Measurement of the $\boldsymbol{C P}$ Asymmetry Amplitude $\sin 2 \beta$ with $\boldsymbol{B}^{\mathbf{0}}$ Mesons

B. Aubert, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A.W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A.V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R.W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch,,${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ A. Romosan, ${ }^{5}$ M.T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A.V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S.W. O'Neale, ${ }^{6}$ R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ N. R. Barlow, ${ }^{8}$ W. Bhimji, ${ }^{8}$ J.T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ P. J. Clark, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ C. Mackay, ${ }^{8}$ F. F. Wilson,,${ }^{8}$ K. Abe, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ S. Jolly, ${ }^{10}$ A. K. McKemey, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ A. A. Korol, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Chao, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ S. McMahon, ${ }^{12}$ D. P. Stoker,,12 C. Buchanan, ${ }^{13}$ S. Chun, ${ }^{13}$ H. K. Hadavand, ${ }^{14}$ E. J. Hill, ${ }^{14}$ D. B. MacFarlane, ${ }^{14}$ H. Paar, ${ }^{14}$ S. Prell, ${ }^{14}$ Sh. Rahatlou, ${ }^{14}$ G. Raven, ${ }^{14}$ U. Schwanke, ${ }^{14}$ V. Sharma, ${ }^{14}$ J.W. Berryhill, ${ }^{15}$ C. Campagnari,,${ }^{15}$ B. Dahmes, ${ }^{15}$ P. A. Hart, ${ }^{15}$ N. Kuznetsova, ${ }^{15}$ S. L. Levy, ${ }^{15}$ O. Long, ${ }^{15}$ A. Lu, ${ }^{15}$ M. A. Mazur, ${ }^{15}$ J. D. Richman, ${ }^{15}$ W. Verkerke, ${ }^{15}$ J. Beringer, ${ }^{16}$ A. M. Eisner, ${ }^{16}$ M. Grothe, ${ }^{16}$ C. A. Heusch, ${ }^{16}$ W. S. Lockman, ${ }^{16}$ T. Pulliam,,${ }^{16}$ T. Schalk, ${ }^{16}$ R. E. Schmitz, ${ }^{16}$ B. A. Schumm, ${ }^{16}$ A. Seiden, ${ }^{16}$ M. Turri, ${ }^{16}$ W. Walkowiak, ${ }^{16}$ D. C. Williams, ${ }^{16}$ M. G. Wilson, ${ }^{16}$ E. Chen, ${ }^{17}$ G. P. Dubois-Felsmann, ${ }^{17}$ A. Dvoretskii,${ }^{17}$ D. G. Hitlin, ${ }^{17}$ F. C. Porter, ${ }^{17}$ A. Ryd, ${ }^{17}$ A. Samuel,,${ }^{17}$ S. Yang,,${ }^{17}$ S. Jayatilleke, ${ }^{18}$ G. Mancinelli, ${ }^{18}$ B. T. Meadows, ${ }^{18}$ M. D. Sokoloff, ${ }^{18}$ T. Barillari, ${ }^{19}$ P. Bloom, ${ }^{19}$ W.T. Ford, ${ }^{19}$ U. Nauenberg, ${ }^{19}$ A. Olivas, ${ }^{19}$ P. Rankin, ${ }^{19}$ J. Roy, ${ }^{19}$ J. G. Smith, ${ }^{19}$ W. C. van Hoek, ${ }^{19}$ L. Zhang, ${ }^{19}$ J. L. Harton,,20 T. Hu, ${ }^{20}$ M. Krishnamurthy, ${ }^{20}$ A. Soffer, ${ }^{20}$ W. H. Toki, ${ }^{20}$ R. J. Wilson, ${ }^{20}$ J. Zhang, ${ }^{20}$ D. Altenburg, ${ }^{21}$ T. Brandt, ${ }^{21}$ J. Brose, ${ }^{21}$ T. Colberg, ${ }^{21}$ M. Dickopp, ${ }^{21}$ R. S. Dubitzky, ${ }^{21}$ A. Hauke, ${ }^{21}$ E. Maly, ${ }^{21}$ R. Müller-Pfefferkorn, ${ }^{21}$ S. Otto, ${ }^{21}$ K. R. Schubert, ${ }^{21}$ R. Schwierz, ${ }^{21}$ B. Spaan, ${ }^{21}$ L. Wilden, ${ }^{21}$ D. Bernard, ${ }^{22}$ G. R. Bonneaud, ${ }^{22}$ F. Brochard, ${ }^{22}$ J. Cohen-Tanugi, ${ }^{22}$ S. Ferrag, ${ }^{22}$ S. T'Jampens, ${ }^{22}$ Ch. Thiebaux, ${ }^{22}$ G. Vasileiadis, ${ }^{22}$ M. Verderi, ${ }^{22}$ A. Anjomshoaa, ${ }^{23}$ R. Bernet, ${ }^{23}$ A. Khan, ${ }^{23}$ D. Lavin, ${ }^{23}$ F. Muheim, ${ }^{23}$ S. Playfer, ${ }^{23}$ J. E. Swain, ${ }^{23}$ J. Tinslay, ${ }^{23}$ M. Falbo, ${ }^{24}$ C. Borean, ${ }^{25}$ C. Bozzi, ${ }^{25}$ L. Piemontese, ${ }^{25}$ A. Sarti, ${ }^{25}$ E. Treadwell, ${ }^{26}$ F. Anulli, ${ }^{27, *}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ D. Falciai, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi, ${ }^{27, *}$ M. Piccolo, ${ }^{27}$ A. Zallo, ${ }^{27}$ S. Bagnasco,,${ }^{28}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ G. Crosetti, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ F. C. Pastore, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi, ${ }^{28}$ S. Bailey, ${ }^{29}$ M. Morii, ${ }^{29}$ R. Bartoldus,,${ }^{30}$ G. J. Grenier,${ }^{30}$ U. Mallik, ${ }^{30}$ J. Cochran, ${ }^{31}$ H. B. Crawley, ${ }^{31}$ J. Lamsa, ${ }^{31}$ W.T. Meyer, ${ }^{31}$ E. I. Rosenberg, ${ }^{31}$ J. Yi, ${ }^{31}$ M. Davier, ${ }^{32}$ G. Grosdidier, ${ }^{32}$ A. Höcker, ${ }^{32}$ H. M. Lacker, ${ }^{32}$ S. Laplace, ${ }^{32}$ F. Le Diberder, ${ }^{32}$ V. Lepeltier, ${ }^{32}$ A. M. Lutz, ${ }^{32}$ T. C. Petersen, ${ }^{32}$ S. Plaszczynski, ${ }^{32}$ M. H. Schune, ${ }^{32}$ L. Tantot, ${ }^{32}$ S. Trincaz-Duvoid, ${ }^{32}$ G. Wormser, ${ }^{32}$ R. M. Bionta, ${ }^{33}$ V. Brigljević, ${ }^{33}$ D. J. Lange, ${ }^{33}$ K. van Bibber, ${ }^{33}$ D. M. Wright, ${ }^{33}$ A. J. Bevan, ${ }^{34}$ J. R. Fry, ${ }^{34}$ E. Gabathuler, ${ }^{34}$ R. Gamet, ${ }^{34}$ M. George, ${ }^{34}$ M. Kay, ${ }^{34}$ D. J. Payne, ${ }^{34}$ R. J. Sloane, ${ }^{34}$ C. Touramanis, ${ }^{34}$ M. L. Aspinwall, ${ }^{35}$ D. A. Bowerman, ${ }^{35}$ P. D. Dauncey, ${ }^{35}$ U. Egede, ${ }^{35}$ I. Eschrich, ${ }^{35}$ G.W. Morton,,${ }^{35}$ J. A. Nash,,${ }^{35}$ P. Sanders, ${ }^{35}$ D. Smith, ${ }^{35}$ G. P. Taylor, ${ }^{35}$ J. J. Back, ${ }^{36}$ G. Bellodi, ${ }^{36}$ P. Dixon, ${ }^{36}$ P. F. Harrison, ${ }^{36}$ R. J. L. Potter, ${ }^{36}$ H.W. Shorthouse, ${ }^{36}$ P. Strother, ${ }^{36}$ P. B. Vidal, ${ }^{36}$ G. Cowan, ${ }^{37}$ H. U. Flaecher, ${ }^{37}$ S. George, ${ }^{37}$ M. G. Green, ${ }^{37}$ A. Kurup,,${ }^{37}$ C. E. Marker, ${ }^{37}$ T. R. McMahon, ${ }^{37}$ S. Ricciardi, ${ }^{37}$ F. Salvatore, ${ }^{37}$ G. Vaitsas, ${ }^{37}$ M. A. Winter, ${ }^{37}$ D. Brown, ${ }^{38}$ C. L. Davis, ${ }^{38}$ J. Allison, ${ }^{39}$ R. J. Barlow,,${ }^{39}$ A. C. Forti, ${ }^{39}$ F. Jackson, ${ }^{39}$ G. D. Lafferty, ${ }^{39}$ A. J. Lyon, ${ }^{39}$ N. Savvas, ${ }^{39}$ J. H. Weatherall, ${ }^{39}$ J. C. Williams, ${ }^{39}$ A. Farbin, ${ }^{40}$ A. Jawahery, ${ }^{40}$ V. Lillard, ${ }^{40}$ D. A. Roberts, ${ }^{40}$ J. R. Schieck, ${ }^{40}$ G. Blaylock, ${ }^{41}$ C. Dallapiccola, ${ }^{41}$ K. T. Flood, ${ }^{41}$ S. S. Hertzbach,,${ }^{41}$ R. Kofler, ${ }^{41}$ V. B. Koptchev, ${ }^{41}$ T. B. Moore, ${ }^{41}$ H. Staengle, ${ }^{41}$ S. Willocq, ${ }^{41}$ B. Brau, ${ }^{42}$ R. Cowan, ${ }^{42}$ G. Sciolla, ${ }^{42}$ F. Taylor, ${ }^{42}$ R. K. Yamamoto, ${ }^{42}$ M. Milek, ${ }^{43}$ P. M. Patel, ${ }^{43}$ F. Palombo, ${ }^{44}$ J. M. Bauer, ${ }^{45}$ L. Cremaldi, ${ }^{45}$ V. Eschenburg, ${ }^{45}$ R. Kroeger, ${ }^{45}$ J. Reidy, ${ }^{45}$ D. A. Sanders, ${ }^{45}$ D. J. Summers, ${ }^{45}$ C. Hast, ${ }^{46}$ P. Taras, ${ }^{46}$ H. Nicholson, ${ }^{47}$ C. Cartaro, ${ }^{48}$ N. Cavallo, ${ }^{48}$ G. De Nardo, ${ }^{48}$ F. Fabozzi, ${ }^{48}$ C. Gatto, ${ }^{48}$ L. Lista, ${ }^{48}$ P. Paolucci, ${ }^{48}$ D. Piccolo, ${ }^{48}$ C. Sciacca, ${ }^{48}$ J. M. LoSecco, ${ }^{49}$ J. R. G. Alsmiller, ${ }^{50}$ T. A. Gabriel, ${ }^{50}$ J. Brau, ${ }^{51}$ R. Frey, ${ }^{51}$ M. Iwasaki, ${ }^{51}$ C. T. Potter,,${ }^{51}$ N. B. Sinev, ${ }^{51}$ D. Strom,,${ }^{51}$ E. Torrence, ${ }^{51}$ F. Colecchia, ${ }^{52}$ A. Dorigo, ${ }^{52}$ F. Galeazzi, ${ }^{52}$ M. Margoni, ${ }^{52}$ M. Morandin, ${ }^{52}$ M. Posocco, ${ }^{52}$ M. Rotondo, ${ }^{52}$ F. Simonetto, ${ }^{52}$ R. Stroili, ${ }^{52}$ C. Voci, ${ }^{52}$ M. Benayoun, ${ }^{53}$ H. Briand, ${ }^{53}$ J. Chauveau, ${ }^{53}$ P. David, ${ }^{53}$ Ch. de la Vaissière, ${ }^{53}$ L. Del Buono, ${ }^{53}$ O. Hamon, ${ }^{53}$ Ph. Leruste, ${ }^{53}$ J. Ocariz, ${ }^{53}$ M. Pivk, ${ }^{53}$ L. Roos, ${ }^{53}$ J. Stark, ${ }^{53}$ P. F. Manfredi, ${ }^{54}$ V. Re, ${ }^{54}$ V. Speziali, ${ }^{54}$ L. Gladney, ${ }^{55}$ Q. H. Guo, ${ }^{55}$ J. Panetta, ${ }^{55}$ C. Angelini, ${ }^{56}$ G. Batignani, ${ }^{56}$ S. Bettarini,,${ }^{56}$ M. Bondioli, ${ }^{56}$ F. Bucci, ${ }^{56}$ G. Calderini, ${ }^{56}$ E. Campagna, ${ }^{56}$ M. Carpinelli,,${ }^{56}$ F. Forti, ${ }^{56}$ M. A. Giorgi, ${ }^{56}$ A. Lusiani, ${ }^{56}$ G. Marchiori, ${ }^{56}$
F. Martinez-Vidal, ${ }^{56}$ M. Morganti, ${ }^{56}$ N. Neri, ${ }^{56}$ E. Paoloni, ${ }^{56}$ M. Rama, ${ }^{56}$ G. Rizzo, ${ }^{56}$ F. Sandrelli, ${ }^{56}$ G. Triggiani, ${ }^{56}$ J. Walsh, ${ }^{56}$ M. Haire, ${ }^{57}$ D. Judd, ${ }^{57}$ K. Paick, ${ }^{57}$ L. Turnbull, ${ }^{57}$ D. E. Wagoner, ${ }^{57}$ J. Albert, ${ }^{58}$ N. Danielson, ${ }^{58}$ P. Elmer, ${ }^{58}$ C. Lu, ${ }^{58}$ V. Miftakov, ${ }^{58}$ J. Olsen, ${ }^{58}$ S. F. Schaffner, ${ }^{58}$ A. J. S. Smith, ${ }^{58}$ A. Tumanov, ${ }^{58}$ E. W. Varnes, ${ }^{58}$ F. Bellini, ${ }^{59}$ G. Cavoto, ${ }^{58,59}$ D. del Re, ${ }^{59}$ R. Faccini, ${ }^{14,59}$ F. Ferrarotto, ${ }^{59}$ F. Ferroni, ${ }^{59}$ E. Leonardi, ${ }^{59}$ M. A. Mazzoni, ${ }^{59}$ S. Morganti, ${ }^{59}$ G. Piredda, ${ }^{59}$ F. Safai Tehrani, ${ }^{59}$ M. Serra, ${ }^{59}$ C. Voena, ${ }^{59}$ S. Christ, ${ }^{60}$ G. Wagner, ${ }^{60}$ R. Waldi, ${ }^{60}$ T. Adye, ${ }^{61}$ N. De Groot, ${ }^{61}$ B. Franek, ${ }^{61}$ N. I. Geddes, ${ }^{61}$ G. P. Gopal, ${ }^{61}$ S. M. Xella, ${ }^{61}$ R. Aleksan, ${ }^{62}$ S. Emery, ${ }^{62}$ A. Gaidot, ${ }^{62}$ P.