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Abstract

This note describes the second part of the analysis used to extract the CKM angle « from
the study of B~ — D®OK~ (with D* — D% D%y) decays using a Dalitz plot analysis
technique of D° — Kgnt7m~ decays. This document focus on the description of the final
CP fit configuration, results and systematic uncertainties, along with the statistical methods
(frequentist and Bayesian) used to extract the final value of v and the other CP-violating
parameters. The first supporting document (BAD#899) describes the analysis setup, event
selection and background characterization, likelihood fit procedure, Dalitz model and some fit
results. We adopt the frequentist approach to provide final results, while the Bayesian method
is used as an independent cross-check. The final results of the analysis are also presented
and discussed here. We use Runl-2-3-4(BlackDiamond) data corresponding to an integrated
luminosity of 205 fb1.
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1 Introduction

The likelihood function used for the measurement of the angle v of the CKM unitarity triangle
making use of DY three-body decays (such as D° — K9 +7~) from B~ — D™ K~ decays through
a Dalitz analysis [1] is affected by large non-Gaussian effects for the current statistics (205 fb~')
[2]. We observe that for a relatively small dataset and for small absolute value of the ratio of the
A(b — u) and A(b — ¢) amplitudes, rg = |A(b — u)/A(b — ¢)|, the likelihood fit returns a biased
estimate of rp, and the rms of v (the CKM weak phase) and 0 (the strong phase of the B decay)
pulls are significantly larger than unity. This is easily understood since o2(7y) is proportional to

2 . . . . . .
ﬁ, and d—dl% is proportional to rp, therefore it will be smaller for larger rp. Since there rp is

d2
positively biased the error returned by the maximum likelihood method will be smaller than what

it should be to represent the statistical fluctuation (i.e. it does not define a confidence interval with
the correct coverage properties). Moreover, while the linearity of v and ¢ is verified, rp saturates
at low truth values of rp, with a saturation region different for the different samples since they
have different statistical contents. The saturation effect, the rp bias and the large ~ and § pulls
essentially go away with a data sample about ten times larger. The nature of these non-Gaussian
effects scaling with the size of the data sample are related to the small number of events in the
region of the Dalitz plot sensitive to rp (and ) and to the polar coordinates representation of the
space of fit parameters, and more particularly, to the positive definiteness of rp.

As a consequence, the usual assumption that the parameters at the maximum of the likelihood
are unbiased estimators of true quantities it is not valid anymore, and more sophisticated techniques
are needed to extract central values, errors and confidence intervals [3]. This also poses limitations
to the way how systematic uncertainties have to be evaluated. For example, usual techniques based
on the quadratic differences of fit errors between the nominal and alternative fit configurations
are now not reliable since fit errors are not a good representation of the true statistical fluctu-
ations. Similarly, one has to be very careful when looking at differences in central values since
biases themselves are a function of the truth values. Thus we have employed and developed both
frequentist and Bayesian techniques to extract the confidence intervals, central values and errors,
which are described in this document. Since the frequestist approach has several advantages for
the extraction of both statistical and systematic uncertainties (in addition to avoiding the intrinsic
arbitrary choice of the prior distributions of Bayesian methods) we have used it for presenting the
final analysis results on rp, v and J, using the Bayesian approach as an independent cross-check.
The systematic uncertainties assigned to the Bayesian results are those obtained with the frequen-
tist method, since the correct evaluation of these errors require the use of cartesian coordinates,
which imply the use of the frequentist approach.

In the classical (frequentist) approach, the confidence interval [py,ps] for parameter p, whose
true value p’ is unknown, is such that has a probability

P(p € [p1,p2]) =1 —q, (1)

of containing the unknown true value. The limits of the interval, p; and po, are functions of the
measured value of p. In particular the confidence interval will contain the unknown true point p’ in
a fraction 1 — « of the experiments, or in other words, if the experiment is carried out many times, a
fraction 1 — « of those experiments will find the measured point within the given confidence region.
If Eq. (1) is satisfied, one can say that the defined interval covers at the stated confidence level,
or that the interval has the correct coverage. In our case we have not 1-dimensional confidence
level interval but a 3-dimensional or 5-dimensional confidence level regions, as the unknown vector
parameters of parameters is



p'=(r5,7d) or  p'=(rg," 0 g, 0") . (2)

The 3-dimensional (5-dimensional) confidence level regions determined are o = 19.9%, 72.1% (3.7%,
42.8%) corresponding to 1, 1.96 standard deviations respectively for each single parameter (regard-
less the others), in the case of a 3-dimensional (5-dimensional) Gaussian distribution!. We will
quote finally for the error on the single parameters the statistical error corresponding to the 19.9%
confidence region (1 standard deviation ellipsoid). The methodology used is similar to that used by
Belle [4] although with some relevant differences, and requires knowledge of the probability density
function, PDF, of the fitted parameters z, as a function of the true parameters p'. This PDF can
be obtained using toy MC techniques, where large sets of experiments are generated and fitted
using the full experimental likelihood function L., as will be discussed in section 2.2.
Alternatively, if we interpret the likelihood function as a probability density function for the
truth parameters, a correct estimator can be given by the average value of each parameter according
to its own PDF. This method to obtain an a posteriori distribution for each parameter requires
an a priori distribution, which will be assumed as flat in the space of polar coordinates. This
arbitrary choice is intrinsic to Bayesian methods [3], but it still can provide reliable estimates of
the confidence intervals if the dependence with the a priori distribution is small. As indicated
previously, the Bayesian approach is used as an independent cross-check of the frequentist results.

1Or equivalently, x? distribution with 3 (5) degrees of freedom.



2 Classical (frequentist) technique

2.1 Cartesian coordinates

The 4-dimensional cartesian parameter space is defined by the variables zy = (z4,y+ ), where

z+ =R(rppe®) =rgL cosfy

yr = S(rpoe®) = rpysinfy (3)

with 6L = 6 & . The choice of this particular basis is important because no physics boundaries
have to be imposed to the fit variables. The consequence, as proved later, is the Gaussian behavior
of the errors and the absence of biases in the fit results. On the contrary, the choice of the polar
coordinates base,

(TB7’Y? 5)7 (4)

even if it has one parameter less, it contains one parameter with a physics boundary (rp > 0).
In this case it is found a biased distribution for the rp fit values, where the bias is larger for
smaller values of rg and smaller data sample size. In addition, cartesian coordinates are largely
uncorrelated, while (rp,7,6) are significantly correlated. The correlation matrix blocks for DK
and D*YK modes obtained from the fit to the BlackDiamond data sample are shown in tables 1
and 2, respectively. As shown later on the basis of Toy MC studies, the only sizeable correlations
appear for pairs (z4,y+) and (z_,y—) within a given B decay mode. This contribution will be
taken later into account in the frequentist PDF. All the cross correlation terms between D°K and
D*YK samples are zero.

Moreover, the cartesian coordinates are sensitive to the direct CP violation in the B~ —
DK~ decay (and that with a simple Gaussian behavior). If we represent in the (z+, %) plane
the results for BT decays, the distance of the two points d is

d = [(w-—z1)*+ (y- —y)?)"/? = 2rp[siny] . (5)

A non null distance means evidence of direct CP violation.

Table 3 reports the (z,y+) nominal fit results on the BlackDiamond data sample, for the DK
and D*OK decay modes. In Figure 1 are shown the 68.3% and 95% confidence-level contours in
the (z4,y+) cartesian fit parameter space for the two channels. The distance d is the length of
the segment between the BT (circle dot) and B~ (rectangular dot). The statistical significance of
the CP violation will be discussed later in section 2.5. Given the good Gaussian behavior of the
cartesian parameters (see below), these contours have been obtained using the standard likelihood
ratio method (ALzp = 0.5,1.921, for 68.3% and 95% confidence-level regions) [3].

