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Abstract: The relation between the potential theory and S-matrix approaches to the overlapping 
resonance problem is derived in an elementary way by relating both to the K-matrix 
approach. A generalisation of the formalism to the production of overlapping resonances in 
final states is given. 

We consider a situation in which there are several overlapping resonance states 
(with the same spin-parity and other relevant quantum numbers) labelled A, B, C, . . ., 

coupling to various two-particle continuum states labelled i, j, k, . . . . This problem 
has been extensively studied in the nuclear physics context, using potential theory. In 
particular, Feshbach lV3) has derived a generalisation (which is of wide applicability) 
of the one-level Breit-Wigner formula for the case of overlapping resonances. An 
alternative approach has been to write down a general T-matrix (or S-matrix) as a 
sum of resonance terms, and then to try and solve the constraints imposed by unitarity 
on the resonance parameters. Though pursued in the nuclear physics context also 4)t, 
this method is of interest in particle physics, where one wishes to avoid potentials, 
and it has been so studied “). The difficulty with it is that the constraints are complicat- 
ed non-linear conditions which seem hard to solve in general. Nevertheless, the 
overlapping resonance problem exists in particle physics: for example, the A, has been 
regarded as two overlapping resonances 5* 6), the Q-region in Knn mass may involve 
two resonances ‘), and there is the famous K-E system “). Now, it is known that the 
use of the K-matrix (rather than the T-matrix) is a simple way to satisfy the constraints 
of unitarity ‘), and the existence and properties of the K-matrix can be established 
on rather general grounds ‘* ’ “). Thus one might think that the K-matrix would be a 
useful approach to the problem in the particle physics context. 

McGlinn and Polis 11) used the K-matrix discussion of sum rules in the K-K system. 
Their suggestion that the Bell-Steinberger sum rule 12) could not be derived in this 
way, but only in potential theory, led to a series of papers 13-15) deriving the sum 
rule in both the T-matrix and potential theory approaches, and showing the equiva- 
lence of these approaches ’ 6* 1 ‘). 

None of these latter papers, however, used the K-matrix, which was the way 

t I thank Prof. P. K. Kabir for bringing this reference to my attention. 

417 



418 I. J. R. AITCHISON 

McGlinn and Polis attacked the problem; one would like to see the connection 
directly between the K-matrix and potential theory approaches. This connection has 
actually been given, in the nuclear physics context, by Feshbach “) using his general 
formalism, which he has also related to the T-matrix *, “). Our purpose here is to give 
a simple, purely algebraic, derivation of the equivalence of the T-matrix and potential 
theory approaches by relating both to the K-matrix, and to put the results in a particle 
physics context+. Having done this, we go on to outline an extension of the K-matrix 
formalism to production reactions in which the overlapping resonances appear in 
final states, along with another particle, or particles. 

At the outset, we wish to make clear that we shall be dealing with three different 
sorts of base states for the resonances. We shall label these three sets by (E, fl, . . .>, 
(a, /I, . . .}, and (A, B, . . .}. The first is th e set of base states used in the potential 
theory formalism, the second is the set used in the K-matrix formalism, and the third 
is the set of actual physical states. The precise definitions of these various states will be 
given in the course of the development. 

In potential theory, the T-matrix elements Tij for transition between continuum 
states i and j via the overlapping resonances forming the intermediate states can be 
written IV39 ** 13) (ail repeated indices are summed) 

qj =fiaS,& f$j, (1) 

where the elements of the propagator matrix SEa are given by 

S& = (M-+&m),-‘, (2) 

where m is the energy and M is a Hermitian mass matrix and I’ is a Hermitian width 
matrix 

(T)Zjr = F 271PifZififl’ (3) 

The states 6 8, . . . are the ‘bare’ resonance states as they exist before either the 
coupling V, to the continuum channels i or direct coupling between the states is turned 
on. They are in fact, therefore, bound states. Pi is the phase-space factor for channel i, 

and the f are the matrix elements fEi = ( El V,li ) between the bare states 3 and the con- 

Fig. 1. Transition from state j to state i via the set of overlapping resonance states described by 
the propagator matrix Sag. 

t Rosenfeld 4, has also given the connection between the K-matrix and S-matrix approaches 
(though not the potential theory approach), but we feel that our method is rather simpler; in addition, 
we do not need to assume that the phase-space factors are slowly varying. 
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tinuum states i. If V, is Hermitian we have& = & and if time refersal is valid we can 

choose thefto be real and such thatf& = f;a. Eq. (1) is easily visualized as fig. 1. 
The matrices r and M do not, in general, commute, and unless they do they cannot 

be sim~taneously diagonalised by a unitary transformation. But it is always possible to 
diagonaIise one of them, in particular M, by a unitary matrix U: 

