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Abstract

The time and flavor structure of the decay ofB0
dB0

d mesons is exploited to perform a measurement of
the lifetime difference∆Γ/Γ between the mass eigenstates. The analysis uses fully reconstructedB mesons
into a flavor or CP (into charmonium) eigenstate and it is based on 56 fb−1 of data collected between 1999
and 2002 (Winter’02 data sample). The combined analysis of these samples offers also a way to perform
a combined test of the CPT and T symmetries of the effective Hamiltonian of evolution of theB0

d meson
system, in an attempt to desintangle wether CP violation is due to T or CPT violation.
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1 Introduction

Discrete symmetries play a fundamental role in our description of nature. The CPT theorem [1, 2], based
on very general principles of relativistic quantum field theories, states that any order of the triple product of the
discrete symmetries C, P and T represent an exact symmetry. The CPT symmetry has been tested in a variety
of experiments [3], remaining to date the only combination of C, P, T that is observed as an exact symmetry in
nature. However, precisely because the CPT theorem represents an essential pillar of our present description of
nature, it is appropiate to improve such studies in theB meson neutral system where the theB0B0 interferometry
provides an exceptionally sensitive framework [4]. On the other hand, superstring theories are not local and
therefore do not necessarily fulfill the conditions of the CPT theorem. CPT invariance has also been questioned
in the context of quantum gravity [5]. With the indirect CP violation in theB0

d system already well established
[6], testing simultaneous and consistently the CP, T and CPTdiscrete symmetries of the effective Hamiltonian
of evolution to disentangle whether the the CP violation is due to T or CPT violation (or both) is a natural step
forward, and of great interest as outlined above. This is theultimate goal of the analysis described here.

One of the main sources of possible competing contributionsto the effects to be studied in this analysis are
due to the difference in the decay widths of theB0

d mesons,∆Γ, usually neglected because its smallness. In the
Standard Model, the difference in the decay widths of theB0

d mesons is CKM-suppressed with respect to that
in theB0

s system. A rough estimate leads to

∆Γd

Γd
∼ ∆Γs

Γs
×λ2 ≈ 0.5% (1)

whereλ = 0.225 is the sine of the Cabibbo angle, and we have taken∆Γs/Γs ≈ 15%. In this analysis,∆Γ/Γ
effects are explicitely parameterized and extracted from the data, providing the first experimental measurement
to date. However, as explored in [7], the measurement of∆Γ/Γ is interesting by itself since it can provide
constraints (or signal, if the measured value turns out to belarger than the theoretical expectations) on new
physics processes.

To date there are no published direct measurements of∆Γ/Γ, and the CPT violation has been tested only
with inclusive methods inB0B0 mixing, which gives information about CPT violation only if∆Γ/Γ 6= 0. This
analysis will improve the situation very significantly.

The outline of this document is as follows. In section 2 we summarize the formalism and derive the general
time-dependent decay rates and likelihood function used inthe analysis. Section 3 describes the decay modes,
data and Monte Carlo samples. Section 4 provides some details about the resolution function treatment and
tries to justify the motivation for the vertexing cuts applied. Section 5 describes the blinding strategy and in
section 6 we describe the assumptions in the nominal fit. Sections 7 and 8 summarize the results of the fits and
the consistency checks. Finally, section 9 is devoted to theevaluation of the systematic errors.

Many of the inputs and systematics in this analysis are common with the standard sin2β analysis [8], so
this document will concentrate on the aspects specific to thepresent analysis. In some cases we will summary
some particular aspects common with the sin2β analysis.

The calculation of the time-dependent decay rates follows the framework developped in reference [9].
This reference should be used in coordination with the present document for additional theoretical subtleties.
The feasibility and reach studies, together with the validation of most aspects of the fitting procedure were
documented in detail in [11].

5



2 Time-dependent decay rates and log-likelihood function

Starting from first principles we derive in this section the most general expression for the time-dependent
decay rates inϒ(4S) decays as well as the final likelihood function including allthe different experimental
effects. In order to help our understanding of the main features of the PDF we also evaluate the time-dependence
for different particular and simpler cases. For additionaldetails about the formalism and the extraction of the
decay rates, see reference [9].

2.1 CoherentB meson formalism

The neutralB meson system is a linear combination of the Schrödinger wave functions for the mesonB0 and
its antimesonB0, |Ψ〉 = a|B0〉+b|B0〉. The time evolution of this combination is governed by the Schrödinger
equation,

i
∂Ψ
∂t

= H̃Ψ (2)

where H̃ is the 2× 2 non-hermitian (probability is not conserved since theB0B0 system decays) effective
hamiltonian,

H̃ = M̃− i
Γ̃
2

=

(

M11 M12

M∗
12 M22

)

− i
2

(

Γ11 Γ12

Γ∗
12 Γ22

)

. (3)

M̃ and Γ̃ represent the mass (dispersive) and lifetime (absorptive)parts of the hamiltonian, both hermitian
matrices2.

The eigenvalues of (2) are

λ± =

(

M− i
Γ
2

)

±F ′ (4)

where

F ′ =

√

(

M12− i
Γ12

2

)(

M∗
12− i

Γ∗
12

2

)

+

(

δM− i
δΓ
2

)2

(5)

M =
M11+M22

2
, Γ =

Γ11+Γ22

2
(6)

δM =
M11−M22

2
, δΓ =

Γ11−Γ22

2
. (7)

The corresponding eigenvectors are
2We use the notationHi j , CPi j , etc. to represent the matrix elements of the correspondingoperators in the flavor basis, for instance

H12 ≡ 〈B0|H|B̄0〉.
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| B1〉 =
1

N+

(

p+ | B0〉+q+ | B0〉
)

| B2〉 =
1

N−

(

p− | B0〉−q− | B0〉
)

(8)

with N2
± =| p± |2 + | q± |2 and

q± = M∗
12− i

Γ∗
12

2
(9)

p± = ±
(

δM− i
δΓ
2

)

+F ′ . (10)

Inverting (8) one can writte the| B0〉 and| B0〉 states in terms of the evolution eigenstates,

| B0〉 =
1

p+q− + p−q+
(N+q− | B1〉+N−q+ | B2〉)

| B0〉 =
1

p+q− + p−q+
(N+p− | B1〉−N−p+ | B2〉) . (11)

Their time evolution is given by

| B0(t)〉 =
1

p+q− + p−q+

(

N+q−e−iλ+t | B1〉+N−q+e−iλ−t | B2〉
)

| B0(t)〉 =
1

p+q− + p−q+

(

N+p−e−iλ+t | B1〉−N−p+e−iλ−t | B2〉
)

. (12)

When we pay attention to the restrictions imposed by discrete symmetries on the effective Hamiltonian (3)
we see that (CP12 = 〈B0 |CP | B0〉 is the relative unphysical phase between| B0〉 and| B0〉):

• CP conservation imposes Im(M12CP∗
12) = Im(Γ12CP∗

12) = 0 andH11 = H22;

• CPT invariance requiresH11 = H22;

• T invariance imposes Im(M12CP∗
12) = Im(Γ12CP∗

12) = 0.

As a consequence, the complex parameter

∆ = 2

(

δM− i
δΓ
2

)

(13)

parameterizes any CPT violation. If either CPT or CP invariance leads toδM = δΓ = 0, we have

p≡ p+ = p− = F (14)
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F ≡ F ′ =

√

(

M12− i
Γ12

2

)(

M∗
12− i

Γ∗
12

2

)

(15)

q≡ q+ = q− = M∗
12− i Γ∗

12
2 (16)

q
p

=

√

√

√

√

M∗
12− i Γ∗

12
2

M12− i Γ12
2

(17)

λ± =

(

M− i
Γ
2

)

±F . (18)

Let us note that, according to equation (8), the sign convention in the definition ofq/p uses the heavier eigen-
state. This convention is the same as used in [9], but opposite to that adopted in the BaBar Physics Book [10].
As another consequence, if CP is conserved thenq = p.

If there are no absortive parts in the effective hamiltonian(Γ12 = 0), thenq/p is a pure phase,qp = e−iχ and
| q/p |= 1. If there are absortive parts but| Γ12/M12 | is small,

| q/p |2 ≈ 1− Im

[

Γ12

M12

]

. (19)

From (12) and (8), the time evolution of a state that is initially a pureB0 or B0 is (~p= (p+, p−),~q= (q+,q−))

| B0(t)〉 = f+(~p,~q; t) | B0〉+ f−(~p,~q; t) | B0〉
| B0(t)〉 = f−(~q,~p; t) | B0〉+ f+(~q,~p; t) | B0〉 (20)

where

f+(~p,~q; t) =
1

p+q− + p−q+

(

p+q−e−iλ+t + p−q+e−iλ−t
)

(21)

f−(~p,~q; t) =
q+q−

p+q− + p−q+

(

e−iλ+t −e−iλ−t
)

. (22)

With a little of algebra, equations (20) can be written in a more compact way as follows:

| B0(t)〉 = [g+(t)+zg−(t)] | B0〉+ q
p

√

1−z2g−(t) | B0〉

| B0(t)〉 =
p
q

√

1−z2g−(t) | B0〉+[g+(t)−zg−(t)] | B0〉 (23)

where

z =
δM− i δΓ

2

F ′ (24)
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g±(t) =
1
2

(

e−iλ+t ±e−iλ−t
)

. (25)

The masses(m1,m2) and widths(Γ1,Γ2) of the eigenstates| B1〉 and | B2〉 are related to the eigenvalues
(λ+,λ−) as:

m1 = Re(λ+) , m2 = Re(λ−) ; Γ1 = −2Im(λ+) , Γ2 = −2Im(λ−) . (26)

The oscillation parameters can then be defined as

∆λ =
λ+−λ−

2
=

1
2

(

∆m+ i
∆Γ
2

)

= F ′ (27)

with

∆m= m1−m2 = Re(λ+−λ−) , ∆Γ = −∆γ= Γ2−Γ1 = −2Im(λ−−λ+) . (28)

Let us note that∆m is positive by definition and∆Γ is expected to be positive within the Standard Model (as in
the neutral kaon system). This∆Γ sign convention is opposite to the one adopted in [10] and [9], but the same
as in [22, 23]. When∆Γ = 0 we haveδΓ = 0 and| q/p |= 1.

For later use it is convenient also to define

λ =
λ+ +λ−

2
= m− i

γ
2

= M− i
Γ
2

(29)

with

m=
m1+m2

2
=

Re(λ+ +λ−)

2
≡ M , γ=

1
τ

=
Γ1 +Γ2

2
= −Im(λ+ +λ−) ≡ Γ . (30)

With these definitions, equations (5) and (24) can be rewritten, respectively, as

F ′ =
1
2

(

∆m+ i
∆Γ
2

)

(31)

and

z = 2
δM− i δΓ

2

∆m+ i ∆Γ
2

. (32)

The complex-valued functions (25) in terms of the oscillation parameters are:

g±(t) =
1
2

e−imte−t/2τ
(

e−i∆mt/2e∆Γt/4±ei∆mt/2e−∆Γt/4
)

. (33)

In summary, we have four real parameters which carry information on the discrete symmetries of the effec-
tive Hamiltonian, according to the following list:

• | q/p |6= 1 signals CP and T violation, with∆Γ 6= 0;
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• argq/p 6= 0 indicates CP and T violation;

• δM 6= 0 (Rez 6= 0) means that CP and CPT violation exist;

• δΓ 6= 0 (Imz 6= 0) shows CP and CPT violation, with∆Γ 6= 0.

The fact that Rez is primarily connected toδM while Imz is toδΓ makes Rezmore interesting than Imz. Let us
note that CPT or T violation requires CP violation, and CP violation implies T or CPT violation. As outlined
in the introduction to this document, desintangle whether CP violation is due to T or CPT violation (or both) is
one of the goals of this analysis.

So far we have considered the evolution of an isolated neutral B meson. Charge conjugation together with
Bose statistics require that theB0B0 state produced from theϒ(4S) decay is given in the eigenstate basis by

| ϒ〉 =
1√
2

(| B1〉 | B2〉− | B2〉 | B1〉) (34)

which evolves as

| ϒ(t1, t2)〉 =
1√
2

(

e−iλ+t1e−iλ−t2 | B1〉 | B2〉−e−iλ−t1e−iλ+t2 | B2〉 | B1〉
)

. (35)

t1 andt2 are the proper times in the rest frames of the eachB meson. If we make the change of variables

t =
t1 + t2

2
, ∆t = t2− t1 , (36)

equation (35) can be rewritten as

| ϒ(t,∆t)〉 =
1√
2

e−i2λt
(

ei∆λ∆t | B1〉 | B2〉−e−i∆λ∆t | B2〉 | B1〉
)

. (37)

If one of theB mesons decays to a final statef1 at timet1, the partially projected state reads

〈 f1 | ϒ(t,∆t)〉 =
1√
2

e−i2λt
(

ei∆λ∆t〈 f1 | B1〉 | B2〉−e−i∆λ∆t〈 f1 | B2〉 | B1〉
)

. (38)

DefininingA1 = 〈 f1 | B0〉 andA1 = 〈 f1 | B0〉, from equation (8) we can expand,

〈 f1 | B1〉 =
1

N+

(

p+A1 +q+A1
)

〈 f1 | B2〉 =
1

N−

(

p−A1−q−A1
)

. (39)

Using (39) and comparing with (12) for a single isolatedB, the partially projected state (38) can be written as

〈 f1 | ϒ(t1,∆t)〉 =
1√
2

e−i2λt1 p+q− + p−q+

N+N−

(

A1 | B0(∆t)〉−A1 | B0(∆t)〉
)

. (40)
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Let us note the change of variables from(t,∆t) to (t1,∆t), since the overall exponential factor has a dependence
with t1.

If the otherB meson decays to an statef2 at timet2 (t2 > t1, i.e. the collapse of the wave function occurs at
t1),

〈 f1 f2 | ϒ(t1,∆t)〉 =
1√
2

e−i2λt1 p+q− + p−q+

N+N−

(

A1〈 f2 | B0(∆t)〉−A1〈 f2 | B0(∆t)〉
)

. (41)

The normalization factorp+q−+p−q+

N+N−
is phase-convention independent and depends only onz, | q/p | and pq

(see [9] for explicit dependence). When∆t < 0, the collapse of the wave function happens att2 but the above
formalism and expressions are still valid.

2.2 Time-dependent decay rates for coherentB mesons

In order to calculate the decay rates, it is convenient to express the time-dependence of the decay amplitudes
in terms of theg± functions. Using (23) and definingA2 = 〈 f2 | B0〉 andA2 = 〈 f2 | B0〉,

A1〈 f2 | B0(∆t)〉−A1〈 f2 | B0(∆t)〉 = a+g+(∆t)+a−g−(∆t) (42)

where

a+ = Ā1A2−A1Ā2

a− = z
(

Ā1A2 +A1Ā2
)

+
√

1−z2

(

q
p

Ā1Ā2−
p
q

A1A2

)

. (43)

From (41), (42) and (43), we obtain the corresponding decay rate,

| 〈 f1 f2 | ϒ(t1,∆t)〉 |2 =
1
2

e−2t1/τ | p+q− + p−q+ |2
| N+N− |2 ×

{

| a+ |2| g+(∆t) |2 + | a− |2| g−(∆t) |2 +2Re
[

a−a∗+g−(∆t)g∗+(∆t)
]}

. (44)

We observe that the time dependence is described by two real-valued functions,

| g±(∆t) |2 =
1
2

e−∆t/τ [cosh(∆Γ∆t/2)±cos(∆m∆t)] (45)

and the complex-valued function

g∗+(∆t)g−(∆t) =
1
2

e−∆t/τ [sinh(∆Γ∆t/2)− i sin(∆m∆t)] . (46)

If we replace (45) and (46) into (44),

11



| 〈 f1 f2 | ϒ(t,∆t)〉 |2 =
1
2

e−2t/τ | p+q− + p−q+ |2
| N+N− |2 ×

{

1
2

c+ cosh

(

∆Γ∆t
2

)

+
1
2

c− cos(∆m∆t)+Re(s)sinh

(

∆Γ∆t
2

)

+ Im(s)sin(∆m∆t)

}

(47)

where

c± = | a+ |2 ± | a− |2 (48)

s = a−a∗+ . (49)

Note the change of variables from(t1,∆t) back to(t,∆t).

The coefficientsc± andscan be written in terms of the base of parameters

z , u± = Ā1A2±A1Ā2 , m=
q
p

Ā1Ā2−
p
q

A1A2 (50)

as follows:

c± = | u− |2 ±
[

| z |2| u+ |2 + | 1−z2 || m |2 +2Re
(

z∗
√

1−z2u∗+m
)]

(51)

s = zu+u∗− +
√

1−z2u∗−m . (52)

As experimentally the information available for the time sum t of the meson evolution is quite poor com-
pared to∆t, it is appropiate to work with an integrated probability,

h12(∆t) ≡| 〈 f1 f2 | ϒ(∆t)〉 |2 =

∫ +∞

|∆t|/2
dt | 〈 f1 f2 | ϒ(t,∆t)〉 |2= τ

4
e−|∆t|/τ | p+q− + p−q+ |2

| N+N− |2 ×
{

1
2

c+ cosh

(

∆Γ∆t
2

)

+
1
2

c− cos(∆m∆t)+Re(s)sinh

(

∆Γ∆t
2

)

+ Im(s)sin(∆m∆t)

}

.

(53)

It is convenient to express the coefficients (51) and (52) in terms of the well-known convention independent
parameterλ = q

p
Ā
A, whereA andĀ are, respectively, theB0 andB0 decay amplitudes into an arbitrary final state.

Assuming thatAk andĀk̄, with k = 1,2, are non-zero, we introduce the parameters

λk =
q
p

Āk

Ak
=| q/p | rke

iθk (54)
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λ̄k =
1
λk̄

=
p
q

Ak̄

Āk̄
=| p/q | r̄ke

iθ̄k (55)

where

rk = | Āk | / | Ak | (56)

r̄k =
1
rk̄

= | Ak̄ | / | Āk̄ | (57)

are the ratios of decay amplitudes of Doubly-CKM-Suppressed to favored processes, for| fk〉 =| B0〉 and
| fk̄〉 =| B0〉 states, respectively.θk and θ̄k are the correspondingB0 andB0 phases (overall phase of the ra-
tio of decay amplitudes and the mixing phase). When there is one single process contributing to the favored
and DCKM-supressed decays,rk = r̄k. ForD(∗)±X∓ final states, the amplitudes are expected to be dominated
by the Standard Modelb → c andb → u transitions for the favored and suppressed decays, respectively, as
shown in figure 1. The expected relative amplitude of DCKM to favored decays can then be estimated to be
rk = r̄k =|V∗

ubVcd ||V∗
cbVud |≈ 0.02, using the CKM matrix elements values from [23]. In this case we also have

θk =−2β−γ−δk andθ̄k = 2β+γ−δk, where 2β is the mixing (q/p) phase,γ the weak decay phase andδk the
strong decay phase, which depends on the given final state. Semileptonic decays are free of DCKM-suppressed
contributions.

d
_

d
_

b c

B0d
_

D+

u
_

d

π-
Cabibbo Favored

d
_

d
_

b u

B0d
_

π+

c
_

d

D-
Cabibbo Suppressed

Figure 1: The CKM-allowed (∼ λ2) and CKM-suppressed (∼ λ4) diagrams forB→ D(∗±)π∓/ρ∓/a∓1 decays.
λ is the usual Wolfenstein paramater.

When| fk〉 is a CP eigenstate (k = CP),

λCP =
q
p

ĀCP

ACP
=| q/p | rCP,CPeiθCP (58)

where

rCP,k = | Āk̄ | / | Ak | (59)

parameterizes CP violation in decay (k = 1,2,CP). When there is one single process contributing,rCP,k = 1. If
the mechanisms contributing to the decay of CP eigenstates (fCP) have the same weak phase forη fCP = −1 and
η fCP = +1 modes,

Imλ fCP = −η fCPImλCP

Reλ fCP = η fCPReλCP . (60)
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Let us note once more that the sign convention in the definition of q/p adopted in this document uses the
heavier state, which is the same as used in [9]. The convention can be easily be changed to that used in the
BaBar Physics Book [10] (lighter state) by replacingλk andλ̄k by −λk and−λ̄k, respectively. The latter is the
convention used in the present analysis, although all the equations given in the document use the former.

In order to evaluate (51) and (52) havingλk andλ̄k well defined, we must distinguish the 4 different final
state configurations (| f1 f2〉, | f1̄ f2〉, | f1 f2̄〉, | f1̄ f2̄〉). For each case we then must evaluateu± andm, and finally

| u± |2 , | m |2 , u∗±m , u+u∗− . (61)

These factors are renormalized so that| A1A2 |2= 1 (A2 may beACP).

2.2.1 Case| f1 f2〉

u± = A1A2
p
q

(λ1±λ2)

m = A1A2
p
q

(λ1λ2−1) (62)

| u± |2 = | p/q |2
{

| λ1 |2 + | λ2 |2 ±2 | λ1 || λ2 | Re
(

λ′
1λ′∗

2

)}

| m |2 = | p/q |2
{

1+ | λ1 |2| λ2 |2 −2 | λ1 || λ2 | Re
(

λ′
1λ′

2

)}

u∗±m = | p/q |2
{

| λ1 |2| λ2 | λ′
2− | λ1 | λ′∗

1 ± | λ2 |2| λ1 | λ′
1∓ | λ2 | λ′∗

2

}

u+u∗− = | p/q |2
{

| λ1 |2 − | λ2 |2 +2i | λ1 || λ2 | Im
(

λ′
2λ′∗

1

)}

(63)

where

λ′
k =

λk

| λk |
≡ eiθk , λ̄′

k =
λ̄k

| λ̄k |
≡ eiθ̄k (64)

and

| λk |=| q/p | rk , | λ̄k |=| p/q | r̄k (65)

for flavor eigenstates (k = 1,2), and

| λCP | = | q/p | rCP,CP (66)

for CP eigenstates.

2.2.2 Case| f1̄ f2〉

u± = Ā1̄A2
(

1± λ̄1λ2
)

m = Ā1̄A2
(

λ2− λ̄1
)

(67)
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| u± |2 = r2
CP,1

{

1+ | λ̄1 |2| λ2 |2 ±2 | λ̄1 || λ2 | Re
(

λ̄′
1λ′

2

)}

| m |2 = r2
CP,1

{

| λ2 |2 + | λ̄1 |2 −2 | λ2 || λ̄1 | Re
(

λ′
2λ̄′∗

1

)}

u∗±m = r2
CP,1

{

| λ2 | λ′
2− | λ̄1 | λ̄′

1± | λ2 |2| λ̄1 | λ̄′∗
1 ∓ | λ̄1 |2| λ2 | λ′∗

2

}

u+u∗− = r2
CP,1

{

1− | λ̄1 |2| λ2 |2 +2i | λ̄1 || λ2 | Im
(

λ̄′
1λ′

2

)}

(68)

2.2.3 Case| f1 f2̄〉

u± = A1Ā2̄

(

λ1λ̄2±1
)

m = A1Ā2̄

(

λ1− λ̄2
)

(69)

| u± |2 = r2
CP,2

{

1+ | λ1 |2| λ̄2 |2 ±2 | λ1 || λ̄2 | Re
(

λ′
1λ̄′

2

)}

| m |2 = r2
CP,2

{

| λ1 |2 + | λ̄2 |2 −2 | λ1 || λ̄2 | Re
(

λ′
1λ̄′∗

2

)}

u∗±m = r2
CP,2

{

| λ1 |2| λ̄2 | λ̄′∗
2 − | λ̄2 || λ1 | λ′∗

1 ± | λ1 | λ′
1∓ | λ̄2 | λ̄′

2

}

u+u∗− = r2
CP,2

{

| λ1 |2| λ̄2 |2 −1+2i | λ1 || λ̄2 | Im
(

λ′∗
1 λ̄′∗

2

)}

(70)

2.2.4 Case| f1̄ f2̄〉

u± = Ā1̄Ā2̄
q
p

(

λ̄2± λ̄1
)

m = Ā1̄Ā2̄
q
p

(

1− λ̄1λ̄2
)

(71)

| u± |2 = r2
CP,1r2

CP,2 | q/p |2
{

| λ̄2 |2 + | λ̄1 |2 ±2 | λ̄1 || λ̄2 | Re
(

λ̄′
1λ̄′∗

2

)}

| m |2 = r2
CP,1r2

CP,2 | q/p |2
{

1+ | λ̄1 |2| λ̄2 |2 −2 | λ̄1 || λ̄2 | Re
(

λ̄′
1λ̄′

2

)}

u∗±m = r2
CP,1r2

CP,2 | q/p |2
{

| λ̄2 |2 λ̄′∗
2 − | λ̄2 |2| λ̄1 | λ′

1± | λ̄1 | λ′∗
1 ∓ | λ̄1 |2| λ̄2 | λ̄′

2

}

u+u∗− = r2
CP,1r2

CP,2 | q/p |2
{

| λ̄2 |2 − | λ̄1 |2 +2i | λ̄2 || λ̄1 | Im
(

λ̄′
1λ̄′∗

2

)}

(72)

2.2.5 Parameter counting

From the above expressions we determine the parameters thatcontribute to the coefficientsc±, Re(s) and
Im(s), for the most general case, assuming that a single final statecontributes to| f1〉, | f1̄〉, | f2〉 and| f2̄〉. In
the following we identify| f1〉 as the state used forB tagging (k = 1≡ tag), and| f2〉 the reconstructed final
state, flavor (k = 2≡ f lav) or CP (k = CP):

• | A1A2 |2 is a global normalization factor, therefore irrelevant forany time-dependent analysis;
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• rCP,k can be used to parameterize CP violation in decay (3 parameters):

– rCP,1, for tagging side,

– rCP,2, for reconstructed side, flavor sample,

– rCP,CP, for reconstructed side, CP sample;

• Rezand Imz, the CPT/CP violation parameters (2 parameters);

• | q/p |, the T/CP violation parameter (1 parameter);

• rk and ¯rk are the ratios of the magnitudes of decay amplitudes of DCKM to favored processes, forB0 and
B0 (4 parameters):

– r1,r̄1, for tagging side,

– r2,r̄2, for reconstructed side, flavor sample;

• θk and θ̄k are the overallB0 andB0 phases of the ratio of decay amplitudes and the mixing phase (5
parameters):

– θ1,θ̄1, for tagging side,

– θ2,θ̄2, for reconstructed side, flavor sample,

– θCP, for reconstructed side, CP sample.

When we consider a combined analysis of the flavor and CP eigenstates, we have a total of 6 different final
state configurations: 4 for flavor eigenstates (B0

f lavB
0
tag, B0

f lavB
0
tag, B0

f lavB
0
tag, B0

f lavB
0
tag) and 2 for CP eigenstates

(B0
tag, B0

tag). For each specific final state configuration the number of independent coefficients in the decay rate
is, up to a sign ambiguity, 2. This can be seen as follows (see [9] for details). From (48) and (49) it can be
shown that the coefficientsc± andssatisfy the constraint

c2
+ −c2

− = 4
(

Re(s)2 + Im(s)2) . (73)

Sincec+ is always positive we can re-parameterize the decay rate (53) in terms of the coefficients of the sinh,
cos and sin terms relative to the cosh term:

| 〈 f1 f2 | ϒ(∆t)〉 |2 ∝
τ
4

e−|∆t|/τ
{

cosh

(

∆Γ∆t
2

)

+C12cos(∆m∆t)+

σ12

√

1−C2
12−S2

12sinh

(

∆Γ∆t
2

)

+S12sin(∆m∆t)

}

(74)

where

C12 =
| a+ |2 − | a− |2
| a+ |2 + | a− |2 (75)

S12 = 2
Im(a∗+a−)

| a+ |2 + | a− |2 . (76)

The parameterσ12 can only take the values±1 since equation (73) fixes only the magnitude of the sinh coef-
ficient, but not its sign. This gives the 2 independent coefficients per configurations, resulting in a total of 12
independent observations. The basic problem now is that thetotal number of parameters above is 15, so we
require additional assumptions:
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• rCP,1, rCP,2 andrCP,CP can be assumed to be 1;

• r1 andr2 can be assumed to be equal to ¯r1 and ¯r2, respectively, and assume to be known (≈ 0.02 according
to the CKM matrix elements [23]).