From Toy MC studies, described in detail in Appendix A, residual distributions of the cartesian
fit parameters space doesn’t show any significant bias. The errors from the fit are well calculated,
pulls (residuals normalized to the fit errors) have o = 1 within the errors for all the fit variables and
means are consistent with zero. For this study we have used a set of about 2K Toy MC experiments
corresponding to the nominal data results (i.e. the generated x4 and yi values are those found in
the nominal fit, table 3). The linearity of the (x4,y+) fit parameters together with the stability
of their corresponding rms’ (0., , oy, , 0,_, and o,_) versus the generated parameter values are
demonstrated in figures 2 and 3, for the D°K and D**K samples respectively (error bars indicate



Table 1: Correlation matriz for (x+,y+) cartesian coordinates, for the D°K decay mode.

Table 2: Correlation matriz for (z%,y%) cartesian coordinates, for the D**K decay mode.

Table 3: Fit results for (x+,y+) cartesian coordinates, for the D°K and D*'K decay modes. The
values inside square brackets are the quadratic (Gaussian) errors calculated from the fit covariance

matriz.

Observable | z_ y— T4 Y+
T 1 [25x1072| 94x107° | -=3.0x107°
Yy 1 ~1.8x107* | —2.3 x 107*
T 1 6.0 x 1072

Observable | z_ y— T4 Yt
T 1 | -1.7x107' | -63x1073 | 3.6 x1073
y_ 1 —57x1073 | 2.6 x 1073
Ty 1 —2.7x 1071

Observable DK DK
T 0.077270 0558 [£0.0692] | —0.130670 9920 [40.0934]
y_ 0.06359:0953 [£0.0919] | —0.14331 01088 [+0.1049]

T —0.1287%86%(28}1 [40.0703]
T00s14 [£0.0787]

m 0.0186

0.139710-05%%

0.1183

0.01317%9 130

[£0.0926]
[+£0.1195]
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Figure 1: 68.3% (dark blue) and 95% (bright blue) confidence-level countours in the (xy,y+) carte-
sian fit parameter space for DK (left) and D*°K (right). Solid (dotted) contours are for B~ (BT)
decays. Given the good Gaussian behavior of the cartesian parameters, these contours have been
obtained using the standard likelihood ratio method (ALey, = 0.5,1.921) [3].

the rms of the distribution at each generated point). These figures have been produced with 20K
Toy MC experiments with truth (z4,y4 ) values obtained by generating randomly 75 and the weak
and strong phases, in the ranges [0,0.3], [-180°,180°] and [0, 360°], respectively. Using the same
experiments we have also studied the stability of the rms of the residual and pull distributions in
bins of the truth rp value, as shown in Appendix A. From both studies we observe that the rms
values are stable in the wide range of truth values within a precision of < 10%. These results will
be used in the parametrization of the frequentist PDF, as described below.

2.2 Description of the method

Once we have demonstrated the Gaussian and linearity behavior of the cartesian fit parameter
space, we can construct an analytical parameterization of the PDF. The 4-dimensional PDF is
written as

d*P

m(m,z—\pt) = Gy (z+;r]§ cos(5t +’Yt)=7”59 sin((st —|—,-Yt)’0'w+,0'y+,p+> X
Go (Z—;Tfs cos(8" — "), risin(6" — ")/t),a'w_,o'y_,p_) (6)
where
1 1 . |:(I—P§a:)2+(y_ﬂ2y)2_2p(a:—ux)(y_uy):|
G Z; ) 70 70 9 - 2(1=p=) [~ oy oxoy 7
2 (2t oy O O ) 2100/ 1 — p? (7)

and z4 = (z4,y+) and p = (rp,7,d). The vectors z', and p', defined equivalently to z+ and
p respectively, are the corresponding parameters in the truth parameter space. The Gaussian
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Figure 2: Linearity of the (x+,y+) cartesian fit parameter space, for the D°K mode. The truth
(generated) values of (z+,y+) have been obtained by generating randomly rp and the weak and strong
phases. rp was generated in the range [0,0.3]. Error bars indicate the rms of the distribution at
each generated point.
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Figure 3: Linearity of the (x+,y+) cartesian fit parameter space, for the D*°K mode. The truth
(generated) values of (z+,y+) have been obtained by generating randomly rp and the weak and strong
phases. rp was generated in the range [0,0.3]. Error bars indicate the rms of the distribution at
each generated point.
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widths (o4, , 0y, ) and the correlations pi (all the other correlations are neglected) distributions
can obtained either from the nominal full experimental likelihood L., Toy MC experiments or
from the fit to the data sample itself, since the agreement with the values found in data is very
good, as shown in figures 30, 31 and 32 in Appendix A. Given this good agreement and in order
to take into account the goodness of the fit to the data sample (i.e. good or bad luck of the data
sample single experiment), we will use in the above PDF the values of the widths and correlations
found in the data fit, which were summarized in tables 3, 1 and 2.

Once we have constructed and justified the PDF of the fit parameters as a function of the
true parameters, the technical procedure to construct 3-dimensional confidence regions and their
1- and 2-dimensional is as follows. The confidence level 1 — a for each set of true parameters p' is
calculated as

a(p') = d47P(Z z_|p')d*z, d’z (8)

where the integration domain D (the confidence region) is given by the condition

d*pP d*p ata _data
m(z+,z_\pt) > m(zit 7Zit ’Pt) ) 9)

i.e. it includes all points in the fit parameter space closer to the truth point than the data point.
The values of ziata are those given in table 3. To construct the 3-dimensional confidence region
(p® space) we generate randomly a large set (10%) of points p* = (rf;,~%, %), in the ranges [0, 0.4],
[—180°,180°] and [0, 360°]. For each generated point p* the integral a(p') is evaluated according
to equations (8) and (9). If we are interested in building a 3-dimensional region of joint prob-
ability 1 — ag, then we select only those points for which a(p') < ap. The 2-dimensional and
1-dimensional contours are then built by projecting the 3-dimensional joint probability regions.
The values ag = 0.19875,0.72092 correspond to the 1 and 1.96 standard deviation 3-dimensional
ellipsoids, thus the 1-dimensional projections represent the 1 and 1.96 standard deviations of each
individual parameter?, regardless the other parameters®. This procedure results in a confidence do-
main with the minimum possible area and so has maximum power to exclude alternative hypotheses.
The integral (8) with the contour condition given by Eq. (9) can be evaluated numerically, but an
analytical evaluation is also possible by performing a change of variable to 4-dimensional hyper-
spheric coordinates, with the subsequent gain in CPU (many orders of magnitude) and precision.

The Neyman’s freedom to define the likelihood ordering offers also the possibility to use alter-
natively the likelihood ordering proposed in [5] instead of that given in Eq. (9). In this paper it
is raised the issue of undercoverage produced by the usual orderings, like the one used here, when
measured parameters are bounded by physical limits. In addition to the alternative ordering pro-
posed by Feldman and Cousins, a possible way out (also pointed out in their paper) is to allow the
measured parameters to take unphysical values. This requires knowning the PDF for non-physical
values, which often raises conceptual problems. However, we should stress here that we are free of
this problem since our fit parameter space (cartesian coordinates) is not bounded. Obviously, this
does not imply that our ordering choice and that of Feldman-Cousins provide exactly the same con-
fidence regions (this is the inherent freedom to the Neyman’s definition) but both provide regions
with the correct statistical coverage. The correct coverage provided by our method and particular
ordering is demonstrated in section 2.6.

21.960 corresponds to a 95% probability content for the case of a 1-dimensional Gaussian distribution [3].
3These values of oo are the cumulative (upper) integral of a x? probability distribution for x* = 1%,1.96% and
v = 3 degrees of freedom [3].

