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In the standard model (SM) of particle physics CP violation in the quark sector of weak inter-
actions arises from a single irreducible phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix V
that describes the mixing of quarks [1]. The unitarity of the CKM matrix defines a unitarity tri-
angle (UT) in the complex plane. CP violation measurements and semileptonic decay rates (and
other methods) can be conveniently displayed and compared as constraints on the angles and sides,
respectively, of this triangle. Inconsistencies between all these (in general) precise and redundant
measurements can be used to search for new physics (NP). As today, there is an impressive over-
all agreement between all measurements [2]. Among these, the angle γ defined as the phase of
Vub in the Wolfenstein parametrization [1], is particularly relevant since it is the only CP-violating
measurement that, together with the measurement of the CP-conserving magnitude of Vub, selects
a region of the UT apex independently of most types of NP, and thus constitutes a SM candle type
of measurement. Current constraints, provided by the BABAR and Belle experiments, make use of
B± → D(∗)K± and B± → DK∗± decays, and are still weak (∼ 15◦). Neutral B decays have also
been proposed, although do not yet provide significant constraints.

The angle γ from B± →D(∗)K± and B± →DK∗± decays is determined measuring the interfer-
ence between the amplitudes b → u and b → c, when the neutral D meson is reconstructed in a final
state accessible from both D0 and D0 decays. Since both amplitudes are tree level, the interference
is unaffected by NP appearing in the loops, making the theoretical interpretation of observables in
terms of γ very clean. The disadvantage is that the branching fractions of the involved decays are
small due to CKM suppression (10−5−10−7), and the size of the interference, given by the ratio rB

between the magnitudes of the b → u and b → c amplitudes, is small due to further CKM and color
suppressions (∼ 10%). As a consequence, the measurements are statistically limited and one has to
combine complementary methods applied on the same B decay modes sharing the same hadronic
parameters (rB and δB, i.e. the relative magnitude and phase of the b → u and b → u transitions)
and γ , and use as many as possible different B decay modes to improve the overall sensitivity to γ .

In this talk we present the most recent determinations of γ obtained by BABAR, based on the
full data sample of charged B meson decays produced in e+e− →ϒ (4S) → B+B− and recorded in
the years 1999-2007, about 468×106 B+B− pairs. We have studied B± →D(∗)K± and B± →DK∗±

decays, with the neutral D mesons reconstructed in a number of different final states: D→K 0
S h+h−,

with h = π,K (Dalitz plot method); D → K±π∓ (ADS method); and D → fCP, with fCP a CP-
eigenstate (GLW method) [3].

One of the B mesons produced in the ϒ (4S) decay is fully reconstructed, with efficiencies rang-
ing between 40% (for low-multiplicity with no neutrals) and 5% (for high-multiplicity decays with
neutrals). The selection is optimized to maximize the statistical sensitivity. The reconstruction effi-
ciencies have substantially improved (20% to 60% relative) with respect to our previous measure-
ments based on about 384×106 B+B− pairs, reflecting improvements in tracking and particle iden-
tification, and optimization of the analysis procedures. Signal B decays are characterized by means
of two nearly independent kinematic variables exploiting the constraint from the known beam en-
ergies: the beam-energy mES ≡

√

E∗2
beam −|p∗B|

2 and the energy-difference ∆E ≡ E∗
B−E∗

beam. Since
the main source of background comes from qq continuum production, additional discrimination is
achieved using multivariate analysis tools, from the combination (either a linear Fisher discrimi-
nant F , or a non-linear neural network, NN) of several event-shape quantities. These variables
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distinguish between spherical BB events from more jet-like events and exploit the different angular
correlations in the two event categories. The signal is finally separated from background through
unbinned maximum likelihood (UML) fits to the B± → D(∗)K± and B± → DK∗± data using mES,
∆E, and F or NN. Some analyses make also use of tagging information from the recoiling B
meson. B± → D(∗)π± decays, which are about 12 times more abundant than B± → D(∗)K±, have a
similar topology and show negligible CP-violating effects (rB ∼ 1%), are discriminated by means
of excellent pion and kaon identification provided by dE/dx and Cerenkov measurements, and are
used as calibration and control samples (negative tests of CP violation).