With these (reasonable) assumptions we reduce in 6 parameters, which gives, in principle, enough observations
to extract all the other parameters. In practice, to avoid problems derived from fits collapsing to the borders
of the physical region and an underevaluation of the statistical errors, the sines and cosines of the phasesθ1,
θ̄1, θ2, θ̄2, θCP should be extracted instead of the phases themselves, increasing from 9 to 14 the number of
parameters. Sign ambiguities and small sensitivity to someof these parameters require additional assumptions,
as discussed in the following.

2.2.6 Simplified expressions

In order to help our understanding of the main features of thetime dependence, it is useful to evaluate the
previous equations for several special cases. In some casesthe coefficientsc±, Re(s) and Im(s) will be also
given to first order in the CPT parameterz:

c± = | u− |2 ±
[

| m |2 +2Re(z∗u∗+m)
]

s = zu+u∗− +u∗−m . (77)

Perfect tagging states

In the case when the flavor final states (reconstructed side inflavor events and taggingB) are perfect tagging
states (λk andλ̄k, k = 1,2, are zero), the coefficients simplify to those given in tables 1 and 2, for flavor and CP
eigenstates respectively. The same coefficients to first order in the CPT parameterzare given in tables 3 and 4.

Coefficient | f1 f2〉 | f1̄ f2〉 | f1〉 | f2̄〉 | f1̄〉 | f2̄〉
c± ± | q/p |−2| 1−z2 | r2

CP,1

(

1± | z |2
)

r2
CP,2

(

1± | z |2
)

±r2
CP,1r2

CP,2 | q/p |2| 1−z2 |
s 0 r2

CP,1z −r2
CP,2z 0

Table 1: Coefficients of the time-dependent decay rate for flavor eigenstates (perfect tagging states).

Coefficient | f1 fCP〉
c± | q/p |−2

{

| λCP |2 ± | z |2| λCP |2 ± | 1−z2 | ∓2 | λCP | Re
(

z∗
√

1−z2λ′∗
CP

)}

s | q/p |−2
{

− | λCP |2 z+ | λCP |
√

1−z2λ′∗
CP

}

| f1̄ fCP〉
c± r2

CP,1

{

1± | z |2 ± | 1−z2 || λCP |2 ±2 | λCP | Re
(

z∗
√

1−z2λ′
CP

)}

s r2
CP,1

(

z+ | λCP |
√

1−z2λ′
CP

)

Table 2: Coefficients of the time-dependent decay rate for CPeigenstates (perfect tagging states).

After a close inspection of tables 1, 2, 3 and 4, we observe that the coefficientsc± ands remain unchanged
under a simultaneous sign change of∆Γ, Rez and Reλ′

CP. This discrete ambiguity is resolved if we take
Reλ′

CP = +
√

1− (Imλ′
CP)

2 and then consider as physical parameters∆Γ×sign(Reλ′
CP) and RezReλ′

CP instead
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Coefficient | f1 f2〉 | f1̄ f2〉 | f1〉 | f2̄〉 | f1̄〉 | f2̄〉
c± ± | q/p |−2 r2

CP,1 r2
CP,2 ±r2

CP,1r2
CP,2 | q/p |2

s 0 r2
CP,1z −r2

CP,2z 0

Table 3: Coefficients of the time-dependent decay rate for flavor eigenstates (perfect tagging states), to first
order in the CPT parameterz.

Coefficient | f1 fCP〉
c± | q/p |−2

{

| λCP |2 ±1∓2 | λCP | [RezReλ′
CP− ImzImλ′

CP]
}

s | q/p |−2
{

− | λCP |2 z+ | λCP | λ′∗
CP

}

| f1̄ fCP〉
c± r2

CP,1

{

1± | λCP |2 ±2 | λCP | [RezReλ′
CP+ ImzImλ′

CP]
}

s r2
CP,1 (z+ | λCP | λ′

CP)

Table 4: Coefficients of the time-dependent decay rate for CPeigenstates (perfect tagging states), to first order
in the CPT parameterz.

of ∆Γ and Rez, respectively. We take the product RezReλ′
CP rather than Rez× sign(Reλ′

CP) because the CPT
asymmetries turn out to be proportional to RezReλ′

CP [11, 13]. Therefore, the choice of independent physics
parameters that model CPT/CP, CP/T and mixing is:

RezReλCP
|λCP| , Imz , ImλCP

|λCP| , | q/p | , ∆Γ/Γ×sign(ReλCP) , ∆m , τ .

The previous tables also provide very useful information about where the sensitivity to the different param-
eters comes from:

• the∆Γ dependence for flavor eigenstates appears to be at second order in ∆Γ (from the cosh term) while
it is to first order for CP eigenstates (sinh term). This implies that the precision on∆Γ/Γ from CP
events scales as 1/

√
N (N is here the number of events), constant as a function of∆Γ/Γ, while for flavor

eigenstates the statistical error scales as 1/N1/4 for small values of∆Γ/Γ, while for large values it goes
as 1/

√
N1/∆Γ [15]. Clearly, for small values of∆Γ and in the presence of CP violation, even though the

CP eigenstate sample is about 10 times smaller than the flavoreigenstate sample, it largely dominates the
determination of∆Γ. Another consequence of the different∆Γ dependence for flavor and CP states is the
fact that the PDF for flavor events is symmetric with respect to ∆Γ=0, so only CP events allow to extract
information about the∆Γ sign, up to the discrete ambiguity from ReλCP;

• the dependence with Rez (even in∆t) is suppressed by terms linear in∆Γ for flavor eigenstates. This
implies, again, that for small values of∆Γ and in the presence of CP violation, the CP eigenstate sample
largely dominates the determination of Rez;

• the dependence with ImλCP (CP eigenstates) appears to be odd in∆t, and therefore can be resolved from
the even dependence with Rez;

• the determination of| q/p |, Imz and∆m is dominated by the high statistics flavor sample due to the
absence of suppression factors.

Overall, the combined use of flavor and CP samples provides maximal sensitivity to all the physics parame-
ters, with small correlations, since they are determined either from different samples, either from different∆t

18



dependencies. All these features were checked numericallyusing toy Monte Carlo [11].

Flavor eigenstates withλ2, λ̄2 6= 0, λ1 = λ̄1 = 0, z= 0, ∆Γ = 0 and | q/p |= 1

Whenλ1 = λ̄1 = 0, z= 0, ∆Γ = 0 and| q/p |= 1, we have, for flavor eigenstates

| f1 f2〉 | f1̄ f2〉 | f1〉 | f2̄〉 | f1̄〉 | f2̄〉
c± | λ2 |2 ±1 r2

CP,1

(

1± | λ2 |2
)

r2
CP,2

(

1± | λ̄2 |2
)

r2
CP,1r2

CP,2

(

| λ̄2 |2 ±1
)

Im(s) − | λ2 | Imλ′
2 r2

CP,1 | λ2 | Imλ′
2 r2

CP,2 | λ̄2 | Imλ̄′
2 −r2

CP,1r2
CP,2 | λ̄2 | Imλ̄′

2

and for CP eigenstates

| f1 fCP〉 | f1̄ fCP〉
c± | λCP |2 ±1 r2

CP,1

(

1± | λCP |2
)

Im(s) − | λCP | Imλ′
CP r2

CP,1 | λCP | Imλ′
CP

where Imλ′
2 = −sin(2β+γ+δ), Imλ̄′

2 = sin(2β+γ−δ) and Imλ′
CP = −sin(2β+δ), δ being the strong phase.

For B0 → J/ψK0 decays, Imλ′
CP = −ηCPsin(2β). We recover here the usual expressions used in the sin(2β),

sin(2α) and sin(2β+γ) analyses.

Flavor eigenstates withλ1, λ̄1 6= 0 and λ2 = λ̄2 = 0

This corresponds to the case when the fully reconstructedB mesons are perfect tagging states (i.e. from
semileptonic decays) but the taggingB’s are not:

• Case| f1 f2〉

| u± |2 = | p/q |2| λ1 |2

| m |2 = | p/q |2

u∗±m = − | p/q |2| λ1 | λ′∗
1

u+u∗− = | p/q |2| λ1 |2

To first order inz,

c± = | p/q |2
{

| λ1 |2 ±1∓2Rez | λ1 | Reλ′
1±2Imz | λ1 | Imλ′

1

}

Re(s) = | p/q |2
{

| λ1 |2 Rez− | λ1 | Reλ′
1

}

Im(s) = | p/q |2
{

| λ1 |2 Imz+ | λ1 | Imλ′
1

}

• Case| f1̄ f2〉

| u± |2 = r2
CP,1

| m |2 = r2
CP,1 | λ̄1 |2

u∗±m = −r2
CP,1 | λ̄1 | λ̄′

1

u+u∗− = r2
CP,1

To first order inz,
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c± = r2
CP,1

{

1± | λ̄1 |2 ∓2Rez | λ̄1 | Rēλ′
1∓2Imz | λ̄1 | Imλ̄′

1

}

Re(s) = r2
CP,1

{

Rez− | λ̄1 | Rēλ′
1

}

Im(s) = r2
CP,1

{

Imz− | λ̄1 | Imλ̄′
1

}

• Case| f1 f2̄〉

| u± |2 = r2
CP,2

| m |2 = r2
CP,2 | λ1 |2

u∗±m = ±r2
CP,2 | λ1 | λ′

1

u+u∗− = −r2
CP,2

To first order inz,

c± = r2
CP,2

{

1± | λ1 |2 ±2Rez | λ1 | Reλ′
1±2Imz | λ1 | Reλ′

1

}

Re(s) = r2
CP,2

{

−Rez− | λ1 | Reλ′
1

}

Im(s) = r2
CP,2

{

−Imz− | λ1 | Imλ′
1

}

• Case| f1̄ f2̄〉

| u± |2 = r2
CP,1r2

CP,2 | q/p |2| λ̄1 |2

| m |2 = r2
CP,1r2

CP,2 | q/p |2

u∗±m = ±r2
CP,1r2

CP,2 | q/p |2| λ̄1 | λ̄′∗
1

u+u∗− = −r2
CP,1r2

CP,2 | q/p |2| λ̄1 |2

To first order inz,

c± = r2
CP,1r2

CP,2 | q/p |2
{

| λ̄1 |2 ±1±2Rez | λ̄1 | Rēλ′
1∓2Imz | λ̄1 | Imλ̄′

1

}

Re(s) = −r2
CP,1r2

CP,2 | q/p |2
{

| λ̄1 |2 Rez+ | λ̄1 | Re(λ̄′
1)

}

Im(s) = −r2
CP,1r2

CP,2 | q/p |2
{

| λ̄1 |2 Imz− | λ̄1 | Imλ′
1

}

From these expressions we observe that DCKM decays in the tagging side induce a sign ambiguity similar
to that described previously, but now involving Reλ′

1 (Rēλ′
1) instead of Reλ′

CP, for B0(B0) tags. It can also be
seen that the parameter Rezalways appears either multiplied by or added to a term proportional to Reλ′

1 (Rēλ′
1).

Similarly, Imz is always accompanied by a term proportional to Imλ′
1 (Imλ̄′

1). This implies that Rez(Imz) will
be mainly affected by (correlated with) the DCKM real(imaginary) parts. The dominant dependence withλ′

1
andλ̄′

1 is in all cases linear in| λ1 | and| λ̄1 |. A similar analysis forλ1, λ̄1 6= 0, λ2 = λ̄2 = 0 reveals the same
features for the reconstructedB (flavor sample). In this case, however, given that the flavor eigenstate sample is
analyzed in combination with the CP sample, it is expected the DCKM effects to be smaller, as will be discussed
later.
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CP eigenstates (λ2 = λCP) with λ1, λ̄1 6= 0

This corresponds to the most general case for fully reconstructed CP eigenstates:

• Case| f1 fCP〉

| u± |2 = | p/q |2
{

| λ1 |2 + | λCP |2 ±2 | λ1 || λCP | Re
(

λ′
1λ′∗

CP

)}

| m |2 = | p/q |2
{

1+ | λ1 |2| λCP |2 −2 | λ1 || λCP | Re
(

λ′
1λ′

CP

)}

u∗±m = | p/q |2
{

| λ1 |2| λCP | λ′
CP− | λ1 | λ′∗

1 ± | λCP |2| λ1 | λ′
1∓ | λCP | λ′∗

CP

}

u+u∗− = | p/q |2
{

| λ1 |2 − | λCP |2 +2i | λ1 || λCP | Im
(

λ′
CPλ′∗

1

)}

(78)

• Case| f1̄ fCP〉

| u± |2 = r2
CP,1

{

1+ | λ̄1 |2| λCP |2 ±2 | λ̄1 || λCP | Re
(

λ̄′
1λ′

CP

)}

| m |2 = r2
CP,1

{

| λCP |2 + | λ̄1 |2 −2 | λCP || λ̄1 | Re
(

λ′
CPλ̄′∗

1

)}

u∗±m = r2
CP,1

{

| λCP | λ′
CP− | λ̄1 | λ̄′

1± | λCP |2| λ̄1 | λ̄′∗
1 ∓ | λ̄1 |2| λCP | λ′∗

CP

}

u+u∗− = r2
CP,1

{

1− | λ̄1 |2| λCP |2 +2i | λ̄1 || λCP | Im
(

λ̄′
1λ′

CP

)}

(79)

Substituting equations (78) and (79) into (77), it can easily be seen that the coefficientsc± ands remain un-
changed under the simultaneous sign change of∆Γ, Rez, Reλ′

CP, Reλ′
1 and Rēλ′

1. The ambiguity can be resolved
if we take Reλ′

CP = +
√

1− (Imλ′
CP)

2 and the consider as physical parameters∆Γsign(Reλ′
CP) and RezReλ′

CP
instead of∆Γ and Rez, respectively. This solves mathametically the complete ambiguity. In practice, due to the
poor resolution on Reλ′

1 and Rēλ′
1 we may need to fix these parameters. The dependence withλ′

1 andλ̄′
1 is, for

all terms, linear in| λ1 | and| λ̄1 |. Finally, let us note that the dependence of Imλ′
CP with Imλ′

1 is to first order
in ∆m, while with Reλ′

1 is to second order in∆mas well as in∆Γ.

Flavor eigenstates withλ2, λ̄2 6= 0 and λ1, λ̄1 6= 0

This corresponds to the most general case for fully reconstructed flavor eigenstates. For our purposes here,
it is enough to analyze the case| f1 f2〉, given by equation (63):

| u± |2 = | p/q |2
{

| λ1 |2 + | λ2 |2 ±2 | λ1 || λ2 | Re
(

λ′
1λ′∗

2

)}

| m |2 = | p/q |2
{

1+ | λ1 |2| λ2 |2 −2 | λ1 || λ2 | Re
(

λ′
1λ′

2

)}

u∗±m = | p/q |2
{

| λ1 |2| λ2 | λ′
2− | λ1 | λ′∗

1 ± | λ2 |2| λ1 | λ′
1∓ | λ2 | λ′∗

2

}

u+u∗− = | p/q |2
{

| λ1 |2 − | λ2 |2 +2i | λ1 || λ2 | Im
(

λ′
2λ′∗

1

)}

We observe again the sign ambiguity, now involving Reλ′
2 (Rēλ′

2) instead of Reλ′
CP, for B0(B0). Mathematically

the ambiguity is already resolved once we have solved it for CP eigenstates (assuming a combined analysis of
the flavor and CP eigenstates). In practice, as before, due tothe poor resolution on Reλ′

1/2 and Rēλ′
1/2 we may

need to fix these parameters. Let us note that in this case the dependence withλ′
1/2 andλ̄′

1/2 is linear in| λ1/2 |
and| λ̄1/2 | only for theu∗±m term, while it is quadratic for the rest.
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2.3 {| q/p |,λ,z} vs{ε,δ} formalisms

Alternative formalisms can be used to describe flavor and CP mixing [12, 9]. One of these alternative
choices is a phase-convention independent formalism similar to that used in kaon system phenomenology [13]
({ε,δ}). To first order in the CPT parameter∆ -the same as defined in equation 13-, the parametersε andδ
parameterize CP/T and CP/CPT violation, and are defined as [13, 11]:

ε =
Im(Γ12CP∗

12)+2iIm(M12CP∗
12)

2Re(M12CP∗
12)− iRe(Γ12CP∗

12)+2F ′ (80)

δ =
2∆

2Re(M12CP∗
12)− iRe(Γ12CP∗

12)+2F ′ (81)

whereCP12 = 〈B0 |CP|B0〉= e−iα is the unphysical relative phase between|B0〉 and|B0〉. The main difference
with respect to the standard{| q/p |,λ,z} formalism is that it relies on the base of CP eigenstates, rather than
flavor eigenstates. This is then used to make the formalism phase-convention independent without the need of
introducing a specific decay process to unambiguosly define the unphysical relative phase betweenB0 andB0.
This requires, however, of a CP-conserving decay into a definite CP final state. If the decay does not fall into a
CP-conserving direction (i.e there is CP violation in the decay and/or not perfect tagging states), corrections are
needed in order to define the CP tag appropiately [13]. These corrections are in practice not simple to introduce,
limiting the application of the formalism.

After some algebra one can obtain, to first order in CPT and assuming CP conserving decays and perfect
tagging states, the relations connecting the two formalisms [11]:

δ
1− ε2 = z (82)

and

q
p

eiα =
1− ε
1+ ε

. (83)

From (82) and (83) and taking first order in Reε we found the following relations:

2Reε
1+ | ε |2 ≡ 1− | q/p |2

1+ | q/p |2 (84)

Imε
1+ | ε |2 ≡ −1

2
ImλCP

| λCP |
(85)

1− | ε |2
1+ | ε |2 ≡ ReλCP

| λCP |
(86)
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Reδ
1+ | ε |2

1− | ε |2
1+ | ε |2 ≡ Rez

ReλCP

| λCP | (87)

Imδ
1+ | ε |2 ≡ Imz (88)

2.4 Mistag fractions,B0B0 differences in tagging and reconstruction efficiencies anddirect CP
violation in tagging and flavor eigenstates

The time-dependent decay rates given in equation (53) have to be corrected by the fractionwα of events
with wrongly assigned flavor in tagging categoryα, the mistag fraction. On the other hand, differences in
reconstruction and tagging efficiencies forB0 and B0 can induce biases in the decay time distributions due
to the presence of even terms in∆t (odd terms do not contribute). Let us define first the quantities used to
parameterize all these effects (we use the same definitions as in [8]).

wα
B0 is defined as the fraction of trueB0 but are incorrectly tagged asB0 for tagging categoryα, and similarly

for wα
B0. As the mistag fraction can be different forB0 andB0 due to differences in the material interactions

(especially for kaons), it is convenient to define

wα =
wα

B0 +wα
B0

2
(89)

and

∆wα = wα
B0 −wα

B0 (90)

which give, respectively, the mean value and the differenceof the mistag fractions forB0 andB0. With these
definitions,

wα
B0 = wα +∆wα/2 (91)

and

wα
B0 = wα −∆wα/2 . (92)

Let us define now

µα =
tα
1 − tα

1̄

tα
1 + tα

1̄

(93)

and

ν =
t2− t2̄
t2 + t2̄

(94)
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where tα
1/1̄ is the tagging efficiency forB0/B0 and tagging categoryα. Similarly t2/2̄ is the reconstruction

efficiency forB0/B0. If we call Tα andR the average tagging and reconstruction efficiencies (Tα =
tα
1 +tα

1̄
2 and

R= t2+t2̄
2 ), we have

tα
1 = Tα(1+µα) , tα

1̄ = Tα(1−µα) (95)

and

t2 = R(1+ν) , t2̄ = R(1−ν) . (96)

The corrected expressions read, for flavor eigenstates (Bf lav):

hα
k1k2

(∆t) = tk2

{

tα
k1

(1−wα
k1

)hk1k2(∆t)+ tα
k̄1

wα
k̄1

hk̄1k2
(∆t)

}

(97)

and for CP eigenstates (BCP):

hα
k1k2

(∆t) = tα
k1

(1−wα
k1

)hk1k2(∆t)+ tα
k̄1

wα
k̄1

hk̄1k2
(∆t) (98)

wherek1 = 1, 1̄ andk2 = 2, 2̄,CP. The difference among equations (97) and (98) is becauseη fCP = −1 (BCP−)

andη fCP = +1 (BCP+) states are normalized separately, whileB0
f lav andB

0
f lav are normalized together.

CP violation in the decay ofB tagging states and flavor eigenstates was explicitely included in equation
(53) and terms (63), (68), (70) and (72). Alternatively, it can be included in equations (97) and (98) with the
replacementtα

1̄ → tα
1̄ r2

CP,1 andt2̄ → t2̄r2
CP,2 (t1 andt2 remain unchanged). Equations (93) and (94) should then be

rewritten as

µα =
tα
1 − tα

1̄ r2
CP,1

tα
1 + tα

1̄
r2
CP,1

(99)

and

ν =
t2− t2̄r2

CP,2

t2 + t2̄r2
CP,2

. (100)

From these expressions we see that the net effect of any possible CP violation in the decay ofB tagging states
and/or flavor eigenstates cannot be distinguished from a charge asymmetry of the detector response.

2.5 ∆t resolution function

The introduction of the resolution effects requires the convolution of equations (97) and (98) with the
resolution functionR (∆t −∆t ′,σ∆t ;~qα):

hα,resol
k1k2

(∆t,σ∆t) =

∫ +∞

−∞
R (∆t −∆t ′,σ∆t ;~qα)hα

k1k2
(∆t ′)d∆t ′ . (101)
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The problem can be reduced to the convolution of a set of basisfunctions,

1
2τ

exp
(

∓τe f f∆t ′
)

exp
(

i∆m∆t ′
)

(102)

with (125), where

τe f f =
2τ

2∓ τ∆Γ
=

τ
1∓∆Γ/2Γ

(103)

andτ = 1/Γ. The−(+) sign applies for∆t ′ > 0 (∆t ′ < 0). The normalization of (101) over a finite domain
(∆t1,∆t2) can then be calculated from the integral

Hα,resol
k1k2

(σ∆t) =

∫ ∆t2

∆t1
hα,resol

k1k2
(∆t,σ∆t)d∆t . (104)

All the integrals (101) and their normalizations (104) can be calculated analytically, and expressed in terms
of complex exponentials and the complementary complex error function [16]. The integration limits∆t1 and
∆t2 can be the acceptance cuts on∆t (finite normalization) or infinity (asymptotic normalization). Asymptotic
normalization is used by default in this analysis. The specific resolution models used in this analysis are
discussed in section 4.

2.6 Background treatment

In the presence of backgrounds, the PDF has to be extended to include a term for each significant back-
ground source. The backgrounds forBf lav andBCPK0

S
≡ BCP− states are small and mostly combinatoric. They

are estimated from the beam-energy substituted mass (mES) sideband, assuming a single Gaussian distribution
for the signal and an Argus parameterization for the background. From unbinned maximum likelihood fits to
themES spectrum, an event-by-event signal probability,pα

sig(mES), for each tagging categoryα, is calculated.
The corrected general PDF can then be written as

hα,obs
k1k2

(∆t,σ∆t) = (1− f α
peak)pα

sig(mES)h
α,resol,sig
k1k2

(∆t,σ∆t)+

f α
peakp

α
sig(mES)h

α,resol,peak
k1k2

(∆t,σ∆t)+
{

1− pα
sig(mES)

}

∑
β

f α
β hα,resol,β

k1k2
(∆t,σ∆t)

(105)

where f α
β and f α

peak are the combinatorial and peaking background component fractions for the given sample.
It is verified that

∑
β

f α
β = 1 . (106)

The signal probability is calculated separately for each tagging category.

For each individual signal and background component,j = sig, peak,β, and tagging categoryα, the distri-
butions (105) are normalized so that:
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∑
k1=1,1̄

Hα,resol, j
k1k2

(σ∆t)d∆t = 1 , ∀ j,α (107)

for BCP events, and

∑
k2=2,2̄

∑
k1=1,1̄

Hα,resol, j
k1k2

(σ∆t)d∆t = 1 , ∀ j,α (108)

for Bf lav events.

For theB0→J/ψK0
L channel (BCPK0

L
≡ BCP+ sample) the background level is significantly higher with sig-

nificant non-combinatorial component, therefore requiring an special treatment [18]. The data are used to de-
termine the relative amount of signal, background fromB→ J/ψX events and events from a misreconstructed
J/ψ → ℓℓ candidate. The Monte Carlo simulation is then used to evaluate the channels that contribute to the
B → J/ψX background. All this information is used to determine the composition of theB0→J/ψK0

L sample
from a fit to the∆E spectrum after flavor tagging. Moreover, some of the decay modes in the inclusiveJ/ψ
background have an expected CP structure. The PDF can then beformulated as

hα,obs
k1k2

(∆t,σ∆t) = f α
sig(∆E)hα,resol,sig

k1k2
(∆t,σ∆t)+

∑
j=J/ψ X

f α
j (∆E)hα,resol, j

k1k2
(∆t,σ∆t)+

f α
non−J/ψ (∆E)

[

f α
prompth

α.resol,prompt
k1k2

(∆t,σ∆t)+ f α
non−prompth

α,resol,non−prompt
k1k2

(∆t,σ∆t)
]

(109)

where

f α
prompt+ f α

non−prompt = 1 (110)

and

f α
sig(∆E)+ ∑

j=J/ψ X

f α
j (∆E)+ f α

non−J/ψ(∆E) = 1 . (111)

2.7 The log-likelihood function

The log-likelihood function for tagging categoryα is finally defined as
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lnLα =

Nα
B0

tagBCP−

∑
i

lnhα,obs
B0

tagBCP−
(∆ti,σ∆t,i)+

Nα
B0

tagBCP−

∑
i

lnhα,obs

B
0
tagBCP−

(∆ti,σ∆t,i)+

Nα
B0

tagBCP+

∑
i

lnhα,obs
B0

tagBCP+
(∆ti,σ∆t,i)+

Nα
B0

tagBCP+

∑
i

lnhα,obs

B
0
tagBCP+

(∆ti,σ∆t,i)+

Nα
B0

tagB0
f lav

∑
i

lnhα,obs
B0

tagB
0
f lav

(∆ti,σ∆t,i)+

Nα
B0

tagB0
f lav

∑
i

lnhα,obs

B
0
tagB

0
f lav

(∆ti ,σ∆t,i)+

Nα
B0

tagB0
f lav

∑
i

lnhα,obs

B0
tagB

0
f lav

(∆ti,σ∆t,i)+

Nα
B0

tagB0
f lav

∑
i

lnhα,obs

B
0
tagB

0
f lav

(∆ti ,σ∆t,i) (112)

whereNα
k1k2

is the total number ofk2 events tagged ask1 in tagging categoryα. The global likelihood function
for all tagging categories is then calculated as

lnL = ∑
α

lnLα . (113)

ν, µα andTα , given in equations (99), (100) and (95), respectively, canbe calculated from time integrated
flavor transition rates following the prescription documented in [14]. It has been generalized to account for
non-zero∆Γ values, CP violation in mixing and CPT violation (see appendix B):

ν =
1
2

(z+x)(c+d)− (w+y)(a+b)

(a+b)(c+d)
(114)

µα =
x(1−ν)(c+d)−y(1+ν)(a+b)

y(1+ν)(a−b)−x(1−ν)(c−d)
(115)

Tα =
1

1− (ν)2

x(c−d)(1−ν)−y(a−b)(1+ν)

2(bc−da)
(116)

where

a = HB0
tagB

0
f lav

, b = H
B

0
tagB

0
f lav

, c = H
B0

tagB
0
f lav

, d = H
B

0
tagB

0
f lav

are the time integrated theoretical rates (withrCP,1 = rCP,2 = 1), i.e. the result of integrating over−∞ < ∆t < +∞
equation (53) with coefficients from (63), (68), (70) and (72), for Bf lav events; and

x = Hα
any tagB0

f lav
, y = Hα

any tagB
0
f lav

, z= Hα
no tagB0

f lav
, w = Hα

no tagB
0
f lav

are the measured rates of tagged events in categoryα for B0
f lav (x) andB

0
f lav (y) processes, and the total mea-

sured rates ofB0
f lav andB

0
f lav except those tagged in categoryα (z,w). Let us note that following the discussion

at the end of section 2.4, possible direct CP violation effects (together with the detector charge asymmetries)
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are already included in theB counting, so that the PDF for the final fit should haverCP,1 = rCP,2 = 1. In addition
to the dependence with the number ofB0/B0/mixed/unmixed events, the extraction ofν, µα andTα relies on
estimates of the parameters which are going to be extracted from the time dependent analysis, independently of
mistags and∆t resolution [14]. The terms with odd∆t dependence do not contribute.This is critical for the ex-
traction of| q/p |, since this parameter is anticorrelated with the detector asymmetries (ν andµα) [11]. In order
to introduce the time integrated constraint given by equations (114) and (115), an extended maximum likeli-
hood was constructed to incorporate the Poisson uncertainties from theB counting. The modified likelihood
function reads

lnLExtended = lnL+∆ lnL (117)

where lnL was defined in equation (113) and

∆ lnL = ∑
α

∆ lnLα (118)

− lnNB0
f lav,notag! +NB0

f lav,notaglnηB0
f lav,notag−ηB0

f lav,notag

− lnN
B

0
f lav,notag

! +N
B

0
f lav,notag

lnη
B

0
f lav,notag

−η
B

0
f lav,notag

(119)

and

∆ lnLα = − lnNα
B0

f lav,tag! +Nα
B0

f lav,tag lnηα
B0

f lav,tag−ηα
B0

f lav,tag

− lnNα
B

0
f lav,tag

! +Nα
B

0
f lav,tag

lnηα
B

0
f lav,tag

−ηα
B

0
f lav,tag

(120)

Nα
B0

f lav(B
0
f lav),tag

is the number ofBf lav events reconstructed asB0(B0) and tagged in categoryα, andN
B0

f lav(B
0
f lav),notag

is the total number of untaggedBf lav events and reconstructed asB0(B0). ηα
B0

f lav(B
0
f lav),tag

andη
B0

f lav(B
0
f lav),notag

denote the corresponding expected numbers of events.ν andµα are finally calculated at each step of the min-
imization procedure using the values of the expected numberof events and the physical parameters from the
previous iteration. This method can be applied by counting the number of signal events (estimated frommES

fits). This methods accounts for the correlations induced bythe reuse of events in the evaluation ofν andµα :
for each tagging category it is used the number of tagged events in that category together with the remaining
events (events tagged by other categories plus the untaggedevents).