14



As an additional cross-check we have verified that the 68.3% confidence level interval for a point
in the true parameter space with TtB = 0 (null point, i.e. z', = 0) contains rtB = 0 (see Appendix B).
This check is relevant to verify that the method intrinsically accounts for the rp bias.

2.3 1- and 2-dimensional projections of confidence regions for D°K and D*°K

Applying this procedure separately to DK and D**K, and projecting in 1 and 2 dimensions we
obtain the projections of the 3-dimensional regions of 1 — g joint probability. Figures 4 and 5 show
the 2-dimensional projections of the the 19.9% (dark blue) and 72.1% (bright blue) confidence-
level 3-dimensional regions for the D°K and D*°K modes. Similarly, figures 6 and 7 show the
1-dimensional projections, which correspond to 1 and 1.96 sigma standard deviation of each single
parameter, regardless the values of the others. In the 1-dimensional projections we also show the
projection of the PDF. Notice that both the 2- and 1-dimensional projections show the +180°
ambiguity in 4*) and 6*). The probability density functions for rp and r; show clearly the non-
Gaussian behavior we expect from Toy MC, as well as the poor sensitivity to small values. Table 4
reports numerically the one dimensional 1o and 1.96¢ intervals?. The results include the intrinsic
two fold ambiguity for 4*) and §(*).

Parameter lo 1.960
rB [0.051,0.184] [0,0.238]
0% [33,108] [213,288] -
1) [67,142] [247,322] -
rh [0.090],0.248] [0.027,0.318]
y* [36,106] [216,286] | [11,140] [191,320]
* [262,332] [82,152] | [234,363] [54,183]

Table 4: The 1o (1.960 ) intervals for rg, 6, v (D°K ) and %, v* and §* (D**K ). For v and § the
+180 degree solution is also indicated.

2.4 Combination of D°K and D**K decay modes

We have combined the two event samples, D°K and D*OK, in order to obtain a more accurate
measurement of v. The method we have used for the combination of the results is identical to that
used for each B decay mode separately, but now we have five true parameters p'= (v, %, 6, ri, 6**)
and an 8-dimensional cartesian space for the measured parameters (z+,z%) = (4, y+, 2%, y%). The
PDF in this case reads

d®pP d*pP

(Z+7Z—7Z*+7z>k—|pt) = (Z+7Z—|rtB7/7t75t) X

d*z d’z_d?z* d’z* d’z d’z_
d2z* d2z* (Z+7Z—|rBt7’yt75 t) . (10)
+ —

The confidence level 1 — « for each set of true parameters p® is now calculated as

4The numerical confidence intervals have been obtained using 10° points and an step variation (precision) of 0.0002
on rp and 0.1° on the angles, while for the 2- and 1-dimensional figures a poorer precision of 107 points and an step
variation of 0.004 and 3° is enough (a better, publication quality could be obtained with 5 x 107 points and an step
variation of 0.001 and 1°).
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Figure 4: 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright blue) confidence-
level 3-dimensional regions for the D’ K mode.
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Figure 5: 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright blue) confidence-
level 3-dimensional regions for the D*9K mode.

d8P
t — * * ty 72 2 2 % 32 %
a(p’) = / 5 5 S 9% (zy,z_,2% 2" |p")d°z d*z_d*z" d°z" | (11)

where the integration domain D (the confidence region) is given by the condition
d*P t d*P data  dat dat data| .t
Pz d’z_d*z* dPz* (21,223, 22[p") 2 Pz, d’z_d*z* d’z* (2527, 220, 22 8, 27 T pY) L (12)

The 5-dimensional confidence region in p® space is constructed by generating a large number
(10%9) of points p* = (rf,~%, 8%, rl", 6*), in the ranges [0,0.4], [-180°,180°], [0,360°], [0,0.4], and
[0,360°], respectively, and selecting the points for which a(p®) < ag = 0.03743,0.42756. These
values ag correspond to the 1 and 1.96 standard deviation 5-dimensional ellipsoids, thus the 1-
dimensional projections represent the 1 and 1.96 standard deviations of each individual parameter,
regardless the other parameters °. As before, the 2- and 1-dimensional contours are then built

®These values of ag are the cumulative (upper) integral of a x? probability distribution for x* = 1%,1.96% and
v =5 degrees of freedom [3].
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of the 19.9% (dark blue) and 72.1% (bright blue) confidence-level 3-dimensional regions for the
D*°K mode.

by projecting the 5-dimensional joint probability regions. Figures 8 and 9 show the 2-dimensional
projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level 5-dimensional regions
for D°K and D**K modes (7 is common). The corresponding 1-dimensional projections, together
with the PDF projections, are shown in figure 10. Notice that both the 2- and 1-dimensional
projections show the +180° ambiguity in v and 6.

Table 5 reports numerically the 1-dimensional 1o and 1.960 intervals®. The results include
the intrinsic two fold ambiguity for v and 6*). In the last column of the table we also report
central values of the true parameters with 1o errors. The central values for the true parameters are
estimated as the mean value of the interval (statistical only). The central value and one standard
deviation (which corresponds to the 3.7% confidence level region for the case of a 5-dimensional

5The numerical confidence intervals have been obtained using 10'0 points and an step variation (precision) of
0.0002 on 7 and 0.1° on the angles, while for the 2- and 1-dimensional figures a poorer precision of 107 points and
an step variation of 0.004 and 3° is enough (a better, publication quality could be obtained with 5 x 107 points and
an step variation of 0.001 and 1°).
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Figure 8: 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level
5-dimensional regions for the D'K - D**K combined mode. The rg and § variables are for the
DK decay sample.
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Figure 9: 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level
5-dimensional regions for the D'K - D**K combined mode. The rg* and 6* variables are for the
DK decay sample.

Gaussian distribution) for « is therefore v = (70 £ 31)°, while the 1.96 standard deviation interval
(which corresponds to the 42.8% confidence level region for a 5-dimensional Gaussian distribution)
is 20° < v < 128° (200° < v < 308°).

2.5 Significance of CP violation

The significance of CP violation can be determined by finding the confidence level 1 — aop for the
most probable CP conserving point ptp, i.e. the p* point with rf; = 0 or o' =0,

pep = {p'[p' = (ry = 0,79",48") or p* = (rlz,7' = 0,6")} . (13)

for which a(p') is minimal. In this way, 1 — oop represents the CP conservation confidence level,
and therefore ayyp represents the CP violation confidence level (or significance of CP violation).
In the case of the combined measurement of v we can evaluate the CP significance as follows

ptCP = {p‘lp' = (rtB = 0,r§ = O,Vt,ét,é*t) or p* = (rtB,rg,*yt = 0,5t,5*t)} . (14)
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Parameter lo 1.960 Central value with error (1o)
0 [39,101] [219,281] | [20,128] [200,308] 70 £ 31
B [0.040,0.196] [0,0.253] 0.118 £0.079
rH [0.073],0.265] [0.007,0.336] 0.169 £ 0.096
] [59,149] [239,329] - 104 £+ 45
0% [255,338] [75,158] | [220,374] [40,194] 296 + 41

Table 5: The 1o (1.960) D°K-D*°K combined intervals for rg, rg*, §, 6*, and v (angles are in
degree). In the last column the central values with 1o errors are also reported. For the v, § and 6*
intervals the =180 degree solution is also indicated.

For the DYK we have o = 0.655 in p'=(rk,y!,6%)=(0.043,0°,124°), for the D**K we have
app = 0.828 in p'=(r}7",0%)=(0.070,0°,280°), while for the combined measurement we have
oz%P = 0.791 in p'=(rl 0" ,6)=(0.044,0°,123°,0.073,279°). We quote CP violation in the
DYK at 65.5% CL, in the D**K at 82.8% CL and in the combined measurement at the 79.1% CL.
These confidence levels correspond to the 1.82, 2.24, and 2.68 standard deviation ellipsoids.

