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Abstract

This note describes the second part of the analysis used to extract the CKM angle γ from
the study of B− → D(∗)0K− (with D∗ → D0π0, D0γ) decays using a Dalitz plot analysis
technique of D0 → KSπ+π− decays. This document focus on the description of the final
CP fit configuration, results and systematic uncertainties, along with the statistical methods
(frequentist and Bayesian) used to extract the final value of γ and the other CP -violating
parameters. The first supporting document (BAD#899) describes the analysis setup, event
selection and background characterization, likelihood fit procedure, Dalitz model and some fit
results. We adopt the frequentist approach to provide final results, while the Bayesian method
is used as an independent cross-check. The final results of the analysis are also presented
and discussed here. We use Run1-2-3-4(BlackDiamond) data corresponding to an integrated
luminosity of 205 fb−1.
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1 Introduction

The likelihood function used for the measurement of the angle γ of the CKM unitarity triangle
making use of D0 three-body decays (such as D0 → K0

S
π+π−) from B− → D(∗)K− decays through

a Dalitz analysis [1] is affected by large non-Gaussian effects for the current statistics (205 fb−1)
[2]. We observe that for a relatively small dataset and for small absolute value of the ratio of the
A(b → u) and A(b → c) amplitudes, rB = |A(b → u)/A(b → c)|, the likelihood fit returns a biased
estimate of rB , and the rms of γ (the CKM weak phase) and δ (the strong phase of the B decay)
pulls are significantly larger than unity. This is easily understood since σ2(γ) is proportional to

1
d2logL

d2γ

, and d2logL
d2γ is proportional to rB , therefore it will be smaller for larger rB . Since there rB is

positively biased the error returned by the maximum likelihood method will be smaller than what
it should be to represent the statistical fluctuation (i.e. it does not define a confidence interval with
the correct coverage properties). Moreover, while the linearity of γ and δ is verified, rB saturates
at low truth values of rB, with a saturation region different for the different samples since they
have different statistical contents. The saturation effect, the rB bias and the large γ and δ pulls
essentially go away with a data sample about ten times larger. The nature of these non-Gaussian
effects scaling with the size of the data sample are related to the small number of events in the
region of the Dalitz plot sensitive to rB (and γ) and to the polar coordinates representation of the
space of fit parameters, and more particularly, to the positive definiteness of rB .

As a consequence, the usual assumption that the parameters at the maximum of the likelihood
are unbiased estimators of true quantities it is not valid anymore, and more sophisticated techniques
are needed to extract central values, errors and confidence intervals [3]. This also poses limitations
to the way how systematic uncertainties have to be evaluated. For example, usual techniques based
on the quadratic differences of fit errors between the nominal and alternative fit configurations
are now not reliable since fit errors are not a good representation of the true statistical fluctu-
ations. Similarly, one has to be very careful when looking at differences in central values since
biases themselves are a function of the truth values. Thus we have employed and developed both
frequentist and Bayesian techniques to extract the confidence intervals, central values and errors,
which are described in this document. Since the frequestist approach has several advantages for
the extraction of both statistical and systematic uncertainties (in addition to avoiding the intrinsic
arbitrary choice of the prior distributions of Bayesian methods) we have used it for presenting the
final analysis results on rB , γ and δ, using the Bayesian approach as an independent cross-check.
The systematic uncertainties assigned to the Bayesian results are those obtained with the frequen-
tist method, since the correct evaluation of these errors require the use of cartesian coordinates,
which imply the use of the frequentist approach.

In the classical (frequentist) approach, the confidence interval [p1, p2] for parameter p, whose
true value pt is unknown, is such that has a probability

P (p ∈ [p1, p2]) = 1 − α, (1)

of containing the unknown true value. The limits of the interval, p1 and p2, are functions of the
measured value of p. In particular the confidence interval will contain the unknown true point pt in
a fraction 1−α of the experiments, or in other words, if the experiment is carried out many times, a
fraction 1−α of those experiments will find the measured point within the given confidence region.
If Eq. (1) is satisfied, one can say that the defined interval covers at the stated confidence level,
or that the interval has the correct coverage. In our case we have not 1-dimensional confidence
level interval but a 3-dimensional or 5-dimensional confidence level regions, as the unknown vector
parameters of parameters is

7



pt = (rt
B , γt, δt) or pt = (rt

B , γt, δt, r∗tB , δ∗t) . (2)

The 3-dimensional (5-dimensional) confidence level regions determined are α = 19.9%, 72.1% (3.7%,
42.8%) corresponding to 1, 1.96 standard deviations respectively for each single parameter (regard-
less the others), in the case of a 3-dimensional (5-dimensional) Gaussian distribution1. We will
quote finally for the error on the single parameters the statistical error corresponding to the 19.9%
confidence region (1 standard deviation ellipsoid). The methodology used is similar to that used by
Belle [4] although with some relevant differences, and requires knowledge of the probability density
function, PDF, of the fitted parameters z, as a function of the true parameters pt. This PDF can
be obtained using toy MC techniques, where large sets of experiments are generated and fitted
using the full experimental likelihood function Lexp, as will be discussed in section 2.2.

Alternatively, if we interpret the likelihood function as a probability density function for the
truth parameters, a correct estimator can be given by the average value of each parameter according
to its own PDF. This method to obtain an a posteriori distribution for each parameter requires
an a priori distribution, which will be assumed as flat in the space of polar coordinates. This
arbitrary choice is intrinsic to Bayesian methods [3], but it still can provide reliable estimates of
the confidence intervals if the dependence with the a priori distribution is small. As indicated
previously, the Bayesian approach is used as an independent cross-check of the frequentist results.

1Or equivalently, χ
2 distribution with 3 (5) degrees of freedom.
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2 Classical (frequentist) technique

2.1 Cartesian coordinates

The 4-dimensional cartesian parameter space is defined by the variables z± = (x±, y±), where

x± ≡ ℜ(rB±eiθ±) = rB± cos θ±

y± ≡ ℑ(rB±eiθ±) = rB± sin θ± (3)

with θ± = δ ± γ. The choice of this particular basis is important because no physics boundaries
have to be imposed to the fit variables. The consequence, as proved later, is the Gaussian behavior
of the errors and the absence of biases in the fit results. On the contrary, the choice of the polar
coordinates base,

(rB , γ , δ) , (4)

even if it has one parameter less, it contains one parameter with a physics boundary (rB > 0).
In this case it is found a biased distribution for the rB fit values, where the bias is larger for
smaller values of rB and smaller data sample size. In addition, cartesian coordinates are largely
uncorrelated, while (rB , γ, δ) are significantly correlated. The correlation matrix blocks for D0K
and D∗0K modes obtained from the fit to the BlackDiamond data sample are shown in tables 1
and 2, respectively. As shown later on the basis of Toy MC studies, the only sizeable correlations
appear for pairs (x+, y+) and (x−, y−) within a given B decay mode. This contribution will be
taken later into account in the frequentist PDF. All the cross correlation terms between D0K and
D∗0K samples are zero.

Moreover, the cartesian coordinates are sensitive to the direct CP violation in the B− →
D(∗)0K− decay (and that with a simple Gaussian behavior). If we represent in the (x±, y±) plane
the results for B± decays, the distance of the two points d is

d = [(x− − x+)2 + (y− − y+)2]1/2 = 2rB | sin γ| . (5)

A non null distance means evidence of direct CP violation.
Table 3 reports the (x±, y±) nominal fit results on the BlackDiamond data sample, for the D0K

and D∗0K decay modes. In Figure 1 are shown the 68.3% and 95% confidence-level contours in
the (x±, y±) cartesian fit parameter space for the two channels. The distance d is the length of
the segment between the B+ (circle dot) and B− (rectangular dot). The statistical significance of
the CP violation will be discussed later in section 2.5. Given the good Gaussian behavior of the
cartesian parameters (see below), these contours have been obtained using the standard likelihood
ratio method (∆Lexp = 0.5, 1.921, for 68.3% and 95% confidence-level regions) [3].

From Toy MC studies, described in detail in Appendix A, residual distributions of the cartesian
fit parameters space doesn’t show any significant bias. The errors from the fit are well calculated,
pulls (residuals normalized to the fit errors) have σ = 1 within the errors for all the fit variables and
means are consistent with zero. For this study we have used a set of about 2K Toy MC experiments
corresponding to the nominal data results (i.e. the generated x± and y± values are those found in
the nominal fit, table 3). The linearity of the (x±, y±) fit parameters together with the stability
of their corresponding rms’ (σx+ , σy+ , σx−

, and σy−) versus the generated parameter values are
demonstrated in figures 2 and 3, for the D0K and D∗0K samples respectively (error bars indicate
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Observable x− y− x+ y+

x− 1 2.5 × 10−2 9.4 × 10−5 −3.0 × 10−5

y− 1 −1.8 × 10−4 −2.3 × 10−4

x+ 1 6.0 × 10−2

Table 1: Correlation matrix for (x±, y±) cartesian coordinates, for the D0K decay mode.