-F. Giraud, ${ }^{62}$ G. Hamel de Monchenault, ${ }^{62}$ W. Kozanecki, ${ }^{62}$ M. Langer, ${ }^{62}$ G.W. London, ${ }^{62}$ B. Mayer, ${ }^{62}$ G. Schott, ${ }^{62}$ B. Serfass, ${ }^{62}$ G. Vasseur, ${ }^{62}$ Ch. Yeche, ${ }^{62}$ M. Zito, ${ }^{62}$ M.V. Purohit, ${ }^{63}$ A.W. Weidemann, ${ }^{63}$ F. X. Yumiceva, ${ }^{63}$ I. Adam, ${ }^{64}$ D. Aston, ${ }^{64}$ N. Berger, ${ }^{64}$ A. M. Boyarski, ${ }^{64}$ M. R. Convery, ${ }^{64}$ D. P. Coupal, ${ }^{64}$ D. Dong, ${ }^{64}$ J. Dorfan, ${ }^{64}$ W. Dunwoodie, ${ }^{64}$ R. C. Field, ${ }^{64}$ T. Glanzman, ${ }^{64}$ S. J. Gowdy, ${ }^{64}$ E. Grauges, ${ }^{64}$ T. Haas, ${ }^{64}$ T. Hadig, ${ }^{64}$ V. Halyo, ${ }^{64}$ T. Himel, ${ }^{64}$ T. Hryn'ova, ${ }^{64}$ M. E. Huffer, ${ }^{64}$ W. R. Innes, ${ }^{64}$ C. P. Jessop, ${ }^{64}$ M. H. Kelsey, ${ }^{64}$ P. Kim, ${ }^{64}$ M. L. Kocian, ${ }^{64}$ U. Langenegger, ${ }^{64}$ D. W. G. S. Leith, ${ }^{64}$ S. Luitz, ${ }^{64}$ V. Luth, ${ }^{64}$ H. L. Lynch, ${ }^{64}$ H. Marsiske, ${ }^{64}$ S. Menke, ${ }^{64}$ R. Messner, ${ }^{64}$ D. R. Muller, ${ }^{64}$ C. P. O'Grady, ${ }^{64}$ V. E. Ozcan, ${ }^{64}$ A. Perazzo, ${ }^{64}$ M. Perl, ${ }^{64}$ S. Petrak, ${ }^{64}$ H. Quinn, ${ }^{64}$ B. N. Ratcliff, ${ }^{64}$ S. H. Robertson, ${ }^{64}$ A. Roodman, ${ }^{64}$ A. A. Salnikov, ${ }^{64}$ T. Schietinger, ${ }^{64}$ R. H. Schindler, ${ }^{64}$ J. Schwiening, ${ }^{64}$ G. Simi, ${ }^{64}$ A. Snyder, ${ }^{64}$ A. Soha, ${ }^{64}$ S. M. Spanier, ${ }^{64}$ J. Stelzer, ${ }^{64}$ D. Su, ${ }^{64}$ M. K. Sullivan, ${ }^{64}$ H. A. Tanaka, ${ }^{64}$ J. Va'vra, ${ }^{64}$ S. R. Wagner, ${ }^{64}$ M. Weaver, ${ }^{64}$ A. J. R. Weinstein, ${ }^{64}$ W. J. Wisniewski, ${ }^{64}$ D. H. Wright, ${ }^{64}$ C. C. Young, ${ }^{64}$ P. R. Burchat, ${ }^{65}$ C. H. Cheng, ${ }^{65}$ T. I. Meyer, ${ }^{65}$ C. Roat, ${ }^{65}$ R. Henderson, ${ }^{66}$ W. Bugg, ${ }^{67}$ H. Cohn, ${ }^{67}$ J. M. Izen, ${ }^{68}$ I. Kitayama, ${ }^{68}$ X. C. Lou, ${ }^{68}$ F. Bianchi, ${ }^{69}$ M. Bona, ${ }^{69}$ D. Gamba, ${ }^{69}$ L. Bosisio, ${ }^{70}$ G. Della Ricca, ${ }^{70}$ S. Dittongo, ${ }^{70}$ L. Lanceri, ${ }^{70}$ P. Poropat, ${ }^{70}$ L. Vitale, ${ }^{70}$ G. Vuagnin, ${ }^{70}$ R. S. Panvini, ${ }^{71}$ Sw. Banerjee,,72 C. M. Brown, ${ }^{72}$ D. Fortin, ${ }^{72}$ P. D. Jackson, ${ }^{72}$ R. Kowalewski, ${ }^{72}$ J. M. Roney, ${ }^{72}$ H. R. Band, ${ }^{73}$ S. Dasu, ${ }^{73}$ M. Datta, ${ }^{73}$ A. M. Eichenbaum, ${ }^{73}$ H. Hu, ${ }^{73}$ J. R. Johnson, ${ }^{73}$ R. Liu, ${ }^{73}$ F. Di Lodovico, ${ }^{73}$ A. Mohapatra, ${ }^{73}$ Y. Pan, ${ }^{73}$ R. Prepost, ${ }^{73}$ I. J. Scott, ${ }^{73}$ S. J. Sekula, ${ }^{73}$ J. H. von Wimmersperg-Toeller, ${ }^{73}$ J. Wu, ${ }^{73}$ S. L. Wu, ${ }^{73}$ Z. Yu, ${ }^{73}$ and H. Neal ${ }^{74}$
(The BABAR Collaboration)
${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
${ }^{6}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, BC, Canada V6T 1Z1
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024
${ }^{14}$ University of California at San Diego, La Jolla, California 92093
${ }^{15}$ University of California at Santa Barbara, Santa Barbara, California 93106
${ }^{16}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064
${ }^{17}$ California Institute of Technology, Pasadena, California 91125
${ }^{18}$ University of Cincinnati, Cincinnati, Ohio 45221
${ }^{19}$ University of Colorado, Boulder, Colorado 80309
${ }^{20}$ Colorado State University, Fort Collins, Colorado 80523
${ }^{21}$ Technische Universität Dresden, Institut für Kern-und Teilchenphysik, D-01062 Dresden, Germany
${ }^{22}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{23}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{24}$ Elon University, Elon University, North Carolina $27244-2010$
${ }^{25}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{26}$ Florida A\&M University, Tallahassee, Florida 32307
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138
${ }^{30}$ University of Iowa, Iowa City, Iowa 52242
31 Iowa State University, Ames, Iowa 50011-3160
${ }^{32}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France

