# **IMB-CNM** Activities in Radiation Detectors

## Celeste Fleta, Manuel Lozano, Francesca Campabadal, Martyn Key and Miguel Ullán.



Institut de Microelectrònica de Barcelona, CNM-CSIC. Campus UAB., 08193 Bellaterra (Barcelona), SPAIN http://www.cnm.es; http://www.cnm.es/projects/atlas



#### Institut de Microelectrònica de Barcelona Centre Nacional de Microelectrònica

- Largest public microelectronics R+D centre in Spain
- Belongs to CSIC (Spanish Research Council)



#### **IMB-CNM OVERVIEW**

- Departments:
  - + Microsystems and Silicon Technology
  - Silicon sensors and actuators
  - Power devices
  - Nanotechnologies
  - + Electronics System Design
  - Circuits and systems design
  - Biomedical applications

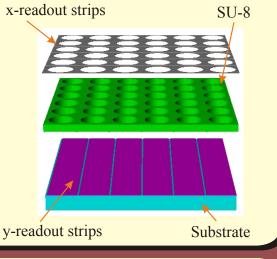


- Facilities:
  - + Clean Room
  - 1000 m<sup>2</sup>, class 100 to 10000
  - + Laboratories
  - Packaging
  - Characterisation and test
  - Reverse engineering
  - Silicon micromachining
  - Simulation
  - CAD
  - Mechanical workshop

#### **PARTICIPATION IN THE ATLAS COLLABORATION**

- Coordinated project with IFIC-CSIC (Valencia)
- Supported by Spanish Ministerio de Ciencia y Tecnologia

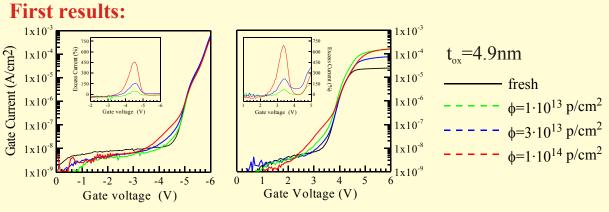



detector wheels in the forward section of the Semiconductor Tracker at the **Inner** Detector

ATLAS forward module

- Fabrication of the 8800 fan-ins (pad pitch adapters) for the forward modules
  - + Radiation hardness studies
  - + Bondability control
  - + Optical quality control system

### **GAS MICROSTRUCTURE RADIATION DETECTORS**


- Development of gas amplification microstructures using SU-8 epoxybased photoresist
- Devices include single- and multilayer monolithic gas electron



Fan-in for an outer module

#### **EFFECTS OF RADIATION ON THIN SILICON DIOXIDE**

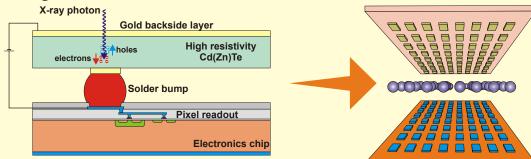
- For space or high-energy physics applications:
  - + Very hostile radiation environment for CMOS devices
  - + Ionizing radiation damages the oxide
    - → Limiting factor to MOS device reliability.
- At CNM, we investigate the electrical properties of thin oxides irradiated by high-energy protons (24GeV/c, from the CERN PS)



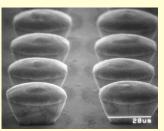
Peak in the fractional excess current for the **same oxide voltage** at both biasing polarities  $\Longrightarrow$  damage can be modelled by a trap level in the oxide, leading to trap-assisted tunnelling dominating at low fields.

#### **FABRICATION OF SILICON DETECTORS**

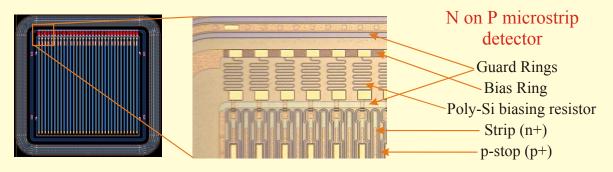
• Detection of X-rays, gammas, charged particles or heavy ions with good energy resolution and very low dark current • Based on diodes fabricated on very high resistivity substrates • They can be fabricated on very large silicon areas or segmented into strips to allow position sensing. • Silicon oxigenation increases their radiation hardness


• CNM-IMB/IFIC responsibility: Two

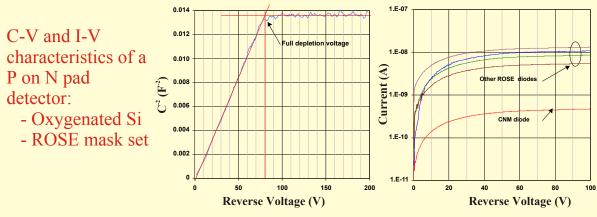
0


- multipliers with vertical sidewalls
- Focus on synchrotron detectors for dynamic small and wide angle scattering (SAXS, WAXS)

#### **MEDICAL APPLICATIONS: DIGITAL MAMMOGRAPHY**


- The CNM-IMB is a partner in the "Dear-Mama" (Detection of Early Markers in Mammography) European Project.
  - + Dose 50 times smaller than that needed with photographic film
  - + Counts photons instead of integrating current  $\longrightarrow$  low noise
  - + Pixel size 55x55  $\mu$ m  $\rightarrow$  high resolution
- Based on Cd(Zn)Te pixel detectors bump-bonded to photon counting front-end electronics.




- Related activities at CNM:
  - + High density bump-bonding ( $40\mu$ m pitch)
    - Collaboration with TUB (Berlin, Germany)
  - CIRRUS EC project
  - + Bump yield studies:
    - Very good quality for Si-Si
    - CdTe-Si studies ongoing



CNM bonds



• N on P, P on N, and N on N technologies developed.



- Members of the RD50 collaboration at CERN
  - + Development of radiation hard semiconductor tracking detectors for very high luminosity colliders
  - + http://rd50.web.cern.ch/rd50/