U,, M,p C.$’ = m, 6, , UUf = I. (4) 

Thus U effects the transformation from the set of base states (S,fl, . . .} to a new set 
(01,b , . .). The physical significance of the latter set is that it is the set of states which 
~agonalise M, the ~er~tian part of the “effective ~a~ltonian” matrix M - @lr; 

we shall call them the mass-mixed states. Their relevance to the K-matrix will appear 
below; note that they are not the physica states, which diagonalise M-4_ir. 

If we now define new couplingsf,,, f~j by 

f Bi - - u&3f@j, fi, = &a u,’ , 

the T-matrix has the form 

‘I;;i = fia s&Zf@j 9 

where 

with 

In matrix form, therefore, l*)t 
S’ = s+S’cs, 

which we can iterate as 
S’ = SfSZSfSLsCSf . . ., 

and so we obtain 

(5) 

(6) 

Fj = fiz KJl f#j = ha s~# f@j +.&a swy Z;d s@3 fb j f * * * 

~~~s~3f~j+~~S~~(i~~ P~f~~~~~s*~f~j~ v e a = &j+inf: &kPkI;kj+ . * -9 
k k 

which is the iterated form of 
T = K(I-inpky. (3 

Eq. (7) is the standard expression for the T-matrix in terms of the K-matrix 9>, where?’ 

t I thank Professor A. N. KamaI for showing me this reference. 
tt Correspon~ng to the results on pp. 416-417 of ref. 3). 
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As before, with Hermitian potentials K = Kt, and with time-reversal invariance K 
is real and symmetric. A common approximation in resonance theory is to take the 
fj, as constant. 

The physical meaning of (8) and of the states {cr, p, . . .}, is simple. If we put into 
the K-matrix a sum of poles at the masses of the resonance states after they have been 
mass-mixed (i.e. the masses of the states which diagonalise M), with coupling con- 
stants from the continuum channels to these mass-mixed states, then we get a T-matrix 
which is exactly equivalent to the potential theory one. This therefore sums up the 
inter-relationships between the three formalisms. 

How many real parameters are needed to describe the resonances? Let there be N 
channels and R resonances. With Hermitian potentials and time-reversal invariance, 
M is a real symmetric matrix with +R(R+ 1) parameters; r contains NR real param- 
etersf,i, making 3R(R+ l)+ NR parameters in all. On the other hand, the K-matrix 
given by (8) contains R mar and NR f,i, or R + NR parameters in all. This is the neces- 
sary number of parameters as found by Rosenfeld “) and the reason (1) contains more 
is simply that the states h are unphysical anyway, a unitary transformation of them 
being always allowed. The parametrisation of (1) is of course unitary, but it contains 
redundant parameters; (8) represents the minimal parametrisation. 

As Stodolsky Is) has pointed out, the form of Z can be traced directly to unitarity. 
Defining the S-matrix by 

S*j = di~+2?TiJ~~j&, (9) 

the unitarity relation SS’ = I is 

T - Tt = 2niTpTt, (10) 

which, if Tij = fiaS&fpj, can be reduced to 

Thus the antihermitian part of S’, namely Z, is given by Zajr = inClf,iPifia as above. 
Furthermore, writing (10) in the form Im T-l = -np (assuming a symmetric T-matrix) 
we see that a unitary T-matrix can always be written in the form (7) provided only 
that K is real. Thus unitarity is the essential ingredient throughout. 

The states of the system which have definite mass and lifetime are neither (2, p, . . .} 
nor {GL, fi, . . .}, but rather the eigenstates {A, B, . . .> of the full operator M-$iT: 

(M-$iT)IA> = m&Q, (12) 

where mA is complex. These are the states which may be identified with the physical 
particles, having a definite mass Re(m,) and lifetime r- ’ = -$Im(m,). These masses 
mA also occur, of course, as the poles of the T-matrix in the form (1) or (6), since 
det S& = det S& = 0 at the eigenvalues m = m A. It would seem that McGlinn and 
Polis 11) failed to distinguish clearly between the K-matrix states I a) and the physical 
states IA). Their sum rule, though correct, relates to the unphysical states 1~) rather 



K-MATRIX FORMALISM 421 

than the physical ones ]A). The useful sum rule of Bell and Steinberger i’) is obtained 
very simply from (2): 

where 

Eq. (13) holds independently of any symmetry restrictions on thef. 
One should note that because M-&T is not hermitian, (A] # (l,4))t. The trans- 

formation matrix (B I a), which relates the K-matrix and T-matrix states, is therefore 
not unitary, though it is (complex) orthogonal. Rosenfeld ‘) has introduced and 
used this matrix. We note that in Rosenfeld’s case the phase-space factors pi are taken 