Observable x− y− x+ y+

x− 1 −1.7 × 10−1 −6.3 × 10−3 3.6 × 10−3

y− 1 −5.7 × 10−3 2.6 × 10−3

x+ 1 −2.7 × 10−1

Table 2: Correlation matrix for (x∗
±, y∗±) cartesian coordinates, for the D∗0K decay mode.

Observable D0K D∗0K

x− 0.0772+0.0688
−0.0708 [±0.0692] −0.1306+0.0940

−0.0935 [±0.0934]

y− 0.0635+0.0953
−0.0888 [±0.0919] −0.1433+0.1064

−0.1059 [±0.1049]

x+ −0.1287+0.0701
−0.0704 [±0.0703] 0.1397+0.0941

−0.0943 [±0.0926]

y+ 0.0186+0.0762
−0.0814 [±0.0787] 0.0131+0.1183

−0.1201 [±0.1195]

Table 3: Fit results for (x±, y±) cartesian coordinates, for the D0K and D∗0K decay modes. The
values inside square brackets are the quadratic (Gaussian) errors calculated from the fit covariance
matrix.
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Figure 1: 68.3% (dark blue) and 95% (bright blue) confidence-level countours in the (x±, y±) carte-
sian fit parameter space for D0K (left) and D∗0K (right). Solid (dotted) contours are for B− (B+)
decays. Given the good Gaussian behavior of the cartesian parameters, these contours have been
obtained using the standard likelihood ratio method (∆Lexp = 0.5, 1.921) [3].

the rms of the distribution at each generated point). These figures have been produced with 20K
Toy MC experiments with truth (x±, y±) values obtained by generating randomly rB and the weak
and strong phases, in the ranges [0, 0.3], [−180◦, 180◦] and [0, 360◦], respectively. Using the same
experiments we have also studied the stability of the rms of the residual and pull distributions in
bins of the truth rB value, as shown in Appendix A. From both studies we observe that the rms
values are stable in the wide range of truth values within a precision of < 10%. These results will
be used in the parametrization of the frequentist PDF, as described below.

2.2 Description of the method

Once we have demonstrated the Gaussian and linearity behavior of the cartesian fit parameter
space, we can construct an analytical parameterization of the PDF. The 4-dimensional PDF is
written as

d4P

d2z+d2z−
(z+, z−|p

t) = G2

(

z+; rt
B cos(δt + γt), rt

B sin(δt + γt), σx+ , σy+ , ρ+

)

×

G2

(

z−; rt
B cos(δt − γt), rt

B sin(δt − γt), σx−
, σy− , ρ−

)

(6)

where

G2 (z;µx, µy, σx, σy, ρ) =
1

2πσxσy

√

1 − ρ2
e
−

1
2(1−ρ2)

[

(x−µx)2

σ2
x

+
(y−µy)2

σ2
y

−
2ρ(x−µx)(y−µy)

σxσy

]

(7)

and z± = (x±, y±) and p = (rB , γ, δ). The vectors zt
± and pt, defined equivalently to z± and

p respectively, are the corresponding parameters in the truth parameter space. The Gaussian
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Figure 2: Linearity of the (x±, y±) cartesian fit parameter space, for the D0K mode. The truth
(generated) values of (x±, y±) have been obtained by generating randomly rB and the weak and strong
phases. rB was generated in the range [0, 0.3]. Error bars indicate the rms of the distribution at
each generated point.
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Figure 3: Linearity of the (x±, y±) cartesian fit parameter space, for the D∗0K mode. The truth
(generated) values of (x±, y±) have been obtained by generating randomly rB and the weak and strong
phases. rB was generated in the range [0, 0.3]. Error bars indicate the rms of the distribution at
each generated point.
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widths (σx±
, σy±) and the correlations ρ± (all the other correlations are neglected) distributions

can obtained either from the nominal full experimental likelihood Lexp Toy MC experiments or
from the fit to the data sample itself, since the agreement with the values found in data is very
good, as shown in figures 30, 31 and 32 in Appendix A. Given this good agreement and in order
to take into account the goodness of the fit to the data sample (i.e. good or bad luck of the data
sample single experiment), we will use in the above PDF the values of the widths and correlations
found in the data fit, which were summarized in tables 3, 1 and 2.

Once we have constructed and justified the PDF of the fit parameters as a function of the
true parameters, the technical procedure to construct 3-dimensional confidence regions and their
1- and 2-dimensional is as follows. The confidence level 1 − α for each set of true parameters pt is
calculated as

α(pt) =

∫

D

d4P

d2z+d2z−
(z+, z−|p

t)d2z+d2z− , (8)

where the integration domain D (the confidence region) is given by the condition

d4P

d2z+d2z−
(z+, z−|p

t) ≥
d4P

d2z+d2z−
(zdata

+ , zdata
− |pt) , (9)

i.e. it includes all points in the fit parameter space closer to the truth point than the data point.
The values of zdata

± are those given in table 3. To construct the 3-dimensional confidence region
(pt space) we generate randomly a large set (109) of points pt ≡ (rt

B , γt, δt), in the ranges [0, 0.4],
[−180◦, 180◦] and [0, 360◦]. For each generated point pt the integral α(pt) is evaluated according
to equations (8) and (9). If we are interested in building a 3-dimensional region of joint prob-
ability 1 − α0, then we select only those points for which α(pt) ≤ α0. The 2-dimensional and
1-dimensional contours are then built by projecting the 3-dimensional joint probability regions.
The values α0 = 0.19875, 0.72092 correspond to the 1 and 1.96 standard deviation 3-dimensional
ellipsoids, thus the 1-dimensional projections represent the 1 and 1.96 standard deviations of each
individual parameter2, regardless the other parameters3. This procedure results in a confidence do-
main with the minimum possible area and so has maximum power to exclude alternative hypotheses.
The integral (8) with the contour condition given by Eq. (9) can be evaluated numerically, but an
analytical evaluation is also possible by performing a change of variable to 4-dimensional hyper-
spheric coordinates, with the subsequent gain in CPU (many orders of magnitude) and precision.

The Neyman’s freedom to define the likelihood ordering offers also the possibility to use alter-
natively the likelihood ordering proposed in [5] instead of that given in Eq. (9). In this paper it
is raised the issue of undercoverage produced by the usual orderings, like the one used here, when
measured parameters are bounded by physical limits. In addition to the alternative ordering pro-
posed by Feldman and Cousins, a possible way out (also pointed out in their paper) is to allow the
measured parameters to take unphysical values. This requires knowning the PDF for non-physical
values, which often raises conceptual problems. However, we should stress here that we are free of
this problem since our fit parameter space (cartesian coordinates) is not bounded. Obviously, this
does not imply that our ordering choice and that of Feldman-Cousins provide exactly the same con-
fidence regions (this is the inherent freedom to the Neyman’s definition) but both provide regions
with the correct statistical coverage. The correct coverage provided by our method and particular
ordering is demonstrated in section 2.6.

21.96σ corresponds to a 95% probability content for the case of a 1-dimensional Gaussian distribution [3].
3These values of α0 are the cumulative (upper) integral of a χ

2 probability distribution for χ
2 = 12

, 1.962 and
ν = 3 degrees of freedom [3].
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As an additional cross-check we have verified that the 68.3% confidence level interval for a point
in the true parameter space with rt

B = 0 (null point, i.e. zt
± = 0) contains rt

B = 0 (see Appendix B).
This check is relevant to verify that the method intrinsically accounts for the rB bias.

2.3 1- and 2-dimensional projections of confidence regions for D0K and D∗0K

Applying this procedure separately to D0K and D∗0K, and projecting in 1 and 2 dimensions we
obtain the projections of the 3-dimensional regions of 1−α0 joint probability. Figures 4 and 5 show
the 2-dimensional projections of the the 19.9% (dark blue) and 72.1% (bright blue) confidence-
level 3-dimensional regions for the D0K and D∗0K modes. Similarly, figures 6 and 7 show the
1-dimensional projections, which correspond to 1 and 1.96 sigma standard deviation of each single
parameter, regardless the values of the others. In the 1-dimensional projections we also show the
projection of the PDF. Notice that both the 2- and 1-dimensional projections show the ±180◦

ambiguity in γ(∗) and δ(∗). The probability density functions for rB and r∗B show clearly the non-
Gaussian behavior we expect from Toy MC, as well as the poor sensitivity to small values. Table 4
reports numerically the one dimensional 1σ and 1.96σ intervals4. The results include the intrinsic
two fold ambiguity for γ(∗) and δ(∗).