2.6 Coverage test with the experimental likelihood

A simple and powerful check that the whole procedure has been applied and implemented correctly,
including the (very good) simplifications made when constructing the analytical forms of the fre-
quentist PDFs, Egs. (6) and (10), is to check the coverage (in a frequentist sense) given by the
estimated confidence regions using the (full) experimental likelihood L,. The test makes use of
the frequentist definition of coverage, as given in section 1: a region with confidence level 1 — ag
will contain the unknown true point a fraction 1 — « of the experiments, or in other words, if the
experiment is carried out many times, a fraction 1 — «g of those experiments will find the measured
point within the given confidence region. Following this definition, the procedure was the following.
About 20K Toy MC experiments tuned to the data were generated with truth values of rp, v, 9,
rp* and ¢ as obtained after applying the frequentist method (central values), as given in Table 5.
These values represent in fact the vector of true parameters, p* = (r%, 7', 8%, 731, 6*'). Each experi-
ment was then fit in cartesian coordinates, obtaining a set of (x%,%%), (2%, y*') values from which
the confidence level 1 — a(p') was calculated using Eqgs. (11) and (12), where now the data point is
substituted by the Toy MC experiment point. If the procedure provides the correct coverage then
the fraction of Toy MC experiments verifying a(p') < ag should be just a (or consistent with it).

The o = 3.74% (42.76%) 5-dimensional confidence-level coverage is 3.754+0.14% (40.44+0.5%),
where the error is due to the limited amount of Toy MC experiments. The discrepancy at the 5
sigma level (5.5%) for the 1.960 coverage is due to small deviations of the experimental likelihood
Lezp with respect to the perfect Gaussian behavior and the assumption of the stability of the
widths (0., , 0y, 0,_, and o,_) over the whole range of the parameters, known to be true at
< 10% level for parameters far away from those found in the nominal data fit (this explains the
perfect agreement at 1o level and the small difference at 1.960). The confidence level corresponding
to ap = 40.4% translates into a 1.920 ellipsoid, to be compared to the nominal 1.960 (in terms
of 1-dimensional Gaussian probability content this corresponds to 94.5%, to be compared to the
nominal 95%). Therefore the discrepancy is negligible. The coverage as a function of the value of
«g in bins of size 0.1 is shown in figure 11. Within errors, the coverage is correct for all the possible
confidence level values.

The coverage check has been repeated by changing the truth value of rp and r3; by +lo
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Figure 11: Distribution of the ag value in the ToyMC' experimental likelihood (coverage) for the
central values of truth rp and v} values (table 5). The red line represents the perfect coverage case,
blue points are the coverage value from the ToyMC experiments for each ag bin of size 0.1. The
error bars are due to the limited statistics of experiments (20K). Within errors, the coverage is
correct for all the possible confidence level values.

(according to the last column of table 5), keeping the same values for the phases. Moving rp and
rp is enough for the purpose of this check since what we want to study is any potential change in
the coverage by the scaling of the cartesian coordinates. A total of 10K experiments were generated
for each of these points. The ag = 3.74% (42.76%) 5-dimensional confidence-level coverage for the
lower 1o bound is 4.1 +0.2% and for the upper bound is 3.6 4= 0.2%. The coverage as a function of
the value of ag in bins of size 0.1 for these two points is also shown in figure 12. Again, taking into
account the statistical errors, the coverage is correct for all the possible confidence level values.

Finally, as a sanity check, we used the same Toy MC experiments to check directly the 1-
dimensional coverage provided by the cartesian coordinates (z4,y+) and (x%,y}), which turn
to be perfectly consistent with 68.3% (95%) with an error from the limited number of Toy MC
experiments of 0.006 (0.007).

2.7 CP test with the D°r and D1 events

The CP analysis has also been performed with D7 and D*O7 events in exactly the same way as
it has been done for the D°K and D*°K samples. The goal of this check is to verify whether the
results are consistent with the expectation that CP violating effects are much smaller than for DOK
and D*OK events (rp*) values are expected to be of order 0.007).

Table 6 reports the (z+,y+) CP fit results on the BlackDiamond data sample, for the D% and
D*97 decay modes. The corresponding correlation matrix blocks obtained from the fit are shown
in tables 7 and 8, respectively.
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Figures 13 and 14 show the 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright
blue) confidence-level 3-dimensional regions for the D7 and D**r modes. Similarly, figures 15 and
16 show the 1-dimensional projections, which correspond to 1 and 1.96 sigma standard deviation
of each single parameter, regardless the values of the others. Table 9 reports numerically the one
dimensional 1o and 1.960 intervals.

We have also combined the two event samples, D7 and D*¥rw. Figures 17 and 18 show
the 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level
5-dimensional regions for D7 and D*°r modes (v is common). The corresponding 1-dimensional
projections, together with the PDF projections, are shown in figure 19. Table 10 reports numer-
ically the 1-dimensional 1o and 1.960 intervals. In the last column of the table we also report
central values of the true parameters with 1o errors. The central values for the true parameters are
estimated as the mean value of the interval (statistical only). The results for r3*) are consistent
with the expectations. Although the current Dm data does not constraint at 1.960 level the weak
and strong phases (the sensitivity is just at the frontier, as seen in the previous figures), the 1o v
constraint is similar and consistent with what we obtained with the DK samples. On the other
hand, looking at the 2-dimensional projections of the joint probability ellipsoids as well as to the
PDF projections is it obvious that there is some interesting sensitivity to . This could be exploited
in the future to perform a DK-D7 combined frequentist analysis to improve the statistical power
on 7 (this will require more careful studies of the D7 and D*O7 background composition as well
as the evaluation of the D7 CP systematics). As a new check that the sensitivity we observe in
D events is not an artifact we have performed a null D7 test, as described in Appendix C. The
significance of CP violation is aop = 0.004 for D, aop = 0.649 for D*97, and aop = 0.204 for
the D%7-D*O1 combination.

Observable DK DK
T_ —0.0157 £0.0167 | 0.0608 £ 0.0288
y_ —0.0135 £ 0.0200 | 0.0209 £+ 0.0371
Ty —0.0061 £ 0.0186 | —0.0242 4+ 0.0283
Yt —0.0186 £ 0.0196 | 0.0205 £ 0.0323

Table 6: Fit results for (v4,y+) cartesian coordinates, for the D’ and D*°r decay modes.

Observable | x_ Y Ty Yt
T 1 [68x1072| 61x107% [1.3x107°
y_ 1 —8.0x 1074 | 2.7 x 107°
Ty 1 1.0 x 107!

Table 7: Correlation matriz for (x4,y+) cartesian coordinates, for the D%r decay mode.
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Observable | z_ y— T4 Yt
T_ 1 | -51x1072] 53x107* | —2.6x 1073
y_ 1 —52x107* | -1.2x 1073
T 1 1.9 x 1072

Table 8: Correlation matriz for (z%.,y%) cartesian coordinates, for the D*r decay mode.

Parameter lo 1.960
B [0.003,0.038] [0,0.052]
y [-38,79] [142,259] —
1) [175,293] [-5,113] -
TR [0.027],0.070] [0.004,0.093]
~* [31,92] [211,272] | [-10,144] [170,324]
o* [48,108] [228,288] | [5,159] [185,339]

Table 9: The 1o (1.960) intervals for rg, &, v (D°r) and r, v* and §* (D*°r). For v and § the
+180 degree solution is also indicated.