In the Dalitz plot (DP) method the amplitude for a B− decay has for the b→ c transition the DP
of the D0 decay, while for the b → u transition the DP is the corresponding to the D0 decay. If we
assume no D mixing nor CP violation in the D decay, and use as independent kinematic variables
s± = m2(K0

S π±), then the two DPs are identical but one rotated 90◦ with respect to the other.
This is of critical importance since allows to determine directly from data the strong charm phase
variation for D0 and D0, as well as well as the hadronic parameters rB and δB, and the week phase
γ , provided that a D decay amplitude model is assumed. For B+ decays one has to interchange
the D0 and D0 DPs, and change the sign of γ . This results in an interference term proportional
to our observables x± ≡ rB cos(δB ± γ) and y± ≡ rB sin(δB ± γ), i.e. the real and imaginary parts
of the ratio of b → u to b → c amplitudes for B± decays. We reconstruct B± → DK±, D∗K± with
D∗ →Dπ0,Dγ , and DK∗± with K∗± →K0

S π± decays, followed by neutral D meson decays to the 3-
body self-conjugate final states K0

S h+h−, with h = π,K. From the UML fit we determine the signal
and background yields in each of the eight different final states for each B charge, along with the
CP-violating parameters x± and y± [4]. We find 1507 B± signal candidates with K0

S π+π−, and 268
with K0

S K+K−. Prior to the CP fit, we model the D0 and D0 decay amplitudes as a coherent sum of
S-, P-, and D-waves, and determine their amplitudes and phases (along other relevant parameters)
relative to dominant CP-eigenstates K0

S ρ(770) (for K0
S π+π−) and K0

S a0(980) (for K0
S K+K−), using

a large (≈ 6.2×105) and very pure (≈ 99%) signal sample of flavor tagged neutral D mesons from
D∗+ → D0π+ decays produced in e+e− → cc events [5]. From the (x±,y±) confidence regions for
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Figure 1: 1σ and 2σ contours (statistical only) in the (x∓,y∓) planes for (a) B∓ → DK∓ and (b)
B∓ → D∗K∓, for B− (solid lines) and B+ (dotted lines) decays. (c) 1 − CL as a function of γ for
B∓ → DK∓,D∗K∓,DK∗∓ decays, including statistical and systematic uncertainties. The dashed (upper)
and dotted (lower) horizontal lines correspond to the 1σ and 2σ intervals, respectively.

each of the 3 different B decay modes –Fig. 1.(a)(b)– we determine, using a frequentist procedure,
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1σ [2σ ] intervals for γ –Fig. 1.(c)–. We obtain γ (mod 180◦) = (68±14±4±3)◦ [39◦,98◦], where
the three uncertainties are statistical, experimental systematic, and amplitude model systematic. We
also determine the hadronic parameters rDK±

B = (9.6± 2.9)% [3.7,15.5]%, rD∗K±

B = (13.3+4.2
−3.9)%

[4.9,21.5]%, κrDK∗±

B = (14.9+6.6
−6.2)% [0,28.0]% (κ = 0.9± 0.1 takes into account the K∗ intrinsic

width), and the strong phases δ DK±

B , δ D∗K±

B , and δ DK∗±

B [4]. A 3.5σ evidence of direct CP violation
(γ 6= 0) is found from the combination of the 3 channels, which corresponds to the significance of
the separation between the (x+,y+) and (x−,y−) solutions in Fig. 1.(a)(b).

In the ADS method, we reconstruct B± → DK±, D∗K± with D∗ → Dπ0,Dγ , followed by D
decays to both doubly-Cabibbo-suppressed (DCS) D0 final state K+π− and the Cabibbo-favored
(CF) K−π+, which is used as normalization and control sample. Final states with opposite-sign
kaons arise either from the CKM favored B decay followed by the DCS D neutral D decay or
from the CKM- and color-suppressed B decay followed by the CF D decay, producing an in-
terference which can be potentially large since the magnitudes of the interfering amplitudes are
similar. However, their overall branching ratios are very small (∼ 10−7) and background sup-
pression becomes crucial. The UML fit directly determines the three branching fraction ratios
RADS between B decays with opposite-sign and same-sign kaons, and the three yields of B decays
with same-sign kaons, using mES and NN. The three CP asymmetries AADS are inferred from all
these. We obtain first indications of signals for the B± → DK± and B± → D∗K± (with D∗ → Dπ0)
opposite-sign modes –Fig. 2–, with significances of 2.1σ and 2.2σ , respectively [6]. The measured
branching fraction ratios are RDK