Parameter 1σ 1.96σ

rB [0.051,0.184] [0,0.238]
γ [33,108] [213,288] –
δ [67,142] [247,322] –

r∗B [0.090],0.248] [0.027,0.318]
γ∗ [36,106] [216,286] [11,140] [191,320]
δ∗ [262,332] [82,152] [234,363] [54,183]

Table 4: The 1σ (1.96σ) intervals for rB, δ, γ (D0K) and r∗B, γ∗ and δ∗ (D∗0K). For γ and δ the
±180 degree solution is also indicated.

2.4 Combination of D0K and D∗0K decay modes

We have combined the two event samples, D0K and D∗0K, in order to obtain a more accurate
measurement of γ. The method we have used for the combination of the results is identical to that
used for each B decay mode separately, but now we have five true parameters pt= (γt, rt

B , δt, r∗tB , δ∗t)
and an 8-dimensional cartesian space for the measured parameters (z±, z∗±) = (x±, y±, x∗

±, y∗±). The
PDF in this case reads

d8P

d2z+d2z−d2z∗+d2z∗−
(z+, z−, z∗+, z∗−|p

t) =
d4P

d2z+d2z−
(z+, z−|r

t
B , γt, δt) ×

d4P

d2z∗+d2z∗−
(z∗+, z∗−|r

∗t
B , γt, δ∗t) . (10)

The confidence level 1 − α for each set of true parameters pt is now calculated as

4The numerical confidence intervals have been obtained using 109 points and an step variation (precision) of 0.0002
on rB and 0.1◦ on the angles, while for the 2- and 1-dimensional figures a poorer precision of 107 points and an step
variation of 0.004 and 3◦ is enough (a better, publication quality could be obtained with 5× 107 points and an step
variation of 0.001 and 1◦).
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Figure 4: 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright blue) confidence-
level 3-dimensional regions for the D0K mode.
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Figure 5: 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright blue) confidence-
level 3-dimensional regions for the D∗0K mode.

α(pt) =

∫

D

d8P

d2z+d2z−d2z∗+d2z∗−
(z+, z−, z∗+, z∗−|p

t)d2z+d2z−d2z∗+d2z∗− , (11)

where the integration domain D (the confidence region) is given by the condition

d8P

d2z+d2z−d2z∗+d2z∗−
(z+, z−, z∗+, z∗−|p

t) ≥
d8P

d2z+d2z−d2z∗+d2z∗−
(zdata

+ , zdata
− , z∗ data

+ , z∗ data
− |pt) . (12)

The 5-dimensional confidence region in pt space is constructed by generating a large number
(1010) of points pt ≡ (rt

B , γt, δt, rt
B
∗
, δ∗), in the ranges [0, 0.4], [−180◦, 180◦], [0, 360◦], [0, 0.4], and

[0, 360◦], respectively, and selecting the points for which α(pt) ≤ α0 = 0.03743, 0.42756. These
values α0 correspond to the 1 and 1.96 standard deviation 5-dimensional ellipsoids, thus the 1-
dimensional projections represent the 1 and 1.96 standard deviations of each individual parameter,
regardless the other parameters 5. As before, the 2- and 1-dimensional contours are then built

5These values of α0 are the cumulative (upper) integral of a χ
2 probability distribution for χ

2 = 12
, 1.962 and

ν = 5 degrees of freedom [3].
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Figure 6: Probability density functions for rB, γ and δ together with the 1-dimensional projections
of the 19.9% (dark blue) and 72.1% (bright blue) confidence-level 3-dimensional regions for the
D0K mode.
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Figure 7: Probability density functions for rB
∗, γ and δ∗ together with the 1-dimensional projections

of the 19.9% (dark blue) and 72.1% (bright blue) confidence-level 3-dimensional regions for the
D∗0K mode.

by projecting the 5-dimensional joint probability regions. Figures 8 and 9 show the 2-dimensional
projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level 5-dimensional regions
for D0K and D∗0K modes (γ is common). The corresponding 1-dimensional projections, together
with the PDF projections, are shown in figure 10. Notice that both the 2- and 1-dimensional
projections show the ±180◦ ambiguity in γ and δ(∗).

Table 5 reports numerically the 1-dimensional 1σ and 1.96σ intervals6. The results include
the intrinsic two fold ambiguity for γ and δ(∗). In the last column of the table we also report
central values of the true parameters with 1σ errors. The central values for the true parameters are
estimated as the mean value of the interval (statistical only). The central value and one standard
deviation (which corresponds to the 3.7% confidence level region for the case of a 5-dimensional

6The numerical confidence intervals have been obtained using 1010 points and an step variation (precision) of
0.0002 on rB and 0.1◦ on the angles, while for the 2- and 1-dimensional figures a poorer precision of 107 points and
an step variation of 0.004 and 3◦ is enough (a better, publication quality could be obtained with 5× 107 points and
an step variation of 0.001 and 1◦).
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Figure 8: 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level
5-dimensional regions for the D0K - D∗0K combined mode. The rB and δ variables are for the
D0K decay sample.
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Figure 9: 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level
5-dimensional regions for the D0K - D∗0K combined mode. The rB

∗ and δ∗ variables are for the
D∗0K decay sample.

Gaussian distribution) for γ is therefore γ = (70 ± 31)◦, while the 1.96 standard deviation interval
(which corresponds to the 42.8% confidence level region for a 5-dimensional Gaussian distribution)
is 20◦ < γ < 128◦ (200◦ < γ < 308◦).

2.5 Significance of CP violation

The significance of CP violation can be determined by finding the confidence level 1−αCP��
for the

most probable CP conserving point pt
CP , i.e. the pt point with rt

B = 0 or γt = 0,

pt
CP = {pt|pt = (rt

B = 0, γt, δt) or pt = (rt
B , γt = 0, δt)} . (13)

for which α(pt) is minimal. In this way, 1− αCP��
represents the CP conservation confidence level,

and therefore αCP��
represents the CP violation confidence level (or significance of CP violation).

In the case of the combined measurement of γ we can evaluate the CP significance as follows

pt
CP = {pt|pt = (rt

B = 0, r∗tB = 0, γt, δt, δ∗t) or pt = (rt
B , r∗tB , γt = 0, δt, δ∗t)} . (14)
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Figure 10: Probability density functions for rB, δ, rB
∗, δ∗ and γ together with the 1-dimensional

projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level 5-dimensional regions
for the D0K - D∗0K combination.
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Parameter 1σ 1.96σ Central value with error (1σ)

γ [39,101] [219,281] [20,128] [200,308] 70 ± 31
rB [0.040,0.196] [0,0.253] 0.118 ± 0.079
r∗B [0.073],0.265] [0.007,0.336] 0.169 ± 0.096
δ [59,149] [239,329] – 104 ± 45
δ∗ [255,338] [75,158] [220,374] [40,194] 296 ± 41

Table 5: The 1σ (1.96σ) D0K-D∗0K combined intervals for rB, rB
∗, δ, δ∗, and γ (angles are in

degree). In the last column the central values with 1σ errors are also reported. For the γ, δ and δ∗

intervals the ±180 degree solution is also indicated.

For the D0K we have αCP��
= 0.655 in pt=(rt

B,γt,δt)=(0.043,0◦ ,124◦), for the D∗0K we have
αCP��

= 0.828 in pt=(r∗tB ,γt,δ∗t)=(0.070,0◦ , 280◦), while for the combined measurement we have
αCP��

= 0.791 in pt=(rt
B ,γt,δt,r∗tB ,δ∗t)=(0.044,0◦,123◦,0.073,279◦). We quote CP violation in the

D0K at 65.5% CL, in the D∗0K at 82.8% CL and in the combined measurement at the 79.1% CL.
These confidence levels correspond to the 1.82, 2.24, and 2.68 standard deviation ellipsoids.