${ }^{33}$ Lawrence Livermore National Laboratory, Livermore, California 94550
${ }^{34}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
${ }^{35}$ University of London, Imperial College, London SW7 2BW, United Kingdom
${ }^{36}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{37}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{38}$ University of Louisville, Louisville, Kentucky 40292
${ }^{39}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{40}$ University of Maryland, College Park, Maryland 20742
${ }^{41}$ University of Massachusetts, Amherst, Massachusetts 01003
${ }^{42}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139
${ }^{43}$ McGill University, Montréal, QC, Canada H3A $2 T 8$
${ }^{44}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{45}$ University of Mississippi, University, Mississippi 38677
${ }^{46}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C $3 J 7$
${ }^{47}$ Mount Holyoke College, South Hadley, Massachusetts 01075
${ }^{48}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{49}$ University of Notre Dame, Notre Dame, Indiana 46556
${ }^{50}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
${ }^{51}$ University of Oregon, Eugene, Oregon 97403
${ }^{52}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{53}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{54}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
${ }^{55}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104
${ }^{56}$ Università di Pisa, Scuola Normale Superiore and INFN, I-56010 Pisa, Italy
${ }^{57}$ Prairie View A\&M University, Prairie View, Texas 77446
${ }^{58}$ Princeton University, Princeton, New Jersey 08544
${ }^{59}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{60}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{61}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{62}$ DAPNIA, Commissariat à l'Energie Atomique/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{63}$ University of South Carolina, Columbia, South Carolina 29208
${ }^{64}$ Stanford Linear Accelerator Center, Stanford, California 94309
${ }^{65}$ Stanford University, Stanford, California 94305-4060
${ }^{66}$ TRIUMF, Vancouver, BC, Canada V6T 2A3
${ }^{67}$ University of Tennessee, Knoxville, Tennessee 37996
${ }^{68}$ University of Texas at Dallas, Richardson, Texas 75083
${ }^{69}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{70}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{71}$ Vanderbilt University, Nashville, Tennessee 37235
${ }^{72}$ University of Victoria, Victoria, BC, Canada V8W 3P6
${ }^{73}$ University of Wisconsin, Madison, Wisconsin 53706
${ }^{74}$ Yale University, New Haven, Connecticut 06511