For combinatorial background components, where typicallywe assume∆m=0, ∆Γ/Γ=0, | q/p |=1 and
z= 0, there is no need to apply this method, and the parametersν andµα can be fixed to the estimates obtained
previously to the fit using events from the sideband region (see section 6). The method has been validated with
extensive toy Monte Carlo studies, as documented in [11]. With this technique we are able to to desintangle
physics and detector asymmetries, at the cost of a reasonable increase in the statistical error on| q/p | (≈ 30%),
while all the other physics parameters remain basically unchanged.

An standalone fitting program, calledcptNagFit, has been developped to find the solution of (117)
and the errors on the fitted parameters. The program has been interfaced to the NAG library [28] and the
MINUIT package [29]. All the numerical and minimization routines are based on the NAG library, and the
error estimation relies on the HESSE and MINOS methods of MINUIT. This simultaneous interfacing allows
direct comparison and cross-checking of the fitting resultsusing two completely different libraries. As described
in section 8, thecptNagFit fitting program has been cross-checked performing standardsin2β fits with the
widely usedRootFitTools package [16].
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2.8 Discussion about Doubly-CKM-Suppressed effects

The numerical sensitivity of the CPT/T/CPT/oscillation parameters to DCKM effects in the tagging and
reconstructed (flavor sample) sides was investigated usingtoy Monte Carlo3, as described in detail in appendix
A.1. The studies confirmed the main features described in section 2.2.6. First, Rez is mainly correlated with
the DCKM real parts, while Imzand to a less extend Imλ′

CP are mainly correlated with DCKM imaginary parts.

Second, the sensitivity to the DCKM real parts is poor (Reλtag

|λtag| and Rēλtag

|λ̄tag|
) or none (Reλ f lav

|λ f lav| and Rēλ f lav

|λ̄ f lav|
). The poor

sensitivities together with the discrete ambiguities involved will require to fix (e.g. to zero) these parameters.
Third, DCKM effects on∆m and∆Γ are small since most of the impact is absorbed by the coefficients of the
time dependence. Four, the tagging side gives the largest contribution (assuming a single channel contributing
to the sample, see discussion below). This is expected in a combined analysis of flavor and CP eigenstates
since the tagging side effects are common to all samples, while the CP sample would contribute to reduce
dependencies from the reconstructed side of the flavor sample. In the extreme case of parameters dominated
by the CP sample (e.g. Rez, Imλ′

CP) we expect the effects from the reconstructed side of the flavor sample to
be very small or negligible, as seen in the toy Monte Carlo studies (as well as in the final systematics from
this source). From these studies we concluded that the optimal trade-off between statistical precision and
systematic uncertainties induced by DCKM decays requires the introduction of new fit parameters (to be added
to the 6 CPT/T/CP/oscillation parameters), the sines of theDCKM phases, 2 for the tagging side (common to all
samples) and 2 for the reconstructed side (flavor sample). Using toy Monte Carlo, it was verified (for different
DCKM phase configurations) that this fitting configuration provides unbiassed estimates for all the parameters,
and the Gaussian errors reported by the fit give a good estimation of the statistical reach, within 10%.

Supposse now that we identifyf2 accurately, but we have a probabilityw1 of misidentifying f1 as f1̄, and a
probability w̄1 of misidentifying f1̄ as f1. From equation (41), the time-dependent decay rate can be written as

| 〈 f1 f2 | ϒ(t1,∆t)〉 |2 =
1
2

e−2t1/τ | p+q− + p−q+ |2
| N+N− |2

{

| 〈 f2 | B0(∆t)〉 |2
[

(1−w1) | Ā1 |2 +w̄1 | Ā1̄ |2
]

+

| 〈 f2 | B0(∆t)〉 |2
[

(1−w1) | A1 |2 +w̄1 | A1̄ |2
]

−
2Re

[

〈 f2 | B0(∆t)〉〈 f2 | B0(∆t)〉∗
(

(1−w1)Ā1A∗
1 + w̄1Ā1̄A∗

1̄

)]}

. (121)

with the following relations being satisfied:

| Ā1 |2 = r2
1 | A1 |2

| Ā1̄ |2 = r2
CP,1 | A1 |2

| A1̄ |2 = r̄2
1r2

CP,1 | A1 |2

Ā1A∗
1 = r1eiφ1 | A1 |2

Ā1̄A∗
1̄ = r̄1r2

CP,1e−iφ̄1 | A1 |2 . (122)

φ1(φ̄1) is the relative phase of̄A1(A1̄) with respect toA1(Ā1̄). From equations (121) and (122) it can easily be seen
that a change inr1 and ¯r1 can be completely absorbed in a redefinition ofw1, w̄1, Re(eiφ1), Im(eiφ1), Re(e−iφ̄1)
and Im(e−iφ̄1). The dependence withr1 and ¯r1 is quadratic for the former and linear for the latter. Of course,
if the real and imaginary parts are either fixed or constrained to be within the physical region this is anymore
true since the complete absortion of the effect requires thesimultaneous change of all the above quantities. If

3All the feasibility, reach and validation studies when DCKMeffects are neglected were described in detail in [11].
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for example (our case) Re(eiφ1) and Re(e−iφ̄1) are fixed to zero, the systematics from their variation from−1 to
+1 will scale linearly with the largest possible value assumed for r1 and ¯r1, while the uncertainty fromr1 and
r̄1 in the sine terms will be absorbed in a redefinition of the fitted value of Im(eiφ1) and Im(e−iφ̄1). This feature
was verified using toy Monte Carlo, as described in appendix A.2.

So far we assumed that the final statesf1 and f2 receive contributions from a single channel. In practice,
theB sample used forB tagging and the flavor eigenstate sample are an admixture of different channels. When
we consider semi-inclusive measurements that do not distinguish between different final states, the decay rate
distribution has to be expressed as

| 〈 f1 f2 | ϒ(∆t)〉 |2 ∝ ∑
j

ωj | 〈 f1, j f2, j | ϒ(∆t)〉 |2 (123)

where the set of final states has been denoted by{ f1 f2} j . ωj are the weights for each final state, and include
relative normalization factors and experimental efficiencies. The decay rate distribution can be written in the
form of equation (53) with the following substitutions:

| u± |2→∑
j

ωj | u±, |2

| m |2→∑
j

ωj | mj |2

u∗±m→∑
j

ωju
∗
±, jmj

u+u∗− →∑
j

ωju+, ju
∗
−, j

It is therefore expected that multiple channels would result in an effective single channel which overall effect
would be a weigthed average of each individual channel. As a consequence, the effects from more than one
channel should always be smaller than the worse possible single channel. This was confirmed by a toy Monte
Carlo study, described in appendix A.3. This proves that theDCKM systematics extracted under the single
channel assumptio will be conservative.

3 Decay modes, data and Monte Carlo samples

The decay modes considered for the analysis are:

BCPK0
S

sample: B0→J/ψK0
S (π+π− andπ0π0), B0→ψ(2S)K0

S (π+π−), χc1 K0
S (π+π−);

J/ψ→e+e−,µ+µ−; ψ(2S)→e+e−,µ+µ−,J/ψπ+π−; χc1 →J/ψγ;

BCPK0
L

sample: B0→J/ψK0
L ;

Bf lav sample: B0→D(∗)π(ρ,a1) andB0→J/ψK∗0. Charmed mesons are reconstructed in the following modes:

D∗− → D
0π− with D

0 → K+π−,K+π−π0,K+π+π−π−,K0
Sπ+π−; D− → K+π−π−,K0

Sπ−; ρ− → π−π0,
a1 → π+π−π+, K∗0→K+π−.
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σ mES mES Yield Purity
Fig. Mode (MeV) (∆E for J/ψK0

L ) (%)
2 D∗π 2.57±0.05 5076±90 92

D∗ρ 2.91±0.08 3190±84 84
D∗a1 2.57±0.08 2371±75 78

3 Dπ 2.49±0.05 5596±111 81
Dρ 2.85±0.08 3230±92 76
Da1 2.43±0.10 1780±73 65

4 J/ψK∗0 e+e− 2.74±0.10 1016±38 95
(K±π∓) µ+µ− 2.58±0.10 931±35 96
all Bf lav 2.63±0.03 23192±225 82

5 J/ψK0
S e+e− 2.68±0.16 470±27 94

(π+π−) µ+µ− 2.63±0.13 529±25 98
6 J/ψK0

S e+e− 3.1±0.5 83±14 84
(π0π0) µ+µ− 3.2±0.4 100±14 89

7 ψ(2S)K0
S e+e− 3.0±0.5 80±14 85

µ+µ− 2.4±0.3 82±11 94
8 χc1K0

S e+e− 3.5±0.7 42±8 95
µ+µ− 2.3±0.5 40±8 93

all BCPK0
S

2.73±0.09 1426±47 94

9 J/ψK0
L (EMC) e+e− — 154±15 54±3

µ+µ− — 174±17 49±3
10 J/ψK0

L (IFR) e+e− — 160±15 70±4
µ+µ− — 163±16 65±4

Table 5: Event yields, signal resolutions, and signal purities for theBf lav andBCP decay modes, from 56 fb−1

of data (Winter’02 data sample). Results are shown separately for J/ψ → e+e− andJ/ψ → µ+µ− channels. The
errors on these quantities are the statistical errors from the distribution. ThemES results, yields and purities
were determined from a fit to a Gaussian plus Argus backgroundin a 3σ ∆E window (the purity was estimated
for the regionmES> 5.27 GeV/c2), as shown in figures 2 to 10.

Each of these samples is separated by tagging category, witha total of 4 tagging categories: the default
tagger used here is the Elba Tagger [19], while the Moriond Tagger [20] will be used as cross-check.

The selection cuts for all the modes are the same as those usedin [8, 18, 21]. The data sample corresponds
to an integrated luminosity of approximately 56 fb−1. Table 5 summarizes the event yields on the full data
sample for all theBf lav and charmonium modes. In each case, theσ(mES), yield and purity (estimated as the
signal fraction for events withmES> 5.27 GeV for modes other thanJ/ψK0

L and| ∆E |< 10 MeV for J/ψK0
L )

are given separately for each mode, and in the case of charmonium modes it is given foreeandµµ. Figures 2, 3,
4, 5, 6, 7 and 8, show the unbinned maximum likelihood fit used to extract the yields and purities given in table
5. The fits are performed to the beam-energy substituted mass, mES=

√

E∗2− p∗2, using a Gaussian plus Argus
background shape. TheJ/ψK0

L channel is handled differently, using the variable∆E = E∗
J/ψ +E∗

K0
L
−Ebeam. See

[18] for details. The fit results to the∆E distributions are shown in figures 9 and 10.

Two different Monte Carlo samples are used: an standard sample, the same as used in [8, 18], and a
dedicated one. The values of the physics parameters used in the generation of the two samples are shown
in table 6. Each sample containsBf lav, BCPK0

S
andBCPK0

L
decay modes. The standard sample itself has two
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Figure 2: Fits to themESdistributions in theB0 →D∗π(top/left),B0 →D∗ρ (top/right) andB0 →D∗a1 (bottom)
channels. Vertexing cuts have not been applied.
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Figure 3: Fits to themES distributions in theB0 → Dπ (top/left), B0 → Dρ (top/right) andB0 → Da1 (bottom)
channels. Vertexing cuts have not been applied.
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Figure 4: Fits to themES distributions in theB0 → J/ψK∗ (K±π∓) channel for theJ/ψ → e+e− (left) and
J/ψ → µ+µ− (right) modes. Vertexing cuts have not been applied.

Figure 5: Fits to themES distributions in theB0 → J/ψK0
S (π+π−) channel for theJ/ψ → e+e− (left) and

J/ψ → µ+µ− (right) modes. Vertexing cuts have not been applied.

34



Figure 6: Fits to themES distributions in theB0 → J/ψK0
S (π0π0) channel for theJ/ψ → e+e− (left) andJ/ψ →

µ+µ− (right) modes. Vertexing cuts have not been applied.

Figure 7: Fits to themESdistributions in theB0 → ψ(2S)K0
S channel for theJ/ψ → e+e− (left) andJ/ψ → µ+µ−

(right) modes. Vertexing cuts have not been applied.
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Figure 8: Fits to themES distributions in theB0 → χc1K0
S channel for theJ/ψ → e+e− (left) andJ/ψ → µ+µ−

(right) modes. Vertexing cuts have not been applied.

Figure 9: Fits to the∆E distribution in theB0 → J/ψK0
L channel forK0

L detected in the Emc. Vertexing cuts
have not been applied. The red (blue) histogram is the fitted inclusiveJ/ψ (fakeJ/ψ) background contribution.
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Figure 10: Fits to the∆E distribution in theB0 → J/ψK0
L channel forK0

L detected in the IFR. Vertexing cuts
have not been applied. The red (blue) histogram is the fitted inclusiveJ/ψ (fakeJ/ψ) background contribution.

Parameter Standard Monte Carlo Dedicated Monte Carlo
(exclusive and inclusive) (exclusive)

∆Γ/Γ 0.00 0.20
| q/p | 1.00 1.04
ImλCP
|λCP| 0.70 0.70

∆m 0.472 0.472
ReλCP
|λCP| Rez 0.00 0.00

Imz 0.00 0.00

Table 6: Physics parameter values of the standard and dedicated Monte Carlo samples.

subsamples, one with exclusive charmonium decays and the other with inclusive decays. The dedicated sample
has only exclusive charmonium decays. The statistics of reconstructedB mesons (before vertexing cuts and
tagging) are given in table 7, for each mode and sample separately. It must be noted that the relative statistics
among the samples as we have in the data was not kept here.

ASCII files input to the fits are taken from:

/nfs/farm/babar/AWG2/sin2b/data run2/BReco/ASCII/anal-12a/

/nfs/farm/babar/AWG2/sin2b/mc run2/BReco/ASCII/anal-12a/

/nfs/farm/babar/AWG2/sin2b/data run2/Charmonium/ASCII/anal-12a/

/farm/babar/AWG2/sin2b/mc run2/Charmonium/ASCII/anal-12a/

/nfs/farm/babar/AWG2/sin2b/mc run2/Charmonium/ASCII/alignment/

/nfs/farm/babar/AWG2/sin2b/mc run2/BReco/ASCII/anal-12a-MCalign/
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Sample Standard Monte Carlo Dedicated Monte Carlo
B0 cocktail 57080 85048

exclusiveB0→J/ψK0
S 41433 12858

exclusiveB0→ψ(2S)K0
S 5186 5248

exclusiveB0→χc1 K0
S 5357 5050

exclusiveB0→J/ψK0
L 20814 5431

inclusiveB0→J/ψK0
S (π+π−) 3190

inclusiveB0→J/ψK0
S (π0π0) 763

inclusiveB0→ψ(2S)K0
S 326

inclusiveB0→χc1 K0
S 305

inclusiveB0→J/ψK0
L 5452

Table 7: Standard and dedicated Monte Carlo statistics (after reconstruction and before vertexing cuts and
tagging). The values of the physics parameters for each generation were shown in table 6. For theJ/ψK0

L mode
the statistics is given for the∆E interval [−20,80] MeV.

at SLAC, and

/net/fcbabar02/space/local2/sandrel/cptWinter02Productions/newMC/

in Pisa.

4 Resolution function and vertexing cuts

The decay time difference∆t between the two decayingB mesons is calculated from thez positions of
the reconstructed vertices, using theaverageτB approximation[24], which uses the measuredϒ(4S) boost
(determined on a run-by-run basis) as well as the polar angleof the reconstructedB, therefore accounting for
the boost of theB mesons with respect to theϒ(4S). The standardBABAR algorithm,BtaSelFit, with default
configuration (beam constraints) is used for the∆z reconstruction [24]. Only events satisfying that| ∆t |< 20 ps
andσ∆t < 1.4 ps are accepted, the same as using in the hadronic mixing analysis [21]. The nominal fit (section
6) does not include in the normalization of the PDF the∆t cut. The fit including the limited∆t range will be
done as well and used to estimate a systematic uncertainty due to this assumption. Fits in different∆t andσ∆t

ranges will be performed as well as cross-check.

The∆t resolution is modelled using two different parameterizations [26].

The first approach, called thereafterGG model, asumes three Gaussians [21]. Thecorecomponent tries to
describe well measured vertices, meanwhile thetail part accounts for poorly measured decay times. Finally,
there is a small fraction ofoutliers (a few per mille) where∆t is badly reconstructed, partly due to mistakes
in the track reconstruction, partly to tracks from secondary decays (long living particles and hard scatters).
As the reconstructed∆t error provides a good (approximate) representation of the resolution for the core (tail)
Gaussian, it is used to weight the events on a event-by-eventbasis, rather than to use a global resolution,
therefore increasing the sensitivity of the analysis to well measured events. As the error is still not a perfect
representation of the resolution (especially for the tail component) we allow for two global scale factors. On the
contrary, the event-by-event∆t error is not a good representation of the resolution for the outliers component,
and in this case a global and fixed (8 ps) resolution is used instead. In addition to the increase of the sensitivity,
the weighting of the events according to the reconstructed∆t error largely eliminates small differences in
resolution between the different classes of events entering in the analysis. Very small residual effects due to
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differences in the scale factors can then be considered as part of the systematic uncertainties. Figure 11 shows
the distributions of the per-event error on∆t for the Bf lav and BCPK0

S
data samples, for signal (mES > 5.27

GeV) and sideband (5.2 < mES< 5.27 GeV) region events. The curves correspond to the unbinnedmaximum
likelihood fit to a Crystall Ball shape. The results of these fits are the basis to define the probability density
function used to generate realistic∆t error distributions in toy Monte Carlo studies, but they do not enter in the
definition of the likelihood function.

(a) (b)

Figure 11: Event-by-event error on∆t for the (a)Bf lav and (b)BCPK0
S

data samples, for for signal (mES> 5.27
GeV, black) and sideband (5.2 < mES < 5.27 GeV, blue) region events. The sideband statistics has been
normalized to the same number of signal events. The curves currespond to the fit to a Crystall Ball shape.

Although the vertex reconstruction algorithm minimizes biases due to the secondary charm decays and
V0’s in the tagging side, thezTAG position is on average biased towards positivezvalues, resulting in a negative
shift in ∆t. This effect is accounted in the resolution function by introducing a shift in the central value of the
core and tail Gaussians. Due to the differentB decay channels populating the different tagging categories, the
average bias is category dependent. It was found that introducing a different bias in each tagging category for
the core component but having a common tail bias provides theoptimal trade-off between systematic effects
and number of different parameters in the resolution [21].

The second parameterization, calledGExp, uses one Gaussian with variable width and zero bias plus the
same Gaussian convoluted with an exponential which effective lifetime is intended to describe the charm bias
[26]. Similarly to theGG model, the reconstructed∆t error is used to weight the events, and different effective
lifetimes and fractions of the exponential part are assumedfor each tagging category, in order to take into
account the differentB decay channels populating each tagging category. The outlier component in this model
is assumed the same as in theGGparameterization.

In summary, for an event with reconstructed(∆t,σ∆t), theGG resolution function for tagging categoryα
reads
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R (∆t −∆t ′,σ∆t ;~qα) = (1− ftail − foutlier)hG(∆t −∆t ′;δα
core,Scoreσ∆t)+

ftail hG(∆t −∆t ′;δtail ,Stail σ∆t)+

foutlierhG(∆t −∆t ′, ;δoutlier,σoutlier) (124)

where

hG(t;δ,σ) =
1√
2πσ

exp(−(t −δ)2/(2σ2)) . (125)

The equivalentGExpresolution function for tagging categoryα reads

R (∆t −∆t ′,σ∆t ;~qα) = (1− f α
Exp− foutlier)hG(∆t −∆t ′;δ = 0,Sσ∆t)+

f α
Exp

1
2σ∆tτα

r

[

exp

(

S2

2(τα
r )2 +

∆t −∆t ′

σ∆tτα
r

)

er f c

(

S√
2τα

r

+
∆t −∆t ′√

2Sσ∆t

)]

+

foutlierhG(∆t −∆t ′, ;δoutlier,σoutlier) (126)

The complete signal resolution function for all tagging categories is therefore represented by 11 parameters
in theGGmodel,

~q =
{

Score,δleptons
core ,δkaons

core ,δNT1
core,δ

NT2
core, ftail ,δtail ,Stail , foutlier,δoutlier,σoutlier

}

(127)

and 12 in theGExpparameterization,

~q =
{

S,τleptons
r ,τkaons

r ,τNT1
r ,τNT2

r , f leptons
Exp , f kaons

Exp , f NT1
Exp , f NT2

Exp , foutlier,δoutlier,σoutlier

}

. (128)

σoutlier andδoutlier are fixed, respectively, to 8 and 0 ps.

In the GG model all offsetsδα
core andδtail are modeled to be proportional to the reconstructed errorσ∆t ,

since it was found that events with highσ∆t tend to have high∆t residual [31]. Figure 12, extracted from [21],
shows the dependence of the mean (and RMS) of the Monte Carlo∆t residual in bins of the reconstructedσ∆t .
It can be seen that the linear scaling is a good approximationfor σ∆t < 1.4 ps. Above this value the observed
dependence diverges from the linear model, although the statistics there is small. TheGExpmodel accounts
implicitely for this observed correlation [31].

The reconstructed event-by-event∆t error (σ∆t) is used to weight the events in the fitting procedure [11].
It is therefore important to make sure that there are no significant correlations among this variable and the
variables parameterizing the tagging performance,wα (average mistag) and∆wα (B0B0 mistag difference), and
if there are, then model them properly. As shown in figure 13(top), there is an almost perfect linear correlation
between the mean wrong tag fraction,wα, and the∆t error, especially for theKaon tagging category, being
much weaker or negligible for the other categories. We then model the wrong tag fraction according to the
following model:

wα = wα
0 +wα

slopeσ∆t . (129)

As it can be seen in figure 13(top), for kaons this linear modelapplies better forσ∆t < 1.4 ps. Detailed studies to
explain the mechanism of this observed correlation can be found in [30]. The difference of the mistag fractions
for B0 and B0, ∆wα, is well constant over the fullσ∆t range, for all tagging categories, as shown in figure
13(bottom).
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Figure 12: Mean and width of the MC∆t residual in bins of the per-event errorσ∆t . Fits are shown to a line
constrained to pass through the origin forσ∆t < 1.4 andσ∆t < 2.4 ps.

5 Blinding

Tables 8 summarizes the blinding strings, as well as the central values and RMS of the blinding for each
parameter and fit configuration.∆m andτB (whenτB is free) were unblided between version 2.0 and version
3.0 of this note. Common blinding strings for Analysis 1 and Analysis 2, as well as forBCP, BCPK0

S
only and

BCPK0
L

only fits, are used. The time distributions and asymmetries are hidden.

Parameter Central value RMS Blinding String
∆Γ/Γ 0.00 0.50 Here we blind the width difference
| q/p | 1.00 0.04 Here we blind absqoverp
ImλCP
|λCP| 0.60 0.20 Here we blind imagLambda

ReλCP
|λCP| Rez 0.00 0.50 Here we blind realZ

Imz 0.00 0.50 Here we blind imagZ

Table 8: Central values, RMS and strings of the blinding strategy.
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Figure 13: (Top) Mistag fraction from Monte Carlo in bins of per-event errorσ∆t , for each tagging category.
(Bottom) B0B0 mistag fraction differences from Monte Carlo in bins of per-event errorσ∆t , for each tagging
category. The straight lines are the result of a simple binned fit to the points (with slope and origin free).
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6 Description of the nominal fit

The complete log-likelihood function used in this analysiswas described in detail in section 2. The assump-
tions made in the nominal fit are the following:

• Two configurations (Analyses):

Analysis 1: fit for ∆Γ/Γ×sign(ReλCP
|λCP| ), ∆m, | q/p | and ImλCP

|λCP| (4 parameters); Thus this analysis assumes
CPT conservation.

Analysis 2: fit for ∆Γ/Γ ×sign(ReλCP
|λCP| ), ∆m, | q/p |, ImλCP

|λCP| , RezReλCP
|λCP| and Imz (6 parameters).

τ will be kept as fixed parameter. Although all the parameters (exceptτ) are left free in the nominal fit (as
required in order to have a theoretically consistent scenario), only measurements of∆Γ/Γ×sign(ReλCP

|λCP| ),

RezReλCP
|λCP| , Imz and| q/p | will be provided.∆m and ImλCP

|λCP| will be used as cross-checks. Fits withτ free

will also be performed as cross-check.ReλCP
|λCP| is extracted asReλCP

|λCP| = +

√

1−
(

ImλCP
|λCP|

)2
, so it is constrained

to be within the physical region, i.e. 1−
(

ImλCP
|λCP|

)2
≥ 0;

• assume that the mechanisms contributing to the decay of CP eigenstates have the same weak phase for
η fCP = −1 andη fCP = +1 modes;

• assume a single effective channel in the tagging and flavor eigenstateB sides and fit for the imaginary

parts of the corresponding doubly-CKM-suppressed phases:Imλtag

|λtag| , Imλ̄tag

|λ̄tag|
, Imλ f lav

|λ f lav| , Imλ̄ f lav

|λ̄ f lav|
(4 parameters).