Parameter lo 1.960 | Central value with error (1o)
~ [22,76] [202,256] 49 £ 27
g 0.002,0.030] | [0,0.049] 0.016 =+ 0.014
r 0.027),0.071] | [0,0.098] 0.049 £ 0.022
5 [178,297] [-2,116] - 238 + 60
5* [45,103] [224,283] 74 4 29

Table 10: The 1o (1.960) D°m-D*O1 combined statistical intervals for rg, rg*, 6, 6, and  (angles

are in degree). In the last column the central values with 1o errors are also reported. For the 7, §
and 0* intervals the 180 degree solution is also indicated.
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Figure 12: Distribution of the ag value in the ToyMC' experimental likelihood (coverage) for —lo
(top) and +1o (bottom) truth rp and 15 values (table 5). The red lines represent the perfect
coverage case, blue points are the coverage value from the ToyMC experiments for each ag bin of
size 0.1. The error bars are due to the limited statistics of experiments (10K). Within errors, the
coverage is correct for all the possible confidence level values.
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of the 19.9% (dark blue) and 72.1% (bright blue) confidence-level 3-dimensional regions for the DO
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Figure 17: 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-
level 5-dimensional regions for the D7 - D*O% combined mode. The rg and § variables are for the

D7 decay sample.
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level 5-dimensional regions for the D°m - D*O1 combined mode. The rg* and 6* variables are for
the D% decay sample.
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3 Systematic uncertainties

With the frequentist method described previously, systematic uncertainties can be included very
easily just by replacing o, and o,, by /02, + U%i’syst and /o2, + U%i’syst, respectively. As the
statistical uncertainties dominate yet this measurement and the largest systematic uncertainties
are uncorrelated among the two samples, it is appropriate to assume that the global correlations
p+ remain unchanged with respect to their statistical values. In any case, it has been checked
that the impact of the correlation on the confidence regions/intervals is very small (this check was
performed using the average correlation from Toy MC experiments instead of the values measured in
the data). Table 11 summarizes the main systematic uncertainties of the measurement in cartesian
coordinates, for the DK and D**K decay modes. For comparison, we indicate the Dalitz model
systematics by using the CLEO model —like the nominal one but excluding the following resonances:
o1, 02, K3(1430) DCS, K5(1430) DCS, K*(1410), and p(1450)— and a model like the nominal one
but excluding only the o1 and o9 resonances. We use the CLEO model to quote final Dalitz model
systematics, but the alternative model excluding only the o’s has essentially the same effect, on
both cartesian and polar variables; in other words, the Dalitz model effect is almost exclusively due
to the non well established o7 and o9 resonances.

Table 12 reports the 1o and 1.96¢ intervals for rp®), v, and 6(*) | as obtained by repeating the
frequentist procedure with each systematic uncertainty contribution included. In the last column
of the table we also report the central values with 1o error breakdown (statistical, experimental
systematic and Dalitz model systematic). Each systematic error contribution to r 5™, 7, and 6™ is
obtained by subtracting in quadrature to the statistical error (as given in table 5) the error obtained
after applying the frequentist procedure using the corresponding o, .., and o, contribution.
The central values reported are those obtained when only statistical errors are used. The asymmetry
of the systematic errors is due to the change of mean values of the intervals when systematic errors
are included.

The significance of CP violation becomes now 51.2% CL in p* = (r%,~",6")=(0.038,0°,116°)
for DK, 75.9% CL in p* = (3,4, 6*) =(0.078,0°,279°) for D**K, and 65.1% CL in p' =
(r, 1, 6t rt, 6*1)=(0.033,0°,117°,0.082,279°) for the combined measurement. These confidence
levels correspond to the 1.56, 2.05, and 2.36 standard deviation ellipsoids (88.1%, 96.0%, and
98.2% probability content for the case of 1-dimensional Gaussian distributions).

In the following subsections we describe how each systematic uncertainty contribution in the
cartesian coordinate space has been evaluated.

3.1 mgs, AE and Fisher shapes

The effect of fixing the PDF shapes in the CP fit has been evaluated by performing a simultaneous
PDF shape and CP fit. Since the extraction of the shapes relies mainly on the D7 sample, the
CP and shapes fit is performed simultaneously to the DK and D7 samples, whith shapes fixed
and floated. The systematics was then taken as the quadratic difference of the errors reported by
the two fits. In all cases the difference between the central values of the two fits is well below the
statistical difference.

The mps endpoint in the Argus parameterization is fixed in the nominal fit to 5.290 GeV (the
same value is also used as integration limit of the mggs PDF). To estimate the effect of it in the
determination of the signal yields and its impact on the CP parameters we have varied it by £0.5
MeV. It was found to be completely negligible.
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Source Ty Yt T_ Y— Lo Yl x* yr
mgs, AE, F shapes 0.0105 | 0.0086 | 0.0088 | 0.0141 || 0.0196 | 0.0218 | 0.0218 | 0.0146
Real D° fraction 0.0050 | 0.0047 | 0.0061 | 0.0036 || 0.0035 | 0.0049 | 0.0028 | 0.0032
Right sign D%’s 0.0157 | 0.0090 | 0.0070 | 0.0211 || 0.0065 | 0.0163 | 0.0108 | 0.0103
Eff. in the Dalitz plot 0.0078 | 0.0085 | 0.0089 | 0.0119 || 0.0067 | 0.0119 | 0.0040 | 0.0079
Tracking efficiency 0.0082 | 0.0080 | 0.0095 | 0.0123 || 0.0058 | 0.0109 | 0.0051 | 0.0046
Cont bkg. Dalitz shape 0.0195 | 0.0096 | 0.0160 | 0.0149 || 0.0133 | 0.0084 | 0.0083 | 0.0046
BB bkg. Dalitz shape 0.0026 | 0.0072 | 0.0069 | 0.0130 || 0.0061 | 0.0098 | 0.0029 | 0.0003
Invariant mass resolution 0.0031 | 0.0023 | 0.0022 | 0.0016 || 0.0031 | 0.0023 | 0.0022 | 0.0016
Dalitz amplitude and phases || 0.0012 | 0.0069 | 0.0050 | 0.0033 || 0.0043 | 0.0138 | 0.0079 | 0.0079
SubTotal 0.0301 | 0.0226 | 0.0258 | 0.0368 || 0.0275 | 0.0373 | 0.0280 | 0.0223
Dalitz model (CLEO) 0.0324 | 0.0214 | 0.0185 | 0.0424 || 0.0253 | 0.0560 | 0.0206 | 0.0249
Total (CLEO) 0.0442 | 0.0311 | 0.0318 | 0.0561 || 0.0374 | 0.0673 | 0.0348 | 0.0334
Dalitz model (no o1, 02) 0.0336 | 0.0258 | 0.0207 | 0.0374 || 0.0255 | 0.0464 | 0.0209 | 0.0396
Total (no o1, o3) 0.0451 | 0.0343 | 0.0331 | 0.0525 || 0.0375 | 0.0595 | 0.0349 | 0.0454

Table 11: Summary of the contributions to the systematic error in cartesian coordinates, (r4,y+)

and (27, y%)-

Parameter lo 1.960 Central value with error (1o)
v [36,106] [216,286] | [13,136] [193,316] 70 +31 13 1]
rp [0.025,0.211] [0,0.277) 0.118 4 0.079 4 0.034 *:936
i [0.066],0.274] [0,0.352] 0.169 £ 0.096 550 0033
5 [48,155] [228,335] - 104 + 45 F37 +28
5" [251,342] [71,162] - 296 +41 T13 + 15

Table 12: The 1o (1.960) D°K-D* 'K combined intervals including systematic uncertainties for

rg, T, 0, 8" and v (angles are in degree). In the last column the central values with lo error
break-down are reported: the first errors are statistical, the second are experimental systematics,
and the third are Dalitz model systematics. For the v, § and 0* intervals the £180 degree solution

s also reported.
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3.2 Background composition

The uncertainty due to the fraction of real D%’s in background (table 38 of Ref. [2]) is estimated
by varying this parameter within its statistical error and then repeating the fit to the data sample.
In order to be conservative, we have moved up and down by one sigma these fractions for all the
samples —~D°K, (D°7Y) K and (D°v) K- and components (Cont and BB) simultaneously. In the case
of the BB fraction for D°K events, an upper limit of 10% was used to evaluate this systematics.
The larger between the half difference between the two fits and the quadratic difference of the fit
errors is assigned as systematic uncertainty.