(Received 17 July 2002; revised manuscript received 6 September 2002; published 29 October 2002)
We present results on time-dependent $C P$ asymmetries in neutral B decays to several $C P$ eigenstates. The measurements use a data sample of about $88 \times 10^{6} \mathrm{Y}(4 S) \rightarrow B \bar{B}$ decays collected between 1999 and 2002 with the $B A B A R$ detector at the PEP-II asymmetric-energy B factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B^{0} or \bar{B}^{0} from its decay products. The amplitude of the $C P$ asymmetry, which in the standard model is proportional to $\sin 2 \beta$, is derived from the decay-time distributions in such events. We measure $\sin 2 \beta=0.741 \pm 0.067$ (stat) ± 0.034 (syst) and $|\lambda|=0.948 \pm 0.051$ (stat) ± 0.030 (syst). The magnitude of λ is consistent with unity, in agreement with the standard model expectation of no direct $C P$ violation in these modes.

The standard model of electroweak interactions describes $C P$ violation in weak interactions as a consequence of a complex phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. In this framework, measurements of $C P$ asym-
metries in the proper-time distribution of neutral B decays to charmonium final states provide a direct measurement of $\sin 2 \beta$ [2], where $\beta \equiv \arg \left[-V_{\mathrm{cd}} V_{\mathrm{cb}}^{*} / V_{\mathrm{td}} V_{\mathrm{tb}}^{*}\right]$.

Observations of $C P$ violation in B^{0} decays were reported last year by the BABAR [3] and Belle [4]

Collaborations. The PEP-II collider has since delivered an additional $63 \mathrm{fb}^{-1}$, thereby approximately tripling the data sample near the $\mathrm{Y}(4 S)$ resonance. In this Letter we report a more precise measurement of $\sin 2 \beta$ using the full sample of about $88 \times 10^{6} B \bar{B}$ decays. The BABAR detector and the measurement technique are described in detail in Refs. [5,6], respectively. Changes in the analysis with respect to the published result [3] include processing of all data with a uniform event reconstruction, a new flavortagging algorithm, and the addition of the decay mode $B^{0} \rightarrow \eta_{c} K_{S}^{0}$.

We reconstruct a sample of neutral B mesons ($B_{C P}$) decaying to the final states $J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}, \chi_{c 1} K_{S}^{0}$, $\eta_{c} K_{S}^{0}, J / \psi K^{* 0}\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)$, and $J / \psi K_{L}^{0}$. The J / ψ and $\psi(2 S)$ mesons are reconstructed through their decays to $e^{+} e^{-}$and $\mu^{+} \mu^{-}$; the $\psi(2 S)$ is also reconstructed through its decay to $J / \psi \pi^{+} \pi^{-}$. We reconstruct $\chi_{c 1}$ mesons in the decay mode $J / \psi \gamma$ and η_{c} mesons in the $K_{S}^{0} K^{+} \pi^{-}$and $K^{+} K^{-} \pi^{0}$ final states [7]. The K_{S}^{0} is reconstructed in its decay to $\pi^{+} \pi^{-}$(and to $\pi^{0} \pi^{0}$ for the $J / \psi K_{S}^{0}$ mode). We examine each event in the $B_{C P}$ sample for evidence that the recoiling B meson decayed as a B^{0} or \bar{B}^{0} (flavor tag).

The proper-time distribution of B meson decays to a $C P$ eigenstate with a B^{0} or \bar{B}^{0} tag can be expressed in terms of a complex parameter λ that depends on both the $B^{0}-\bar{B}^{0}$ oscillation amplitude and the amplitudes describing \bar{B}^{0} and B^{0} decays to this final state [8]. The decay rate $\mathrm{f}_{+}\left(\mathrm{f}_{-}\right)$when the tagging meson is a $B^{0}\left(\bar{B}^{0}\right)$ is given by

$$
\begin{align*}
\mathrm{f}_{ \pm}(\Delta t)=\frac{e^{-|\Delta t|} / \tau_{B^{0}}}{4 \tau_{B^{0}}}[& 1 \pm \frac{2 \operatorname{Im} \lambda}{1+|\lambda|^{2}} \sin \left(\Delta m_{d} \Delta t\right) \\
& \left.\mp \frac{1-|\lambda|^{2}}{1+|\lambda|^{2}} \cos \left(\Delta m_{d} \Delta t\right)\right], \tag{1}
\end{align*}
$$

where $\Delta t=t_{\text {rec }}-t_{\text {tag }}$ is the difference between the proper decay times of the reconstructed B meson (B_{rec}) and the tagging B meson $\left(B_{\mathrm{tag}}\right), \tau_{B^{0}}$ is the B^{0} lifetime, and Δm_{d} is the $B^{0}-B^{0}$ oscillation frequency. The sine term in Eq. (1) is due to the interference between direct decay and decay after flavor change, and the cosine term is due to the interference between two or more decay amplitudes with different weak and strong phases. $C P$ violation can be observed as a difference between the Δt distributions of B^{0} - and \bar{B}^{0}-tagged events or as an asymmetry with respect to $\Delta t=0$ for either flavor tag.

In the standard model, $\lambda=\eta_{f} e^{-2 i \beta}$ for charmoniumcontaining $b \rightarrow c \bar{c} s$ decays, where η_{f} is the $C P$ eigenvalue of the final state f. Thus, the time-dependent $C P$ asymmetry is

$$
\begin{equation*}
A_{C P}(\Delta t) \equiv \frac{\mathrm{f}_{+}(\Delta t)-\mathrm{f}_{-}(\Delta t)}{\mathrm{f}_{+}(\Delta t)+\mathrm{f}_{-}(\Delta t)}=-\eta_{f} \sin 2 \beta \sin \left(\Delta m_{d} \Delta t\right), \tag{2}
\end{equation*}
$$

with $\eta_{f}=-1$ for $J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}, \chi_{c 1} K_{S}^{0}$, and $\eta_{c} K_{S}^{0}$, and +1 for $J / \psi K_{L}^{0}$. Because of the presence of even $(L=$

0,2) and odd ($L=1$) orbital angular momenta in the $B \rightarrow J / \psi K^{* 0}$ final state, there can be $C P$-even and $C P$-odd contributions to the decay rate. When the angular information in the decay is ignored, the measured $C P$ asymmetry in $J / \psi K^{* 0}$ is reduced by a factor $1-2 R_{\perp}$, where R_{\perp} is the fraction of the $L=1$ component. We have measured $R_{\perp}=(16.0 \pm 3.5) \%$ [9], which gives $\eta_{f}=0.65 \pm 0.07$ after acceptance corrections in the $J / \psi K^{* 0}$ mode.