The real parts are all fixed to zero. The ratios of the decay amplitudes of DCKM to favored processes,
rtag andr f lav are also fixed to the value discussed in section 7.1.4. The corresponding ratios forB0, r̄tag

and ¯r f lav, are assumed to be the same as forB0;

• a total of 9(11) parameters are used to describe the signal resolution function with theGG(GExp) model:

GG: scale factors of the core and tails components,Score andStail ; tagging category dependent core bias,
δα

core; common tail bias,δtail ; fraction of tail and outlier Gaussians,ftail and foutlier; the width and
bias of the outlier Gaussian were fixed to 8 ps and 0 respectively. This is the model used for the
central value;

GExp: scale factor of the Gaussian,S, tagging category dependent effective lifetime (τα
r ) and exponential

component fraction (f α
Exp); the width and bias of the outlier Gaussian were fixed to 8 ps and 0

respectively. This model is used as cross-check and to estimate a systematic uncertainty due to the
resolution model parameterization;

• a total of 12 parameters are used to describe the signal mistags: for each tagging category, the average
mistag fraction (origin,wα

0 , and slopewα
slope) and theB0B0 differences,∆wα ;

• 3 background components are assumed for theBf lav sample (16 parameters):

– a prompt (zero lifetime) and non-prompt (non-vanishing andfree lifetime -1 parameter-) compo-
nents, with their own effective wrong tag fraction (wα

slopeand∆wα fixed to zero) (8 parameters) and
a common resolution function, described as a common single Gaussian distribution with a scale
factor Sbackg and a biasδbackg (GG model) or a common single unbiassed Gaussian with a scale
factorSbackgplus the same Gaussian convoluted with an exponential function with effective lifetime
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τr,backg (GExpmodel), and an outlier fractionfbackg,outlier (3 parameters); the width of the outlier
component is taken to be fixed at 8 ps with zero bias; the relative f α

prompt,Bf lav
fraction of prompt

background for each tagging category are also considered asfree parameters (4 parameters);

– a peaking contribution, which resolution function is the same as that of the signal, withB+ fixed
lifetime to the PDG2000 value (1.653±0.028) [22]; the peaking background fraction is fixed;

– no oscillatory/CPT/CP/T structure is assumed for the non-prompt combinatorial background com-
ponent. Checks will be performed to evaluate possible systematic uncertainties;

• 3 background components are assumed for theBCPK0
S

sample (2 parameters):

– prompt, non-prompt and peaking background, where the peaking background fraction is also fixed,
and a common (averaged over tagging categories) prompt fraction is assumed (1 parameter). The
wrong tag fraction parameters, lifetime and resolution function of the peaking background compo-
nent is assumed to be the same as those of the signal. The lifetime of the non-prompt background is
left free (1 parameter) and assumed the same for all tagging categories. No CPT/T/CP/oscillation
structure in the background is assumed. Finally, the resolution function parameters of the prompt
and non-prompt components are assumed the same as those of the prompt and non-prompt back-
ground components of theBf lav sample;

• the background treatment in theBCPK0
L

sample is performed as outlined in section 2 and described in
detail in [18], with only one difference. While in [18] the resolution function parameters of the non-J/ψ
background are extracted from an external fit to theJ/ψ dilepton mass sideband, here we assume them
to be same as for the prompt and non-prompt background components of theBf lav sample, similarly as
it is done for theBCPK0

S
sample. Only the fraction of prompt component and the lifetime of the non-

prompt one are fixed to the values extracted from the externalfit. As in [18], due to different background
composition, theBCPK0

L
sample is splitted according to theK0

L type (IFR and EMC) andJ/ψ channel
(e−e− andµ+µ−). See section 7.1.5 for more details;

• the signalB0B0 differences in reconstruction and tagging efficiencies,ν andµα , are extracted simultane-
ously together with the other parameters using the extendedlikelihood described in section 2. The method
uses signalBf lav events as extracted from standardmES fits. This method translates any systematics due
to detector charge asymmetries into an additional contribution to the statistical error. For the prompt and
non-prompt background components (for all samples,Bf lav, BCPK0

S
andBCPK0

L
), the values assumed for

ν andµα are those extracted from theBf lav sideband sample, 5.2 < mES< 5.27 GeV/c2. As for these
background components we assume∆m=0,∆Γ/Γ=0, | q/p |=1 andz= 0, the extended likelihood method
turns out to be equivalent to fixν andµα to the values extracted previously to the fit;

• assume direct CP conservation, for bothBf lav andBCP samples;

• the parameters of the signal probablity obtained from themES fits are taken as fixed (Bf lav andBCPK0
S

samples).

The total number of parameters is therefore:

Analysis 1: 57 withGGmodel, 59 withGExp;

Analysis 2: 59 withGGmodel, 61 withGExp.
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In both cases, 10 parameters are those from theB counting entering in the extended likelihood term (those used
to extract the detector asymmetries).

Results in the{ε,δ} formalism will be also provided to first order in Reε andδ, using the relations given in
section 2.3.

7 Results

7.1 Fit inputs

7.1.1 Mistag fractions for chargedB’s

The mistag of chargedB mesons are extracted from a maximum likelihood fit to theB+ sample alone. The
decay modes,σ(mES), yield and purity are shown in table 9. The lifetime ofB+ mesons is left free. All the other
oscillation/CPT/T/CP and DCKM parameters were assumed to be zero (except| q/p |=1). The fitting strategy
is similar as same as for theBf lav sample (excluding theBCPK0

S
andBCPK0

L
samples). The peaking background

component due toB0 decays is assumed to be(2.0±1.5)% [26]. The mistags for the peaking background are
assumed the same as for the signal (no corrections are assumed here due to the known differences of mistags for
neutral and chargedB mesons since would propagate to our measurements at second or third order, as will be
shown in section 9.8). The charge asymmetries for signal andprompt and non-prompt background components
are fixed to the values extracted previously to the fit (tables10,11), using signal and sideband events.

σ mES mES Yield Purity
Mode (MeV) (%)

D
∗0π+ 2.94±0.06 5451±103 88

D
0π+ 2.54±0.03 14013±173 83

Table 9: Event yields, signal resolutions, and signal purities for theB+ decay modes, from 56 fb−1 of data
(Winter’02 data sample), before vertexing cuts. The errorson these quantities are the statistical errors from
the distribution. ThemES results, yields and purities were determined from a fit to a Gaussian plus Argus
background in a 3σ ∆E window (the purity was estimated for the regionmES> 5.27 GeV/c2).

Sample να

B+ signal 0.013±0.011
B+ sideband 0.010±0.012

Table 10: Measuredνα values (B0B0 difference in reconstruction efficiency) from theB+ data sample. UP-
DATED.

Sample Lepton Kaon NT1 NT2
B+ signal −0.017±0.028 0.015±0.013 0.037±0.038 0.018±0.028

B+ sideband 0.081±0.091 −0.008±0.016 0.023±0.051 0.019±0.027

Table 11: Measuredµα values (B0B0 difference in tagging efficiency) from theB+ data sample. UPDATED.
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The results of the fit with theGG andGExpresolution models are shown in tables 12 and 13, respectively.
The lifetime is unblinded. Figure 14 shows the normalized residuals (defined as the difference between the data
and the fit projection onto the∆t axis divided by the error), separately for each tagging category and forB− and
B+ events.
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Figure 14: Normalized residuals of the∆t projections of the nominal fit to the chargedB data for (a)B− and (b)
B+ events, for the different tagging categories (GG model).

7.1.2 mES fit results

An event-by-event signal probability,pα
sig(mES), for theBf lav andBCPK0

S
samples is estimated from unbinned

maximum likelihood fits to themES spectra, assuming a Gaussian plus an Argus background shape, in a 3σ
∆E window. ThemES fits are performed separately for each tagging category, forboth, theBf lav andBCPK0

S
samples. The results of these fits are shown in figures 15 and 16, for theBf lav andBCPK0

S
samples, respectively.

The parameters describing the signal probability obtainedfrom these fits are fixed in the final likelihood fit.

7.1.3 Peaking background forBf lav and BCPK0
S

samples

The amount of chargedB background that peaks in themES Bf lav distribution was estimated by using
generic Monte Carlo. In addition, a cocktail Monte Carlo sample of chargedB’s containing the main sources
of the background in the generic Monte Carlo was also generated and used [21]. The signal events from all
reconstructed modes are removed from the Monte Carlo and a fitis performed to the remaining distribution
including a Gaussian term plus an Argus background. Thef α

peak fraction was finally estimated to be(1.5±
0.6)% [21]. In the case of theBCPK0

S
sample, the inclusiveJ/ψ Monte Carlo was used [8], and the amount
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Figure 15:mES fits to each tagging category for theBf lav sample, after vertex cuts.

of peaking background was estimated similarly, but now for each channel separately. Only tagged events are
considered. The averagedf α

peakvalue was found(1.5±1.0)% [8].

7.1.4 Doubly-CKM-Suppressed decays

The expected relative amplitude of DCKM to favored decays,rk and ¯rk (k = tag, f lav), was fixed to 0.02,
as our best estimate assuming that the amplitudes are dominated by the Standard Modelb → c and b → u
transitions,|V∗

ubVcd || V∗
cbVud |, for the favored and suppressed decays, respectively (figure 1), using the CKM

matrix elements values from [23]. We assumed the same value for tagging and reconstructedB sides. In the
case of theLepton tagging category, largely dominated by semileptonic decays (more than 95%) the value of
of rtag and ¯rtag were assumed to be 0 instead.
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Figure 16:mES fits to each tagging category for theBCPK0
S

sample, after vertex cuts.

7.1.5 B0 → J/ψK0
L background parameters

Fit inputs to theBCPK0
L

sample are basically the same as those in [18]. More than 90% of the events that

pass theK0
L selection cuts contain a realJ/ψ [18]. Table 14 lists the signal and total inclusiveJ/ψ fractions,

broken down by the top seven decay modes of theJ/ψ , and theK0
L reconstruction type, for events that pass the

selection cuts, in a window| ∆E |< 10 MeV. The effectiveηCP is also shown.

Events from theJ/ψ dilepton invariant mass sideband are used to determine the properties of the non-J/ψ
background. From a comparison of the flavor tagging efficiency in the data sideband with those of theBf lav data
it is found that the lepton category tagging efficiency in thedata sideband does not agree very well with those
of theBf lav data (and inclusiveJ/ψ Monte Carlo). This is consequence of the loosening of the PIDrequirement
on the muons in theJ/ψ → µµ selection [18]. A a result of this difference, the sample composition has been
splitted by flavor tag, allowing for the lepton-tagged events to be treated separately from other tagged events.
The fractions for the three non-lepton tag categories are therefore the same.

A binned likelihood fit to the∆E spectrum in the data is used to determine the relative amounts of signal,
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inclusiveJ/ψ background and non-J/ψ background. In these fits, the signal and inclusive-J/ψ distributions are
obtained from inclusiveJ/ψ Monte Carlo, while the non-J/ψ distribution is obtained from theJ/ψ dilepton mass
sideband. The fit is performed separately for eachK0

L reconstruction type (EMC and IFR), due to differences
in purity and background composition. Due to the lowered PIDrequirements in theJ/ψ → µµ selection, the
sample is further splitted into lepton type. TheJ/ψ → eeand J/ψ → µµ fits are performed simultaneously
by constraining the ratio ofJ/ψK0

L events to inclusiveJ/ψ events inJ/ψ → eeandJ/ψ → µµ to be within the
precision of the Monte Carlo. The different inclusiveJ/ψ backgrounds from Monte Carlo are then renormalized
to theJ/ψ background fraction extracted from the data. The fractionsare adjusted for lepton-tagged and non-
lepton tagged events in order to adecuate for the observed differences in flavor tagging efficiencies in the
J/ψ sideband events relative to theBf lav and inclusiveJ/ψ Monte Carlo (see [18] for details). The sample
omposition fractions finally obtained with the procedure inthe data are given in table 15.

The variable∆E is used on an event-by-event basis to discriminate between signal and background. As the
J/ψ lepton type is not expected to influence the∆E shape, the PDFs were used without regard to lepton type.
The ∆E PDFs where used separately for EMC and IFRK0

L type, and they were grouped forJ/ψK0
L (signal),

J/ψK0
S background,J/ψ X background (excludingJ/ψK0

S ) and non-J/ψ . The∆E PDF’s are taken from the fits
contained in the hbook file:

/nfs/farm/babar/AWG/sin2b/data run2 winter02/Charmonium/klong-input/de-pdfs-winter-2002-v1.hbook.

According to the studies reported in [18], the different decay modes contributing to theJ/ψK0
L mode are

statistically consistent with having the same mistag fractions as in theBf lav sample. In this analysis, the resolu-
tion function of the signal and inclusive-J/ψ background was assumed to be same as for theBf lav sample. The
resolution function for the non-J/ψ component (combinatoric in nature) was assumed the same as the prompt
and non-prompt background components of theBf lav andBCPK0

S
samples. As the relative fraction of prompt to

non-prompt component and the effective lifetime of the non-prompt in the non-J/ψ background are not nec-
essarily the same as in theBf lav andBCPK0

S
samples, an external fit to theJ/ψ dileptopn mass sideband was

performed, and then were fixed in the nominal fit. The externalfit used aGG resolution model, and the mistag
fraction was assume to be 0.5, and the scale of the tail Guassian,Stail , was fixed to 3.0. The results are reported
in table 16. The fixed prompt fraction and effective lifetimewere finally, respectively, 0.59±0.12 and 1.7±0.3.

7.1.6 Direct CP violation

The nominal fit includes in the PDF (via the parametersνα andµα) any possible violation of CP in the decay
of tagging and flavor states. In the case of CP eigenstates we assume CP conservation in the decay (rCP,CP=1).
A systematic error will be assigned due to this source by varying rCP,CP by ±10%.
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Parameter B+ fit results (GGmodel)

τ 1.632±0.033
Score 1.246±0.075

δlepton
core −0.252±0.086
δkaon

core −0.261±0.047
δNT1

core −0.25±0.11
δNT2

core −0.253±0.078
ftail (0.8±1.8) ·10−2

Stail 7.0±4.4
δtail −0.4±4.1

foutlier (0.2±1.6) ·10−3

wlepton
0 (4.8±1.4) ·10−2

wkaon
0 (3.9±1.3) ·10−2

wNT1
0 (9.4±3.1) ·10−2

wNT2
0 0.318±0.030

wlepton
slope (−1.1±2.5) ·10−2

wkaon
slope 0.139±0.022

wNT1
slope 0.170±0.057

wNT2
slope (5.0±4.7) ·10−2

∆wlepton (5.8±9.3) ·10−3

∆wkaon (1.2±8.4) ·10−3

∆wNT1 (2.7±2.3) ·10−2

∆wNT2 (−1.8±2.1) ·10−2

Parameter B+ fit results (GG model)

f lepton
prompt,Bf lav

0.241±0.081

f kaon
prompt,Bf lav

0.680±0.024

f NT1
prompt,Bf lav

0.725±0.036

f NT2
prompt,Bf lav

0.753±0.026

Sback 1.400±0.024
δback (−4.0±1.9) ·10−2

fback,outlier (1.09±0.23) ·10−2

wlepton
0,prompt 0.26±0.12

wkaon
0,prompt 0.1636±0.0097

wNT1
0,prompt 0.281±0.028

wNT2
0,prompt 0.399±0.016

wlepton
0,non−prompt 0.128±0.038

wkaon
0,non−prompt 0.231±0.019

wNT1
0,non−prompt 0.430±0.062

wNT2
0,non−prompt 0.392±0.042
τnon−prompt 1.361±0.068

Table 12: Fit results forB+ data (GG resolution model). The lifetime is unblinded.
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Parameter B+ fit results (GExpmodel)

τ 1.634±0.021
S 1.167±0.084

τlepton
r 0.248±0.084
τkaon

r 0.67±0.36
τNT1

r 0.70±0.55
τNT2

r 5.0000∗±0.0073
f lepton
Exp 1.00000∗±0.00094
f kaon
Exp 0.41±0.22
f NT1
Exp 0.37±0.30

f NT2
Exp (4.6±1.5) ·10−2

foutlier (0.0∗±5.2) ·10−5

wlepton
0 (4.8±1.4) ·10−2

wkaon
0 (3.9±1.3) ·10−2

wNT1
0 (9.4±3.1) ·10−2

wNT2
0 0.318±0.029

wlepton
slope (−1.1±2.5) ·10−2

wkaon
slope 0.139±0.022

wNT1
slope 0.171±0.055

wNT2
slope (5.0±4.6) ·10−2

∆wlepton (5.8±9.3) ·10−3

∆wkaon (1.3±8.4) ·10−3

∆wNT1 (2.7±2.3) ·10−2

∆wNT2 (−1.8±2.1) ·10−2

Parameter B+ fit results (GExpmodel)

f lepton
prompt,Bf lav

0.245±0.079

f kaon
prompt,Bf lav

0.680±0.024

f NT1
prompt,Bf lav

0.726±0.036

f NT2
prompt,Bf lav

0.753±0.026

Sback 1.400±0.024
τr,back −1.4±4.8

fback,outlier (1.06±0.23) ·10−2

wlepton
0,prompt 0.26±0.11

wkaon
0,prompt 0.1635±0.0097

wNT1
0,prompt 0.281±0.027

wNT2
0,prompt 0.399±0.016

wlepton
0,non−prompt 0.128±0.038

wkaon
0,non−prompt 0.231±0.019

wNT1
0,non−prompt 0.430±0.062

wNT2
0,non−prompt 0.392±0.041
τnon−prompt 1.365±0.068

Table 13: Fit results forB+ data (GExpresolution model).∗ at limit. The lifetime is unblinded.

KL type EMC IFR ηCP

J/ψKL 0.622 0.732 +1
J/ψK∗0 0.077 0.064 -0.68
J/ψK∗+ 0.109 0.114 0
J/ψKs 0.031 0.009 -1
J/ψKLπ0 0.004 0.002 0
J/ψKLπ+ 0.004 0.007 0
χcKL 0.011 0.015 +1
J/ψX other 0.142 0.150 0
non−J/ψ 0 0 0.21

Table 14: Sample composition fractions forJ/ψKL inclusive charmonium Monte Carlo.
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KL type EMC IFR
Tag type Lepton non-Lepton Lepton non-Lepton
J/ψ mode ee µµ ee µµ ee µµ ee µµ

J/ψKL 0.5701 0.5294 0.5367 0.4747 0.6988 0.6679 0.6788 0.6336
J/ψK∗0 0.0824 0.0847 0.0776 0.0760 0.0661 0.0701 0.0642 0.0665
J/ψK∗+ 0.1141 0.1174 0.1075 0.1052 0.1216 0.1290 0.1182 0.1224
J/ψKs 0.0335 0.0345 0.0315 0.0309 0.0085 0.0090 0.0083 0.0086
J/ψKLπ0 0.0035 0.0036 0.0033 0.0032 0.0025 0.0027 0.0024 0.0025
J/ψKLπ+ 0.0031 0.0032 0.0030 0.0029 0.0080 0.0085 0.0078 0.0081
χcKL 0.0122 0.0126 0.0115 0.0113 0.0165 0.0175 0.0160 0.0166
J/ψX other 0.1466 0.1507 0.1380 0.1352 0.0616 0.0653 0.0598 0.0619
non-J/ψ 0.0345 0.0640 0.0909 0.1607 0.0164 0.0301 0.0445 0.0799

Table 15: Sample composition fractions forJ/ψKL data.

Parameter Fit result
Score 1.45±0.15
δcore 0.04±0.15
ftail 0.03±0.11
Stail 3.0
δtail −2±6

foutlier 0.0000±0.0002
fprompt,B

CPK0
L

0.59±0.12

τnon−prompt,B
CPK0

L
1.7±0.3

Table 16: Results from the external unbinned likelihood fit of the J/ψ dilepton mass sideband data, used to
extract the fraction of prompt to non-prompt background andthe effective lifetime for the non-J/ψ J/ψK0

L

background component.
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7.2 Analysis 1 results

Tables 17 and 18 report the fitted parameters for Analysis 1, for the GG and GExp resolution models,
respectively (combined fit,Bf lav+BCPK0

S
+BCPK0

L
). Tables 19 and 20 give the correlations among the 4 physics

parameters, again forGGandGExp.

Parameter B0 fit results (GGmodel)

∆m 0.5220±0.0098
∆Γ/Γ (−0.8±4.9) ·10−2

| q/p | 0.946±0.018
ImλCP
|λCP| 0.612±0.085

Score 1.240±0.058
δlepton

core (0.6±8.2) ·10−2

δkaon
core −0.303±0.058

δNT1
core −0.216±0.092

δNT2
core −0.264±0.075
ftail (3.9±1.8) ·10−2

Stail 4.4±1.6
δtail −2.7±1.3

foutlier (1.5±2.0) ·10−3

wlepton
0 (9.3±2.4) ·10−2

wkaon
0 (7.1±2.0) ·10−2

wNT1
0 0.183±0.043

wNT2
0 0.362±0.038

wlepton
slope (−3.4±4.3) ·10−2

wkaon
slope 0.166±0.033

wNT1
slope (4.3±7.3) ·10−2

wNT2
slope (1.3±5.6) ·10−2

∆wlepton (2.2±1.6) ·10−2

∆wkaon (−1.2±1.2) ·10−2

∆wNT1 (1.8±2.4) ·10−2

∆wNT2 (−3.4±1.9) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav
|λ f lav| 0.7±1.2
Imλ̄ f lav

|λ̄ f lav|
0.5±1.2

Imλtag
|λtag| 0.5±1.3
Imλ̄tag

|λ̄tag|
0.5±1.3

f lepton
prompt,Bf lav

0.383±0.067

f kaon
prompt,Bf lav

0.643±0.024

f NT1
prompt,Bf lav

0.615±0.038

f NT2
prompt,Bf lav

0.701±0.025

Sback 1.389±0.023
δback (−3.8±1.7) ·10−2

fback,outlier (1.18±0.21) ·10−2

wlepton
0,prompt 0.143±0.080

wkaon
0,prompt 0.250±0.011

wNT1
0,prompt 0.339±0.030

wNT2
0,prompt 0.449±0.015

wlepton
0,non−prompt 0.399±0.055

wkaon
0,non−prompt 0.387±0.020

wNT1
0,non−prompt 0.448±0.045

wNT2
0,non−prompt 0.460±0.032
τnon−prompt 1.319±0.056
fprompt,B

CPK0
S

0.632±0.070

τnon−prompt,B
CPK0

S
2.30±0.45

Table 17: Analysis 1 results,GG resolution model.

7.3 Analysis 2 results

Similarly, tables 21 and 22 report the fitted parameters fromAnalysis 2, for theGG andGExpresolution
models, respectively (combined fit,Bf lav+BCPK0

S
+BCPK0

L
). Tables 23 and 24 give the correlations among the 6

physics parameters, again forGGandGExp.

The normalized residuals, defined as the difference betweenthe data and the fit projection (nominal fit to all
samples together) onto the∆t axis divided by the error, for theBf lav, BCPK0

S
andBCPK0

L
samples and the different

tagging categories are shown in figures 17, 18 and 19. The timedistributions themselves are hidden.
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Figure 17: Normalized residuals of the∆t projections of the nominal fit (Analysis 2) for theBf lav sample: (a)
mixedB0 tagged, (b) mixedB0 tagged, (c) unmixedB0 tagged and (d) unmixedB0 tagged (GGmodel), for each
tagging category.
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Parameter B0 fit results (GExpmodel)

∆m 0.5195±0.0097
∆Γ/Γ (−0.3±5.3) ·10−2

| q/p | 0.946±0.018
ImλCP
|λCP| 0.614±0.085

S 1.138±0.052
τlepton

r 3.6±1.2
τkaon

r 1.30±0.23
τNT1

r 3.9±1.1
τNT2

r 1.68±0.39
f lepton
Exp (4.6±2.5) ·10−2

f kaon
Exp 0.291±0.059

f NT1
Exp (6.5±3.2) ·10−2

f NT2
Exp 0.219±0.063

foutlier (1.8±1.3) ·10−3

wlepton
0 (9.2±2.4) ·10−2

wkaon
0 (7.3±2.0) ·10−2

wNT1
0 0.182±0.043

wNT2
0 0.363±0.037

wlepton
slope (−2.8±4.3) ·10−2

wkaon
slope 0.165±0.033

wNT1
slope (4.0±7.2) ·10−2

wNT2
slope (1.1±5.6) ·10−2

∆wlepton (2.1±1.6) ·10−2

∆wkaon (−1.2±1.2) ·10−2

∆wNT1 (1.8±2.4) ·10−2

∆wNT2 (−3.4±1.9) ·10−2

Parameter B0 fit results (GExpmodel)
Imλ f lav
|λ f lav| 0.4±1.2
Imλ̄ f lav

|λ̄ f lav|
0.1±1.2

Imλtag
|λtag| 0.2±1.3
Imλ̄tag

|λ̄tag|
0.1±1.3

f lepton
prompt,Bf lav

0.379±0.071

f kaon
prompt,Bf lav

0.665±0.026

f NT1
prompt,Bf lav

0.632±0.040

f NT2
prompt,Bf lav

0.728±0.026

Sback 1.377±0.023
τr,back 2.42±0.41

fback,outlier (9.9±2.0) ·10−3

wlepton
0,prompt 0.142±0.084

wkaon
0,prompt 0.250±0.012

wNT1
0,prompt 0.340±0.030

wNT2
0,prompt 0.450±0.015

wlepton
0,non−prompt 0.397±0.056

wkaon
0,non−prompt 0.397±0.022

wNT1
0,non−prompt 0.454±0.049

wNT2
0,non−prompt 0.460±0.036
τnon−prompt 1.278±0.060
fprompt,B

CPK0
S

0.657±0.072

τnon−prompt,B
CPK0

S
2.31±0.49

Table 18: Analysis 1 results,GExpresolution model.

∆Γ/Γ | q/p | ImλCP
|λCP|

∆m −2.3% −1.1% −5.7%
∆Γ/Γ 9.4% −1.9%
| q/p | −0.9%

Table 19: Correlations among the 4 physics param-
eters, Analysis 1,GG resolution model.

∆Γ/Γ | q/p | ImλCP
|λCP|

∆m −2.1% −1.5% −6.1%
∆Γ/Γ 10.2% −0.7%
| q/p | −1.0%

Table 20: Correlations among the 4 physics param-
eters, Analysis 1,GExpresolution model.

7.4 Asymmetric (MINOS) errors

The statistical errors shown in all the previous tables are those obtained assuming that all the parameters
are Gaussian. Deviations from an ideal Gaussian behaviour are expected from toy Monte Carlo studies. It is
therefore important to provide the asymmetric error estimates (MINOS). They can be found in tables 26, for
the two analyses. The only significantly asymmetric error was found for RezReλCP

|λCP| .
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Parameter B0 fit results (GGmodel)

∆m 0.523±0.010
∆Γ/Γ (−2.1±4.8) ·10−2

| q/p | 0.945±0.018
ImλCP
|λCP| 0.620±0.083

ReλCP
|λCP| Rez (−6.4±4.6) ·10−2

Imz −0.918±0.034
Score 1.241±0.059

δlepton
core (0.4±8.4) ·10−2

δkaon
core −0.302±0.060

δNT1
core −0.215±0.093

δNT2
core −0.263±0.077
ftail (3.8±1.8) ·10−2

Stail 4.3±1.7
δtail −2.7±1.4

foutlier (1.5±2.0) ·10−3

wlepton
0 (9.3±2.4) ·10−2

wkaon
0 (7.1±2.0) ·10−2

wNT1
0 0.184±0.043

wNT2
0 0.362±0.037

wlepton
slope (−3.5±4.3) ·10−2

wkaon
slope 0.167±0.033

wNT1
slope (4.2±7.3) ·10−2

wNT2
slope (1.3±5.6) ·10−2

∆wlepton (2.1±1.6) ·10−2

∆wkaon (−1.3±1.2) ·10−2

∆wNT1 (1.7±2.4) ·10−2

∆wNT2 (−3.5±1.9) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav
|λ f lav| 1.7±1.4
Imλ̄ f lav

|λ̄ f lav|
−0.7±1.4

Imλtag
|λtag| 1.7±1.5
Imλ̄tag

|λ̄tag|
−0.8±1.6

f lepton
prompt,Bf lav

0.384±0.067

f kaon
prompt,Bf lav

0.643±0.024

f NT1
prompt,Bf lav

0.615±0.038

f NT2
prompt,Bf lav

0.701±0.025

Sback 1.389±0.023
δback (−3.8±1.7) ·10−2

fback,outlier (1.18±0.21) ·10−2

wlepton
0,prompt 0.143±0.080

wkaon
0,prompt 0.250±0.011

wNT1
0,prompt 0.339±0.030

wNT2
0,prompt 0.449±0.015

wlepton
0,non−prompt 0.399±0.055

wkaon
0,non−prompt 0.388±0.020

wNT1
0,non−prompt 0.448±0.045

wNT2
0,non−prompt 0.461±0.032
τnon−prompt 1.319±0.057
fprompt,B

CPK0
S

0.632±0.070

τnon−prompt,B
CPK0

S
2.30±0.45

Table 21: Analysis 2 results,GG resolution model.
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Parameter B0 fit results (GExpmodel)

∆m 0.521±0.010
∆Γ/Γ (−2.0±5.1) ·10−2

| q/p | 0.944±0.018
ImλCP
|λCP| 0.622±0.082

ReλCP
|λCP| Rez (−5.7±4.6) ·10−2

Imz −0.919±0.034
S 1.138±0.052

τlepton
r 3.6±1.2
τkaon

r 1.29±0.22
τNT1

r 3.9±1.1
τNT2

r 1.68±0.39
f lepton
Exp (4.6±2.5) ·10−2

f kaon
Exp 0.293±0.059

f NT1
Exp (6.4±3.2) ·10−2

f NT2
Exp 0.219±0.064

foutlier (1.8±1.3) ·10−3

wlepton
0 (9.2±2.4) ·10−2

wkaon
0 (7.3±2.0) ·10−2

wNT1
0 0.183±0.043

wNT2
0 0.363±0.037

wlepton
slope (−2.9±4.3) ·10−2

wkaon
slope 0.166±0.033

wNT1
slope (3.9±7.2) ·10−2

wNT2
slope (1.1±5.6) ·10−2

∆wlepton (2.0±1.6) ·10−2

∆wkaon (−1.2±1.2) ·10−2

∆wNT1 (1.8±2.4) ·10−2

∆wNT2 (−3.4±1.9) ·10−2

Parameter B0 fit results (GExpmodel)
Imλ f lav
|λ f lav| 1.4±1.4
Imλ̄ f lav

|λ̄ f lav|
−1.0±1.4

Imλtag
|λtag| 1.4±1.5
Imλ̄tag

|λ̄tag|
−1.1±1.5

f lepton
prompt,Bf lav

0.379±0.071

f kaon
prompt,Bf lav

0.665±0.026

f NT1
prompt,Bf lav

0.632±0.040

f NT2
prompt,Bf lav

0.728±0.026

Sback 1.378±0.023
τr,back 2.42±0.41

fback,outlier (9.9±2.0) ·10−3

wlepton
0,prompt 0.143±0.084

wkaon
0,prompt 0.250±0.012

wNT1
0,prompt 0.340±0.030

wNT2
0,prompt 0.450±0.015

wlepton
0,non−prompt 0.397±0.056

wkaon
0,non−prompt 0.397±0.022

wNT1
0,non−prompt 0.454±0.049

wNT2
0,non−prompt 0.460±0.036
τnon−prompt 1.278±0.060
fprompt,B

CPK0
S

0.657±0.072

τnon−prompt,B
CPK0

S
2.31±0.49

Table 22: Analysis 2 results,GExpresolution model.
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∆Γ/Γ | q/p | ImλCP
|λCP|

ReλCP
|λCP| Rez Imz

∆m −6.7% −2.1% −6.3% 23.9% −3.2%
∆Γ/Γ 9.8% −3.6% −20.4% −7.2%
| q/p | 0.3% −4.7% −1.2%
ImλCP
|λCP| −16.8% 14.3%

ReλCP
|λCP| Rez −3.4%

Table 23: Correlations among the 6 physics parameters, Analysis 2,GG resolution model.

