar fields considered when the ordering of symmetry-breaking scales is MD ≥ MC ≥ MR.
The submultiplets contributing to the RG evolution at different stages according to the ESH are shown.
D-parity (±) is indicated as a subscript.

After having eliminated the other alternatives, the only remaining route of descent has the mass ordering
MD ≥ MC ≥ MR (Red solid in Fig. 4). Keeping all possible intermediate stages separate from each
other this corresponds to:
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SO(10)
MU−−→
54
G422D

MD−−→
210
G422

MC−−→
210
G3122

MR−−→
210
G3121

M0−−→
126
G321 . (22)

In the above we have indicated the SO(10) multiplets which contribute to symmetry breaking at every
stage. The scalar submultiplets which contribute to the RG equations as dictated by ESH are shown
in Table 3. There is, however, an alternative which relies on a 45 of SO(10) whose contents under the
Pati-Salam group are given in eq. (4). SU(2)R can be broken by the (1,0,1,3) ⊂ [1, 1, 3] ⊂ 45 replacing
the [15,1,3] ⊂ 210. In fact, the SU(4)C breaking [15,1,1] is also present in the 45. However, one cannot
entirely dispense with the 210 because the [1,1,1]− in it has no analog in the 45.

Denoting by hD, hC , hR the SO(10) scalar multiplets responsible for the breaking of D-Parity, SU(4)C ,
and SU(2)R respectively, we therefore have the following alternatives: {hD, hC , hR} can be {210,45,45},
{210,45,210}, {210,210,45} and {210,210,210}. Of these, the first employs the lowest dimensional scalar
multiplets required to break symmetries at each scale while the last one uses the least number of SO(10)
scalar multiplets. Using 45 or 210 for hC makes no difference in the physics since in both cases a [15,1,1]
Pati-Salam submultiplet is used. The distinction is relevant only in the choice of hR.

The one-loop beta-function coefficients for the couplings in the MR ↔ MC and MC ↔ MD energy
ranges obtained using eq. (6) and the scalars in Table 3 are:

b3CR = −7 , bB−LCR =
11

2
, b2LCR = −3 , b2RCR = −2 ,

b4DC = −5 , b2LDC = −3 , b2RDC =
26

3
. (23)

The SU(4)C and U(1)B−L couplings evolve to become equal at MC . Thus

w3
R − wB−LR =

1

2π

{
(b3CR − bB−LCR )∆CR

}
. (24)

Matching of the SU(2)L and SU(2)R couplings at MD implies:

w2L
R − w2R

R =
1

2π

{
(b2LCR − b2RCR)∆CR + (b2LDC − b2RDC)∆DC

}
. (25)

As before, we use the approximation wiR ' wiO ' wiZ and combine eqs. (24) and (25) to get:

3w2L
Z + 2w3

Z − 5wYZ '
1

2π

{[
3(b2LCR − b2RCR) + 2(b3CR − bB−L

CR )
]

∆CR + 3(b2LDC − b2RDC)∆DC

}
. (26)

A special limit of the DCR route is when MD = MC , i.e., ∆DC = ln MD
MC

= 0. In this limiting case
there is no distinction between this route and the CDR one. Indeed, setting MD = MC in eq. (26) and
substituting the beta-function coefficients from eq. (23) one exactly reproduces (21) which places the
solution in an unacceptable energy regime.

That one should nonetheless expect acceptable solutions can be surmised from the fact that eq. (26)
implies

d lnMC

d lnMD
=

3(b2LDC − b2RDC)

[3(b2LDC − b2RDC − b2LCR + b2RCR)− 2(b3CR − bB−LCR )]

= 5 , (27)

where in the last step we have used eq. (23). This indicates that MC changes faster than MD and
so starting from the MD = MC limit solutions in the DCR route with the symmetry breaking scales
below MPlanck are feasible. Replacing the 210 in hR by a 45 reduces b2RDC so much that unification of
couplings is no longer possible. In the next section we present the allowed soultions in detail.
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VI SO(10) unification with MR ∼ O(TeV)

In the previous section we have seen that of the three routes of symmetry breaking accessible to SO(10),
DRC is trivially eliminated when the twin requirements MR ∼ O(TeV) and MR > MC are imposed.
We also indicated that with the minimal scalar content and folowing the extended survival hypothesis
for the CDR route requiring MR ∼ O(TeV) implies that MC > MPlanck. The only route that can
accommodate MR ∼ O(TeV) is DCR.