2.6 Coverage test with the experimental likelihood

A simple and powerful check that the whole procedure has been applied and implemented correctly,
including the (very good) simplifications made when constructing the analytical forms of the fre-
quentist PDFs, Eqs. (6) and (10), is to check the coverage (in a frequentist sense) given by the
estimated confidence regions using the (full) experimental likelihood Lexp. The test makes use of
the frequentist definition of coverage, as given in section 1: a region with confidence level 1 − α0

will contain the unknown true point a fraction 1 − α0 of the experiments, or in other words, if the
experiment is carried out many times, a fraction 1−α0 of those experiments will find the measured
point within the given confidence region. Following this definition, the procedure was the following.
About 20K Toy MC experiments tuned to the data were generated with truth values of rB , γ, δ,
rB

∗ and δ∗ as obtained after applying the frequentist method (central values), as given in Table 5.
These values represent in fact the vector of true parameters, pt = (rt

B , γt, δt, r∗tB , δ∗t). Each experi-
ment was then fit in cartesian coordinates, obtaining a set of (xi

±, yi
±), (x∗i

± , y∗i± ) values from which
the confidence level 1−α(pt) was calculated using Eqs. (11) and (12), where now the data point is
substituted by the Toy MC experiment point. If the procedure provides the correct coverage then
the fraction of Toy MC experiments verifying α(pt) ≤ α0 should be just α0 (or consistent with it).

The α0 = 3.74% (42.76%) 5-dimensional confidence-level coverage is 3.75±0.14% (40.4±0.5%),
where the error is due to the limited amount of Toy MC experiments. The discrepancy at the 5
sigma level (5.5%) for the 1.96σ coverage is due to small deviations of the experimental likelihood
Lexp with respect to the perfect Gaussian behavior and the assumption of the stability of the
widths (σx+ , σy+, σx−

, and σy−) over the whole range of the parameters, known to be true at
< 10% level for parameters far away from those found in the nominal data fit (this explains the
perfect agreement at 1σ level and the small difference at 1.96σ). The confidence level corresponding
to α0 = 40.4% translates into a 1.92σ ellipsoid, to be compared to the nominal 1.96σ (in terms
of 1-dimensional Gaussian probability content this corresponds to 94.5%, to be compared to the
nominal 95%). Therefore the discrepancy is negligible. The coverage as a function of the value of
α0 in bins of size 0.1 is shown in figure 11. Within errors, the coverage is correct for all the possible
confidence level values.

The coverage check has been repeated by changing the truth value of rB and r∗B by ±1σ
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Figure 11: Distribution of the α0 value in the ToyMC experimental likelihood (coverage) for the
central values of truth rB and r∗B values (table 5). The red line represents the perfect coverage case,
blue points are the coverage value from the ToyMC experiments for each α0 bin of size 0.1. The
error bars are due to the limited statistics of experiments (20K). Within errors, the coverage is
correct for all the possible confidence level values.

(according to the last column of table 5), keeping the same values for the phases. Moving rB and
r∗B is enough for the purpose of this check since what we want to study is any potential change in
the coverage by the scaling of the cartesian coordinates. A total of 10K experiments were generated
for each of these points. The α0 = 3.74% (42.76%) 5-dimensional confidence-level coverage for the
lower 1σ bound is 4.1± 0.2% and for the upper bound is 3.6± 0.2%. The coverage as a function of
the value of α0 in bins of size 0.1 for these two points is also shown in figure 12. Again, taking into
account the statistical errors, the coverage is correct for all the possible confidence level values.

Finally, as a sanity check, we used the same Toy MC experiments to check directly the 1-
dimensional coverage provided by the cartesian coordinates (x±, y±) and (x∗

±, y∗±), which turn
to be perfectly consistent with 68.3% (95%) with an error from the limited number of Toy MC
experiments of 0.006 (0.007).

2.7 CP test with the D0π and D∗0π events

The CP analysis has also been performed with D0π and D∗0π events in exactly the same way as
it has been done for the D0K and D∗0K samples. The goal of this check is to verify whether the
results are consistent with the expectation that CP violating effects are much smaller than for D0K
and D∗0K events (rB

(∗) values are expected to be of order 0.007).
Table 6 reports the (x±, y±) CP fit results on the BlackDiamond data sample, for the D0π and

D∗0π decay modes. The corresponding correlation matrix blocks obtained from the fit are shown
in tables 7 and 8, respectively.
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Figures 13 and 14 show the 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright
blue) confidence-level 3-dimensional regions for the D0π and D∗0π modes. Similarly, figures 15 and
16 show the 1-dimensional projections, which correspond to 1 and 1.96 sigma standard deviation
of each single parameter, regardless the values of the others. Table 9 reports numerically the one
dimensional 1σ and 1.96σ intervals.

We have also combined the two event samples, D0π and D∗0π. Figures 17 and 18 show
the 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level
5-dimensional regions for D0π and D∗0π modes (γ is common). The corresponding 1-dimensional
projections, together with the PDF projections, are shown in figure 19. Table 10 reports numer-
ically the 1-dimensional 1σ and 1.96σ intervals. In the last column of the table we also report
central values of the true parameters with 1σ errors. The central values for the true parameters are
estimated as the mean value of the interval (statistical only). The results for rB

(∗) are consistent
with the expectations. Although the current Dπ data does not constraint at 1.96σ level the weak
and strong phases (the sensitivity is just at the frontier, as seen in the previous figures), the 1σ γ
constraint is similar and consistent with what we obtained with the DK samples. On the other
hand, looking at the 2-dimensional projections of the joint probability ellipsoids as well as to the
PDF projections is it obvious that there is some interesting sensitivity to γ. This could be exploited
in the future to perform a DK-Dπ combined frequentist analysis to improve the statistical power
on γ (this will require more careful studies of the D0π and D∗0π background composition as well
as the evaluation of the Dπ CP systematics). As a new check that the sensitivity we observe in
Dπ events is not an artifact we have performed a null D0π test, as described in Appendix C. The
significance of CP violation is αCP��

= 0.004 for D0π, αCP��
= 0.649 for D∗0π, and αCP��

= 0.204 for
the D0π-D∗0π combination.

Observable D0K D∗0K

x− −0.0157 ± 0.0167 0.0608 ± 0.0288
y− −0.0135 ± 0.0200 0.0209 ± 0.0371
x+ −0.0061 ± 0.0186 −0.0242 ± 0.0283
y+ −0.0186 ± 0.0196 0.0205 ± 0.0323

Table 6: Fit results for (x±, y±) cartesian coordinates, for the D0π and D∗0π decay modes.

Observable x− y− x+ y+

x− 1 6.8 × 10−2 6.1 × 10−4 1.3 × 10−5

y− 1 −8.0 × 10−4 2.7 × 10−5

x+ 1 1.0 × 10−1

Table 7: Correlation matrix for (x±, y±) cartesian coordinates, for the D0π decay mode.
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Observable x− y− x+ y+

x− 1 −5.1 × 10−2 5.3 × 10−4 −2.6 × 10−3

y− 1 −5.2 × 10−4 −1.2 × 10−3

x+ 1 1.9 × 10−2

Table 8: Correlation matrix for (x∗
±, y∗±) cartesian coordinates, for the D∗0π decay mode.

Parameter 1σ 1.96σ

rB [0.003,0.038] [0,0.052]
γ [-38,79] [142,259] –
δ [175,293] [-5,113] –

r∗B [0.027],0.070] [0.004,0.093]
γ∗ [31,92] [211,272] [-10,144] [170,324]
δ∗ [48,108] [228,288] [5,159] [185,339]

Table 9: The 1σ (1.96σ) intervals for rB, δ, γ (D0π) and r∗B, γ∗ and δ∗ (D∗0π). For γ and δ the
±180 degree solution is also indicated.

Parameter 1σ 1.96σ Central value with error (1σ)

γ [22,76] [202,256] – 49 ± 27
rB [0.002,0.030] [0,0.049] 0.016 ± 0.014
r∗B [0.027],0.071] [0,0.098] 0.049 ± 0.022
δ [178,297] [-2,116] – 238 ± 60
δ∗ [45,103] [224,283] – 74 ± 29

Table 10: The 1σ (1.96σ) D0π-D∗0π combined statistical intervals for rB, rB
∗, δ, δ∗, and γ (angles

are in degree). In the last column the central values with 1σ errors are also reported. For the γ, δ
and δ∗ intervals the ±180 degree solution is also indicated.
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Figure 12: Distribution of the α0 value in the ToyMC experimental likelihood (coverage) for −1σ
(top) and +1σ (bottom) truth rB and r∗B values (table 5). The red lines represent the perfect
coverage case, blue points are the coverage value from the ToyMC experiments for each α0 bin of
size 0.1. The error bars are due to the limited statistics of experiments (10K). Within errors, the
coverage is correct for all the possible confidence level values.
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Figure 13: 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright blue) confidence-
level 3-dimensional regions for the D0π mode.
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Figure 14: 2-dimensional projections of the 19.9% (dark blue) and 72.1% (bright blue) confidence-
level 3-dimensional regions for the D∗0π mode.
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Figure 15: Probability density functions for rB, γ and δ together with the 1-dimensional projections
of the 19.9% (dark blue) and 72.1% (bright blue) confidence-level 3-dimensional regions for the D0π
mode.
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Figure 16: Probability density functions for rB
∗, γ and δ∗ together with the 1-dimensional projec-

tions of the 19.9% (dark blue) and 72.1% (bright blue) confidence-level 3-dimensional regions for
the D∗0π mode.
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Figure 17: 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-
level 5-dimensional regions for the D0π - D∗0π combined mode. The rB and δ variables are for the
D0π decay sample.
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Figure 18: 2-dimensional projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-
level 5-dimensional regions for the D0π - D∗0π combined mode. The rB

∗ and δ∗ variables are for
the D∗0π decay sample.