∆Γ/Γ | q/p | ImλCP
|λCP|

ReλCP
|λCP| Rez Imz

∆m −6.9% −2.8% −6.0% 26.6% −2.1%
∆Γ/Γ 10.9% −4.3% −23.1% −9.8%
| q/p | 0.1% −5.2% −2.1%
ImλCP
|λCP| −16.5% 14.5%

ReλCP
|λCP| Rez −2.4%

Table 24: Correlations among the 6 physics parameters, Analysis 2,GExpresolution model.

∆Γ/Γ | q/p | ImλCP
|λCP|

ReλCP
|λCP| Rez Imz Imλ f lav

|λ f lav|
Imλ̄ f lav

|λ̄ f lav|
Imλtag

|λtag|
Imλ̄tag

|λ̄tag|
∆m −6.7% −2.1% −6.3% 23.9% −3.2% −3.6% 0.3% −2.1% 3.7%

∆Γ/Γ 9.8% −3.6% −20.4% −7.2% −0.0% −2.4% −0.3% −1.8%
| q/p | 0.3% −4.7% −1.2% 0.9% 0.5% 0.2% 1.3%
ImλCP
|λCP| −16.8% 14.3% 10.2% −4.7% 10.9% −3.5%

ReλCP
|λCP| Rez −3.4% −3.8% 1.3% −3.2% 2.0%

Imz 50.1% −53.2% 53.1% −55.5%
Imλ f lav

|λ f lav| 8.8% 74.3% 15.8%
Imλ̄ f lav

|λ̄ f lav|
15.0% 77.0%

Imλtag

|λtag| 24.5%

Table 25: Correlations among the physics parameters and DCSD phases, Analysis 2,GG resolution model.

7.5 B0B0 differences in reconstruction and tagging efficiencies

TheB0B0 asymmetries in reconstruction (να) and tagging (µα) efficiencies for signal and sideband events
obtained in the two analyses are shown in tables 27 and 28 (sideband values are independent of which analysis
we are running). The difference in the signal region values for the two analyses are so small that there are
no differences when rounding to the most significant digits.It can be seen that the detector asymmetries are
compatible within zero.
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Figure 18: Normalized residuals of the∆t projections of the nominal fit (Analysis 2) for theBCPK0
S

sample: (a)

B0 tagged, (b)B0 tagged (GGmodel), for each tagging category.

Parameter Analysis 1GG Analysis 2GG

∆m 0.5220+0.0098
−0.0098 0.523+0.017

−0.010

∆Γ/Γ −0.008+0.048
−0.049 −0.021+0.048

−0.047

| q/p | 0.946+0.018
−0.018 0.945+0.018

−0.018

ImλCP
|λCP| 0.612+0.085

−0.086 0.620+0.081
−0.084

ReλCP
|λCP| Rez — −0.064+0.074

−0.047

Imz — −0.918+0.034
−0.034

Table 26: Results with asymmetric errors from Analysis 1 and2 data fits,GGmodel.

7.6 Goodness-of-fit and expected errors

The estimation of the goodness-of-fit has been done using toyMonte Carlo. The toy Monte Carlo generator
used for this study was described in detail in reference [11]. The following effects where included in the
simulation:

• mES and∆E distributions for each sample and tagging category;
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Figure 19: Normalized residuals of the∆t projections of the nominal fit (Analysis 2) for theBCPK0
L

sample: (a)

B0 tagged, (b)B0 tagged (GGmodel), for each tagging category.

Sample Lepton nonLepton
B0 signal −0.009±0.010 −0.008±0.010

B0 sideband 0.005±0.010 0.005±0.010

Table 27: Measuredνα values (B0B0 difference in reconstruction efficiency) from theBf lav data sample, for
Analysis 1 and 2.

• for each sample, twoσ∆t distributions were genenerated using the Crystall Ball parameters extracted
from the data fits to signal and sideband events (section 4). For Bf lav andBCPK0

S
events, the signal region

distribution was used for signal and peaking background, while the sideband distribution was used for
combinatorial backgrounds (prompt and non-prompt). For signal and inclusiveJ/ψX background in
the BCPK0

L
sample the same distribution as for signalBCPK0

S
events was generated, while for non-J/ψ

backgrounds we used the parent distribution of theBCPK0
S

sideband events;

• ∆t distribution (truth+smeared) for signal and background components (prompt, non-prompt, peaking
and specific channels for theJ/ψK0

L mode), for each tagging category;

• mistag rates,B0B0 differences in reconstruction and tagging efficiencies andlinear correlation between
the average mistag fractions andσ∆t ;

The experiments use the same statistics and configuration asthe nominal fit. All the generated parameters were
tunned to those in the data. The generated values of the physics parameters obtained in the data fit are internally
unblinded by the generation code. Only converged fits are accepted.
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Sample Lepton Kaon NT1 NT2
B0 signal 0.050±0.045 −0.019±0.022 0.006±0.056 0.007±0.040

B0 sideband −0.010±0.076 −0.010±0.014 0.022±0.044 −0.019±0.023

Table 28: Measuredµα values (B0B0 difference in tagging efficiency) from theBf lav data sample, for Analysis
1 and 2.

x

Comparing the likelihood distribution coming from the experiments with the value obtained in the nominal
data fit (see figure 20), the goodness-of-fit of the data is evaluated to be 51% for Analysis 1 and 49% for
Analysis 2.

The errors on the physical parameters (Gaussians) coming from the toy Monte Carlo fits are compared with
the RMS of the residual distribution and the errors (Gaussians and asymmetric) extracted from the nominal
data fit (see figures 21, 22, 23 and 24). In the same figure are shown the residual distributions from the same
experiments. These figures deserve several remarks. First,Gaussian errors give a good estimate of the resolution
as extracted from the RMS of the residual distributions, within 10%. In addition, there is an overall good
agreement between the Gaussian and asymetric errors. Second, there is indication that the error from the data
sample tends to be slightly better than the prediction from the Monte Carlo, but still within the expected range.
This effect was extensively investigated a no problem was found, so we concluded that we were lucky with the
current data sample. Third, the biases from the residual distributions are in all cases very small compared with
the current statistical precision. The larger between the bias and its error will be assigned as systematic error
due to the fitting procedure (see section 9.13).

The correlation coefficients and the scatter distributionsamong all the CPT/T/CP/oscillation and DCKM
parameters coming from the toy Monte Carlo fits are also compared with the values extracted from the nominal
data fit in figures 25-28 and 30-34, respectively. In all casesthe data values fall into the expected range.

Figure 20: Likelihood distribution from toy Monte Carlo experiments (Analysis 1 and 2). The arrow shows the
value obtained from the nominal data fit. The number of experiments with likelihood value smaller and greater
than the data is quoted. The probability that the toy Monte Carlo experiments are less likely (larger negative
log-likelihood) than the data is evaluated to be 51% for analysis 1 and 49% for analysis 2.
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Figure 21: The residual and Gaussian error distributions for the oscillation/CPT/T/CP parameters coming from
the Analysis 1 of toy Monte Carlo experiments. In the error distribution indicated are the RMS of the resid-
ual distribution (red arrow) and the values of the Gaussian error (blue arrow) and quadratic average of the
asymmetric errors (green arrow) extracted from the data fit.
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Figure 22: The residual and Gaussian error distributions for the oscillation/CPT/T/CP parameters coming from
the Analysis 2 of toy Monte Carlo experiments. In the error distribution indicated are the RMS of the resid-
ual distribution (red arrow) and the values of the Gaussian error (blue arrow) and quadratic average of the
asymmetric errors (green arrow) extracted from the data fit.
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Figure 23: The residual and Gaussian error distributions for the DCKM free parameters coming from the
Analysis 1 of toy Monte Carlo experiments. In the error distribution indicated are the RMS of the residual
distribution (red arrow) and the value of the Gaussian error(blue arrow).
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Figure 24: The residual and Gaussian error distributions for the DCKM free parameters coming from the
Analysis 2 of toy Monte Carlo experiments. In the error distribution indicated are the RMS of the residual
distribution (red arrow) and the value of the Gaussian error(blue arrow).
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Figure 25: Distribution of the correlation coefficients among the physical and DCKM parameters coming from
the Analysis 1 of toy Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow)
are indicated.
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Figure 26: Distribution of the correlation coefficients among the physical and DCKM parameters coming from
the Analysis 1 of toy Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow)
are indicated (con’t).

67



Figure 27: Distribution of the correlation coefficients among the physical and DCKM parameters coming from
the Analysis 2 of toy Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow)
are indicated.
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Figure 28: Distribution of the correlation coefficients among the physical and DCKM parameters coming from
the Analysis 2 of toy Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow)
are indicated (con’t).
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Figure 29: Distribution of the correlation coefficients among the physical and DCKM parameters coming from
the Analysis 2 of toy Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow)
are indicated (con’t).
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Figure 30: Scatter distributions among the physical and DCKM parameters coming from the Analysis 1 of toy
Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow) are indicated.
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Figure 31: Scatter distributions among the physical and DCKM parameters coming from the Analysis 1 of toy
Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow) are indicated (con’t).
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Figure 32: Scatter distributions among the physical and DCKM parameters coming from the Analysis 2 of toy
Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow) are indicated.
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Figure 33: Scatter distributions among the physical and DCKM parameters coming from the Analysis 2 of toy
Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow) are indicated (con’t).
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Figure 34: Scatter distributions among the physical and DCKM parameters coming from the Analysis 2 of toy
Monte Carlo experiments. The values corresponding to the nominal data fit (red arrow) are indicated (con’t).
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7.7 Unblind results

Here we will include the results after unblinding (tables, time distributions and asymmetries).

8 Cross-checks

We have performed several checks, on both data and Monte Carlo, of the consistency of the measurements.
They are reported in the following subsections.

8.1 AverageB0 lifetime results

In the nominal fit the averageB0 lifetime is fixed to the PDG2000 [22] value,τB = 1.548±0.034. The fit on
data was redone but now fitting also forτB. The results for Analysis 1 and Analysis 2, compared to the nominal
fits, are shown in tables 29 and 30, for theGG resolution model. The corresponding results for theGExp model
are in tables 31 and 32.τB is unblinded.

Parameter Nominal fit τB free

τ — 1.515±0.022
∆m 0.5220±0.0098 0.528±0.011

∆Γ/Γ (−0.8±4.9) ·10−2 (−0.4±5.5) ·10−2

| q/p | 0.946±0.018 0.946±0.018
ImλCP
|λCP| 0.612±0.085 0.619±0.086

Table 29: Analysis 1 results with theB0 lifetime free. For comparison, nominal fit results are reported as well.
GG resolution model.

Parameter Nominal fit τB free

τ — 1.517±0.022
∆m 0.523±0.010 0.528±0.011

∆Γ/Γ (−2.1±4.8) ·10−2 (−1.7±5.4) ·10−2

| q/p | 0.945±0.018 0.945±0.018
ImλCP
|λCP| 0.620±0.083 0.626±0.083

ReλCP
|λCP| Rez (−6.4±4.6) ·10−2 (−7.3±4.4) ·10−2

Imz −0.918±0.034 −0.917±0.035

Table 30: Analysis 2 results with theB0 lifetime free. For comparison, nominal fit results are reported as well.
GGmodel resolution model.

8.2 BCPK0
S

and BCPK0
L

separately

We performed the nominal fit separately for theBCPK0
S

andBCPK0
L

samples only. Results are summarized in
tables 33 and 34, and they are compared to the nominal fits, forAnalysis 1 and 2 respectively.
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Parameter Nominal fit τB free

τ — 1.528±0.020
∆m 0.5195±0.0097 0.523±0.010

∆Γ/Γ (−0.3±5.3) ·10−2 (0.2±5.8) ·10−2

| q/p | 0.946±0.018 0.946±0.018
ImλCP
|λCP| 0.614±0.085 0.618±0.085

Table 31: Analysis 1 results with theB0 lifetime free. For comparison, the fits with the lifetime fixed are
reported as well.GExpresolution model.

Parameter Nominal fit τB free

τ — 1.530±0.020
∆m 0.521±0.010 0.524±0.011

∆Γ/Γ (−2.0±5.1) ·10−2 (−1.7±5.6) ·10−2

| q/p | 0.944±0.018 0.945±0.018
ImλCP
|λCP| 0.622±0.082 0.626±0.082

ReλCP
|λCP| Rez (−5.7±4.6) ·10−2 (−6.3±4.6) ·10−2

Imz −0.919±0.034 −0.919±0.034

Table 32: Analysis 2 results with theB0 lifetime free. For comparison, the fits with the lifetime fixed are
reported as well.GExpresolution model.

Parameter all CP (nominal) BCPK0
S
sample BCPK0

L
sample

∆m 0.5220±0.0098 0.5219±0.0098 0.5238±0.0098
∆Γ/Γ (−0.8±4.9) ·10−2 (−0.7±5.3) ·10−2 (−2.1±7.4) ·10−2

| q/p | 0.946±0.018 0.949±0.018 0.946±0.019
ImλCP
|λCP| 0.612±0.085 0.615±0.096 0.59±0.19

Table 33: Comparison of analysis 1 nominal fit, with the full CP,BCPK0
S

andBCPK0
L

samples. The blinding string
of the results is the same for all the columns.

Parameter all CP (nominal) BCPK0
S
sample BCPK0

L
sample

∆m 0.523±0.010 0.5220±0.0100 0.524±0.010
∆Γ/Γ (−2.1±4.8) ·10−2 (−1.8±5.5) ·10−2 (−3.0±6.9) ·10−2

| q/p | 0.945±0.018 0.948±0.018 0.946±0.019
ImλCP
|λCP| 0.620±0.083 0.645±0.091 0.51±0.20

ReλCP
|λCP| Rez (−6.4±4.6) ·10−2 (−8.6±4.9) ·10−2 (−6.8±6.8) ·10−2

Imz −0.918±0.034 −0.910±0.035 −0.912±0.036

Table 34: Comparison of analysis 2 nominal fit, with the full CP,BCPK0
S

andBCPK0
L

samples. The blinding string
of the results is the same for all the columns.

Analysis 1 fits with∆Γ/Γ and| q/p | fixed to 0 and 1 (sin2β only fits), respectively, were also performed,
for all BCP modes together as well as forBCPK0

S
andBCPK0

L
separately. The results can be found in table 35. The
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∆mand ImλCP
|λCP| results should be compared to those of table 33. Let us remarkthat the fact that the blinding is in

this case the same as for the Analysis 1 and 2 fits but this does not unblind the actual fitted values of the other
parameters since the correlation among these parameters issmall.

Parameter sin2β full CP sample sin2β BCPK0
S

sample sin2β BCPK0
L

sample

∆m 0.5220±0.0098 0.5219±0.0098 0.5238±0.0098
ImλCP
|λCP| 0.613±0.085 0.616±0.096 0.59±0.19

Table 35: Comparison of sin2β only fits (analysis 1 with∆Γ/Γ and| q/p | fixed to 0 and 1), using the full CP,
BCPK0

S
andBCPK0

L
samples.ImλCP

|λCP| results are here blinded.

8.3 B0B0 shape only fit

The normalization of the PDF (section 2) is performed for allmixed/unmixed/B0/B0 events together, but
separately for theBf lav, BCPK0

S
andBCPK0

L
samples. As a cross-check, the fit was also performed normalizing

separately forB0 andB0 events. Taking out this constraint implies to perform a fit totheB0B0 ∆t shape only
fit, being therefore insensitive to the total number ofB0, B0 events. The results are reported in table 36, for
Analysis 1 and Analysis 2 respectively (to be compared with tables 17 and 21). Let us note the larger statistical
error on RezReλCP

|λCP| and| q/p |. The results are compatible within the statistical differences.

8.4 Results per tagging category

The fit has also been performed for each tagging category separately. In these fits the resolution function
and mistags are extracted as in the nominal fit but now the physics parameters are allowed to be different for
each tagging category. However, allowing 6 independent physics parameters for each category increase very
significantly the total number of parameters, reducing the robustness and stability of the fit. To overcome this
problem,∆m and ImλCP

|λCP| were fitted for all tagging categories together (as in the nominal fit), and only∆Γ/Γ,
| q/p |, Rezand Imzwere allowed to float for each category. The results from thischeck are shown in table 37,
for Analysis 1 and Analysis 2 respectively. In the case of Analysis 2 they are also shown separately forBCPK0

S
andBCPK0

L
. The results are in all cases compatible within statistics.

Parameter Analysis 1 Analysis 2

∆m 0.5220±0.0098 0.5215±0.0098
∆Γ/Γ (−0.8±4.9) ·10−2 (−0.9±5.1) ·10−2

| q/p | 0.938±0.024 0.938±0.024
ImλCP
|λCP| 0.610±0.085 0.626±0.083

ReλCP
|λCP| Rez — −0.110±0.054

Imz — −0.916±0.034

Table 36: Only shape fits. See text for explanation. These results must be compared to those of tables 17 and
21.
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Parameter Analysis 1 Analysis 2 all CP Analysis 2BCPK0
S

sample Analysis 2BCPK0
L

sample

∆m 0.5208±0.0098 0.522±0.010 0.5213±0.0100 0.524±0.010
∆Γ/Γ(Lepton) 0.163±0.079 0.154±0.082 0.140±0.091 0.14±0.11
∆Γ/Γ(Kaon) (−0.6±7.0) ·10−2 (−2.8±7.4) ·10−2 (−4.2±9.0) ·10−2 −0.00±0.12
∆Γ/Γ(NT1) −0.15±0.10 −0.14±0.11 −0.10±0.12 −0.07±0.16
∆Γ/Γ(NT2) −0.07±0.10 (−7.2±9.9) ·10−2 −0.05±0.12 −0.11±0.12

| q/p | (Lepton) 0.969±0.029 0.971±0.029 0.974±0.030 0.969±0.030
| q/p | (Kaon) 0.956±0.022 0.953±0.021 0.956±0.022 0.956±0.022
| q/p | (NT1) 0.920±0.040 0.920±0.040 0.924±0.040 0.920±0.040
| q/p | (NT2) 0.920±0.033 0.917±0.033 0.918±0.034 0.921±0.033

ImλCP
|λCP| 0.592±0.082 0.617±0.079 0.650±0.086 0.44±0.20

ReλCP
|λCP| Rez(Lepton) — (−6.6±6.5) ·10−2 (−7.3±6.5) ·10−2 (−8.4±9.8) ·10−2

ReλCP
|λCP| Rez(Kaon) — (−7.8±7.1) ·10−2 (−9.5±7.8) ·10−2 −0.07±0.12
ReλCP
|λCP| Rez(NT1) — −0.09±0.12 −0.14±0.13 −0.02±0.18

ReλCP
|λCP| Rez(NT2) — −0.04±0.15 −0.05±0.17 −0.06±0.19

Imz(Lepton) — −0.940±0.038 −0.929±0.039 −0.931±0.040
Imz(Kaon) — −0.846±0.056 −0.834±0.058 −0.836±0.058
Imz(NT1) — −0.910±0.068 −0.906±0.070 −0.900±0.069
Imz(NT2) — −0.825±0.066 −0.818±0.069 −0.814±0.070

Table 37: Results per tagging category.GG resolution model was used.

8.5 ∆t and σ∆t cuts variation

Likelihood fits were performed for different values of the∆t andσ∆t cuts. The chosen∆t cut values were
5,10,15,20 ps (20 is the nominal one). The set of cuts taken forσ∆t were 0.6,1.0,1.4,1.8,2.2 ps (1.4 is the
nominal). In the first case, finite normalization, accordingto equation (104), was used instead of the asymptotic
one used in the nominal fit. The stability of the results compared to the nominal cuts is shown in figures 35 and
36.

8.6 Results from standard full Monte Carlo

The nominal fits were performed on the high statistics standard Monte Carlo (exclusive and inclusive char-
monium), described in section 3. The fit results corresponding to Analysis 2 are given in tables 38 and 39,
for the GG andGExp resolution models. Table 40 summarizes the Analysis 2 results (restricted to physical
parameters) obtained from the exclusive and inclusive charmonium samples, allBCP or BCPK0

S
andBCPK0

L
only

separately. TheBf lav peaking background in these fits was assumed to be 0. TheBCPK0
S

peaking background
in the exclusive sample was taken also 0, and 1.5% in the inclusive one. The non-J/ψ background components
in the J/ψK0

L sample were taken 0. The fit projections (global fit with all samples) onto the∆t axis and the
corresponding normalized residuals (defined as the difference between the data and the fit projection), for each
standard Monte Carlo (inclusive charmonium) sample abd tagging category separately are shown in figures 37,
38 (Bf lav), 39 (BCPK0

S
) and 40 (BCPK0

L
). Let us note that for this check we did not keep the relative fractions of

Bf lav, BCPK0
S

andBCPK0
L

events as observed in the data but we just put together the maximum available standard
Monte Carlo statistics.
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Figure 35: Stability of the fitted physical parameters from Analysis 1 and 2 against the∆t cut. The variation
with respect to the nominal configuration is shown.

Figure 36: Stability of the fitted physical parameters from Analysis 1 and 2 against theσ∆t cut. The variation
with respect to the nominal configuration is shown.
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Parameter excl. charmonium incl. charmonium all CP

∆m 0.4792±0.0051 0.4785±0.0061
∆Γ/Γ (−1.7±1.3) ·10−2 (3.6±3.0) ·10−2

| q/p | 1.007±0.010 1.009±0.012
ImλCP
|λCP| 0.715±0.017 0.679±0.048

ReλCP
|λCP| Rez (−0.4±1.4) ·10−2 (−0.1±3.4) ·10−2

Imz (−0.3±1.7) ·10−2 (−0.8±2.1) ·10−2

Imλ f lav
|λ f lav| −0.51±0.69 −0.81±0.82

Imλ̄ f lav

|λ̄ f lav|
−0.12±0.71 −0.29±0.87

Imλtag
|λtag| −0.19±0.63 −0.24±0.91

Imλ̄tag

|λ̄tag|
−0.22±0.64 −0.28±0.95

Score 1.308±0.027 1.309±0.041
δlepton

core −0.152±0.031 −0.152±0.044
δkaon

core −0.323±0.019 −0.358±0.026
δNT1

core −0.166±0.040 −0.233±0.055
δNT2

core −0.272±0.028 −0.322±0.039
ftail (1.98±0.62) ·10−2 (2.1±1.3) ·10−2

Stail 6.4±1.0 5.3±1.4
δtail −1.43±0.57 −1.51±0.84

foutlier (1.83±0.87) ·10−3 (2.3±1.1) ·10−3

wlepton
0 (5.9±1.3) ·10−2 (5.7±1.4) ·10−2

wkaon
0 (5.4±1.1) ·10−2 (6.1±1.2) ·10−2

wNT1
0 0.169±0.022 0.156±0.024

wNT2
0 0.352±0.020 0.365±0.022

wlepton
slope (0.7±2.4) ·10−2 (1.3±2.6) ·10−2

wkaon
slope 0.181±0.018 0.167±0.019

wNT1
slope (3.8±3.7) ·10−2 (7.2±4.1) ·10−2

wNT2
slope (0.3±3.0) ·10−2 (−1.2±3.3) ·10−2

∆wlepton (4.6±8.5) ·10−3 (1.7±9.3) ·10−3

∆wkaon (−2.20±0.59) ·10−2 (−2.08±0.69) ·10−2

∆wNT1 (1.3±1.2) ·10−2 (1.8±1.5) ·10−2

∆wNT2 (−2.84±0.86) ·10−2 (−3.7±1.2) ·10−2

f lepton
prompt,Bf lav

0.40±0.12 0.40±0.11

f kaon
prompt,Bf lav

0.327±0.059 0.326±0.058

f NT1
prompt,Bf lav

0.33±0.12 0.33±0.12

f NT2
prompt,Bf lav

0.333±0.090 0.334±0.089

Sback 1.76±0.12 1.76±0.11
δback −0.104±0.062 (−9.6±6.1) ·10−2

fback,outlier (6.3±5.6) ·10−3 (6.3±5.6) ·10−3

wlepton
0,prompt (0.0±5.3) ·10−4 (0.0±5.3) ·10−4

wkaon
0,prompt (0.0±4.5) ·10−4 (0.0±4.6) ·10−4

wNT1
0,prompt 0.09±0.15 0.08±0.15

wNT2
0,prompt 0.17±0.12 0.17±0.12

wlepton
0,non−prompt 0.288±0.069 0.287±0.069

wkaon
0,non−prompt 0.422±0.040 0.423±0.040

wNT1
0,non−prompt 0.420±0.083 0.418±0.083

wNT2
0,non−prompt 0.496±0.057 0.495±0.057
τnon−prompt 1.568±0.096 1.573±0.096
fprompt,B

CPK0
S

0.200±0.094 0.31±0.13

τnon−prompt,B
CPK0

S
2.60±0.31 1.92±0.29

Table 38: Analysis 2 results,GG resolution model for the standard full Monte Carlo sample (exclusive and
inclusive charmonium).
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Parameter excl. charmonium incl. charmonium