To simplify the discussion, in eq. (26) we have ignored the running of the couplings between MZ and
MR. In obtaining the results presented in this section we have not used such an approximation.

VI.1 Pati-Salam partial unification for the maximum-step case

The maximum-step symmetry-breaking DCR route has been given in eq. (22). Before turning to
SO(10) we briefly remark about Pati-Salam partial unification within this route. Because there are
four steps of symmetry breaking this is an underdetermined system. For this work, MR is restricted to
be in the O(TeV) range. The scale MC is taken as the other input in the analysis. At the one-loop level
the results can be analytically calculated using the beta-function coefficients in eq. (23). The steps can
be identified from eqs. (25) and (26). The latter determines MD once MC is chosen. η is then fixed
using eq. (25).

For example, for MC = 106 GeV one gets η = 0.63 when MR = 5 TeV. Within the Pati-Salam model the
upper limit of MD is set by the Planck mass MPlanck. We find that in such a limit one has MC = 1017.6

GeV and η = 0.87 for MR = 5 TeV.

VI.2 Coupling unification for the maximum-step case

For SO(10) grand unification one must find the energy scale at which the common SU(2)L,R coupling
beyond MD equals the SU(4)C coupling, i.e., g2 = g4C . This now sets the upper limit of MC .

In the left panel of Fig. 5 we plot η as a function of MC . In the inset is shown the behaviour of MU

and MD as functions of MC . Due to the unification constraint, the upper limits of MC , MD and η all
decrease from the respective values which were obtained in the PS case. The lowest value of η turns out
to be ∼ 0.63. Notice that a lower value of MC is associated with a higher MU , which must not exceed
MPlanck. MC is also bounded from below by the experimental limits on flavour-changing transitions
such as KL → µe. It is the latter that determines the lowest admissible MC , in general. From the inset
it is seen that although MU increases as MC decreases, it remains below MPlanck so long as MC > 106

GeV. As MC increases MD increases as well and the point where it meets the decreasing MU determines
the upper limit of MC . For every plot the ranges consistent with 4 TeV ≤ MR ≤ 10 TeV are between
the two curves, the solid one indicating the MR = 4 TeV end. The results are almost insensitive to
the choice of M0 between 1 TeV and MR. Note that irrespective of the scale of SU(4)C breaking, MD

always remains above 1016 GeV. The unification coupling constant, wU , varies between 38.4 and 47.6
so that perturbativity remains valid throughout.

The behaviour of the coupling constants as a function of the energy scale for a typical case of M0 = 1
TeV, MR = 5 TeV and MC = 1010 GeV are shown (solid lines) in the right panel of Fig. 5. Note that
due to the contributions of large scalar multiplets to the β-functions the coupling g2R grows beyond
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Figure 5: Left: η is plotted as a function of MC for the DCR route. In the inset the behaviour of MD

and MU are shown. The two curves in each case correspond to MR = 4 (solid) and 10 TeV (dashed). In
both cases M0 = 1 TeV is taken. Right: Behaviour of the gauge couplings for the DCR chain of SO(10)
GUT with M0 = 1 TeV, MR = 5 TeV and MC = 1010 GeV. The solid (dashed) lines correspond to
one-loop (two-loop) evolution of couplings. The scalar fields are as in Table 3.

MC . Although this chain is suited to our needs, the unification scale is close to the Planck scale for
MR ∼ O(TeV). Thus, if MWR

∼ O(TeV) then it is unlikely that ongoing proton decay experiments
[27] will observe a signal. This is a consequence of our adhering to the principle of minimality of Higgs
scalars. One can lower MU by including scalars redundant to symmetry breaking.