27



Br
0 0.05 0.1 0.15

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.01

0.02

0.03

0.04
BABAR

 (deg)δ
0 100 200 300

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.001

0.002

0.003

BABAR

*
Br

0 0.05 0.1 0.15

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.005

0.01

0.015 BABAR

 (deg)*δ
0 100 200 300

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.002

0.004

BABAR

 (deg)γ
-100 0 100

P
ro

b
ab

ili
ty

 d
en

si
ty

0

0.002

0.004

BABAR

Figure 19: Probability density functions for rB, δ, rB
∗, δ∗ and γ together with the 1-dimensional

projections of the 3.7% (dark blue) and 42.8% (bright blue) confidence-level 5-dimensional regions
for the D0π - D∗0π combination.
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3 Systematic uncertainties

With the frequentist method described previously, systematic uncertainties can be included very

easily just by replacing σx±
and σy± by

√

σ2
x±

+ σ2
x±,syst

and
√

σ2
y± + σ2

x±,syst
, respectively. As the

statistical uncertainties dominate yet this measurement and the largest systematic uncertainties
are uncorrelated among the two samples, it is appropriate to assume that the global correlations
ρ± remain unchanged with respect to their statistical values. In any case, it has been checked
that the impact of the correlation on the confidence regions/intervals is very small (this check was
performed using the average correlation from Toy MC experiments instead of the values measured in
the data). Table 11 summarizes the main systematic uncertainties of the measurement in cartesian
coordinates, for the D0K and D∗0K decay modes. For comparison, we indicate the Dalitz model
systematics by using the CLEO model –like the nominal one but excluding the following resonances:
σ1, σ2, K∗

0 (1430) DCS, K∗
2 (1430) DCS, K∗(1410), and ρ(1450)– and a model like the nominal one

but excluding only the σ1 and σ2 resonances. We use the CLEO model to quote final Dalitz model
systematics, but the alternative model excluding only the σ’s has essentially the same effect, on
both cartesian and polar variables; in other words, the Dalitz model effect is almost exclusively due
to the non well established σ1 and σ2 resonances.

Table 12 reports the 1σ and 1.96σ intervals for rB
(∗), γ, and δ(∗), as obtained by repeating the

frequentist procedure with each systematic uncertainty contribution included. In the last column
of the table we also report the central values with 1σ error breakdown (statistical, experimental
systematic and Dalitz model systematic). Each systematic error contribution to rB

(∗), γ, and δ(∗) is
obtained by subtracting in quadrature to the statistical error (as given in table 5) the error obtained
after applying the frequentist procedure using the corresponding σx±,syst

and σx±,syst
contribution.

The central values reported are those obtained when only statistical errors are used. The asymmetry
of the systematic errors is due to the change of mean values of the intervals when systematic errors
are included.

The significance of CP violation becomes now 51.2% CL in pt = (rt
B , γt, δt)=(0.038,0◦ ,116◦)

for D0K, 75.9% CL in pt = (r∗tB , γt, δ∗t) =(0.078,0◦, 279◦) for D∗0K, and 65.1% CL in pt =
(rt

B , γt, δt, r∗tB , δ∗t)=(0.033,0◦ ,117◦,0.082,279◦) for the combined measurement. These confidence
levels correspond to the 1.56, 2.05, and 2.36 standard deviation ellipsoids (88.1%, 96.0%, and
98.2% probability content for the case of 1-dimensional Gaussian distributions).

In the following subsections we describe how each systematic uncertainty contribution in the
cartesian coordinate space has been evaluated.

3.1 mES, ∆E and Fisher shapes

The effect of fixing the PDF shapes in the CP fit has been evaluated by performing a simultaneous
PDF shape and CP fit. Since the extraction of the shapes relies mainly on the Dπ sample, the
CP and shapes fit is performed simultaneously to the DK and Dπ samples, whith shapes fixed
and floated. The systematics was then taken as the quadratic difference of the errors reported by
the two fits. In all cases the difference between the central values of the two fits is well below the
statistical difference.

The mES endpoint in the Argus parameterization is fixed in the nominal fit to 5.290 GeV (the
same value is also used as integration limit of the mES PDF). To estimate the effect of it in the
determination of the signal yields and its impact on the CP parameters we have varied it by ±0.5
MeV. It was found to be completely negligible.
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Source x+ y+ x− y− x∗

+ y∗

+ x∗

−
y∗

−

mES, ∆E,F shapes 0.0105 0.0086 0.0088 0.0141 0.0196 0.0218 0.0218 0.0146
Real D0 fraction 0.0050 0.0047 0.0061 0.0036 0.0035 0.0049 0.0028 0.0032
Right sign D0’s 0.0157 0.0090 0.0070 0.0211 0.0065 0.0163 0.0108 0.0103

Eff. in the Dalitz plot 0.0078 0.0085 0.0089 0.0119 0.0067 0.0119 0.0040 0.0079
Tracking efficiency 0.0082 0.0080 0.0095 0.0123 0.0058 0.0109 0.0051 0.0046

Cont bkg. Dalitz shape 0.0195 0.0096 0.0160 0.0149 0.0133 0.0084 0.0083 0.0046
BB bkg. Dalitz shape 0.0026 0.0072 0.0069 0.0130 0.0061 0.0098 0.0029 0.0003

Invariant mass resolution 0.0031 0.0023 0.0022 0.0016 0.0031 0.0023 0.0022 0.0016
Dalitz amplitude and phases 0.0012 0.0069 0.0050 0.0033 0.0043 0.0138 0.0079 0.0079

SubTotal 0.0301 0.0226 0.0258 0.0368 0.0275 0.0373 0.0280 0.0223
Dalitz model (CLEO) 0.0324 0.0214 0.0185 0.0424 0.0253 0.0560 0.0206 0.0249

Total (CLEO) 0.0442 0.0311 0.0318 0.0561 0.0374 0.0673 0.0348 0.0334

Dalitz model (no σ1, σ2) 0.0336 0.0258 0.0207 0.0374 0.0255 0.0464 0.0209 0.0396
Total (no σ1, σ2) 0.0451 0.0343 0.0331 0.0525 0.0375 0.0595 0.0349 0.0454

Table 11: Summary of the contributions to the systematic error in cartesian coordinates, (x±, y±)
and (x∗

±, y∗±).

Parameter 1σ 1.96σ Central value with error (1σ)

γ [36,106] [216,286] [13,136] [193,316] 70 ± 31 +12
−10

+14
−11

rB [0.025,0.211] [0,0.277] 0.118 ± 0.079 ± 0.034 +0.036
−0.034

r∗B [0.066],0.274] [0,0.352] 0.169 ± 0.096 +0.030
−0.028

+0.029
−0.026

δ [48,155] [228,335] – 104 ± 45 +17
−21

+16
−24

δ∗ [251,342] [71,162] – 296 ± 41 +14
−12 ± 15

Table 12: The 1σ (1.96σ) D0K-D∗0K combined intervals including systematic uncertainties for
rB, rB

∗, δ, δ∗ and γ (angles are in degree). In the last column the central values with 1σ error
break-down are reported: the first errors are statistical, the second are experimental systematics,
and the third are Dalitz model systematics. For the γ, δ and δ∗ intervals the ±180 degree solution
is also reported.
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3.2 Background composition

The uncertainty due to the fraction of real D0’s in background (table 38 of Ref. [2]) is estimated
by varying this parameter within its statistical error and then repeating the fit to the data sample.
In order to be conservative, we have moved up and down by one sigma these fractions for all the
samples –D0K, (D0π0)K and (D0γ)K– and components (Cont and BB) simultaneously. In the case
of the BB fraction for D0K events, an upper limit of 10% was used to evaluate this systematics.
The larger between the half difference between the two fits and the quadratic difference of the fit
errors is assigned as systematic uncertainty.