as constant and absorbed into the f; with this difference, eq. (14) corresponds to his 
eq. (10). Also, in terms of the physical states, T may be written as 

(15) 

where S’ii = (mA -m)dAB. Comparing (6), and following, with (15) we find 

mAdAa+3iC 2nPifA,f, = <4ahd,~<PIBh (16) I 
which corresponds to Rosenfeld’s (9). 

We have discussed so far the case of transitions between the same states i, j, . . . as 
occur in the definition of Trp [eq. (3)]. It is simple to consider the slightly more general 
case in which, in eq. (I), f8i is replaced by fap where p (the production channel) does 
not occur in the sum in r+. For example, we might have the production process 
illustrated in fig. 2, where the production end of the propagator S& is hooked on to a 

Fig. 2. Production process leading to state j, which is coupled via the overlapping resonances to the 
production mechanism. 

state which is not in ii>; in particular, fp, might be dependent on momentum transfer. 
This would then describe the problem of final-state interactions involving overlapping 
resonances 19). W e would then have, for the transition from production state p to 
final state j, 
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For the case of two resonances, this gives the results of Lassilla and Ruuskanen 6), 
if width mixing effects (i.e. those due to off-diagonal terms in P) are neglected. Con- 
sidering again the iterated form of (17), in the basis ~1, p, . . ., we find 

which is the iterated form of 

Fjp = pjp + ix c Kjk Pk Fkp 9 

k 

where K is still the elastic K-matrix, and Pjp is an analogous production K-vector with 
elements 

pjp = C fja --f.p, 
a m,-m 

(19) 

for fixed Pt. As in standard K-matrix theory, it is simple to verify that (18) guarantees 
the correct coupled unitarity relations among the two body channels, i, j, . . ., if P as 
well as K have no normal threshold branch points. We can also write (18) as 

F = (l-izKp)+P, (20) 

demonstrating that the same physical poles will of course occur in this problem as in 
the previous one. If the production coupling& is actually proportional to the cou- 
pling to a particular state of {i} then P is proportional to the appropriate K-matrix 
element, and F to the corresponding T-matrix element. This would be the case, for 
instance, if in fig. 2 the incident and exchanged particle formed a state k included in 
{i}, and if all energy and momentum-transfer dependences were ignored. 

In practice, of course, the resonances are always accompanied by background. This 
is easy to incorporate into the K-matrix framework, since constant terms can always 
be added to the poles in the K-matrix (or P-vector) elements, without destroying uni- 
tarity of the T-matrix (or F-vector). One would then have a simple, general, unitary 
parametrization. 

A final point concerns the application of symmetries, such as SU(3) in the strong 
interaction case. Normally, in coupled-channel problems, it is reckoned reasonable 
to put in SU(3) symmetric coupling constants and masses into the K-matrix, while the 
phase-space factors pi are evaluated using the physical (split) masses “). However, 
in the present case involving mass-mixing effects, distortions from symmetry can be 
very large if the unmixed states are initially nearly degenerate. It is much more 
reasonable to assume that the unmixed states E, p, . . . are the ones which obey sym- 
metry relations. In fact, to assume that it is the K-matrix couplings& and masses ma 

+ Note that P has poles - in fact, the same ones as K. If P in (20) is taken to be simply a 
constant, unwanted zeros will appear in the numerator of F in (20) at the masses m,. This difficulty 
was discovered by Graves-Morris 20) using the analytic S-matrix approach to the f.s.i. problem, 
given by Landshoff and Olive 21). It would seem that the potential theory connection established 
here shows that (19) is the right way to deal with the difficulty. 
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which obey symmetry relations is equivalent to assuming that the unmixed couplings 
fsi and masses m, are symmetric, and that there is no direct coupling between the 
states E. 

I should like to thank Dr. M. J. Bowler for interesting me in this problem, in con- 
nection with his investigations of the Q-region in the Kxrc system. I am grateful to 
him and to Mr. J. Dainton, for many useful discussions. 
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