∆m 0.4789±0.0051 0.4773±0.0062
∆Γ/Γ (−1.3±1.3) ·10−2 (4.3±3.2) ·10−2

| q/p | 1.0066±0.0100 1.009±0.012
ImλCP
|λCP| 0.713±0.017 0.679±0.048

ReλCP
|λCP| Rez (−0.2±1.4) ·10−2 (0.1±3.6) ·10−2

Imz (−0.8±1.7) ·10−2 (−0.9±2.0) ·10−2

Imλ f lav
|λ f lav| −0.77±0.68 −0.87±0.82

Imλ̄ f lav

|λ̄ f lav|
−0.20±0.71 −0.32±0.86

Imλtag
|λtag| −0.26±0.63 −0.12±0.91

Imλ̄tag

|λ̄tag|
−0.15±0.64 −0.12±0.95

S 1.213±0.028 1.219±0.043
τlepton

r 1.06±0.38 0.62±0.68
τkaon

r 1.18±0.14 1.14±0.17
τNT1

r 0.83±0.54 0.82±0.50
τNT2

r 0.58±0.22 0.37±0.25
f lepton
Exp 0.166±0.069 0.27±0.31
f kaon
Exp 0.306±0.038 0.350±0.055

f NT1
Exp 0.22±0.15 0.31±0.20

f NT2
Exp 0.50±0.19 0.91±0.62

foutlier (4.87±0.76) ·10−3 (4.17±0.99) ·10−3

wlepton
0 (6.0±1.3) ·10−2 (5.6±1.4) ·10−2

wkaon
0 (5.6±1.1) ·10−2 (6.2±1.2) ·10−2

wNT1
0 0.169±0.022 0.155±0.024

wNT2
0 0.352±0.020 0.364±0.022

wlepton
slope (0.9±2.4) ·10−2 (1.7±2.6) ·10−2

wkaon
slope 0.176±0.018 0.166±0.019

wNT1
slope (4.1±3.7) ·10−2 (7.6±4.1) ·10−2

wNT2
slope (0.6±3.0) ·10−2 (−0.9±3.3) ·10−2

∆wlepton (4.4±8.5) ·10−3 (1.6±9.3) ·10−3

∆wkaon (−2.19±0.59) ·10−2 (−2.09±0.70) ·10−2

∆wNT1 (1.3±1.2) ·10−2 (1.8±1.5) ·10−2

∆wNT2 (−2.82±0.86) ·10−2 (−3.7±1.2) ·10−2

f lepton
prompt,Bf lav

0.38±0.12 0.38±0.12

f kaon
prompt,Bf lav

0.321±0.059 0.326±0.057

f NT1
prompt,Bf lav

0.32±0.12 0.33±0.12

f NT2
prompt,Bf lav

0.325±0.093 0.326±0.091

Sback 1.73±0.12 1.73±0.11
τr,back 5.0000±0.0085 5.000±0.010

fback,outlier (0.0±1.1) ·10−4 (0.0±1.1) ·10−4

wlepton
0,prompt (0.0±5.2) ·10−4 (0.0±5.3) ·10−4

wkaon
0,prompt (0.0±4.3) ·10−4 (0.0±4.5) ·10−4

wNT1
0,prompt 0.08±0.17 0.08±0.16

wNT2
0,prompt 0.17±0.12 0.17±0.12

wlepton
0,non−prompt 0.276±0.068 0.275±0.067

wkaon
0,non−prompt 0.419±0.040 0.423±0.039

wNT1
0,non−prompt 0.421±0.085 0.422±0.085

wNT2
0,non−prompt 0.493±0.059 0.492±0.058
τnon−prompt 1.521±0.085 1.539±0.085
fprompt,B

CPK0
S

0.191±0.096 0.31±0.13

τnon−prompt,B
CPK0

S
2.52±0.31 1.91±0.28

Table 39: Analysis 2 results,GExpresolution model for the standard full Monte Carlo sample (exclusive and
inclusive charmonium).
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Figure 37:∆t projections of the nominal fit (Analysis 2) for theBf lav standard Monte Carlo sample: (a) mixed
B0 tagged, (b) mixedB0 tagged, (c) unmixedB0 tagged and (d) unmixedB0 tagged (GGmodel), for each tagging
category.
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Figure 38: Normalized residuals of the∆t projections of the nominal fit (Analysis 2) for theBf lav standard
Monte Carlo sample: (a) mixedB0 tagged, (b) mixedB0 tagged, (c) unmixedB0 tagged and (d) unmixedB0

tagged (GGmodel), for each tagging category.
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Figure 39: ∆t projections and normalized residuals of the nominal fit (Analysis 2) for theBCPK0
S

standard

inclusive Monte Carlo sample: (a)(c)B0 tagged, (b)(d)B0 tagged (GGmodel), for each tagging category.
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Figure 40: ∆t projections and normalized residuals of the nominal fit (Analysis 2) for theBCPK0
L

standard

inclusive Monte Carlo sample: (a)(c)B0 tagged, (b)(d)B0 tagged (GGmodel), for each tagging category.
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Parameter excl. charmonium incl. charmonium all CP incl. charmoniumBCPK0
S

incl. charmoniumBCPK0
L

∆m 0.4792±0.0051 0.4785±0.0061 0.4789±0.0061 0.4791±0.0065
∆Γ/Γ (−1.7±1.3) ·10−2 (3.6±3.0) ·10−2 (−1.2±3.5) ·10−2 (9.7±3.8) ·10−2

| q/p | 1.007±0.010 1.009±0.012 1.014±0.012 1.009±0.012
ImλCP
|λCP| 0.715±0.017 0.679±0.048 0.703±0.057 0.614±0.090

ReλCP
|λCP| Rez (−0.4±1.4) ·10−2 (−0.1±3.4) ·10−2 (−1.0±3.8) ·10−2 (3.9±4.0) ·10−2

Imz (−0.3±1.7) ·10−2 (−0.8±2.1) ·10−2 (0.0±2.2) ·10−2 (−1.4±2.3) ·10−2

Table 40: Analysis 2 results, limited to physics parameters, GG resolution model for the standard full Monte
Carlo sample, with exclusive, inclusive charmonium with both CP samples,BCPK0

S
andBCPK0

L
samples.

8.7 Asymmetries from standard full standard Monte Carlo

All possible CPT/CP/T asymmetries for the standard Monte Carlo (inclusive charmonium) sample have
been constructed, for each tagging category separately andfor all categories together (see reference [11] -which
follows the discussion in [13]- for details):

• the mixing asymmetry (figure 41),

AMixing(∆t) ≡
N

B
0
tagB

0
f lav

(∆t)+N
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tagB
0
f lav

(∆t)−NB0
tagB

0
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N
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0
tagB

0
f lav

(∆t)
(130)

proportional to cos(∆m∆t)
cosh(∆Γ∆t/2) ;

• the T flavor asymmetry (Kabir asymmetry) (figure 42),

AT, f lav(∆t) ≡
NB0

tagB
0
f lav

(∆t)−N
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0
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0
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0
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(131)

primarily proportional to 21−|q/p|2
1+|q/p|2 and independent of∆t. In the limit ∆Γ = 0 this asymmetry vanishes;

• the CPT flavor asymmetry (figure 43),

ACPT, f lav(∆t) ≡
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(132)

primarily proportional to 2Rezsinh(∆Γ∆t/2)+Imzsin(∆m∆t)
cosh(∆Γ∆t/2)+cos(∆m∆t) , so it vanishes for∆Γ=0 since it is linear in both∆Γ

andz;

• the CP asymmetries (figures 44 and 45),
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(133)
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which has contributions from CP/T-violating (odd∆t dependence) and CP/CPT-violating (even∆t depen-
dence) terms, independent of∆Γ. The asymmetry also containts correction terms which are proportional
to ∆Γ, but cannot introduce fake effects since those terms are at the same time proportional to CP/T and
CP/CPT-violating terms;

• the non-genuine4 T asymmetries (∆t asymmetries) (figures 46, 47, 48 and 49),
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(134)

which has contributions from CP/T and CP/CPT violating terms as well as∆Γ terms which do not depend
on CP/T and CP/CPT violating parameters and therefore are a potencial source of fake effects. In the
limit ∆Γ=0 this asymmetry equals to the genuine T asymmetry;

• the genuine T asymmetry (figure 50),
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which includes CP/T and CP/CPT violating terms.∆Γ correction terms are also proportional to CP/T and
CP/CPT violating parameters so∆Γ 6= 0 cannot introduce fake effects. In the limit∆Γ = 0 the asymmetry
is primarily proportional to CP/T violation (odd in∆t);

• the non-genuine CPT asymmetries (CP∆t asymmetries) (figures 51 and 52),
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which has, similarly to the non-genuine T asymmetries, contributions from CP/T and CP/CPT violating
terms as well as∆Γ terms which do not depend on CP/T and CP/CPT parameters, and therefore are a
potencial source of fake effects. In the limit∆Γ=0 this asymmetry equals to the genuine CPT asymmetry;

4By non-genuine asymmetries we mean asymmetries which do notinvolve processes conected by any fundamental discrete symme-
try but that in the limit∆Γ=0 they turn out to be equivalent to the genuine case, i.e. theasymmetries defined with the processes related
by that fundamental symmetry [13].

88



• the genuine CPT asymmetries (figures 53 and 54),
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(137)

which also contains CP/T and CP/CPT violation terms but is primarily even in∆t and mainly proportional
to Rez. To leading order, this asymmetry has no∆Γ terms. A non-vanishing value of Rez will genuinely
manifest in this asymmetry.
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Figure 41: The mixing asymmetryAMixing(∆t) as defined in equation (130) for each tagging category (left)and
all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 42: Kabir asymmetryAT, f lav(∆t) as defined in equation (131) for each tagging category (left)and all
categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 43: The CPT flavor asymmetryACPT, f lav(∆t) as defined in equation (132) for each tagging category
(left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 44: The CP asymmetryACP,B
CPK0

S
(∆t) as defined in equation (133) for each tagging category (left)and

all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 45: The CP asymmetryACP,B
CPK0

L
(∆t) as defined in equation (133) for each tagging category (left)and

all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 46: The non-genuine T asymmetryA∆t,B
CPK0

S
,B0(∆t) as defined in equation (134) for each tagging category

(left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 47: The non-genuine T asymmetryA∆t,B
CPK0

S
,B0(∆t) as defined in equation (134) for each tagging category

(left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 48: The non-genuine T asymmetryA∆t,B
CPK0

L
,B0(∆t) as defined in equation (134) for each tagging category

(left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 49: The non-genuine T asymmetryA∆t,B
CPK0

L
,B0(∆t) as defined in equation (134) for each tagging category

(left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 50: The genuine T asymmetryAT(∆t) as defined in equation (135) for each tagging category (left)and
all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 51: The non-genuine CPT asymmetryACP∆t,B
CPK0

S
(∆t) as defined in equation (136) for each tagging

category (left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 52: The non-genuine CPT asymmetryACP∆t,B
CPK0

L
(∆t) as defined in equation (136) for each tagging

category (left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 53: The genuine CPT asymmetryACPT,B0(∆t) as defined in equation (137) for each tagging category
(left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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Figure 54: The genuine CPT asymmetryACPT,B0(∆t) as defined in equation (137) for each tagging category
(left) and all categories together (right), for standard Monte Carlo (inclusive charmonium).
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8.8 Results from dedicated full Monte Carlo

The nominal fits were also performed on the high statistics dedicated Monte Carlo described in section 3.
As in the case of the standard Monte Carlo sample, we did not keep the relative fractions ofBf lav, BCPK0

S
and

BCPK0
L

events as observed in the data but we just used all the available statistics. Fits to Monte Carlo truth
(perfect resolution, perfect tag) were first applied in order to check the correctness of the truth values in this
dedicated Monte Carlo production. The results of these MC truth fits are given in table 41.

Parameter Fit result
τB 1.542±0.005
∆m 0.4748±0.0018

∆Γ/Γ 0.205±0.008
| q/p | 1.033±0.004
ImλCP
|λCP| 0.681±0.009

ReλCP
|λCP| Rez −0.003±0.006

Imz 0.005±0.005

Table 41: Results from maximum likelihood fits to the MC truthinformation (perfect resolution, perfect tag) in
the dedicated full Monte Carlo prodution.

The fit results corresponding to Analysis 1 and Analysis 2, for the GG andGExpresolution models, are
given in tables 42–45. All peaking backgrounds in these fits were assumed zero.

8.9 Results from reweighted dedicated full Monte Carlo

The dedicated full Monte Carlo was also used to “generate” samples with CPT violation (z 6= 0) and DCKM
effects (λtag, λ̄tag,λ f lav,λ f lav 6= 0). This was done using reweighting techniques.

8.9.1 Strategy

The reweighting of the dedicated Monte Carlo events is performed using the truth values of∆t and the
flavors of the twoB mesons in the event. The flavor of the B mesons allows us to classify the Bf lav and

BCP events according to 4 categories each: (B0
tag B0

f lav, B
0
tag B0

f lav, B0
tag B

0
f lav andB

0
tag B

0
f lav) and (B0

tag ηCP =

−1,B
0
tag ηCP = −1,B0

tag ηCP = +1,B
0
tag ηCP = +1), respectively. For each event class, we then calculate the

ratio of the new and original (standard events) PDF’s. Whiledoing this, special attention must be put to the
fact that the new physics parameters change the time-integrated rates. As with this technique we only want
to change the physics but not the detector effects, the two PDF’s entering into the ratio must use a common
normalization, i.e. the new PDF must not be renormalized with the new physics parameter values. In this way,
the change in the number of events in each event category is purely due to physics. Figure 55 shows the PDF
ratios (new/original), corresponding to the physics paramaters of the CPT reweighted configuration given in
table 46.
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Parameter B0 fit results (GGmodel)

∆m 0.4812±0.0047
∆Γ/Γ 0.182±0.015
| q/p | 1.0398±0.0091
ImλCP
|λCP| 0.703±0.021

Score 1.197±0.044
δlepton

core −0.131±0.040
δkaon

core −0.293±0.027
δNT1

core −0.172±0.048
δNT2

core −0.243±0.035
ftail (8.6±2.7) ·10−2

Stail 3.22±0.32
δtail −1.44±0.36

foutlier (2.00±0.65) ·10−3

wlepton
0 (5.2±1.1) ·10−2

wkaon
0 (6.37±0.94) ·10−2

wNT1
0 0.203±0.020

wNT2
0 0.343±0.017

wlepton
slope (0.8±2.0) ·10−2

wkaon
slope 0.162±0.015

wNT1
slope (1.3±3.3) ·10−2

wNT2
slope (−0.4±2.5) ·10−2

∆wlepton (−4.8±7.1) ·10−3

∆wkaon (−1.39±0.52) ·10−2

∆wNT1 (0.7±1.1) ·10−2

∆wNT2 (−2.02±0.85) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav

|λ f lav| −0.42±0.50
Imλ̄ f lav

|λ̄ f lav|
−0.68±0.52

Imλtag

|λtag| 0.14±0.49
Imλ̄tag

|λ̄tag|
0.51±0.52

f lepton
prompt,Bf lav

0.402±0.074

f kaon
prompt,Bf lav

0.368±0.044
f NT1
prompt,Bf lav

0.351±0.084
f NT2
prompt,Bf lav

0.510±0.058
Sback 1.898±0.089
δback −0.246±0.054

fback,outlier (4.2±5.7) ·10−3

wlepton
0,prompt (0.00±0.24) ·10−3

wkaon
0,prompt (0.00±0.81) ·10−3

wNT1
0,prompt 0.05±0.11

wNT2
0,prompt 0.270±0.053

wlepton
0,non−prompt 0.402±0.061

wkaon
0,non−prompt 0.444±0.034

wNT1
0,non−prompt 0.484±0.066

wNT2
0,non−prompt 0.592±0.052
τnon−prompt 1.753±0.094
fprompt,B

CPK0
S

0.29±0.15

τnon−prompt,B
CPK0

S
1.99±0.38

Table 42: Results from dedicated full Monte Carlo, Analysis1 fit, GG resolution function.

8.9.2 Results from Monte Carlo truth fits

Fits to Monte Carlo truth (perfect resolution, perfect tag)were first applied in order to check that the

generated values are correct. In the case of the DCKM reweighted sample,rtag, r̄tag,
Imλtag

|λtag| , Imλ̄tag

|λ̄tag|
, r f lav, r̄ f lav,

Imλ f lav

|λ f lav| and Imλ̄ f lav

|λ̄ f lav|
were fixed to the generated values. The results of these fits are given in table 47.

8.9.3 Results from nominal fits

The fit results corresponding to the Analysis 2 fits from the CPT reweighted samples, for theGGandGExp
resolution models, are given in tables 48 and 49. Tables 50 and 51 show the fit results, again for Analysis 2
and 1 respectively, from the DCKM reweighted samples. In allcases the fitted values are consistent with the
generated ones.
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Parameter B0 fit results (GGmodel)

∆m 0.4812±0.0047
∆Γ/Γ 0.182±0.015
| q/p | 1.0397±0.0091
ImλCP
|λCP| 0.703±0.021

ReλCP
|λCP| Rez (0.4±1.5) ·10−2

Imz (−0.3±1.6) ·10−2

Score 1.197±0.044
δlepton

core −0.131±0.040
δkaon

core −0.292±0.027
δNT1

core −0.172±0.048
δNT2

core −0.243±0.035
ftail (8.6±2.7) ·10−2

Stail 3.22±0.32
δtail −1.44±0.36

foutlier (1.99±0.65) ·10−3

wlepton
0 (5.2±1.1) ·10−2

wkaon
0 (6.37±0.94) ·10−2

wNT1
0 0.203±0.020

wNT2
0 0.343±0.017

wlepton
slope (0.8±2.0) ·10−2

wkaon
slope 0.162±0.015

wNT1
slope (1.3±3.3) ·10−2

wNT2
slope (−0.4±2.5) ·10−2

∆wlepton (−4.8±7.1) ·10−3

∆wkaon (−1.39±0.52) ·10−2

∆wNT1 (0.7±1.1) ·10−2

∆wNT2 (−2.02±0.85) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav

|λ f lav| −0.45±0.59
Imλ̄ f lav

|λ̄ f lav|
−0.65±0.60

Imλtag

|λtag| 0.10±0.62
Imλ̄tag

|λ̄tag|
0.54±0.63

f lepton
prompt,Bf lav

0.402±0.074
f kaon
prompt,Bf lav

0.368±0.044
f NT1
prompt,Bf lav

0.351±0.084
f NT2
prompt,Bf lav

0.510±0.058
Sback 1.898±0.089
δback −0.246±0.054

fback,outlier (4.2±5.7) ·10−3

wlepton
0,prompt (0.00±0.24) ·10−3

wkaon
0,prompt (0.00±0.81) ·10−3

wNT1
0,prompt 0.05±0.11

wNT2
0,prompt 0.270±0.053

wlepton
0,non−prompt 0.402±0.061

wkaon
0,non−prompt 0.444±0.034

wNT1
0,non−prompt 0.484±0.066

wNT2
0,non−prompt 0.592±0.052
τnon−prompt 1.753±0.094
fprompt,B

CPK0
S

0.29±0.15

τnon−prompt,BCPK0
S

1.99±0.38

Table 43: Results from dedicated full Monte Carlo, Analysis2 fit, GG resolution function.

8.10 Alternative tagging configuration

The nominal fits were also performed using the Moriond Tagger[20], for data and the standard full Monte
Carlo (inclusive charmonium). The results and the comparison to the default Elba Tagger are summarized in
tables 52, 53, 54, 55, 56 and 57.

8.11 Alternative vertexing configurations

Tables from 58 to 66 summarize the differences of the resultsfor the physics parameters (Analysis 1 and
Analysis 2) for different alternative vertexing configurations with respect to the nominal configuration. In order
to avoid additional statistical uncertainties from eventsmoving around only those common to the nominal and
the modified configurations are used. The errors on the differences are estimated from the quadratic difference
of the statistical Gaussian errors. The configurations are:
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Parameter B0 fit results (GExpmodel)

∆m 0.4782±0.0047
∆Γ/Γ 0.195±0.015
| q/p | 1.0415±0.0091
ImλCP
|λCP| 0.707±0.021

S 1.158±0.027
τlepton

r 1.28±0.28
τkaon

r 1.35±0.11
τNT1

r 1.60±0.33
τNT2

r 1.02±0.27
f lepton
Exp 0.191±0.050
f kaon
Exp 0.300±0.028
f NT1
Exp 0.181±0.047

f NT2
Exp 0.320±0.086

foutlier (2.34±0.67) ·10−3

wlepton
0 (5.2±1.1) ·10−2

wkaon
0 (6.36±0.94) ·10−2

wNT1
0 0.204±0.019

wNT2
0 0.343±0.017

wlepton
slope (1.1±2.0) ·10−2

wkaon
slope 0.163±0.015

wNT1
slope (1.3±3.3) ·10−2

wNT2
slope (−0.3±2.5) ·10−2

∆wlepton (−5.6±7.1) ·10−3

∆wkaon (−1.43±0.52) ·10−2

∆wNT1 (0.7±1.1) ·10−2

∆wNT2 (−2.05±0.85) ·10−2

Parameter B0 fit results (GExpmodel)
Imλ f lav

|λ f lav| −0.50±0.50
Imλ̄ f lav

|λ̄ f lav|
−0.76±0.52

Imλtag

|λtag| 0.19±0.49
Imλ̄tag

|λ̄tag|
0.53±0.52

f lepton
prompt,Bf lav

0.429±0.080
f kaon
prompt,Bf lav

0.395±0.047
f NT1
prompt,Bf lav

0.382±0.090
f NT2
prompt,Bf lav

0.554±0.062
Sback 1.824±0.089
τr,back 2.25±0.61

fback,outlier (3.3±5.2) ·10−3

wlepton
0,prompt (0.00±0.23) ·10−3

wkaon
0,prompt (0.0±1.1) ·10−3

wNT1
0,prompt 0.05±0.11

wNT2
0,prompt 0.264±0.053

wlepton
0,non−prompt 0.420±0.069

wkaon
0,non−prompt 0.464±0.039

wNT1
0,non−prompt 0.505±0.073

wNT2
0,non−prompt 0.631±0.063
τnon−prompt 1.69±0.10
fprompt,B

CPK0
S

0.34±0.15

τnon−prompt,B
CPK0

S
2.00±0.40

Table 44: Results from dedicated full Monte Carlo, Analysis1 fit, GExpresolution function.

• J/ψ mass constraint imposed for theCP vertex (table 58);

• use charmonium (J/ψ or ψ(2S)) vertex for theCP vertex (table 59);

• removeK0
S mass constraint (table 60);

• removing photons from theCPvertex (table 61);

• do not use the constraints from the beam (table 62);

• use only the constraint from the beam spot (table 63);

• remove theV0 veto for the tag vertex (table 64);

• use theaverage boost approximationinstead of theaverage-τB approximationfor the∆z→ ∆t conversion
[24] (table 65);

• useFvtCluster instead of the defaultBtaSelFit [24] (table 66).

Figures 56 and 57 show the same results in a graphical way.
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Parameter B0 fit results (GExpmodel)

∆m 0.4782±0.0047
∆Γ/Γ 0.195±0.015
| q/p | 1.0414±0.0091
ImλCP
|λCP| 0.706±0.021

ReλCP
|λCP| Rez (0.3±1.5) ·10−2

Imz (−0.3±1.6) ·10−2

S 1.158±0.027
τlepton

r 1.29±0.28
τkaon

r 1.35±0.11
τNT1

r 1.60±0.33
τNT2

r 1.02±0.27
f lepton
Exp 0.190±0.050
f kaon
Exp 0.300±0.028
f NT1
Exp 0.181±0.047

f NT2
Exp 0.320±0.087

foutlier (2.34±0.67) ·10−3

wlepton
0 (5.2±1.1) ·10−2

wkaon
0 (6.36±0.94) ·10−2

wNT1
0 0.203±0.019

wNT2
0 0.343±0.017

wlepton
slope (1.1±2.0) ·10−2

wkaon
slope 0.163±0.015

wNT1
slope (1.3±3.3) ·10−2

wNT2
slope (−0.3±2.5) ·10−2

∆wlepton (−5.6±7.1) ·10−3

∆wkaon (−1.43±0.52) ·10−2

∆wNT1 (0.7±1.1) ·10−2

∆wNT2 (−2.05±0.85) ·10−2

Parameter B0 fit results (GExpmodel)
Imλ f lav

|λ f lav| −0.54±0.59
Imλ̄ f lav

|λ̄ f lav|
−0.73±0.60

Imλtag

|λtag| 0.13±0.62
Imλ̄tag

|λ̄tag|
0.57±0.63

f lepton
prompt,Bf lav

0.429±0.080

f kaon
prompt,Bf lav

0.395±0.047
f NT1
prompt,Bf lav

0.382±0.090

f NT2
prompt,Bf lav

0.554±0.062
Sback 1.823±0.089
τr,back 2.25±0.59

fback,outlier (3.3±5.2) ·10−3

wlepton
0,prompt (0.00±0.23) ·10−3

wkaon
0,prompt (0.0±1.1) ·10−3

wNT1
0,prompt 0.05±0.11

wNT2
0,prompt 0.264±0.053

wlepton
0,non−prompt 0.420±0.069

wkaon
0,non−prompt 0.464±0.038

wNT1
0,non−prompt 0.505±0.073

wNT2
0,non−prompt 0.631±0.063
τnon−prompt 1.693±0.098
fprompt,BCPK0

S
0.34±0.15

τnon−prompt,B
CPK0

S
2.00±0.40

Table 45: Results from dedicated full Monte Carlo, Analysis2 fit, GExpresolution function.

101



Parameter Original (dedicated MC) CPT reweighted DCKM reweighted
∆Γ/Γ 0.20 0.20 0.20
| q/p | 1.04 1.04 1.04
ImλCP
|λCP| 0.70 0.70 0.70

∆m 0.472 0.472 0.472
ReλCP
|λCP| Rez 0.00 0.10 0.00

Imz 0.00 0.02 0.00
rtag/r̄tag 0.00 0.00 0.04

Imλtag

|λtag| 0.00 0.00 -1.00
Imλ̄tag

|λ̄tag|
0.00 0.00 +1.00

r f lav/r̄ f lav 0.00 0.00 0.04
Imλ f lav

|λ f lav| 0.00 0.00 -1.00
Imλ̄ f lav

|λ̄ f lav|
0.00 0.00 +1.00

Table 46: Physics parameter values of the dedicated and reweighted CPT and DCKM full Monte Carlo.

Figure 55: Reweighting functions forBf lav (left hand) and CP (right hand) events, corresponding to theCPT
reweighted configuration with parameter values given in table 46.
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Parameter CPT reweighted DCKM reweighted
τB 1.541±0.008 1.538±0.006
∆m 0.4755±0.0032 0.4730±0.0022

∆Γ/Γ 0.193±0.012 0.214±0.009
| q/p | 1.035±0.007 1.035±0.005
ImλCP
|λCP| 0.678±0.013 0.684±0.010

ReλCP
|λCP| Rez 0.106±0.010 −0.004±0.008

Imz 0.025±0.007 0.005±0.006

Table 47: Results from maximum likelihood fits to the MC truthinformation (perfect resolution, perfect tag) in
the reweighted CPT and DCKM full Monte Carlo.