A potential difference in the number of real D0’s in the continuum background between B+

and B− events could fake CP violating effects in the signal. No significant difference between B+

and B− has been found in MC. Nevertheless, we account for any potential effect by introducing an
independent set of CP parameters for the continuum background with a real D0. By repeating the
nominal fit with this new set of parameters we found a negligible impact on the CP parameters.

The fraction of right sign (RS) D0’s is taken from MC simulation. We have estimated this
contribution from the variation of the CP parameters in the fit to the data sample when a value
of 0.5 is assumed instead of the nominal values (given in table 38 of Ref. [2]). As before, we take
the larger between the difference of central values and the quadratic difference of fit errors. The
change observed on the CP parameters is consistent with the larger between the bias and the rms
from a set of Toy MC experiments generated with the nominal value and fit with 0.5.

3.3 Dalitz efficiency

To estimate the effect from the Dalitz efficiency the nominal CP fit was repeated by assuming a flat
distribution instead of the nominal 3rd order polynomial parameterization (table 38 of Ref. [2]).
In addition, we have evaluated a systematics due to tracking and K0

S
reconstruction efficiency over

the Dalitz plot. It has been evaluated by repeating the fit using alternative values of the 3rd order
polynomial parameterization coefficients with: i) the tracking efficiency correction applied on the
2 pions from the D0 decay and the bachelor kaon (table 10 of Ref. [2]); and ii) tracking efficiency
correction applied to the pions from the K0

S
decay (table 11 of Ref. [2]). In all cases, we take

the larger between the difference of central values and the quadratic difference of fit errors. The
uncertainties from the two corrections have been added quadratically.

3.4 Dalitz shape for combinatorial background

The Dalitz shape for combinatorial continuum events is estimated by using off-resonance data,
as described in sections 3 and 5 of Ref. [2]. The correction for BB combinatorial background is
obtained from Monte Carlo simulation. The systematics from this correction is estimated from the
difference on the CP parameters when flat distributions are assumed instead. We take the larger
between the difference of central values and the quadratic difference of fit errors.

3.5 Limited mass resolution

The nominal Dalitz model assumes perfect mass resolution. Given that all the resonances present
in the D0 → K0

Sπ+π− decay are quite wide compared to the estimated mass resolution (about
4 MeV2 for a K0

Sπ+ mass squared of about 1 GeV2 [6]), we expect the effect to be completely
negligible. Only the ω(782) has an intrinsic width comparable to the mass resolution (about 6
MeV2 for a squared π+π− mass of 0.8 GeV2 [6]), but the sensitivity of the CP parameters is in
this case suppressed. To evaluate the effect of the limited mass resolution on the Dalitz plot, two
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different fits were performed to the reweighted signal MC (see section 10.3 of Ref. [2]). The first fit
used the reconstructed K0

S
π+ and K0

S
π− masses, while the second was performed with the MC truth

masses (perfect resolution). The difference of fit values was taken as our systematic uncertainty.
The errors from the fit for the different parameters were basically unchanged between the two fits.

3.6 Dalitz PDF normalization

We have investigated a possible systematic uncertainty due to the limited numerical precision in
the evaluation of the Dalitz plot PDF normalization integral. It has been done by increasing by a
factor 25 the number of cells in the integration grid, on both Toy MC experiments and the data fit.
This corresponds to 5 times more bins on each dimension, i.e. Ngrid = 200 → 1000, or equivalently
a precision of 1.1 MeV precision on the K0

Sπ+ and K0
Sπ− masses. In both cases the change in

the CP parameters was found to be negligible. As cross-check, the nominal fit was also redone by
using Vegas Monte Carlo integration with NV egas = 1.6 × 107 events. Again, the effect on the CP
parameters was found equally to be negligible.

3.7 Statistical errors on Dalitz amplitudes and phases

The phases and amplitudes of the Dalitz model are fixed to the values found from the fit to the high
statistics D∗+ → D0π+

s sample. We expect its effect to be negligible. Nevertheless, we estimated
its effect by performing a simultaneous DK and D∗+ → D0π+

s fit with all these parameters floated.
The uncertainty is taken as the larger between the difference of central values and the quadratic
difference of the errors reported by the two fits. The difference of central values is in all cases
consistent with the quadratic difference of the statistical errors.

3.8 Dalitz model systematics

The Dalitz model systematics is the single most important contribution to the total systematic un-
certainty. To evaluate it, we generated about 500 Toy Monte Carlo experiments (signal Dalitz only)
tunned to the data sample using the nominal Dalitz model. The experiments were then fit using
the nominal model, the CLEO model (the nominal model but excluding the σ1, σ2, K∗

0 (1430) DCS,
K∗

2 (1430) DCS, K∗(1410), and ρ(1450) resonances), and a third model identical to the nominal
one but excluding only the σ1 and σ2 resonances. To get ride of statistical fluctuations and avoid
double counting with the data statistical error, each sample was generated with infinite statistics
(in practice, 10K events per B decay channel). To be conservative, only D0K and (D0π0)K events
have been used (10K events each) since it was found that the effect for (D0π0)K and (D0γ)K is
anticorrelated due to the effective π radians shift between the strong phases, which change the sign
for all cartesian components (sine and cosine terms). The systematic uncertainty is finally assigned
as the quadratic sum of the mean and rms of the experiment-by-experiment differences.

The problem with this technique is which values for rt
B , r∗tB , γt, δt, and δ∗t are used in the

generation of the experiments. Given the current large statistical errors (table 5), taking the central
values would be just a choice among others, especially if the effect turns out to be multiplicative
with the truth (generated) value. Unfortunately, it has been verified that the systematic uncertainty
for all cartesian components evaluated in this way strongly depends with the values of rt

B and r∗tB

(increases almost linearly with it, since cartesian CP parameters depend linearly with rB and r∗B),
and smoothly with the values of γt, δt, and δ∗t. This dependency has also been verified when the
CP fit is performed to rB

(∗), γ and δ(∗) directly. For example, for rt
B = 0.12 the effect on γ is about

10◦, but for rt
B = 0.03 it is about 14◦. On the contrary, the change on rB(r∗B) itself increases almost

linearly with rt
B(r∗tB ). These dependencies have also been noticed by Belle [4], and the solution they

32



have adopted and claimed to be conservative is to scan the phases for fixed rt
B = 0.13, taking the

largest variation from the scan. However, we do not agree with this solution since fixing rt
B = 0.13

does not seem to be conservative enough.
The solution we have finally adopted to quote the Dalitz model systematics is the following.

As we know that cartesian coordinates behave almost perfectly as independent Gaussians, for each
single experiment we generate randomly all the 8 cartesian components, following independent
Gaussian distributions with mean and width values as measured in the data (table 3). The rest of
the procedure is identical to what was described above. Taking the systematic uncertainty from
the mean and rms of the experiment-by-experiment differences for each component, we integrate
over the others, which is exactly what we want (meaning of 1σ interval, independent of all the other
variables). Note that this procedure cannot be used in polar coordinates due to the non-Gaussian
behavior in this case, in addition to the large correlation among these parameters. The distributions
of the experiment-by-experiment differences are shown in figures 20 and 21, for the CLEO and no
σ’s models, respectively. The quadratic sum of the offsets and rms’ are quoted in table 11.

All the three Dalitz models used are based on Breit-Wigner parameterization of resonances,
except for the ρ(770) and ρ(1450) for which we use Gounaris-Sakurai parametrization to model
better the tails. Since Breit-Wigner amplitudes can only describe well narrow resonances, we
introduced the Blatt-Weisskopf penetration factors for the intermediate resonances and a resonance
width q2 dependence to deal with broad states. These quantities and models have, however, large
theoretical uncertainties and might be a substantial source of systematic uncertainties. To evaluate
these potential effects we have also used two alternative Dalitz models, one using Breit-Wigners
also for the ρ(770) and ρ(1450) resonances, and the other without Blatt-Weisskopf form factors.
Figures 22 and 23 show the experiment-by-experiment differences for these two models. The mean
and rms values are found to be completely negligible.