A potential difference in the number of real D?’s in the continuum background between B+
and B~ events could fake CP violating effects in the signal. No significant difference between BT
and B~ has been found in MC. Nevertheless, we account for any potential effect by introducing an
independent set of CP parameters for the continuum background with a real D°. By repeating the
nominal fit with this new set of parameters we found a negligible impact on the CP parameters.

The fraction of right sign (RS) D%s is taken from MC simulation. We have estimated this
contribution from the variation of the CP parameters in the fit to the data sample when a value
of 0.5 is assumed instead of the nominal values (given in table 38 of Ref. [2]). As before, we take
the larger between the difference of central values and the quadratic difference of fit errors. The
change observed on the CP parameters is consistent with the larger between the bias and the rms
from a set of Toy MC experiments generated with the nominal value and fit with 0.5.

3.3 Dalitz efficiency

To estimate the effect from the Dalitz efficiency the nominal CP fit was repeated by assuming a flat
distribution instead of the nominal 3rd order polynomial parameterization (table 38 of Ref. [2]).
In addition, we have evaluated a systematics due to tracking and K? reconstruction efficiency over
the Dalitz plot. It has been evaluated by repeating the fit using alternative values of the 3rd order
polynomial parameterization coefficients with: i) the tracking efficiency correction applied on the
2 pions from the DY decay and the bachelor kaon (table 10 of Ref. [2]); and ii) tracking efficiency
correction applied to the pions from the K9 decay (table 11 of Ref. [2]). In all cases, we take
the larger between the difference of central values and the quadratic difference of fit errors. The
uncertainties from the two corrections have been added quadratically.

3.4 Dalitz shape for combinatorial background

The Dalitz shape for combinatorial continuum events is estimated by using off-resonance data,
as described in sections 3 and 5 of Ref. [2]. The correction for BB combinatorial background is
obtained from Monte Carlo simulation. The systematics from this correction is estimated from the
difference on the CP parameters when flat distributions are assumed instead. We take the larger
between the difference of central values and the quadratic difference of fit errors.

3.5 Limited mass resolution

The nominal Dalitz model assumes perfect mass resolution. Given that all the resonances present
in the DY — K27t~ decay are quite wide compared to the estimated mass resolution (about
4 MeV? for a K97% mass squared of about 1 GeV? [6]), we expect the effect to be completely
negligible. Only the w(782) has an intrinsic width comparable to the mass resolution (about 6
MeV? for a squared 77~ mass of 0.8 GeV? [6]), but the sensitivity of the CP parameters is in
this case suppressed. To evaluate the effect of the limited mass resolution on the Dalitz plot, two
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different fits were performed to the reweighted signal MC (see section 10.3 of Ref. [2]). The first fit
used the reconstructed K97+ and K97~ masses, while the second was performed with the MC truth
masses (perfect resolution). The difference of fit values was taken as our systematic uncertainty.
The errors from the fit for the different parameters were basically unchanged between the two fits.

3.6 Dalitz PDF normalization

We have investigated a possible systematic uncertainty due to the limited numerical precision in
the evaluation of the Dalitz plot PDF normalization integral. It has been done by increasing by a
factor 25 the number of cells in the integration grid, on both Toy MC experiments and the data fit.
This corresponds to 5 times more bins on each dimension, i.e. Ng.;q = 200 — 1000, or equivalently
a precision of 1.1 MeV precision on the Ko7* and K7~ masses. In both cases the change in
the CP parameters was found to be negligible. As cross-check, the nominal fit was also redone by
using Vegas Monte Carlo integration with Nycgqs = 1.6 x 107 events. Again, the effect on the CP
parameters was found equally to be negligible.

3.7 Statistical errors on Dalitz amplitudes and phases

The phases and amplitudes of the Dalitz model are fixed to the values found from the fit to the high
statistics D** — DYz} sample. We expect its effect to be negligible. Nevertheless, we estimated
its effect by performing a simultaneous DK and D** — D%z} fit with all these parameters floated.
The uncertainty is taken as the larger between the difference of central values and the quadratic
difference of the errors reported by the two fits. The difference of central values is in all cases
consistent with the quadratic difference of the statistical errors.

3.8 Dalitz model systematics

The Dalitz model systematics is the single most important contribution to the total systematic un-
certainty. To evaluate it, we generated about 500 Toy Monte Carlo experiments (signal Dalitz only)
tunned to the data sample using the nominal Dalitz model. The experiments were then fit using
the nominal model, the CLEO model (the nominal model but excluding the o1, o2, Kj(1430) DCS,
K3(1430) DCS, K*(1410), and p(1450) resonances), and a third model identical to the nominal
one but excluding only the o and oy resonances. To get ride of statistical fluctuations and avoid
double counting with the data statistical error, each sample was generated with infinite statistics
(in practice, 10K events per B decay channel). To be conservative, only DK and (D°7°)K events
have been used (10K events each) since it was found that the effect for (D°7%)K and (D°v)K is
anticorrelated due to the effective 7 radians shift between the strong phases, which change the sign
for all cartesian components (sine and cosine terms). The systematic uncertainty is finally assigned
as the quadratic sum of the mean and rms of the experiment-by-experiment differences.

The problem with this technique is which values for %, ri, 4%, §', and 6*' are used in the
generation of the experiments. Given the current large statistical errors (table 5), taking the central
values would be just a choice among others, especially if the effect turns out to be multiplicative
with the truth (generated) value. Unfortunately, it has been verified that the systematic uncertainty
for all cartesian components evaluated in this way strongly depends with the values of rl; and rjf
(increases almost linearly with it, since cartesian CP parameters depend linearly with 7 and %),
and smoothly with the values of 7/, §, and §*/. This dependency has also been verified when the
CP fit is performed to rg®*), v and §*) directly. For example, for rly = 0.12 the effect on v is about
10°, but for %, = 0.03 it is about 14°. On the contrary, the change on r(r%) itself increases almost
linearly with % (r3). These dependencies have also been noticed by Belle [4], and the solution they
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have adopted and claimed to be conservative is to scan the phases for fixed rl; = 0.13, taking the
largest variation from the scan. However, we do not agree with this solution since fixing rf; = 0.13
does not seem to be conservative enough.

The solution we have finally adopted to quote the Dalitz model systematics is the following.
As we know that cartesian coordinates behave almost perfectly as independent Gaussians, for each
single experiment we generate randomly all the 8 cartesian components, following independent
Gaussian distributions with mean and width values as measured in the data (table 3). The rest of
the procedure is identical to what was described above. Taking the systematic uncertainty from
the mean and rms of the experiment-by-experiment differences for each component, we integrate
over the others, which is exactly what we want (meaning of 1o interval, independent of all the other
variables). Note that this procedure cannot be used in polar coordinates due to the non-Gaussian
behavior in this case, in addition to the large correlation among these parameters. The distributions
of the experiment-by-experiment differences are shown in figures 20 and 21, for the CLEO and no
o’s models, respectively. The quadratic sum of the offsets and rms’ are quoted in table 11.