Parameter B0 fit results (GGmodel)

∆m 0.4840±0.0082
∆Γ/Γ 0.172±0.022
| q/p | 1.062±0.015
ImλCP
|λCP| 0.702±0.032

ReλCP
|λCP| Rez 0.106±0.023

Imz (1.3±2.5) ·10−2

Score 1.041±0.096
δlepton

core −0.121±0.071
δkaon

core −0.262±0.048
δNT1

core (−6.4±8.7) ·10−2

δNT2
core −0.291±0.059
ftail 0.180±0.065
Stail 2.77±0.32
δtail −0.97±0.29

foutlier (2.05±1.00) ·10−3

wlepton
0 (5.3±1.8) ·10−2

wkaon
0 (7.0±1.6) ·10−2

wNT1
0 0.172±0.033

wNT2
0 0.334±0.028

wlepton
slope (1.4±3.3) ·10−2

wkaon
slope 0.147±0.026

wNT1
slope (7.0±5.6) ·10−2

wNT2
slope (0.1±4.2) ·10−2

∆wlepton (−0.1±1.2) ·10−2

∆wkaon (−1.10±0.85) ·10−2

∆wNT1 (0.1±1.9) ·10−2

∆wNT2 (−2.2±1.4) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav

|λ f lav| −1.03±0.96
Imλ̄ f lav

|λ̄ f lav|
−1.7±1.0

Imλtag

|λtag| 0.03±0.98
Imλ̄tag

|λ̄tag|
−0.0±1.0

f lepton
prompt,Bf lav

0.37±0.13

f kaon
prompt,Bf lav

0.292±0.083
f NT1
prompt,Bf lav

0.294±0.095

f NT2
prompt,Bf lav

0.297±0.095
Sback 1.72±0.16
δback −0.204±0.090

fback,outlier (0.00±0.20) ·10−3

wlepton
0,prompt (0.00±0.31) ·10−3

wkaon
0,prompt (0.0±2.2) ·10−3

wNT1
0,prompt (0.0±1.6) ·10−3

wNT2
0,prompt 0.03±0.20

wlepton
0,non−prompt 0.309±0.085

wkaon
0,non−prompt 0.395±0.052

wNT1
0,non−prompt 0.502±0.083

wNT2
0,non−prompt 0.625±0.066
τnon−prompt 1.660±0.098
fprompt,BCPK0

S
(0.00±0.73) ·10−3

τnon−prompt,B
CPK0

S
1.06±0.19

Table 48: Results from CPT reweighted full Monte Carlo, Analysis 2 fit,GG resolution function.
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Parameter B0 fit results (GExpmodel)

∆m 0.4790±0.0081
∆Γ/Γ 0.181±0.022
| q/p | 1.065±0.015
ImλCP
|λCP| 0.704±0.032

ReλCP
|λCP| Rez 0.109±0.023

Imz (1.1±2.5) ·10−2

S 1.130±0.043
τlepton

r 1.31±0.44
τkaon

r 1.33±0.16
τNT1

r 1.70±0.40
τNT2

r 1.66±0.50
f lepton
Exp 0.212±0.082
f kaon
Exp 0.305±0.042
f NT1
Exp 0.167±0.056

f NT2
Exp 0.237±0.080

foutlier (2.2±1.1) ·10−3

wlepton
0 (5.4±1.8) ·10−2

wkaon
0 (7.0±1.6) ·10−2

wNT1
0 0.173±0.033

wNT2
0 0.333±0.028

wlepton
slope (1.7±3.3) ·10−2

wkaon
slope 0.150±0.025

wNT1
slope (7.0±5.6) ·10−2

wNT2
slope (0.3±4.2) ·10−2

∆wlepton (−0.2±1.2) ·10−2

∆wkaon (−1.20±0.85) ·10−2

∆wNT1 (0.1±1.8) ·10−2

∆wNT2 (−2.2±1.4) ·10−2

Parameter B0 fit results (GExpmodel)
Imλ f lav

|λ f lav| −1.11±0.96
Imλ̄ f lav

|λ̄ f lav|
−1.8±1.0

Imλtag

|λtag| 0.07±0.97
Imλ̄tag

|λ̄tag|
−0.0±1.0

f lepton
prompt,Bf lav

0.38±0.14

f kaon
prompt,Bf lav

0.301±0.092
f NT1
prompt,Bf lav

0.32±0.10

f NT2
prompt,Bf lav

0.32±0.10
Sback 1.68±0.17
τr,back 2.1±1.8

fback,outlier (0.00±0.15) ·10−3

wlepton
0,prompt (0.00±0.30) ·10−3

wkaon
0,prompt (0.0±1.6) ·10−3

wNT1
0,prompt (0.0±1.6) ·10−3

wNT2
0,prompt 0.04±0.20

wlepton
0,non−prompt 0.316±0.092

wkaon
0,non−prompt 0.400±0.058

wNT1
0,non−prompt 0.523±0.093

wNT2
0,non−prompt 0.638±0.074
τnon−prompt 1.60±0.15
fprompt,BCPK0

S
(0.00±0.78) ·10−3

τnon−prompt,B
CPK0

S
1.02±0.20

Table 49: Results from CPT reweighted full Monte Carlo, Analysis 2 fit,GExpresolution function.
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Parameter B0 fit results (GGmodel)

∆m 0.4833±0.0057
∆Γ/Γ 0.184±0.017
| q/p | 1.030±0.011
ImλCP
|λCP| 0.700±0.025

ReλCP
|λCP| Rez (−0.8±1.8) ·10−2

Imz (−4.8±4.9) ·10−2

Score 1.169±0.055
δlepton

core −0.145±0.047
δkaon

core −0.276±0.032
δNT1

core −0.179±0.056
δNT2

core −0.221±0.041
ftail (9.8±3.1) ·10−2

Stail 3.28±0.35
δtail −1.35±0.36

foutlier (1.86±0.77) ·10−3

wlepton
0 (4.8±1.5) ·10−2

wkaon
0 (6.3±1.3) ·10−2

wNT1
0 0.188±0.024

wNT2
0 0.344±0.020

wlepton
slope (3.0±2.5) ·10−2

wkaon
slope 0.170±0.019

wNT1
slope (4.5±4.0) ·10−2

wNT2
slope (−0.5±3.0) ·10−2

∆wlepton (−1.3±9.7) ·10−3

∆wkaon (−5.0±6.9) ·10−3

∆wNT1 (−0.0±1.4) ·10−2

∆wNT2 (−2.1±1.0) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav

|λ f lav| −1.62±0.70
Imλ̄ f lav

|λ̄ f lav|
1.63±0.71

Imλtag

|λtag| −1.25±0.66
Imλ̄tag

|λ̄tag|
2.21±0.66

f lepton
prompt,Bf lav

0.332±0.093

f kaon
prompt,Bf lav

0.351±0.053
f NT1
prompt,Bf lav

0.322±0.090

f NT2
prompt,Bf lav

0.442±0.071
Sback 1.89±0.11
δback −0.298±0.066

fback,outlier (3.5±6.8) ·10−3

wlepton
0,prompt (0.00±0.35) ·10−3

wkaon
0,prompt (0.00±0.71) ·10−3

wNT1
0,prompt (0.0±1.2) ·10−3

wNT2
0,prompt 0.04±0.11

wlepton
0,non−prompt 0.392±0.069

wkaon
0,non−prompt 0.436±0.039

wNT1
0,non−prompt 0.454±0.070

wNT2
0,non−prompt 0.752±0.059
τnon−prompt 1.70±0.11
fprompt,BCPK0

S
0.51±0.16

τnon−prompt,B
CPK0

S
2.40±0.67

Table 50: Results from DCKM reweighted full Monte Carlo, Analysis 2 fit,GG resolution function.
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Parameter B0 fit results (GGmodel)

∆m 0.4833±0.0057
∆Γ/Γ 0.184±0.017
| q/p | 1.030±0.011
ImλCP
|λCP| 0.702±0.025

Score 1.170±0.055
δlepton

core −0.146±0.047
δkaon

core −0.277±0.032
δNT1

core −0.181±0.056
δNT2

core −0.222±0.041
ftail (9.7±3.1) ·10−2

Stail 3.29±0.35
δtail −1.37±0.37

foutlier (1.86±0.77) ·10−3

wlepton
0 (4.3±1.3) ·10−2

wkaon
0 (5.9±1.2) ·10−2

wNT1
0 0.185±0.024

wNT2
0 0.342±0.021

wlepton
slope (3.1±2.5) ·10−2

wkaon
slope 0.171±0.019

wNT1
slope (4.5±4.1) ·10−2

wNT2
slope (−0.5±3.1) ·10−2

∆wlepton (−3.1±9.1) ·10−3

∆wkaon (−6.2±6.5) ·10−3

∆wNT1 (−0.2±1.4) ·10−2

∆wNT2 (−2.2±1.0) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav

|λ f lav| −1.01±0.38
Imλ̄ f lav

|λ̄ f lav|
0.98±0.39

Imλtag

|λtag| −0.65±0.31
Imλ̄tag

|λ̄tag|
1.59±0.33

f lepton
prompt,Bf lav

0.332±0.093

f kaon
prompt,Bf lav

0.352±0.053
f NT1
prompt,Bf lav

0.322±0.090

f NT2
prompt,Bf lav

0.442±0.071
Sback 1.89±0.11
δback −0.298±0.066

fback,outlier (3.5±6.8) ·10−3

wlepton
0,prompt (0.00±0.35) ·10−3

wkaon
0,prompt (0.00±0.71) ·10−3

wNT1
0,prompt (0.0±1.2) ·10−3

wNT2
0,prompt 0.04±0.11

wlepton
0,non−prompt 0.392±0.069

wkaon
0,non−prompt 0.436±0.039

wNT1
0,non−prompt 0.454±0.070

wNT2
0,non−prompt 0.752±0.059
τnon−prompt 1.71±0.11
fprompt,BCPK0

S
0.51±0.15

τnon−prompt,B
CPK0

S
2.40±0.67

Table 51: Results from DCKM reweighted full Monte Carlo, Analysis 1 fit,GG resolution function.
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Parameter B0 fit results (GGmodel)

∆m 0.5209±0.0094
∆Γ/Γ (−1.4±5.2) ·10−2

| q/p | 0.959±0.018
ImλCP
|λCP| 0.655±0.078

ReλCP
|λCP| Rez (−8.9±4.2) ·10−2

Imz −0.918±0.035
Score 1.270±0.054
δcat1

core (2.5±7.8) ·10−2

δcat2
core −0.301±0.059

δcat3
core −0.323±0.053

δcat4
core −0.313±0.053
ftail (2.9±1.2) ·10−2

Stail 5.7±1.2
δtail −1.88±0.88

foutlier (0.3±1.4) ·10−3

wcat1
0 (2.3±2.2) ·10−2

wcat2
0 (2.1±2.5) ·10−2

wcat3
0 0.149±0.029

wcat4
0 0.257±0.030

wcat1
slope (0.0±4.1) ·10−2

wcat2
slope 0.145±0.044

wcat3
slope 0.106±0.045

wcat4
slope (8.0±4.5) ·10−2

∆wcat1 (0.1±1.4) ·10−2

∆wcat2 (−2.7±1.5) ·10−2

∆wcat3 (−2.3±1.6) ·10−2

∆wcat4 (−4.0±1.6) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav

|λ f lav| 2.7±1.3
Imλ̄ f lav

|λ̄ f lav|
−0.2±1.4

Imλtag

|λtag| 2.0±1.5
Imλ̄tag

|λ̄tag|
−0.4±1.5

f cat1
prompt,Bf lav

0.328±0.069
f cat2
prompt,Bf lav

0.647±0.029
f cat3
prompt,Bf lav

0.669±0.026
f cat4
prompt,Bf lav

0.668±0.025
Sback 1.390±0.024
δback (−3.8±1.7) ·10−2

fback,outlier (1.11±0.22) ·10−2

wcat1
0,prompt (0.00±0.35) ·10−3

wcat2
0,prompt 0.182±0.017

wcat3
0,prompt 0.307±0.014

wcat4
0,prompt 0.420±0.014

wcat1
0,non−prompt 0.364±0.050

wcat2
0,non−prompt 0.355±0.029

wcat3
0,non−prompt 0.368±0.026

wcat4
0,non−prompt 0.453±0.026
τnon−prompt 1.356±0.060
fprompt,B

CPK0
S

0.632±0.072

τnon−prompt,B
CPK0

S
2.32±0.48

Table 52: Analysis 2 fit results,GG resolution function, using Moriond tagger.

Parameter Nominal fit (Elba tagger) Moriond Tagger

∆m 0.523±0.010 0.5209±0.0094
∆Γ/Γ (−2.1±4.8) ·10−2 (−1.4±5.2) ·10−2

| q/p | 0.945±0.018 0.959±0.018
ImλCP
|λCP| 0.620±0.083 0.655±0.078

ReλCP
|λCP| Rez (−6.4±4.6) ·10−2 (−8.9±4.2) ·10−2

Imz −0.918±0.034 −0.918±0.035

Table 53: Comparison of Analysis 2 fit results,GG resolution function, between the default Elba Tagger and
the Moriond tagger.
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Parameter Nominal fit (Elba tagger) Moriond Tagger

∆m 0.5220±0.0098 0.5208±0.0093
∆Γ/Γ (−0.8±4.9) ·10−2 (−0.6±5.1) ·10−2

| q/p | 0.946±0.018 0.960±0.018
ImλCP
|λCP| 0.612±0.085 0.646±0.080

Table 54: Comparison of Analysis 1 fit results,GG resolution function, between the default Elba Tagger and
the Moriond tagger.

Parameter B0 fit results (GGmodel)

∆m 0.4812±0.0059
∆Γ/Γ (2.8±2.8) ·10−2

| q/p | 1.013±0.012
ImλCP
|λCP| 0.669±0.046

ReλCP
|λCP| Rez (−1.1±3.2) ·10−2

Imz (−0.6±2.1) ·10−2

Score 1.296±0.047
δcat1

core −0.121±0.048
δcat2

core −0.355±0.038
δcat3

core −0.349±0.034
δcat4

core −0.292±0.034
ftail (2.3±1.7) ·10−2

Stail 4.9±1.4
δtail −1.79±0.98

foutlier (1.29±0.98) ·10−3

wcat1
0 (3.5±1.2) ·10−2

wcat2
0 (2.2±1.4) ·10−2

wcat3
0 0.128±0.017

wcat4
0 0.262±0.018

wcat1
slope (−0.7±2.3) ·10−2

wcat2
slope 0.123±0.026

wcat3
slope 0.124±0.026

wcat4
slope (5.7±2.7) ·10−2

∆wcat1 (−6.5±8.7) ·10−3

∆wcat2 (−1.61±0.86) ·10−2

∆wcat3 (−2.63±0.94) ·10−2

∆wcat4 (−3.12±0.98) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav

|λ f lav| −0.28±0.81
Imλ̄ f lav

|λ̄ f lav|
−0.01±0.84

Imλtag

|λtag| 0.39±0.90
Imλ̄tag

|λ̄tag|
0.03±0.93

f cat1
prompt,Bf lav

0.55±0.12
f cat2
prompt,Bf lav

0.349±0.077
f cat3
prompt,Bf lav

0.465±0.080
f cat4
prompt,Bf lav

0.423±0.079
Sback 1.85±0.11
δback (−8.7±6.1) ·10−2

fback,outlier (6.8±6.6) ·10−3

wcat1
0,prompt (0.00±0.27) ·10−3

wcat2
0,prompt (0.00±0.33) ·10−3

wcat3
0,prompt (7.8±6.8) ·10−2

wcat4
0,prompt 0.265±0.069

wcat1
0,non−prompt 0.280±0.091

wcat2
0,non−prompt 0.375±0.051

wcat3
0,non−prompt 0.475±0.054

wcat4
0,non−prompt 0.472±0.051
τnon−prompt 1.71±0.14
fprompt,B

CPK0
S

0.35±0.12

τnon−prompt,B
CPK0

S
2.04±0.32

Table 55: Analysis 2 fit results, for inclusive MC,GG resolution function, using Moriond tagger.
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Parameter Nominal fit (Elba tagger) Moriond Tagger

∆m 0.4785±0.0061 0.4812±0.0059
∆Γ/Γ (3.6±3.0) ·10−2 (2.8±2.8) ·10−2

| q/p | 1.009±0.012 1.013±0.012
ImλCP
|λCP| 0.679±0.048 0.669±0.046

ReλCP
|λCP| Rez (−0.1±3.4) ·10−2 (−1.1±3.2) ·10−2

Imz (−0.8±2.1) ·10−2 (−0.6±2.1) ·10−2

Table 56: Comparison of Analysis 2 fit results,GG resolution function, between the default Elba Tagger and
the Moriond tagger, for the standard inclusive Monte Carlo.

Parameter Nominal fit (Elba tagger) Moriond Tagger

∆m 0.4784±0.0061 0.4811±0.0059
∆Γ/Γ (3.5±3.0) ·10−2 (2.9±2.8) ·10−2

| q/p | 1.009±0.012 1.013±0.012
ImλCP
|λCP| 0.681±0.048 0.670±0.046

Table 57: Comparison of Analysis 1 fit results,GG resolution function, between the default Elba Tagger and
the Moriond tagger, for the standard inclusive Monte Carlo.
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Parameter Analysis 1 Analysis 2

∆m (0.6±1.2) ·10−3 (6.7±8.9) ·10−4

∆Γ/Γ (1.0±1.7) ·10−2 (0.8±1.8) ·10−2

| q/p | (−0.1±1.2) ·10−3 (−0.1±1.0) ·10−3

ImλCP
|λCP| (3.3±8.2) ·10−3 (3.9±7.9) ·10−3

ReλCP
|λCP| Rez — (0.1±1.2) ·10−2

Imz — (−1.4±2.4) ·10−3

Table 58: Differences between the standard fit and the one done imposingJ/ψ mass constraint for theCPvertex
(for technical reasonsB0 → J/ψK0

S (π0π0) is excluded from this comparison). The quadratic error difference is
reported as well. Only common events are used here.

Parameter Analysis 1 Analysis 2

∆m (0.3±1.3) ·10−3 (9.5±6.1) ·10−4

∆Γ/Γ (0.2±1.7) ·10−2 (−0.1±1.1) ·10−2

| q/p | (9.8±7.5) ·10−4 (7.3±6.9) ·10−4

ImλCP
|λCP| (−2.4±7.6) ·10−3 (−2.6±2.4) ·10−3

ReλCP
|λCP| Rez — (1.17±0.58) ·10−2

Imz — (4.4±1.5) ·10−3

Table 59: Differences between the standard fit and the one done using the charmonium vertex asCP vertex.
The quadratic error difference is reported as well. Only common events are used here.

Parameter Analysis 1 Analysis 2

∆m (0.6±5.4) ·10−4 (−0.6±6.6) ·10−4

∆Γ/Γ (0.3±6.7) ·10−3 (0.4±7.8) ·10−3

| q/p | (−1.1±6.5) ·10−4 (−0.9±6.4) ·10−4

ImλCP
|λCP| (4.1±4.7) ·10−3 (4.9±3.6) ·10−3

ReλCP
|λCP| Rez — (−2.1±4.8) ·10−3

Imz — (0.8±1.4) ·10−4

Table 60: Differences between the standard fit and the one done removing theK0
S mass constraint. The quadratic

error difference is reported as well. Only common events areused here.

8.12 B0B0 differences in reconstruction and tagging efficiencies

In this analysis,B0B0 differences in reconstruction and tagging efficiencies,µα andνα , are extracted simul-
taneously with all the other parameters from the time-dependent extended maximum likelihood fit and using
the time-integrated constraints described in section 2.

To check the feasibility of this technique, three toy Monte Carlo checks were performed.

The first test was based on more than 600 toy Monte Carlo experiments with equivalent luminosity of≈
60 fb−1with the same physics parameter values as in the standard full Monte Carlo (table 6), and withB0B0

reconstruction and tagging asymmetries similar to those found in the data. The samples were fitted with and
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Figure 56: Graphical summary of the differences between thestandard fit and the different vertexing configu-
rations (explained in the text) from common events, for∆m, ∆Γ/Γ, | q/p | and ImλCP

|λCP| (Analysis 2).
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Parameter Analysis 1 Analysis 2

∆m (−9.2±5.5) ·10−4 (−1.9±1.5) ·10−3

∆Γ/Γ (1.3±1.7) ·10−2 (1.8±2.1) ·10−2

| q/p | (−1.2±2.2) ·10−3 (−0.4±2.1) ·10−3

ImλCP
|λCP| (2.4±2.9) ·10−2 (2.4±2.9) ·10−2

ReλCP
|λCP| Rez — (−2.1±1.7) ·10−2

Imz — (−0.9±4.4) ·10−3

Table 61: Differences between the standard fit and the one done removing the photons from theCPvertex. The
quadratic error difference is reported as well. Only commonevents are used here.

Parameter Analysis 1 Analysis 2

∆m (−1.46±0.55) ·10−2 (−1.51±0.55) ·10−2

∆Γ/Γ (−2.1±1.1) ·10−2 (−2.4±1.6) ·10−2

| q/p | (−8.7±8.7) ·10−3 (−8.9±8.7) ·10−3

ImλCP
|λCP| (−0.3±3.7) ·10−2 (0.1±3.9) ·10−2

ReλCP
|λCP| Rez — (−0.2±1.5) ·10−2

Imz — (0.7±2.2) ·10−2

Table 62: Differences between the standard fit and the one done removing the constraints from the beam. The
quadratic error difference is reported as well. Only commonevents are used here.

Parameter Analysis 1 Analysis 2

∆m (−1.0±3.0) ·10−3 (0.8±4.3) ·10−3

∆Γ/Γ (−0.9±3.3) ·10−2 (−3.0±2.1) ·10−2

| q/p | (−5.1±4.2) ·10−3 (−6.0±4.0) ·10−3

ImλCP
|λCP| (−0.9±1.7) ·10−2 (−0.3±1.8) ·10−2

ReλCP
|λCP| Rez — (2.4±1.4) ·10−2

Imz — (0.5±1.2) ·10−2

Table 63: Differences between the standard fit and the one done using only the beam spot constraint. The
quadratic error difference is reported as well. Only commonevents are used here.

Parameter Analysis 1 Analysis 2

∆m (−0.3±2.6) ·10−3 (−0.0±2.6) ·10−3

∆Γ/Γ (−1.2±9.5) ·10−3 (−5.8±2.0) ·10−3

| q/p | (0.7±4.5) ·10−3 (0.4±4.6) ·10−3

ImλCP
|λCP| (−1.7±1.3) ·10−2 (−1.87±0.30) ·10−2

ReλCP
|λCP| Rez — (0.5±1.6) ·10−2

Imz — (−0.5±1.1) ·10−2

Table 64: Differences between the standard fit and the one done removing theV0 veto in the tag vertex recon-
structions. The quadratic error difference is reported as well. Only common events are used here.
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Parameter Analysis 1 Analysis 2

∆m (−0.3±1.1) ·10−3 (−5.0±3.8) ·10−4

∆Γ/Γ (0.2±1.1) ·10−2 (0.3±1.1) ·10−2

| q/p | (−9.6±8.6) ·10−4 (−7.3±8.8) ·10−4

ImλCP
|λCP| (1.79±0.93) ·10−2 (1.61±0.74) ·10−2

ReλCP
|λCP| Rez — (−3.8±6.6) ·10−3

Imz — (1.3±3.6) ·10−3

Table 65: Differences between the standard fit and the one done using theaverage boost approximation. The
quadratic error difference is reported as well. Only commonevents are used here.

Parameter Analysis 1 Analysis 2

∆m (1.19±0.58) ·10−3 (1.11±0.22) ·10−3

∆Γ/Γ (−0.2±1.3) ·10−2 (0.2±1.5) ·10−2

| q/p | (0.5±2.0) ·10−3 (0.5±2.0) ·10−3

ImλCP
|λCP| (−2.9±1.0) ·10−2 (−2.9±1.3) ·10−2

ReλCP
|λCP| Rez — (5.9±5.8) ·10−3

Imz — (−0.5±3.5) ·10−3

Table 66: Differences between the standard fit and the one done using the alternativeFvtCluster tag vertex
algorithm. The quadratic error difference is reported as well. Only common events are used here.

without fitting for the charge asymmetries (detector asymmetries+possible CP violation in decay in the tagging
and flavorB sides). It was found that the only physics parameter significantly affected was| q/p |, which
error increased by about 30%, as expected due to the correlation between| q/p | and the reconstructed and
tagging efficiencies. At the end of the fitting procedure, thevalues ofνα andµα were consistent with those
generated. This exercise proves that with this approach were are translating the systematics induced by the
possible detector charge asymmetries into a larger statistical error.

A second toy Monte Carlo was devoted to verify that this proceduce is able to disentangle the physics
(mainly | q/p |6= 0) and charge asymmetries. Here, we generated 200 toy Monte Carlo experiments with a large
detector asymmetry (ν = 10% andµα is 5%, 10%, 5% and 5% for the different tagging categories), as well as
a large value of Reε

1+|ε|2 (| q/p |), 0.05. The samples were then fitted using two different setsof starting values for

να , µα , Reε
1+|ε|2 and∆Γ/Γ: i) the generated values, ii) all zero and∆Γ/Γ=0.1. Figure 58 shows the sample-by-

sample comparison of the results of the fit for∆Γ/Γ and Reε
1+|ε|2 (the correlation and the differences). From this

check we concluded that with this procedure we are able to disentangle the physics and charge asymmetries
which would result in an asymmetry in the number ofB0B0 events, at the cost of a reasonable increase in the
statistical error on| q/p |(previous test).

The third check was performed using the dedicated full MonteCarlo sample. Here, we rerun theB recon-
struction, vertexing and tagging code after killing randomly and uniformly (nop, θ, φ dependencies) 5% of
positive and negative tracks. This 5% is approximately the precision with which we have verified on the data
that there are no statistically significant asymmetries (tables 27 and 28). Then, the standard fits were applied.
The results from these fits, for the Analysis 1 and Analysis 2 fits, are shown in table 67. The variation with
respect to the results with no killing (tables 42 and 43) are consistent with the statistical difference. These
results were used to estimate a systematic uncertainty to account for any possible residual effect (see section
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Figure 57: Graphical summary of the differences between thestandard fit and the different vertexing configu-
rations (explained in the text) from common events, for RezReλCP

|λCP| and Imz (Analysis 2).

9.9).

Parameter An. 1 - positive An. 1 - negative An. 2 - positive An. 2 - negative

∆m 0.4828±0.0050 0.4817±0.0051 0.4828±0.0050 0.4816±0.0051
∆Γ/Γ 0.182±0.016 0.177±0.016 0.182±0.016 0.176±0.016
| q/p | 1.0400±0.0097 1.0330±0.0097 1.0397±0.0097 1.0329±0.0097
ImλCP
|λCP| 0.704±0.022 0.705±0.023 0.705±0.022 0.702±0.023

ReλCP
|λCP| Rez — — (0.8±1.6) ·10−2 (0.5±1.7) ·10−2

Imz — — (0.1±1.7) ·10−2 (−0.9±1.7) ·10−2

Table 67: Results from dedicated full Monte Carlo, Analysis2 fit, killing 5% of positive and negative tracks.
GG resolution function is used.

Finally, as an alternative approach, one may extractνα andµα directly from the time-dependent analysis
without applying the time-integrated constraints. In thiscase it was explicitely assumed a commonνα value for
all tagging categories. Given the large anti-correlation of | q/p | with these parameters (about−95%), its error
increases dramatically, as shown in table 68. All the other parameters remain basically unchanged.
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Figure 58: Comparison between the results obtained fitting the same 60 fb−1 samples generated with large
B0B0 differences in reconstruction and tagging efficiencies andlarge Reε

1+|ε|2 (| q/p |), using different starting
points for the corresponding parameters (see text for details). The upper left plot shows the correlation among
the fitted values of∆Γ/Γ from the two sets of starting points, while the upper right shows the distribution of the
differnce between the two fitted parameters. The lower plotsshow the analogous for theReε

1+|ε|2 parameter.

Parameter Analysis 1 Analysis 2

∆m 0.5221±0.0098 0.523±0.010
∆Γ/Γ (−0.9±4.9) ·10−2 (−2.2±4.8) ·10−2

| q/p | 0.908±0.056 0.905±0.056
ImλCP
|λCP| 0.612±0.085 0.620±0.082

ReλCP
|λCP| Rez — (−6.4±4.5) ·10−2

Imz — −0.916±0.034

Table 68: Results from fits to whereµα andνα are extracted from the time-dependent analysis without time-
integrated constraints. These results must be compared to those of tables 17 and 21. Note the dramatic increase
in the | q/p | error.

8.13 Results by run period

The fit was also performed for three different data taking periods: Run 1, Run 2a and Run 2b. The results
are given in table 69.
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Parameter Run 1 Run 2a Run 2b

∆m 0.504±0.018 0.554±0.022 0.524±0.014
∆Γ/Γ (−5.0±7.5) ·10−2 −0.06±0.15 (3.1±6.8) ·10−2

| q/p | 0.965±0.032 0.904±0.039 0.946±0.026
ImλCP
|λCP| 0.50±0.14 0.85±0.17 0.64±0.13

Parameter Run 1 Run 2a Run 2b

∆m 0.518±0.021 0.554±0.022 0.524±0.014
∆Γ/Γ (−5.1±5.9) ·10−2 −0.06±0.17 (2.8±7.0) ·10−2

| q/p | 0.963±0.033 0.903±0.039 0.946±0.026
ImλCP
|λCP| 0.53±0.13 0.86±0.16 0.65±0.13

ReλCP
|λCP| Rez (7.4±6.9) ·10−2 −0.115±0.035 −0.105±0.063

Imz −0.892±0.057 −0.906±0.083 −0.936±0.049

Table 69: Fit results by run period for Analysis 1 (up) and 2 (down).