The event selection, lepton, and $K^{ \pm}$identification, and J / ψ and $\psi(2 S)$ reconstruction used in this analysis are similar to those described in Ref. [6], as are the selection criteria for the channels $J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}, \quad \chi_{c 1} K_{S}^{0}$, $J / \psi K^{* 0}$, and $J / \psi K_{L}^{0}$. The $B^{0} \rightarrow \eta_{c} K_{S}^{0}$ sample selection is described in Ref. [10]. In brief, the $K^{ \pm}$candidates must satisfy kaon identification criteria and the $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$ and $\pi^{0} \rightarrow \gamma \gamma$ candidates are required to have reconstructed masses within 12.5 and $15 \mathrm{MeV} / c^{2}$, respectively, of their nominal masses [11]. The η_{c} candidates (with $2.90<M_{K K \pi}<3.15 \mathrm{GeV} / c^{2}$) are combined with $K_{S}^{0} \rightarrow$ $\pi^{+} \pi^{-}$candidates reconstructed within $10 \mathrm{MeV} / c^{2}$ of the K_{S}^{0} nominal mass to form a B^{0} candidate. This sample includes a contribution of (15 ± 2) \% from hadronic J / ψ decays to the $K K \pi$ final states.

We select candidates in the $B^{0} \rightarrow J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}$, $\chi_{c 1} K_{S}^{0}$, and $J / \psi K^{* 0}$ samples by requiring that the difference ΔE between their energy and the beam energy in the center-of-mass frame be less than 3 standard deviations from zero. The ΔE resolution is about 10 MeV , except for the mode with $K_{S}^{0} \rightarrow \pi^{0} \pi^{0}(33 \mathrm{MeV})$ and with $K^{* 0}(20 \mathrm{MeV})$. The $B^{0} \rightarrow \eta_{c} K_{S}^{0}$ candidates are required to have $|\Delta E|$ less than 40 (70) MeV for the $K_{S}^{0} K^{+} \pi^{-}\left(K^{+} K^{-} \pi^{0}\right)$ modes. For all modes except $J / \psi K_{L}^{0}$, the beam-energy substituted mass $m_{\mathrm{ES}}=$ $\sqrt{\left(E_{\text {beam }}^{\text {c.m. }}\right)^{2}-\left(p_{B}^{\text {c.m. }}\right)^{2}}$ must be greater than $5.2 \mathrm{GeV} / c^{2}$. To determine numbers of events and purities, a signal region $5.270(5.273)<m_{\mathrm{ES}}<5.290(5.288) \mathrm{GeV} / c^{2}$ is used for modes containing $K_{S}^{0}\left(K^{* 0}\right)$. In the $J / \psi K_{L}^{0}$ mode, the ΔE resolution is 3.5 MeV (after B mass constraint) and the signal region is defined by $|\Delta E|<10 \mathrm{MeV}$.

A measurement of $A_{C P}$ requires a determination of the experimental Δt resolution and the fraction w of events in which the tag assignment is incorrect. This mistag fraction reduces the observed $C P$ asymmetry by a factor $1-2 w$. Mistag fractions and Δt resolution functions are determined from a sample of neutral B mesons that decay to flavor eigenstates ($B_{\text {flav }}$) consisting of the channels $D^{(*)-} h^{+}\left(h^{+}=\pi^{+}, \rho^{+}\right.$, and $\left.a_{1}^{+}\right)$and $J / \psi K^{* 0}\left(K^{* 0} \rightarrow\right.$ $K^{+} \pi^{-}$). Validation studies are performed with a control sample of B^{+}mesons decaying to the final states $J / \psi K^{(*)+}, \psi(2 S) K^{+}, \chi_{c 1} K^{+}, \eta_{c} K^{+}$, and $\bar{D}^{(*) 0} \pi^{+}$.

We use multivariate algorithms to identify signatures of B decays that determine the flavor of B_{tag}. Primary leptons from semileptonic B decays are selected from identified electrons and muons as well as isolated
energetic tracks. We use the charges of identified kaon candidates to define a kaon tag. Soft pions from D^{*+} decays are selected on the basis of their momentum and direction with respect to the thrust axis of $B_{\text {tag. }}$. A neural network, which combines the outputs of these physics-based algorithms, takes into account correlations between different sources of flavor information and provides an estimate of the mistag probability for each event.

By using the outputs of the physics-based algorithms and the estimated mistag probability, each event is assigned to one of four hierarchical, mutually exclusive tagging categories. The Lepton category contains events with an identified lepton and a supporting kaon tag if present. Events with a kaon candidate and soft pion with opposite charge and similar flight direction are assigned to the Kaon I category. Events with only a kaon tag are assigned to the Kaon I or the Kaon II category depending on the estimated mistag probability. The Kaon II category also contains the remaining events with a soft pion. All other events are assigned to the Inclusive category or excluded from further analysis based on the estimated mistag probability. The tagging efficiencies ε_{i} for the four tagging categories are measured from data and summarized in Table I. The figure of merit for tagging is the effective tagging efficiency $Q \equiv \sum_{i} \varepsilon_{i}\left(1-2 w_{i}\right)^{2}$. This algorithm improves Q by about 7% (relative) over the algorithm used in Ref. [6].

The time interval Δt between the two B decays is calculated from the measured separation Δz between the decay vertices of $B_{\text {rec }}$ and $B_{\text {tag }}$ along the collision (z) axis [6]. We determine the z position of the $B_{\text {rec }}$ vertex from its charged tracks. The $B_{\text {tag }}$ decay vertex is determined by fitting tracks not belonging to the $B_{\text {rec }}$ candidate to a common vertex, employing constraints from the beam spot location and the $B_{\text {rec }}$ momentum [6]. We accept events with a Δt uncertainty of less than 2.5 ps and $|\Delta t|<20 \mathrm{ps}$. The fraction of events satisfying these requirements is 95%. The rms Δt resolution for 99.7% of these events is 1.1 ps .