We have set the lower limit of MC at 106 GeV from the limits on rare meson decays such as KL → µe
or Bd,s → µe. The current limit on the branching ratio for the former process is Br(KL → µ±e∓) <
4.7× 10−12 at 90% CL [24] which translates to MC & 106 GeV. LHCb has set the tightest bounds on
the latter processes. They find (again at 90% CL) [28] Br(B0

d → µ±e∓) < 2.8 × 10−9 and Br(B0
s →

µ±e∓) < 1.1 × 10−8 which yield a weaker limit on MC . It can be expected that these bounds will be
strengthened when the results from the newer runs of LHC appear. In addition, n−n̄ oscillations can be
mediated through coloured scalars belonging to the [10, 1, 3] ⊂ 126 which also acquire mass at the scale
of MC . The current experimental limit, τn−n̄ ≥ 2.7× 108s [29] at 90% CL, also translates to MC & 106

GeV. Therefore improvements in the measurement of the above-noted rare meson decays and n − n̄
oscillations open the possibility of probing, at least in part, the GUT options that can accommodate a
TeV-scale WR.

VI.3 The MD = MU case

There are a number of daughter chains of the DCR route with two symmetries breaking at the same
scale. Of these, the choice MC = MR, resulting in a common point of the DCR and DRC routes,
violates the lower bound on MC from flavour changing processes since MR ∼ O(TeV). As noted in the
previous section, another alternative, namely, MD = MC , which is a point shared by the DCR and
CDR routes, occurs at an energy beyond the Planck scale. The only remaining possibility is MD = MU .

The upper limit on MC is set by the requirement MD = MU . This happens when D-parity is broken
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at the GUT scale by a [1,1,1]− ⊂ 210. We thus have

SO(10)
MU=MD−−−−−−→

210
G422

MC−−→
210
G3122

MR−−→
210
G3121

M0−−→
126
G321 . (28)

From the inset in the left panel of Fig. 5 it is seen that for MC ∼ 2 × 1014 GeV one has MD = MU .
As this chain has three intermediate steps, there are no free parameters after setting M0 and MR. The
coupling at unification, wU , comes to be around 47.6, and η, as can be seen from the left panel of
Fig. 5, is near 0.78. An interesting aspect of this chain is that it is minimal in the number of scalar
multiplets used.

VI.4 Two-loop comparison
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η

Figure 6: A comparison of the results for one-loop (solid lines) and two-loop (dotted line) running. The
evolution of MU and MD with MC is displayed. Also shown is the case of one-loop running when a
[15,2,2] scalar multiplet is added (dashed lines). In the inset the variation of η is presented.

The discussion till now, based on RG evolution using one-loop β-functions, was amenable to an analyt-
ical examination. Our aim was to reason our way through different SO(10) symmetry-breaking options
in search of chains which can accommodate a TeV range MR. Now, after finding a specific pattern for
which MR ∼ O(TeV) is tenable, we indicate the size of the two-loop effects for this chain. In the right
panel of Fig. 5 the evolution of the couplings for a typical choice of MC = 1010 GeV, MR = 5 TeV and
M0 = 1 TeV are indicated by the dashed lines. It is seen that the essential physics is largely unaltered
though there is some change in the various energy scales.

The chain in (22) contains many scalar fields until SU(4)C breaking, contributing heavily to the two-
loop β-coefficients [30, 31]. These are responsible for some departures from the one-loop results. We
have presented the one-loop results for the DCR route keeping MC as an input parameter. In Fig. 6 we
compare the one-loop (solid lines) and two-loop (dotted lines) results for MU and MD as a function of
MC . The deviation for both scales increases with decreasing MC . This is intuitive because with lower
MC SU(4)C remains a good symmetry for a larger energy range over which the two-loop contributions
are effective. In the inset a similar comparison is made for η. It is noteworthy that η remains essentially
unaffected.
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VI.5 Additional scalars: an example

If fermion masses are generated through scalars which belong to the minimal set required for symmetry
breaking then mass relationships do not reflect observed values. One needs to add at least one extra
scalar multiplet – which is light, couples to fermions, and develops a vev at the electroweak scale – to
get realistic mass ratios. In SO(10), fermions reside in the 16 representation and scalars transforming
only as 120, 126, and 10 can have Yukawa coupling to fermions, since:

16× 16 = 10 + 120 + 126 . (29)

In SO(10) GUTs improved fermion mass relations can be obtained [21] using the PS submultiplet
[15,2,2] ⊂ 126 in addition to the [1,2,2] ⊂ 10. The natural scale for the extra scalar submultiplet would
have been at the GUT scale and extra fine-tuning is necessary to keep it at the electroweak scale.