As a final check related to the Dalitz model we have studied the impact on the CP parameters
by imposing the constraint that the phase difference between doubly-Cabibbo suppressed (DCS)
and Cabibbo favored (CF) K∗ resonances below 1.440 GeV/c2 (Kη′ threshold) is (−1)J . This is a
consequence of the Watson theorem [7]. The constraint applies to K∗(892), K∗

0 (1430) and K∗
2 (1430),

which should have a DCS-CF relative phase of 180◦, 0◦ and 0◦, respectively. An inspection to tables
30 and 31 of Ref. [2] reveals that the fit results to the D∗ sample are consistent with this prediction,
within statistical errors. To perform this check we have repeated the D∗ Dalitz fit imposing the
constraint on the DCS-CF relative phases, and then the CP parameters were obtained by repeating
the CP fit with this constraint applied. Table 13 shows the CP fit results obtained with this
constraint. These results should be compared to those of table 3. The results of both fits are
consistent within the statistical differences, while there is no evidence of improvement in statistical
power. Therefore, no systematic error is assigned. The same conclusion is obtained when the fit is
performed in polar coordinates.

Observable D0K D∗0K

x− 0.0776 ± 0.0689 −0.1325 ± 0.0934
y− 0.0613 ± 0.0926 −0.1401 ± 0.1061
x+ −0.1258 ± 0.0703 0.1333 ± 0.0925
y+ 0.0081 ± 0.0792 0.0213 ± 0.1226

Table 13: Fit results for (x±, y±) cartesian coordinates with the constraint (−1)J on the phase
difference between doubly-Cabibbo suppressed (DCS) and Cabibbo favored (CF) K∗(892), K∗

0 (1430)
and K∗

2 (1430) resonances applied, for the D0K and D∗0K decay modes.
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4 Bayesian technique

4.1 Description of the method

The estimation of the confidence regions/intervals with the Bayesian approach requires the evalua-
tion of the likelihood function Lexp ≡ Lexp(rB , γ, δ) in the whole range of definition of rB , γ and δ,
[0, 1], [-π,π] and [0,2π], respectively, with the yields floated at each given CP point. The estimate
of the confidence region for the CP parameters implies a choice of a priori distribution. For this
check we arbitrarily assume a uniform a priori distribution for each of the CP parameters rB, γ
and δ.

We define confidence region D(C) at a given C confidence level the region in γ-rB space such

∫

D(C) drBdγ
∫ 2π
0 dδLexp(rB , γ, δ)

∫ 1
0

∫ π
−π

∫ 2π
0 Lexp(rB , γ, δ) drBdγdδ

= C . (15)

The D(C) definition is arbitrary (this is always the case for confidence region) and we choose to
define it by starting the integration procedure by the maximum of the likelihood function and by
requiring that the likelihood value at any point in the boundary of D be the same (integration over
all likelihood values larger than the value at the boundary). Notice that this can easily give disjoint
region.

Similarly we can define the 1-dimensional confidence interval at C confidence level for, say, rB ,
as

∫

I(C) drB
∫ +π
−π dγ

∫ 2π
0 dδLexp(rB , γ, δ)

∫ 1
0

∫ π
−π

∫ 2π
0 Lexp(rB , γ, δ) drBdγdδ

= C , (16)

where again I(C) can be a set of disjoint interval.
In this way we expect that such intervals have the correct coverage. Notice that the effect of

the bias on rB is completely irrelevant for γ and δ measurements (we make no use of the concept
of fitted rB value).

4.2 1- and 2-dimensional confidence regions for D0K and D∗0K

In figure 24 we show the confidence region for γ(∗) versus rB
(∗), for D0K and D∗0K. The red region

is the 68% CL region while the yellow one is the 95% CL. Similarly, figures 25 and 26 show the
confidence regions for γ(∗) versus δ(∗) and δ(∗) versus rB

(∗), for D0K and D∗0K. In figures 27 and 28
we show the probability density functions for rB

(∗), γ(∗) and δ(∗) for D0K and D∗0K, respectively,
obtained by integrating the experimental likelihood for all the values of the other variables: γ(∗),
δ(∗); rB

(∗), δ(∗); and rB
(∗), γ(∗). On the same figures we show the confidence intervals at 68% (red)

and 95% (yellow) CL. Notice that the likelihood distribution is nicely showing the ±π ambiguity in
γ(∗) and δ(∗). The probability density function for rB

(∗) shows clearly the non-Gaussian behavior
we expect from Toy MC, showing the poor sensitivity to small values of rB

(∗). In figure 29 we show
the probability density function for γ from the combination of the D0K and D∗0K likelihoods,
integrated over rB, rB

∗, δ and δ∗.
Table 14 reports the confidence intervals for the various parameters (statistical only). For the

central values we quote the expectation value using the experimental likelihood, and the 1σ error
is given by the 68% confidence limit region around the expectation value. For the phases we have
symmetrized the errors taking the largest between the positive and negative errors. The results
include the intrinsic two fold ambiguity for the weak and strong phases.
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Figure 24: 68% (red) and 95% (yellow) Bayesian confidence region in γ(∗)-rB
(∗) plane for D0K

(left) and D∗0K (right).
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Figure 25: 68% (red) and 95% (yellow) Bayesian confidence region in γ(∗)-δ(∗) plane for D0K (left)
and D∗0K (right).
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Figure 26: 68% (red) and 95% (yellow) Bayesian confidence region in δ(∗)-rB
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(left) and D∗0K (right).
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Figure 27: Probability density functions for rB, γ and δ for D0K. 68% (red) and 95% (yellow)
Bayesian confidence intervals are shown.
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Figure 28: Probability density functions for rB
∗, γ∗ and δ∗ for D∗0K. 68% (red) and 95% (yellow)

Bayesian confidence intervals are shown.

Since the frequentist method is the one adopted to quote final results no dedicated evaluation
of systematic uncertainties has been performed. However, with a very good approximation we can
assign the symmetrized experimental and Dalitz model systematic errors obtained in the frequentist
approach, as given in table 15.

Comparing the Bayesian results with those of the frequentist method, we observe that there is
a satisfactory agreement between the two methods, although the Bayesian errors tend to be smaller
than those of the frequentist approach.
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Figure 29: Probability density function for γ for the D0K-D∗0K combination. 68% (red) and 95%
(yellow) Bayesian confidence intervals are shown.

Parameter 68% CL (stat. only) 95% CL (stat. only) Central value with error (1σ)

γ [-147,-65] [33,114] [-180,-23] [-2,157] [179,180] 70 ± 44
γ∗ [-140,-72] [41,108] [-172,-31] [9,148] 73 ± 35
δ [74,155] [253,335] [0,13] [189,192] [212,360] 114 ± 41
δ∗ [89,157] [269,337] [0,16] [55,195] [234,360] 303 ± 34

rB [0.01,0.13] [0,0.19] 0.087+0.041
−0.074 [0.071 ± 0.058]

r∗B [0.08,0.22] [0,0.27] 0.155+0.070
−0.077 [0.152 ± 0.074]

γ (combined) [-132,-83] [48,97] [-156,-50] [23,130] 70 ± 26

Table 14: Bayesian confidence intervals for γ(∗), δ(∗) and rB
(∗) (statistical only). Angles are given

in degree. The Bayesian confidence intervals for the combination of the D0K and D∗0K channels
is also given. In the last column the central values with 1σ errors are also reported. For the γ(∗) and
δ(∗) intervals the ±180◦ solution is also indicated. For the central values we quote the expectation
value using the experimental likelihood, and the 1σ error is given by the 68% confidence limit region
around the expectation value. For the phases we have symmetrized the errors taking the largest
between the positive and negative errors.
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Parameter Central value with error (1σ)

γ (combined) 70 ± 26 ± 11 ± 13
δ 114 ± 41 ± 19 ± 20
δ∗ 303 ± 34 ± 13 ± 15

rB 0.087+0.041
−0.074 ± 0.034 ± 35 [0.071 ± 0.058 ± 0.034 ± 35]

r∗B 0.155+0.070
−0.077 ± 0.029 ± 0.028 [0.152 ± 0.074 ± 0.029 ± 0.028]

Table 15: Bayesian central values with 1σ statistical and systematic errors for γ, δ(∗) and rB
(∗)

(angles are in degree). The first errors are statistical, the second are experimental systematics and
the third are Dalitz model systematics. The statistical errors are the same as those reported in
table 15. The systematic uncertainties are the symmetrized systematic errors obtained with the
frequentist approach, as reported in table 12.
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5 Final results