The signal region contains 2641 events which satisfy the tagging and vertexing requirements. In Table II we list the number of events and the signal purity for the tagged $B_{C P}$ candidates. The purities are determined from fits to the m_{ES} (all K_{S}^{0} modes) or ΔE (K_{L}^{0} mode) distributions in

TABLE I. Efficiencies ϵ_{i}, average mistag fractions w_{i}, mistag fraction differences $\Delta w_{i}=w_{i}\left(B^{0}\right)-w_{i}\left(\bar{B}^{0}\right)$, and Q extracted for each tagging category i from the $B_{\text {flav }}$ and $B_{C P}$ samples.

Category	$\varepsilon(\%)$	$w(\%)$	$\Delta w(\%)$	$Q(\%)$
Lepton	9.1 ± 0.2	3.3 ± 0.6	-1.5 ± 1.1	7.9 ± 0.3
Kaon I	16.7 ± 0.2	10.0 ± 0.7	-1.3 ± 1.1	10.7 ± 0.4
Kaon II	19.8 ± 0.3	20.9 ± 0.8	-4.4 ± 1.2	6.7 ± 0.4
Inclusive	20.0 ± 0.3	31.5 ± 0.9	-2.4 ± 1.3	2.7 ± 0.3
All	65.6 ± 0.5			28.1 ± 0.7

data or from Monte Carlo simulation ($K^{* 0}$ mode). Figure 1 shows the $m_{\text {ES }}$ distribution for modes containing a K_{S}^{0} or $K^{* 0}$ and the ΔE distribution for the $J / \psi K_{L}^{0}$ candidates. For all modes except $\eta_{c} K_{S}^{0}$ and $J / \psi K_{L}^{0}$, we use simulated events to estimate the fractions of events in the Gaussian component of the m_{ES} fits due to cross feed from other decay modes. For the $\eta_{c} K_{S}^{0}$ mode the cross-feed fraction is determined from a fit to the $M_{K K \pi}$ and m_{ES} distributions. These fractions range from $(0.3 \pm 0.1) \%$ for $J / \psi K_{S}^{0}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$to (13.1 $\left.\pm 5.9\right) \%$ for $\eta_{c} K_{S}^{0}$. For the $J / \psi K_{L}^{0}$ and $J / \psi K^{* 0}$ decay modes, the composition, effective η_{f}, and ΔE distribution ($J / \psi K_{L}^{0}$ only) of the individual background sources are determined either from simulation (for $B \rightarrow J / \psi X$) or from the $m_{\ell^{+} \ell^{-}}$sidebands in data (for fake $J / \psi \rightarrow \ell^{+} \ell^{-}$).

We determine $\sin 2 \beta$ with a simultaneous unbinned maximum likelihood fit to the Δt distributions of the tagged $B_{C P}$ and $B_{\text {flav }}$ samples. In this fit the Δt distributions of the $B_{C P}$ sample are described by Eq. (1) with $|\lambda|=1$. The Δt distributions of the $B_{\text {flav }}$ sample evolve according to the known frequency for flavor oscillation in B^{0} mesons. The observed amplitudes for the $C P$ asymmetry in the $B_{C P}$ sample and for flavor oscillation in the $B_{\text {flav }}$ sample are reduced by the same factor $1-2 w$ due to flavor mistags. Events are assigned signal and background probabilities based on the $m_{\text {ES }}$ (all modes except $J / \psi K^{* 0}$ and $\left.J / \psi K_{L}^{0}\right)$ or $\Delta E\left(J / \psi K_{L}^{0}\right)$ distributions. The Δt distributions for the signal are convolved with a common resolution function, modeled by the sum of three Gaussians [6]. Backgrounds are incorporated with an empirical description of their Δt spectrum, containing prompt and nonprompt components convolved with a resolution function [6] distinct from that of the signal.

FIG. 1. Distributions for $B_{C P}$ candidates satisfying the tagging and vertexing requirements: (a) m_{ES} for the final states $J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}, \chi_{c 1} K_{S}^{0}, \eta_{c} K_{S}^{0}$, and $J / \psi K^{* 0}\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)$, and (b) ΔE for the final state $J / \psi K_{L}^{0}$.

TABLE II. Number of events $N_{\text {tag }}$ in the signal region after tagging and vertexing requirements, signal purity P, and results of fitting for $C P$ asymmetries in the $B_{C P}$ sample and in various subsamples, as well as in the $B_{\text {flav }}$ and charged B control samples. Errors are statistical only.

Sample	N_{tag}	$P(\%)$	$\sin 2 \beta$
$J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}, \chi_{c 1} K_{S}^{0}, \eta_{c} K_{S}^{0}$	1506	94	0.76 ± 0.07
$J / \psi K_{L}^{0}\left(\eta_{f}=+1\right)$	988	55	0.72 ± 0.16
$J / \psi K^{* 0}\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)$	147	81	0.22 ± 0.52
Full $C P$ sample	2641	78	0.74 ± 0.07
$J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}, \chi_{c 1} K_{S}^{0}, \eta_{c} K_{S}^{0}$ only $\left(\eta_{f}=-1\right)$			
$J / \psi K_{S}^{0}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)$	974	97	0.82 ± 0.08
$J / \psi K_{S}^{0}\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)$	170	89	0.39 ± 0.24
$\psi(2 S) K_{S}^{0}$	150	97	0.69 ± 0.24
$\chi_{c 1} K_{S}^{0}$	80	95	1.01 ± 0.40
$\eta_{c} K_{S}^{0}$	132	73	0.59 ± 0.32
Lepton category	220	98	0.79 ± 0.11
Kaon I category $^{K a o n}$ II category	400	93	0.78 ± 0.12
Inclusive category	444	93	0.73 ± 0.17
B^{0} tags	442	92	0.45 ± 0.28
\bar{B}^{0} tags	740	94	0.76 ± 0.10
$B_{\text {flav }}$ sample	766	93	0.75 ± 0.10
B^{+}sample	25375	85	0.02 ± 0.02