ADS = (1.1±0.5±0.2)×10−2 , R[Dπ0]K
ADS = (1.8±0.9±0.4)×10−2 ,

and R[Dγ ]K
ADS = (1.3 ± 1.4 ± 0.8)× 10−2, and the CP asymmetries are ADK

ADS = −0.86 ± 0.47+0.12
−0.16,

A[Dπ0]K
ADS = 0.77 ± 0.35 ± 0.12, and A[Dγ ]K

ADS = 0.36 ± 0.94+0.25
−0.41 . From these results and external

measurements of the relative amplitude and phase of D0 to D0 mesons decaying into the K−π+

final state [7] we infer, using a frequentist procedure similar to that used in the DP method,
rDK∓

B = (9.5+5.1
−4.1)% [0,16.7]%, rD∗K∓

B = (9.6+3.5
−5.1)% [0,15.0]%, and 54◦ < γ (mod 180◦) < 83◦,

with no constraints at 2σ level.
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Figure 2: Projections on mES for (a) B± → DK± and (b) B± → D∗[Dπ0]K±, D → K∓π± opposite-sign
decays, for ADS samples enriched in signal (NN > 0.94). The points with error bars are data while the
curves represent the fit projections for signal plus background (solid), the sum of all background components
(dashed), and qq̄ background only (dotted).

In the GLW method, we reconstruct B± → DK± decays, followed by D decays to non-CP
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(D0 → K−π+), CP-even (K+K−, π+π−), and CP-odd (K0
S π0, K0

S φ , K0
S ω) eigenstates. The partial

decay rate charge asymmetries ACP± for CP-even and CP-odd D final states and the ratios RCP± of
the charged-averaged B meson partial decay rates in CP (R±

K/π ) and non-CP (RK/π ) decays (normal-
ized to the corresponding B± → Dπ± decays, to cancel systematic uncertainties related to absolute
reconstruction efficiencies) provide four observables from which the three unknowns γ , rB and δB

can be extracted (up to an 8-fold ambiguity for the phases). The signal yields, expressed in terms of
ACP±, R±

K/π and RK/π are extracted from UML fits to mES, ∆E, and F . We identify about 500 B±→

DK± decays with CP-even D final states and a similar amount for CP-odd D final states, and mea-
sure [8] ACP+ = 0.25±0.06±0.02, ACP− = −0.09±0.07±0.02, RCP+ = 1.18±0.09±0.05, and
RCP− = 1.07±0.08±0.04. The parameter ACP+ is different from zero with a significance of 3.6σ ,
and constitutes evidence for direct CP violation in B± → DK± decays. These results can be written
in terms of the observables x± using the relationship x± = [RCP+(1∓ACP+)−RCP−(1∓ACP−)]/4.
Excluding the D → K0

S φ , φ → K+K− channel to facilitate the combination with the DP method,
we find x+ = −0.057±0.039±0.015 and x− = 0.132±0.042±0.018, which are consistent (and
of similar precision) with the DP method. From these results and using a frequentist procedure
similar to that used previously we infer 24% < rB < 45% [6,51]%, and mod 180◦, 11◦ < γ < 23◦

or 81◦ < γ < 99◦ or 157◦ < γ < 169◦ [7◦,173◦].
We have reported the recent progress in the determination of the CKM angle γ , using the

full BABAR data sample and three different and complementary methods (DP, ADS, and GLW). A
coherent and consistent set of results on γ and the hadronic parameters characterizing the B decays
has been obtained. The central value for γ , around 70◦ with a precision around 15◦, is consistent
with indirect determinations from CKM fits [2]. A proper average of all the three methods using the
full BABAR sample of B∓ →D(∗)K∓, DK∗∓ decays is foreseen. We obtain x−−x+ = 0.175±0.040
by combining the x± measurements from the DP and GLW methods for B∓ → DK∓ decays, which
is different from zero with a significance of 4.4σ , thus constitutes strong evidence for direct CP
violation in these charged B decays. Finally, we have the first sign of an ADS signal in B∓ → DK∓

and B∓ → D(∗)K∓ decays.
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