All the three Dalitz models used are based on Breit-Wigner parameterization of resonances,
except for the p(770) and p(1450) for which we use Gounaris-Sakurai parametrization to model
better the tails. Since Breit-Wigner amplitudes can only describe well narrow resonances, we
introduced the Blatt-Weisskopf penetration factors for the intermediate resonances and a resonance
width ¢? dependence to deal with broad states. These quantities and models have, however, large
theoretical uncertainties and might be a substantial source of systematic uncertainties. To evaluate
these potential effects we have also used two alternative Dalitz models, one using Breit-Wigners
also for the p(770) and p(1450) resonances, and the other without Blatt-Weisskopf form factors.
Figures 22 and 23 show the experiment-by-experiment differences for these two models. The mean
and rms values are found to be completely negligible.

As a final check related to the Dalitz model we have studied the impact on the CP parameters
by imposing the constraint that the phase difference between doubly-Cabibbo suppressed (DCS)
and Cabibbo favored (CF) K* resonances below 1.440 GeV/c? (K1 threshold) is (—1)7. This is a
consequence of the Watson theorem [7]. The constraint applies to K*(892), K (1430) and K3(1430),
which should have a DCS-CF relative phase of 180°, 0° and 0°, respectively. An inspection to tables
30 and 31 of Ref. [2] reveals that the fit results to the D* sample are consistent with this prediction,
within statistical errors. To perform this check we have repeated the D* Dalitz fit imposing the
constraint on the DCS-CF relative phases, and then the CP parameters were obtained by repeating
the CP fit with this constraint applied. Table 13 shows the CP fit results obtained with this
constraint. These results should be compared to those of table 3. The results of both fits are
consistent within the statistical differences, while there is no evidence of improvement in statistical
power. Therefore, no systematic error is assigned. The same conclusion is obtained when the fit is
performed in polar coordinates.

Observable DK DK
T 0.0776 +0.0689 | —0.1325 £ 0.0934
y_ 0.0613 £0.0926 | —0.1401 + 0.1061
Ty —0.1258 £ 0.0703 | 0.1333 £ 0.0925
Yt 0.0081 £ 0.0792 0.0213 £ 0.1226

Table 13: Fit results for (r4,y+) cartesian coordinates with the constraint (—1)7 on the phase
difference between doubly-Cabibbo suppressed (DCS) and Cabibbo favored (CF) K*(892), Kj(1430)
and K3(1430) resonances applied, for the D'K and D**K decay modes.
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4 Bayesian technique

4.1 Description of the method

The estimation of the confidence regions/intervals with the Bayesian approach requires the evalua-
tion of the likelihood function Ley, = Legp(rB,7,9) in the whole range of definition of rp, v and 6,
[0,1], [-m,7] and [0,27], respectively, with the yields floated at each given CP point. The estimate
of the confidence region for the CP parameters implies a choice of a priori distribution. For this
check we arbitrarily assume a uniform a priori distribution for each of the CP parameters rp,
and 6.

We define confidence region D(C) at a given C confidence level the region in 4-rp space such

I dredy J§™ dSLeup(rp,7,0)
fol firw 027r Eemp('r'Ba v, 5) dTBd’}/d(S

(15)

The D(C) definition is arbitrary (this is always the case for confidence region) and we choose to
define it by starting the integration procedure by the maximum of the likelihood function and by
requiring that the likelihood value at any point in the boundary of D be the same (integration over
all likelihood values larger than the value at the boundary). Notice that this can easily give disjoint
region.

Similarly we can define the 1-dimensional confidence interval at C confidence level for, say, rp,
as

ey drs [T dy J§T dSLewp(rB, v, 0)
ST 27 Laan (75,7, 0) drpdrydo

=C, (16)

where again I(C) can be a set of disjoint interval.

In this way we expect that such intervals have the correct coverage. Notice that the effect of
the bias on rp is completely irrelevant for v and 0 measurements (we make no use of the concept
of fitted rp value).

4.2 1- and 2-dimensional confidence regions for D°K and D**K

In figure 24 we show the confidence region for v*) versus rz™, for DYK and D*YK. The red region
is the 68% CL region while the yellow one is the 95% CL. Similarly, figures 25 and 26 show the
confidence regions for v(*) versus 6*) and §**) versus rg™®, for DK and D**K. In figures 27 and 28
we show the probability density functions for r5™, v*) and §* for D°K and D*OK, respectively,
obtained by integrating the experimental likelihood for all the values of the other variables: (),
60 g™ §(): and ™), ). On the same figures we show the confidence intervals at 68% (red)
and 95% (yellow) CL. Notice that the likelihood distribution is nicely showing the +7 ambiguity in
™) and 6*). The probability density function for 753 shows clearly the non-Gaussian behavior
we expect from Toy MC, showing the poor sensitivity to small values of 5. In figure 29 we show
the probability density function for 4 from the combination of the DK and D*°K likelihoods,
integrated over rp, rg*, § and 0*.

Table 14 reports the confidence intervals for the various parameters (statistical only). For the
central values we quote the expectation value using the experimental likelihood, and the 1o error
is given by the 68% confidence limit region around the expectation value. For the phases we have
symmetrized the errors taking the largest between the positive and negative errors. The results
include the intrinsic two fold ambiguity for the weak and strong phases.
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Since the frequentist method is the one adopted to quote final results no dedicated evaluation
of systematic uncertainties has been performed. However, with a very good approximation we can
assign the symmetrized experimental and Dalitz model systematic errors obtained in the frequentist
approach, as given in table 15.

Comparing the Bayesian results with those of the frequentist method, we observe that there is
a satisfactory agreement between the two methods, although the Bayesian errors tend to be smaller
than those of the frequentist approach.
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Parameter | 68% CL (stat. only) 95% CL (stat. only) Central value with error (10)

v [147-65] [33,114] | [-180,-23] [-2,157] [179,180] 70 + 44
A [-140,-72] [41,108] [-172,-31] [9,148] 73+ 35
b [74,155] [253,335) [0,13] [189,192] [212,360] 114 + 41
& [89,157] [269,337] [0,16] [55,195] [234,360] 303 =+ 34
B (0.01,0.13] 0,0.19] 0.087F5:541 0.071 + 0.058]
5 0.08,0.22] [0,0.27] 0.15570-070 [0.152 + 0.074]

~ (combined) | [132,-83] [48,97] [-156,-50] [23,130] 70 + 26

Table 14: Bayesian confidence intervals for v, 6 and rg®) (statistical only). Angles are given
in degree. The Bayesian confidence intervals for the combination of the D’ K and D**K channels
is also given. In the last column the central values with 1o errors are also reported. For the v*) and
8™ intervals the £180° solution is also indicated. For the central values we quote the expectation
value using the experimental likelihood, and the 1o error is given by the 68% confidence limit region
around the expectation value. For the phases we have symmetrized the errors taking the largest
between the positive and negative errors.
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Parameter Central value with error (1o)
v (combined) 704+26+11+£13
b 114 4 41 £ 19 + 20
5* 303+£34+13+15
B 0.08710-341 4 0.034 + 35 [0.071 + 0.058 =+ 0.034 + 35
s 0.15570-979 + 0.029 + 0.028 [0.152 + 0.074 + 0.029 =+ 0.028]

Table 15: Bayesian central values with 1o statistical and systematic errors for v, 6*) and rg®

(angles are in degree). The first errors are statistical, the second are experimental systematics and

the third are Dalitz model systematics. The statistical errors are the same as those reported in

table 15. The systematic uncertainties are the symmetrized systematic errors obtained with the
frequentist approach, as reported in table 12.
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5 Final results