There are 34 free parameters in the fit: $\sin 2 \beta$ (1), the average mistag fractions w and the differences Δw between B^{0} and \bar{B}^{0} mistag fractions for each tagging category (8), parameters for the signal Δt resolution (8), and parameters for background time dependence (6), Δt resolution (3), and mistag fractions (8). We fix $\tau_{B^{0}}=1.542 \mathrm{ps}$ and $\Delta m_{d}=0.489 \mathrm{ps}^{-1}$ [11]. The determination of the mistag fractions and Δt resolution function parameters for the signal is dominated by the high-statistics $B_{\text {flav }}$ sample. The measured mistag fractions are listed in Table I. Background parameters are determined from events with $m_{\mathrm{ES}}<5.27 \mathrm{GeV} / c^{2}$ (except $J / \psi K_{L}^{0}$ and $\left.J / \psi K^{* 0}\right)$. The largest correlation between $\sin 2 \beta$ and any linear combination of the other free parameters is 0.13 . We observe a bias of 0.014 ± 0.005 in the fitted value of $\sin 2 \beta$ in simulated events. Part of this bias (0.004) is due to a correlation between the mistag fractions and the Δt resolution not explicitly incorporated in the fit. Therefore we subtract 0.014 from the fitted value of $\sin 2 \beta$ in data and include 0.010 in the systematic error.

The fit to the $B_{C P}$ and $B_{\text {flav }}$ samples yields

$$
\sin 2 \beta=0.741 \pm 0.067(\text { stat }) \pm 0.034(\text { syst })
$$

Figure 2 shows the Δt distributions and asymmetries in yields between B^{0} tags and \bar{B}^{0} tags for the $\eta_{f}=-1$ and
$\eta_{f}=+1$ samples as a function of Δt, overlaid with the projection of the likelihood fit result.

The dominant sources of systematic error are the uncertainties in the level, composition, and $C P$ asymmetry of the background in the selected $C P$ events (0.023), the assumed parametrization of the Δt resolution function (0.017), due in part to residual uncertainties in the internal alignment of the vertex detector, and possible differences between the B_{flav} and $B_{C P}$ mistag fractions (0.012). The total systematic error is 0.034 . Most systematic errors are determined with data and will continue to decrease with additional statistics.

The large $B_{C P}$ sample allows a number of consistency checks, including separation of the data by decay mode, tagging category, and $B_{\text {tag }}$ flavor. The results of fits to these $\eta_{f}=-1$ subsamples are shown in Table II and found to be statistically consistent. The results of fits to the control samples of non- $C P$ decay modes indicate no statistically significant asymmetry.

We also measure the parameter $|\lambda|$ in Eq. (1) from a fit to the $\eta_{f}=-1$ sample, which has high purity and requires minimal assumptions on the effect of backgrounds. This parameter is sensitive to the difference in the number of B^{0} - and \bar{B}^{0}-tagged events. In order to account for differences in reconstruction and tagging efficiencies for B^{0} and \bar{B}^{0} mesons, we incorporate five

FIG. 2. (a) Number of $\eta_{f}=-1$ candidates $\left(J / \psi K_{S}^{0}\right.$, $\psi(2 S) K_{S}^{0}, \chi_{c 1} K_{S}^{0}$, and $\left.\eta_{c} K_{S}^{0}\right)$ in the signal region with a B^{0} tag $N_{B^{0}}$ and with a \bar{B}^{0} tag $N_{\bar{B}^{0}}$, and (b) the raw asymmetry $\left(N_{B^{0}}-N_{\bar{B}^{0}}\right) /\left(N_{B^{0}}+N_{\bar{B}^{0}}\right)$ as functions of Δt. The solid (dashed) curves represent the fit projection in Δt for $B^{0}\left(\bar{B}^{0}\right)$ tags. The shaded regions represent the background contributions. (c) and (d) contain the corresponding information for the $\eta_{f}=+1$ mode $J / \psi K_{L}^{0}$.
additional free parameters in this fit. We obtain $|\lambda|=$ 0.948 ± 0.051 (stat) ± 0.030 (syst). The coefficient of the $\sin \left(\Delta m_{d} \Delta t\right)$ term in Eq. (1) is measured to be $0.759 \pm$ 0.074(stat). The dominant contribution to the systematic error for $|\lambda|$, conservatively estimated to be 0.025 , is due to interference between the suppressed $\bar{b} \rightarrow \bar{u} c \bar{d}$ amplitude with the favored $b \rightarrow c \bar{u} d$ amplitude for some tag-side B decays. The other sources of systematic error for $|\lambda|$ are the same as in the $\sin 2 \beta$ measurement.

This measurement of $\sin 2 \beta$ supersedes our previous result [3] and improves upon the precision of each of the previous measurements $[3,4]$ by a factor of 2 . While the measured value is consistent with the range implied by
the measurements and theoretical estimates of the magnitudes of CKM matrix elements in the context of the standard model, it provides a precise and modelindependent constraint on the position of the apex of the Unitarity Triangle [12].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.A.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.
*Also with Università di Perugia, I-06100 Perugia, Italy.
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] A. B. Carter and A. I. Sanda, Phys. Rev. D 23, 1567 (1981); I. I. Bigi and A. I. Sanda, Nucl. Phys. B193, 85 (1981).
[3] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 091801 (2001).
[4] BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001).
[5] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[6] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66, 032003 (2002).
[7] Charge conjugation is implied throughout this Letter, unless explicitly stated.
[8] See, for example, L. Wolfenstein, Phys. Rev. D 66, 010001 (2002).
[9] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 241801 (2001).
[10] BABAR Collaboration, B. Aubert et al., SLAC Report No. SLAC-PUB-9170, 2002, hep-ex/0203040.
[11] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[12] See, for example, F. J. Gilman, K. Kleinknecht, and B. Renk, Phys. Rev. D 66, 010001 (2002).