We have examined the behaviour of gauge coupling evolutions for the DCR case including the additional
[15,2,2] submultiplet to check if the TeV range MR still remains viable. In Fig. 6 the variation of MD

and MU with MC when an extra [15,2,2] is included are shown (dashed lines). The effect on η (shown
in the inset) is negligible. The important change is that the permitted lowest MC is more restricted as
MU tends rapidly towards MPlanck.

It is clear that the scale MD is governed by the difference in the β-coefficients of SU(2)R and SU(2)L.
Submultiplets such as [15,2,2], which contribute symmetrically to the β-coefficients of the left- and
right-handed SU(2) groups, will not affect the difference and so do not change the D-parity breaking
scale. For the reasoning η is not affected as well.

VII Summary and Conclusions

The observation by the CMS collaboration of a 2.8σ excess in the (2e)(2j) channel around 2.1 TeV can
be interpreted as a preliminary indication of the production of a right-handed gauge boson WR. Within
the left-right symmetric model the excess identifies specific values of η = gR/gL, r = MNe/MWR

, and
VNee. We stress that even with gR = gL and VNee = 1 the data can be accommodated by an appropriate
choice of r.

We explore what the CMS result implies if the left-right symmetric model is embedded in an SO(10)
GUT. η 6= 1 is a consequence of the breaking of left-right D-parity. We find that a WR in the few TeV
range very tightly restricts the possible routes of descent of the GUT to the standard model. The only
sequence of symmetry breaking which is permitted is MD > MC > MR with a D-parity breaking scale
≥ 1016 GeV. All other orderings of symmetry breaking are excluded. Breaking of left-right discrete
parity at such a high scale pushes gL and gR apart and one finds 0.64 ≤ η ≤ 0.78. The unification scale,
MU , has to be as high as ∼ 1018 GeV so that it is very unlikely that proton decay will be seen in the
ongoing experiments. The SU(4)C-breaking scale, MC , can be as low as 106 GeV, which may be probed
by rare decays such as KL → µe and Bd,s → µe or n − n̄ oscillations. In Table [4] we summarise the
essence of the allowed GUT solutions. We have assumed that no extra scalar multiplets are included
beyond those needed for symmetry breaking and invoked the Extended Survival Hypothesis to identify
scalar submultiplet masses.

The ATLAS collaboration has also presented evidence [32] for an enhancement around 2 TeV in the
di-boson – ZZ and WZ – channels in their 8 TeV data. Our interpretation of the excess in the (ee)(jj)
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Sr Intermediate Symmetries Mass Scales
(

log µ
[GeV]

)
wU η

No. MU MD MC

1 G422D → G422 → G3122 → G3121 19.02 - 18.38 16.70 - 18.38 6.00 - 14.39 38.41 - 47.63 0.64 - 0.78

2 2-loop 18.27 - 17.88 14.87 - 17.88 6.00 - 14.80 29.54 - 46.66 0.64 - 0.79

3 Added [15,2,2] scalar MPlanck - 18.19 17.06 - 18.19 7.90 - 13.52 18.59 - 37.52 0.66 - 0.76

Table 4: The SO(10) symmetry-breaking chains consistent with MR = 5 TeV and M0 = 1 TeV. The
intermediate symmetries and the associated mass-scales are shown.

channel in terms of a WR by itself fails to provide an explanation of the above. If the WR production
is normalised to the former then it falls an order of magnitude short of the di-boson rates. It has been
shown that interpretation of the di-boson observations as well as the (ee)(jj) data is possible if the
LRS model is embellished with the addition of some other fermionic states [33, 34].
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