Using an integrated luminosity of 205 fb~!, corresponding to the Run1-2-3-4(BlackDiamond) data
sample, we have performed a Dalitz plot analysis of B~ — D® 0K~ with D* — D%0 DO,
DY — Kgrt7m~ decays, obtaining the following CP-violating parameter results:

r_=R(rp_ef-) = 0.077 + 0.069(stat.) £ 0.026(exp. syst.) = 0.019(model syst.) ,
y_ =S(rp_e?-) = 0.064 + 0.092(stat.) £ 0.037(exp. syst.) & 0.042(model syst.) ,
ry = R(rpee) = —0.129 +0.070(stat.) & 0.030(exp. syst.) & 0.032(model syst.) ,
yr =S(rppe?) = 0.019 + 0.079(stat.) £ 0.023(exp. syst.) & 0.021(model syst.) ,
¥ =R(rpte?™) = —0.131 +0.093(stat.) + 0.028(exp. syst.) = 0.021(model syst.) ,
vt =S(rpt ) —0.143 + 0.105(stat.) + 0.022(exp. syst.) + 0.025(model syst.) ,
ot = R(rphe®™) = 0.140 £ 0.093(stat.) & 0.028(exp. syst.) + 0.025(model syst.) ,
v =S(rpte®) = 0.013 £0.120(stat.) & 0.037(exp. syst.) + 0.056(model syst.) ,

=z

where 95: = 6™ + ~, with v the CKM weak phase, 6*) the strong phase of the B~ — D®0 K~
decay, and 7™ the absolute value of the ratio of the corresponding A(b — w) and A(b — c)
amplitudes, rp = |A(b — u)/A(b — ¢)|. The first errors are statistical, the second are experimental
systematics and the third are due to the Dalitz model assumptions. The correlations of the pairs
(= y-), (x4,y+), (x*,y"), and (2% ,y7%), are 3%, 6%, —17%, and —27%, respectively. All the
other correlation terms are zero.

A classical (frequentist) analysis of the previous results yields the following results for the CP-
violating parameters 7, 6*) and rz®*):

= 70(250)° £ 31°(stat. )+h2)o (exp. syst. )ﬂﬁ (model syst.) [13°,136°] ,

§ = 104(284)° + 45°(stat.)T270 (exp. syst.)T20: (model syst.) [0°,360°] ,
5 = 296(116)° & 41°(stat.) 1a. (exp. syst.) & 15°(model syst.) [0°,360°] ,
rp = 0.118 £ 0.079(stat.) & 0.034(exp. syst.) 0 oae(model syst.) [0,0.277] ,
ry = 0.169 + 0.096(stat. )+8 8§’g(exp syst. )+8:8§2(model syst.) [0,0.352] .

The first errors are statistical, the second are experimental systematics and the third are due to the
Dalitz model. For v and 6*) the +180° ambiguity solutions are also given. The values inside square
brackets indicate the 1.96 standard deviation intervals (95% confidence-level for a 1-dimensional
Gaussian distribution). The significance of CP violation is 2.4 standard deviations. These results
agree fairly well with those obtained using a Bayesian technique with flat prior for , 6*) and r5™*.
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A Cartesian coordinates: Toy MC studies

Extensive Toy MC studies have been performed in order to verify the Gaussian behavior of the
errors of the cartesian fit variables.

Figures 30 and 31 show the residual, error and pull distributions of the cartesian fit parameters
obtained from a set of about 2K Toy MC experiments corresponding to the nominal fit to the data
sample. The arrows show the results found in the data. The goodness-of-fit, estimated by counting
the number of experiments with a likelihood value larger than that found in the data, is around
50%, perfectly in agreement with the value found when the fit is performed in polar coordinates [2].
Similarly, figure 32 shows all the correlation coefficients for the two samples. From these figures we
conclude that the cartesian fit parameters space behaves to an excellent approximation as single
and independent Gaussians. The little (on average) correlation for the pair of variables (4, y4) and
(r_,y_) within a sample (D°K or D*K) is taken into account in the PDF of the fitted parameters
as a function of the generated parameters. The agreement between the simulation and the data is
remarkable. From a closer look at the residual and pull distributions it is observed that in some
case the mean values of the distributions are slightly biases. These biases are in all cases one order
of magnitude below the statistical precision, and are due to the limited precision in the numerical
Dalitz PDF normalization. Increasing the precision from the nominal 200 x 200 grid to 1000 x 1000
the biases essentially disappear.

Figures 33 and 34 show the residual distributions together with their mean values and rms of
(r4,y+) for D°K and D*°K, in 6 bins (0.05 units width each) of g truth. Despite the large
(unrealistic) range of rp truth, the width of the distributions are in all cases consistent within 10%,
with no significant biases. Similarly, figures 35 and 36 show the corresponding pull distributions,
which have widths always consistent with unity.
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Figure 32: Correlation coefficients among (v+,y+) fit parameters for the D°K and D*°K samples
for the nominal Toy MC. The arrows show the results found in the data. It is clearly seen that the
only non zero correlations appear for the pairs (x4,y+) and (z—,y—) within a given sample.
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Figure 33: Dependence of the rms of (x+,y+) residual distributions, (04, ,0,,), in 6 bins of the
truth rp value, for the D'K mode. The truth (generated) value of rp has been obtained randomly
in the range [0,0.3]. As the the truth phases (both vy and §) have also been generated randomly the
obtained rms is averaged over all possible values of the phases.
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Figure 34: Dependence of the rms of (x+,y+) residual distributions, (04, ,0,.), in 6 bins of the
truth v value, for the D*°K mode. The truth (generated) value of g has been obtained randomly
in the range [0,0.3]. As the the truth phases (both ~v and §) have also been generated randomly the
obtained rms is averaged over all possible values of the phases.
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Figure 35: Dependence of the rms of (x+,y+) pull (residual normalized to the error) distributions
in 6 bins of the truth rp value, for the D°K mode. The truth (generated) value of rg has been
obtained randomly in the range [0,0.3]. As the the truth phases (both v and §) have also been

generated randomly the obtained rms is averaged over all possible values of the phases.
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Figure 36: Dependence of the rms of (x+,y+) pull (residual normalized to the error) distributions
in 6 bins of the truth rp value, for the D**K mode. The truth (generated) value of rg has been
obtained randomly in the range [0,0.3]. As the the truth phases (both v and §) have also been
generated randomly the obtained rms is averaged over all possible values of the phases.
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B Confidence regions for D’K null data point

As a control check of the method, we have tested the whole frequentist procedure with a null
measured point (i.e. rgp = 0, or equivalently z+ = 0). For this check we have taken for (o, ,0,,)
and p4 the values of the D°K sample. The 2- and 1-dimensional projections of the 3-dimensional
regions for this null test are shown in figures 37 and 38. It can be seen that the 19.9% region (68.3%
for 1-dimensional projections) perfectly covers rg = 0, and there is no information at all about the
phases, as expected.
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Figure 37: 2-dimensional projections of the 19.9% (red/dark) and 72.1% (yellow/light) confidence-
level 3-dimensional regions for the null hypothesis using the D'K mode.
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Figure 38: Probability density functions for rg, v and § together with the 1-dimensional projections
of the 19.9% (red/dark) and 72.1% (yellow/light) confidence-level 3-dimensional regions for the null
hyphotesis in the DK mode.
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C Confidence regions for D7 null data point

As an additional control check of the CP violation sensitivity of the D7 and D*O7 samples, we have
repeated the frequentist procedure with a null measured point (i.e. 7 = 0, or equivalently z. = 0)
with (0., ,0,.) and py values identical to those of the D7 sample. The 2- and 1-dimensional
projections of the 3-dimensional regions for this D% null test are shown in figures 39 and 40. It
can be seen that the 19.9% region (68.3% for 1-dimensional projections) perfectly covers rg = 0,
and there is no information at all about the phases, as expected.
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Figure 39: 2-dimensional projections of the 19.9% (red/dark) and 72.1% (yellow/light) confidence-
level 3-dimensional regions for the null hypothesis using the D°m mode.
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Figure 40: Probability density functions for rg, v and § together with the 1-dimensional projections
of the 19.9% (red/dark) and 72.1% (yellow/light) confidence-level 3-dimensional regions for the null
hyphotesis in the D% mode.
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