Using an integrated luminosity of 205 fb−1, corresponding to the Run1-2-3-4(BlackDiamond) data
sample, we have performed a Dalitz plot analysis of B− → D(∗)0K−, with D∗ → D0π0,D0γ,
D0 → KSπ+π− decays, obtaining the following CP -violating parameter results:

x− ≡ ℜ(rB−eiθ−) = 0.077 ± 0.069(stat.) ± 0.026(exp. syst.) ± 0.019(model syst.) ,

y− ≡ ℑ(rB−eiθ−) = 0.064 ± 0.092(stat.) ± 0.037(exp. syst.) ± 0.042(model syst.) ,

x+ ≡ ℜ(rB+eiθ+) = −0.129 ± 0.070(stat.) ± 0.030(exp. syst.) ± 0.032(model syst.) ,

y+ ≡ ℑ(rB+eiθ+) = 0.019 ± 0.079(stat.) ± 0.023(exp. syst.) ± 0.021(model syst.) ,

x∗
− ≡ ℜ(rB

∗
−eiθ∗

−) = −0.131 ± 0.093(stat.) ± 0.028(exp. syst.) ± 0.021(model syst.) ,

y∗− ≡ ℑ(rB
∗
−eiθ∗

−) = −0.143 ± 0.105(stat.) ± 0.022(exp. syst.) ± 0.025(model syst.) ,

x∗
+ ≡ ℜ(rB

∗
+eiθ∗+) = 0.140 ± 0.093(stat.) ± 0.028(exp. syst.) ± 0.025(model syst.) ,

y∗+ ≡ ℑ(rB
∗
+eiθ∗+) = 0.013 ± 0.120(stat.) ± 0.037(exp. syst.) ± 0.056(model syst.) ,

where θ
(∗)
± = δ(∗) ± γ, with γ the CKM weak phase, δ(∗) the strong phase of the B− → D(∗)0K−

decay, and rB
(∗) the absolute value of the ratio of the corresponding A(b → u) and A(b → c)

amplitudes, rB = |A(b → u)/A(b → c)|. The first errors are statistical, the second are experimental
systematics and the third are due to the Dalitz model assumptions. The correlations of the pairs
(x−, y−), (x+, y+), (x∗

−, y∗−), and (x∗
+, y∗+), are 3%, 6%, −17%, and −27%, respectively. All the

other correlation terms are zero.
A classical (frequentist) analysis of the previous results yields the following results for the CP -

violating parameters γ, δ(∗) and rB
(∗):

γ = 70(250)◦ ± 31◦(stat.)+12◦

−10◦(exp. syst.)+14◦

−11◦(model syst.) [13◦, 136◦] ,

δ = 104(284)◦ ± 45◦(stat.)+17◦

−21◦(exp. syst.)+16◦

−24◦(model syst.) [0◦, 360◦] ,

δ∗ = 296(116)◦ ± 41◦(stat.)+14◦

−12◦(exp. syst.) ± 15◦(model syst.) [0◦, 360◦] ,

rB = 0.118 ± 0.079(stat.) ± 0.034(exp. syst.)+0.036
−0.034(model syst.) [0, 0.277] ,

r∗B = 0.169 ± 0.096(stat.)+0.030
−0.028(exp. syst.)+0.029

−0.026(model syst.) [0, 0.352] .

The first errors are statistical, the second are experimental systematics and the third are due to the
Dalitz model. For γ and δ(∗) the ±180◦ ambiguity solutions are also given. The values inside square
brackets indicate the 1.96 standard deviation intervals (95% confidence-level for a 1-dimensional
Gaussian distribution). The significance of CP violation is 2.4 standard deviations. These results
agree fairly well with those obtained using a Bayesian technique with flat prior for γ, δ(∗) and rB

(∗).

43



A Cartesian coordinates: Toy MC studies

Extensive Toy MC studies have been performed in order to verify the Gaussian behavior of the
errors of the cartesian fit variables.

Figures 30 and 31 show the residual, error and pull distributions of the cartesian fit parameters
obtained from a set of about 2K Toy MC experiments corresponding to the nominal fit to the data
sample. The arrows show the results found in the data. The goodness-of-fit, estimated by counting
the number of experiments with a likelihood value larger than that found in the data, is around
50%, perfectly in agreement with the value found when the fit is performed in polar coordinates [2].
Similarly, figure 32 shows all the correlation coefficients for the two samples. From these figures we
conclude that the cartesian fit parameters space behaves to an excellent approximation as single
and independent Gaussians. The little (on average) correlation for the pair of variables (x+, y+) and
(x−, y−) within a sample (D0K or D∗0K) is taken into account in the PDF of the fitted parameters
as a function of the generated parameters. The agreement between the simulation and the data is
remarkable. From a closer look at the residual and pull distributions it is observed that in some
case the mean values of the distributions are slightly biases. These biases are in all cases one order
of magnitude below the statistical precision, and are due to the limited precision in the numerical
Dalitz PDF normalization. Increasing the precision from the nominal 200×200 grid to 1000×1000
the biases essentially disappear.

Figures 33 and 34 show the residual distributions together with their mean values and rms of
(x±, y±) for D0K and D∗0K, in 6 bins (0.05 units width each) of rB truth. Despite the large
(unrealistic) range of rB truth, the width of the distributions are in all cases consistent within 10%,
with no significant biases. Similarly, figures 35 and 36 show the corresponding pull distributions,
which have widths always consistent with unity.
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Figure 32: Correlation coefficients among (x±, y±) fit parameters for the D0K and D∗0K samples
for the nominal Toy MC. The arrows show the results found in the data. It is clearly seen that the
only non zero correlations appear for the pairs (x+, y+) and (x−, y−) within a given sample.
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Figure 33: Dependence of the rms of (x±, y±) residual distributions, (σx±
, σy±), in 6 bins of the

truth rB value, for the D0K mode. The truth (generated) value of rB has been obtained randomly
in the range [0, 0.3]. As the the truth phases (both γ and δ) have also been generated randomly the
obtained rms is averaged over all possible values of the phases.
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Figure 34: Dependence of the rms of (x±, y±) residual distributions, (σx±
, σy±), in 6 bins of the

truth rB value, for the D∗0K mode. The truth (generated) value of rB has been obtained randomly
in the range [0, 0.3]. As the the truth phases (both γ and δ) have also been generated randomly the
obtained rms is averaged over all possible values of the phases.
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Figure 35: Dependence of the rms of (x±, y±) pull (residual normalized to the error) distributions
in 6 bins of the truth rB value, for the D0K mode. The truth (generated) value of rB has been
obtained randomly in the range [0, 0.3]. As the the truth phases (both γ and δ) have also been
generated randomly the obtained rms is averaged over all possible values of the phases.
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Figure 36: Dependence of the rms of (x±, y±) pull (residual normalized to the error) distributions
in 6 bins of the truth rB value, for the D∗0K mode. The truth (generated) value of rB has been
obtained randomly in the range [0, 0.3]. As the the truth phases (both γ and δ) have also been
generated randomly the obtained rms is averaged over all possible values of the phases.
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B Confidence regions for D0K null data point

As a control check of the method, we have tested the whole frequentist procedure with a null
measured point (i.e. rB = 0, or equivalently z± = 0). For this check we have taken for (σx±

, σy±)
and ρ± the values of the D0K sample. The 2- and 1-dimensional projections of the 3-dimensional
regions for this null test are shown in figures 37 and 38. It can be seen that the 19.9% region (68.3%
for 1-dimensional projections) perfectly covers rB = 0, and there is no information at all about the
phases, as expected.
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Figure 37: 2-dimensional projections of the 19.9% (red/dark) and 72.1% (yellow/light) confidence-
level 3-dimensional regions for the null hypothesis using the D0K mode.
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Figure 38: Probability density functions for rB, γ and δ together with the 1-dimensional projections
of the 19.9% (red/dark) and 72.1% (yellow/light) confidence-level 3-dimensional regions for the null
hyphotesis in the D0K mode.
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C Confidence regions for D0π null data point

As an additional control check of the CP violation sensitivity of the D0π and D∗0π samples, we have
repeated the frequentist procedure with a null measured point (i.e. rB = 0, or equivalently z± = 0)
with (σx±

, σy±) and ρ± values identical to those of the D0π sample. The 2- and 1-dimensional
projections of the 3-dimensional regions for this D0π null test are shown in figures 39 and 40. It
can be seen that the 19.9% region (68.3% for 1-dimensional projections) perfectly covers rB = 0,
and there is no information at all about the phases, as expected.
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Figure 39: 2-dimensional projections of the 19.9% (red/dark) and 72.1% (yellow/light) confidence-
level 3-dimensional regions for the null hypothesis using the D0π mode.
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Figure 40: Probability density functions for rB, γ and δ together with the 1-dimensional projections
of the 19.9% (red/dark) and 72.1% (yellow/light) confidence-level 3-dimensional regions for the null
hyphotesis in the D0π mode.
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