8.14 Splitting of Bf lav sample

As a cross-check of the DCKM effects in the reconstructed side (Bf lav sample), theBf lav sample was splitted
in two sub-samples:B0 → D(∗)π(ρ,a1) andB0→J/ψK∗0, the latter free of DCKM contributions in the reco’d
side. The test was performed running the nominal fit separately for B0 → D(∗)π(ρ,a1) andB0→J/ψK∗0. BCPK0

S

andBCPK0
L

samples are unchanged with respect to nominal fit. When fitting theB0→J/ψK∗0 sampleImλ f lav

|λ f lav| and
Imλ̄ f lav

|λ̄ f lav|
were fixed to zero. The complete fit results from both these fitsare given in table 70.
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Parameter StandardBf lav Using D∗X Using J/ψK∗

∆m 0.523±0.010 0.522±0.011 0.524±0.028
∆Γ/Γ (−2.1±4.8) ·10−2 (−1.7±4.7) ·10−2 (−3.5±6.1) ·10−2

| q/p | 0.945±0.018 0.947±0.019 0.916±0.046
ImλCP
|λCP| 0.620±0.083 0.625±0.082 0.589±0.099

ReλCP
|λCP| Rez (−6.4±4.6) ·10−2 (−6.1±4.6) ·10−2 (2.2±6.7) ·10−2

Imz −0.918±0.034 −0.910±0.035 −1.002±0.077
Imλ f lav
|λ f lav| 1.7±1.4 2.1±1.5 3.5±4.0

Imλ̄ f lav

|λ̄ f lav|
−0.7±1.4 −0.8±1.5 4.7±3.5

Imλtag
|λtag| 1.7±1.5 2.5±1.6 1.0±3.6

Imλ̄tag

|λ̄tag|
−0.8±1.6 −0.7±1.6 5.7±3.4

Score 1.241±0.059 1.235±0.063 1.30±0.11
δlepton

core (0.4±8.4) ·10−2 (5.0±8.4) ·10−2 0.09±0.18
δkaon

core −0.302±0.060 −0.282±0.055 −0.387±0.096
δNT1

core −0.215±0.093 −0.168±0.092 −0.43±0.21
δNT2

core −0.263±0.077 −0.236±0.075 −0.31±0.14
ftail (3.8±1.8) ·10−2 (3.4±3.2) ·10−2 (1.9±1.4) ·10−2

Stail 4.3±1.7 2.8±1.6 7.8±2.2
δtail −2.7±1.4 −4.2±3.0 −1.5±2.6

foutlier (1.5±2.0) ·10−3 (2.6±1.6) ·10−3 (0.0±8.5) ·10−5

wlepton
0 (9.3±2.4) ·10−2 (9.3±2.5) ·10−2 0.103±0.098

wkaon
0 (7.1±2.0) ·10−2 (7.9±2.2) ·10−2 (2.2±2.2) ·10−2

wNT1
0 0.184±0.043 0.171±0.045 0.25±0.11

wNT2
0 0.362±0.037 0.353±0.039 0.45±0.10

wlepton
slope (−3.5±4.3) ·10−2 (−3.2±4.4) ·10−2 −0.06±0.21

wkaon
slope 0.167±0.033 0.151±0.035 0.30000±0.00052

wNT1
slope (4.2±7.3) ·10−2 (6.8±7.6) ·10−2 −0.13±0.19

wNT2
slope (1.3±5.6) ·10−2 (2.8±5.9) ·10−2 −0.16±0.16

∆wlepton (2.1±1.6) ·10−2 (2.0±1.7) ·10−2 (3.6±5.3) ·10−2

∆wkaon (−1.3±1.2) ·10−2 (−1.7±1.3) ·10−2 (0.3±3.1) ·10−2

∆wNT1 (1.7±2.4) ·10−2 (1.7±2.5) ·10−2 (4.1±6.6) ·10−2

∆wNT2 (−3.5±1.9) ·10−2 (−3.7±2.0) ·10−2 (2.8±4.6) ·10−2

f lepton
prompt,Bf lav

0.384±0.067 0.395±0.069 0.23±0.19

f kaon
prompt,Bf lav

0.643±0.024 0.651±0.024 0.108±0.068

f NT1
prompt,Bf lav

0.615±0.038 0.634±0.038 (0.0±4.4) ·10−4

f NT2
prompt,Bf lav

0.701±0.025 0.704±0.025 0.64±0.13

Sback 1.389±0.023 1.393±0.023 0.88±0.13
δback (−3.8±1.7) ·10−2 (−4.0±1.7) ·10−2 (−2.9±8.6) ·10−2

fback,outlier (1.18±0.21) ·10−2 (1.16±0.21) ·10−2 (3.8±1.7) ·10−2

wlepton
0,prompt 0.143±0.080 0.150±0.078 (0.0±1.7) ·10−3

wkaon
0,prompt 0.250±0.011 0.247±0.011 1.0000±0.0020

wNT1
0,prompt 0.339±0.030 0.340±0.029 1.0000±0.0048

wNT2
0,prompt 0.449±0.015 0.447±0.015 0.69±0.15

wlepton
0,non−prompt 0.399±0.055 0.398±0.057 0.39±0.19

wkaon
0,non−prompt 0.388±0.020 0.394±0.020 0.330±0.067

wNT1
0,non−prompt 0.448±0.045 0.454±0.047 0.37±0.11

wNT2
0,non−prompt 0.461±0.032 0.466±0.032 (0.0±9.7) ·10−4

τnon−prompt 1.319±0.057 1.321±0.058 1.43±0.17
fprompt,B

CPK0
S

0.632±0.070 0.635±0.069 0.348±0.094

τnon−prompt,B
CPK0

S
2.30±0.45 2.31±0.46 1.36±0.23

Table 70: Comparison of Analysis 2 fit results usingB0 → D(∗)π(ρ,a1) or B0→J/ψK∗0 alone asBf lav sample.
Imλ f lav

|λ f lav| and Imλ̄ f lav

|λ̄ f lav|
were fixed to zero for the latter.
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8.15 Comparison ofNAG, Minuit and RooFitTools results

Several checks were performed by comparingcptNagFit (NAG againstMinuit) andRooFitTools
[16]. These checks were done on both toy Monte Carlo and the data sample.

In the first check, we generated 60f b−1 toy Monte Carlo experiments, signal events only, using thecpt-
NagFit generator. Then we we performed fits toImλCP

|λCP| only using the two packages. The physics parameter
values used in this generation are those corresponding to the standard full Monte Carlo, shown in table 6. In
this exercise,B0B0 differences in tagging and reconstruction efficiencies andtaggin/vertexing correlations were
neglected. The correlation among the central values and reported errors for the two fitters are shown in figure
59(a). The errors reported bycptNagFit tend to be slightly smaller thanRooFit. Figure 59(b) shows the
corresponding differences, indicating that the spread of the central values is consistent with the small difference
(calculated quadratically) in the reported errors.

As an additional check, we performed the fit withcptNagFit usingNAG andMinuit libraries, fitting
the same toy Monte Carlo experiments, but now now leaving allphysics parameters free. Figure 60 shows
the correlation of the results from the two libraries, for the converged fits. TheNAG option is the one used
by default in this analysis. From these Monte Carlo studies we observe that the rate of failed fits and the
speed is signficantly better forNAG, the difference increasing as the number of free parametersincreases. As
an example, the CPU needed byNAG to perform a nonimal full fit on≈ 60 fb−1 (signal+background) is on
average less than half of what is needed byMinuit. In the case of the data fit (see below)Minuit takes more
than twice CPU time thanNAG.

(a) (b)

Figure 59: (a)RooFit versuscptNagFit central values and errors for sin2β only fits, from toy Monte Carlo
samples with generated sin2β = 0.70); (b) residual distribution for the two considered quantities. The residual
error distributions shows the signed root square difference between the squared errors of the two fitters. The
sign is determined by the sign of the difference (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 60:Minuit versusNAG, and residual distribution for the physics parameters and their estimated errors:
(a) Imε

1+|ε|2 , (b) Imδ
1+|ε|2 , (c) Reε

1+|ε|2 (d) Reδ
1+|ε|2 , (e)∆mand (f)∆Γ/Γ.
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The third test we performed was the comparison of results found withcptNagFit andRootFitTools
for sin2β only fits in data. In this check, the following simplicationswere made (in order to compare with the
standard sin2β analysis results, [8]): i)∆m, σtail andrk (k= tag, f lav) were fixed respectively to 0.472 ps−1, 3.0

and 0 (therefore we did not fit forImλtag

|λtag| , Imλ̄tag

|λ̄tag|
, Imλ f lav

|λ f lav| and Imλ̄ f lav

|λ̄ f lav|
); ii) the tagging/vertexing correlations were

neglected. The only differences between theRootFitTools and thecptNagFit fits were: i)cptNagFit
fitted for theB0B0 differences in reconstruction and tagging efficiencies (sin2β is however insensitive to this);
ii) the σ∆t cut was 1.4 ps forcptNagFitwhile it was 2.5 ps forRootFitTools. As the data sample we are
using was already unblided (for sin2β) these fits were performed unblinded. Table 71 compares the fit results
for the combinedBCPK0

S
andBCPK0

L
fit. The corresponding values forBCPK0

S
andBCPK0

L
only fits are compared in

tables 72 and 73 respectively.

Finally, the nominal fits for Analysis 1 and Analysis 2 were performed usingMinuit instead of the default
NAG option incptNagFit. The results are reported in tables 74 and 75, for Analysis 1 and 2 respectively.
The agreement with the nominal fits, tables 17 and 21, is excellent. This cross-check for data fits using two
completely different minimization libraries was very important to verify the robustness of the final result.

8.16 Results from charged B’s

As an additional control check, the nominal fit was applied tothe chargedB sample. As flavor sample in
this case we used the chargedB sample described in section 7.1.1, and as CP sample we used the charmonium
B+ sample, with the following modes:B+→J/ψK+, B+→ψ(2S)K+, B+→χc1 K+ andB+→J/ψK∗+(K0

S π+),
with J/ψ→e−e−,µ+µ− andψ(2S)→J/ψe−e−,µ+µ−,J/ψπ+π−; χc1 →J/ψγ [8]. Due to the absence of mixing
and CP violation in these samples, it was not possible to perform a simulatenous fit to all the parameters. The
check was then performed by fixing∆m=0 and| q/p |=1 in theBf lav sample, and∆m=0.472ps−1 and ImλCP

|λCP| =0
in the BCP samples, fitting only for∆Γ/Γ, Rez and Imz. The results are given in table 76. No statistically
significant deviations from 0 are observed.

Figure 61 summarizes graphically the differences to the nominal fit in the data for the different cross-check
configurations described in this section.

9 Systematic uncertainties

9.1 Signal probability of Bf lav and BCPK0
S

samples

The event-by-event probability forBf lav and BCPK0
S

samples was fixed to the values obtained from the
previousmES fits. We compared the fit results from the nominal fits to the values obtained by changing one
sigma up and down all themESdistribution parameters, taking into account their correlations. This is performed
simultaneously for all tagging categories, and independently for the Bf lav andBCPK0

S
samples. The resulting

variations of physical parameters, given in table 77, are taken as systematic uncertainty.

We adopted also an alternative approach assuming a flat signal probability distribution: the events belonging
to the sideband region (mES<5.27 GeV/c2) are assigned a signal probability of zero, while we assigned a signal
probability equal to the purity of the corresponding sampleto signal region events (mES>5.27 GeV/c2). The
differences among fitted physical parameters with respect to standard approach are given in table 78. Results
are in all cases consistent. The change off the different parameters by varying up and down with the error of
the sample purity the signal probability are reported in table 79.
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Figure 61: Graphical summary of the differences between thestandard data fit and the different cross-check
configurations described in this section for∆Γ/Γ, | q/p |, ReλCP

|λCP| Rezand Imz (Analysis 2).
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Parameter cptNagFit RooFit
ImλCP
|λCP| (sin2β) 0.753±0.089 0.753±0.089

Score 1.190±0.056 1.167±0.053
δlepton

core (1.0±7.3) ·10−2 (2.1±6.6) ·10−2

δkaon
core −0.279±0.047 −0.229±0.040

δNT1
core −0.203±0.087 −0.226±0.079

δNT2
core −0.240±0.067 −0.190±0.058
ftail (2.9±2.0) ·10−2 (7.0±2.5) ·10−2

δtail −4.0±1.8 −2.02±0.72
foutlier (3.1±1.5) ·10−3 (3.5±1.5) ·10−3

wlepton
0 (8.67±0.91) ·10−2 (8.57±0.87) ·10−2

wkaon
0 0.1821±0.0069 0.1823±0.0065

wNT1
0 0.218±0.015 0.218±0.014

wNT2
0 0.375±0.013 0.372±0.012

∆wlepton (1.9±1.6) ·10−2 (1.1±1.4) ·10−2

∆wkaon (−1.4±1.1) ·10−2 (−9.0±9.8) ·10−3

∆wNT1 (1.4±2.3) ·10−2 (0.6±2.1) ·10−2

∆wNT2 (−3.6±1.9) ·10−2 (−3.6±1.7) ·10−2

Parameter cptNagFit RooFit

f lepton
prompt,Bf lav

0.383±0.067 0.372±0.067
f kaon
prompt,Bf lav

0.643±0.024 0.633±0.024
f NT1
prompt,Bf lav

0.615±0.038 0.594±0.039
f NT2
prompt,Bf lav

0.701±0.025 0.702±0.024

Sback 1.391±0.023 1.390±0.021
δback (−3.8±1.7) ·10−2 (−3.2±1.6) ·10−2

fback,outlier (1.18±0.21) ·10−2 (1.76±0.23) ·10−2

wlepton
0,prompt 0.132±0.081 0.123±0.085

wkaon
0,prompt 0.248±0.011 0.257±0.012

wNT1
0,prompt 0.337±0.030 0.332±0.031

wNT2
0,prompt 0.448±0.015 0.456±0.015

wlepton
0,non−prompt 0.407±0.055 0.411±0.054

wkaon
0,non−prompt 0.393±0.020 0.394±0.020

wNT1
0,non−prompt 0.452±0.045 0.452±0.043

wNT2
0,non−prompt 0.463±0.032 0.463±0.032
τnon−prompt 1.322±0.057 1.290±0.054

Table 71: Comparison ofcptNagFit andRootFitTools results for the sin2β only fit. sin2β is in this
case unblinded.

We finally assigned as systematics the larger one sigma variation between the two methods.

In addition, we changed themES endpoint in themES fit (by default is fixed to 5.291 GeV/c2) by ±0.002
GeV/c2. The change on the parameters is given in table 80.
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Parameter cptNagFit RooFit
ImλCP
|λCP| (sin2β) 0.755±0.100 0.758±0.100

Score 1.188±0.057 1.183±0.054
δlepton

core (1.0±7.4) ·10−2 (2.2±6.9) ·10−2

δkaon
core −0.272±0.047 −0.238±0.041

δNT1
core −0.213±0.088 −0.220±0.082

δNT2
core −0.236±0.069 −0.202±0.061
ftail (2.9±2.0) ·10−2 (5.6±2.5) ·10−2

δtail −4.1±1.8 −2.5±1.0
foutlier (3.4±1.6) ·10−3 (3.7±1.6) ·10−3

wlepton
0 (8.60±0.91) ·10−2 (8.62±0.90) ·10−2

wkaon
0 0.1814±0.0069 0.1812±0.0068

wNT1
0 0.217±0.015 0.220±0.015

wNT2
0 0.376±0.013 0.372±0.013

∆wlepton (2.2±1.6) ·10−2 (0.9±1.5) ·10−2

∆wkaon (−0.8±1.1) ·10−2 (−0.7±1.0) ·10−2

∆wNT1 (2.4±2.4) ·10−2 (1.8±2.3) ·10−2

∆wNT2 (−3.6±1.9) ·10−2 (−4.1±1.9) ·10−2

Parameter cptNagFit RooFit

f lepton
prompt,Bf lav

0.385±0.067 0.384±0.068
f kaon
prompt,Bf lav

0.645±0.024 0.641±0.024
f NT1
prompt,Bf lav

0.617±0.038 0.612±0.038
f NT2
prompt,Bf lav

0.703±0.025 0.705±0.024

Sback 1.393±0.023 1.394±0.021
δback (−3.8±1.7) ·10−2 (−3.4±1.6) ·10−2

fback,outlier (1.18±0.21) ·10−2 (1.74±0.23) ·10−2

wlepton
0,prompt 0.133±0.080 0.132±0.082

wkaon
0,prompt 0.248±0.011 0.254±0.012

wNT1
0,prompt 0.337±0.030 0.333±0.030

wNT2
0,prompt 0.448±0.015 0.453±0.015

wlepton
0,non−prompt 0.408±0.055 0.410±0.056

wkaon
0,non−prompt 0.393±0.020 0.399±0.020

wNT1
0,non−prompt 0.452±0.045 0.457±0.045

wNT2
0,non−prompt 0.463±0.032 0.468±0.033
τnon−prompt 1.323±0.057 1.292±0.056

Table 72: Comparison ofcptNagFit andRootFitTools results for the sin2β only fit (BCPK0
S

only). sin2β
is in this case unblinded.

9.2 Resolution function

Two difference sources of systematics from the resolution function are considered.

The first one is due to its parameterization, for signal and combinatorial background. This is estimated from
the difference between the (GGvs GExp) resolution models. The differences are reported in table 81.
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Parameter cptNagFit RooFit
ImλCP
|λCP| (sin2β) 0.74±0.19 0.73±0.19

Score 1.177±0.060 1.155±0.058
δlepton

core (−1.1±7.5) ·10−2 (−0.2±7.0) ·10−2

δkaon
core −0.268±0.048 −0.236±0.043

δNT1
core −0.188±0.089 −0.201±0.085

δNT2
core −0.231±0.069 −0.203±0.063
ftail (3.6±2.4) ·10−2 (8.0±2.6) ·10−2

δtail −3.6±1.6 −1.80±0.62
foutlier (2.8±1.5) ·10−3 (2.7±1.5) ·10−3

wlepton
0 (8.65±0.91) ·10−2 (8.65±0.91) ·10−2

wkaon
0 0.1822±0.0069 0.1809±0.0068

wNT1
0 0.218±0.015 0.220±0.015

wNT2
0 0.375±0.013 0.372±0.013

∆wlepton (1.6±1.6) ·10−2 (0.6±1.5) ·10−2

∆wkaon (−1.6±1.1) ·10−2 (−1.2±1.1) ·10−2

∆wNT1 (0.9±2.4) ·10−2 (0.5±2.3) ·10−2

∆wNT2 (−4.4±2.0) ·10−2 (−4.4±1.9) ·10−2

Parameter cptNagFit RooFit

f lepton
prompt,Bf lav

0.384±0.067 0.388±0.068
f kaon
prompt,Bf lav

0.644±0.024 0.643±0.024
f NT1
prompt,Bf lav

0.616±0.038 0.614±0.038
f NT2
prompt,Bf lav

0.702±0.025 0.706±0.024

Sback 1.391±0.023 1.395±0.021
δback (−3.6±1.7) ·10−2 (−3.2±1.6) ·10−2

fback,outlier (1.16±0.20) ·10−2 (1.64±0.23) ·10−2

wlepton
0,prompt 0.132±0.080 0.134±0.080

wkaon
0,prompt 0.248±0.011 0.254±0.012

wNT1
0,prompt 0.337±0.030 0.333±0.030

wNT2
0,prompt 0.448±0.015 0.453±0.015

wlepton
0,non−prompt 0.408±0.055 0.411±0.056

wkaon
0,non−prompt 0.393±0.020 0.400±0.020

wNT1
0,non−prompt 0.452±0.045 0.457±0.045

wNT2
0,non−prompt 0.463±0.032 0.468±0.033
τnon−prompt 1.325±0.057 1.304±0.057

Table 73: Comparison ofcptNagFit andRootFitTools results for the sin2β only fit (BCPK0
L

only). sin2β
is in this case unblinded.

The second source contributing to the systematics from the resolution function is due to the parameters of
the the outlier component (width and bias), fixed to 8.0 and 0.0 ps. The uncertainty was estimated in this case
by assuming a flat outlier Gaussian (table 82). An additionalcontribution was estimated by varying±6 ps the
width, and±5 ps the bias. The results from this variation are summarizedin tables 83 and 84.
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Parameter B0 fit results (GG model)

∆m 0.5218±0.0097
∆Γ/Γ (−1.1±5.0) ·10−2

| q/p | 0.946±0.018
ImλCP
|λCP| 0.611±0.085

Score 1.291±0.045
δlepton

core (−1.7±7.1) ·10−2

δkaon
core −0.316±0.040

δNT1
core −0.233±0.083

δNT2
core −0.278±0.061
ftail (1.04±0.31) ·10−2

Stail 0.40±0.67
δtail −7.71±0.62

foutlier (2.9±1.4) ·10−3

wlepton
0 (9.3±2.2) ·10−2

wkaon
0 (7.2±2.0) ·10−2

wNT1
0 0.182±0.040

wNT2
0 0.362±0.037

wlepton
slope (−3.3±3.9) ·10−2

wkaon
slope 0.164±0.032

wNT1
slope (4.6±6.8) ·10−2

wNT2
slope (1.3±5.5) ·10−2

∆wlepton (2.2±1.6) ·10−2

∆wkaon (−1.2±1.2) ·10−2

∆wNT1 (1.8±2.4) ·10−2

∆wNT2 (−3.4±1.9) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav
|λ f lav| 0.7±1.2
Imλ̄ f lav

|λ̄ f lav|
0.5±1.2

Imλtag
|λtag| 0.5±1.3
Imλ̄tag

|λ̄tag|
0.6±1.3

f lepton
prompt,Bf lav

0.383±0.067

f kaon
prompt,Bf lav

0.643±0.024

f NT1
prompt,Bf lav

0.615±0.038

f NT2
prompt,Bf lav

0.701±0.025

Sback 1.388±0.023
δback (−3.8±1.6) ·10−2

fback,outlier (1.18±0.21) ·10−2

wlepton
0,prompt 0.143±0.079

wkaon
0,prompt 0.250±0.011

wNT1
0,prompt 0.339±0.030

wNT2
0,prompt 0.449±0.015

wlepton
0,non−prompt 0.398±0.055

wkaon
0,non−prompt 0.387±0.020

wNT1
0,non−prompt 0.448±0.045

wNT2
0,non−prompt 0.461±0.032
τnon−prompt 1.320±0.056
fprompt,B

CPK0
S

0.632±0.069

τnon−prompt,B
CPK0

S
2.30±0.45

Table 74: Analysis 1 results fromMinuit, GG resolution model.

9.3 Beam spot

The beam spot position and width are used in the vertexing algorithm of the taggingB [24]. For this reason
is important to determine the systematic contribution coming from the determination of its parameters. We
performed Analysis 1 and 2 data fits moving the beam spot by 20 and 40µm in they direction (the one along
which is best determined the width) and increasing the widthby the same amount (separately). Since the sample
composition of the reconstructed events can differ when thebeam spots parameters are changed, we used the
events common to the two samples to perform a fit in the standard configuration and in the one where we
introduced the systematic effect. The differences among the fitted values are reported in tables 85 and 86. The
largest differences are used to assign the systematic error.

9.4 Absolutez scale and boost uncertainty

The uncertainty in the scale of the∆z measurement has been estimated to be about±0.3% [25]. As this
estimate corresponds to the beampipe, the uncertainty has been conservatively increased by a factor 2 to account
for possible mistakes in the extrapolation to the beamspot.On the other hand, the boost is known with a relative
precision of±0.1% [27]. The effect of the uncertainty on the absolutez scale and boost can then be evaluated
scaling the measured∆t and its error by 0.6% in the data sample. The effect on the physical parameters is
shown in table 88.
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Parameter B0 fit results (GG model)

∆m 0.523±0.010
∆Γ/Γ (−2.4±4.9) ·10−2

| q/p | 0.945±0.018
ImλCP
|λCP| 0.618±0.083

ReλCP
|λCP| Rez (−6.0±4.7) ·10−2

Imz −0.918±0.034
Score 1.291±0.045

δlepton
core (−1.9±7.1) ·10−2

δkaon
core −0.316±0.040

δNT1
core −0.233±0.083

δNT2
core −0.278±0.061
ftail (1.03±0.30) ·10−2

Stail 0.38±0.67
δtail −7.71±0.62

foutlier (2.9±1.4) ·10−3

wlepton
0 (9.3±2.2) ·10−2

wkaon
0 (7.2±2.0) ·10−2

wNT1
0 0.182±0.040

wNT2
0 0.362±0.037

wlepton
slope (−3.4±3.9) ·10−2

wkaon
slope 0.165±0.032

wNT1
slope (4.6±6.8) ·10−2

wNT2
slope (1.3±5.5) ·10−2

∆wlepton (2.1±1.6) ·10−2

∆wkaon (−1.3±1.2) ·10−2

∆wNT1 (1.7±2.4) ·10−2

∆wNT2 (−3.4±1.9) ·10−2

Parameter B0 fit results (GGmodel)
Imλ f lav
|λ f lav| 1.7±1.4
Imλ̄ f lav

|λ̄ f lav|
−0.6±1.4

Imλtag
|λtag| 1.7±1.5
Imλ̄tag

|λ̄tag|
−0.7±1.6

f lepton
prompt,Bf lav

0.383±0.067

f kaon
prompt,Bf lav

0.643±0.024

f NT1
prompt,Bf lav

0.615±0.038

f NT2
prompt,Bf lav

0.701±0.025

Sback 1.388±0.023
δback (−3.8±1.6) ·10−2

fback,outlier (1.18±0.21) ·10−2

wlepton
0,prompt 0.143±0.079

wkaon
0,prompt 0.250±0.011

wNT1
0,prompt 0.339±0.030

wNT2
0,prompt 0.449±0.015

wlepton
0,non−prompt 0.398±0.055

wkaon
0,non−prompt 0.387±0.020

wNT1
0,non−prompt 0.448±0.045

wNT2
0,non−prompt 0.461±0.032
τnon−prompt 1.320±0.056
fprompt,B

CPK0
S

0.632±0.069

τnon−prompt,B
CPK0

S
2.30±0.45

Table 75: Analysis 2 results fromMinuit, GG resolution model.

9.5 SVT misalignment

In table 87 are reported the differences among the fitted values of the same Monte Carlo sample with perfect
anddiffEL alignments.diffEL (difference between the E and L alignment sets) is considered an extreme
and unrealistic representation of the real misalignment. Conservatively, we use it to estimate the systematic
error from the SVT internal misalignment [8].

9.6 AverageB0 lifetime

The averageB0 lifetime was varied by±0.032 ps [22]. The effect on the physical parameters is reported in
table 89.

9.7 B+ lifetime

TheB+ lifetime (used in the peaking background of theBf lav sample) was varied by±0.031 ps [22]. The
effect of the variation can be found in table 90. Let us note that there is no effect propagated via theB+ mistags
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Parameter B+ fit results (GGmodel)

∆Γ/Γ (−3.1±2.4) ·10−2

ReλCP
|λCP| Rez (0.4±3.9) ·10−2

Imz (−4.6±4.3) ·10−2

Score 1.13±0.40
δlepton

core −0.15±0.22
δkaon

core −0.21±0.18
δNT1

core −0.12±0.26
δNT2

core −0.25±0.17
ftail 0.15±0.71
Stail 2.0±2.3
δtail −0.48±0.83

foutlier (0.1±1.1) ·10−3

wlepton
0 (4.7±1.4) ·10−2

wkaon
0 (3.9±1.3) ·10−2

wNT1
0 (9.4±3.1) ·10−2

wNT2
0 0.318±0.030

wlepton
slope (−1.1±2.5) ·10−2

wkaon
slope 0.140±0.022

wNT1
slope 0.169±0.057

wNT2
slope (5.0±4.7) ·10−2

∆wlepton (2.3±9.1) ·10−3

∆wkaon (1.0±8.0) ·10−3

∆wNT1 (2.3±2.1) ·10−2

∆wNT2 (−2.1±1.9) ·10−2

Parameter B+ fit results (GGmodel)

f lepton
prompt,Bf lav

0.236±0.081

f kaon
prompt,Bf lav

0.679±0.024
f NT1
prompt,Bf lav

0.725±0.036

f NT2
prompt,Bf lav

0.753±0.026
Sback 1.400±0.023
δback (−4.0±1.8) ·10−2

fback,outlier (1.21±0.23) ·10−2

wlepton
0,prompt 0.26±0.12

wkaon
0,prompt 0.1634±0.0098

wNT1
0,prompt 0.280±0.028

wNT2
0,prompt 0.399±0.017

wlepton
0,non−prompt 0.128±0.038

wkaon
0,non−prompt 0.231±0.019

wNT1
0,non−prompt 0.431±0.063

wNT2
0,non−prompt 0.391±0.042
τnon−prompt 1.344±0.066

Table 76: Results from the fit to theB+ control sample.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −6.7·10−4

+6.6·10−4
−5.3·10−4

+4.8·10−4

| q/p | −2.0·10−4

+2.1·10−4
−1.8·10−4

+2.0·10−4

ReλCP
|λCP| Rez — +1.2·10−3

−1.0·10−3

Imz — +2.3·10−4

−2.6·10−4

Parameter Analysis 1 Analysis 2

∆Γ/Γ +1.2·10−3

−10.0·10−4
+8.7·10−4

−7.0·10−4

| q/p | −1.7·10−4

+1.8·10−4
−2.5·10−4

+2.5·10−4

ReλCP
|λCP| Rez — +9.7·10−4

−1.0·10−3

Imz — +3.7·10−4

−3.6·10−4

Table 77: Signal probability systematics,BCPK0
S
(left) andBf lav(right) sample.

since in the chargedB sample fit used to extract the mistag parameters theB+ lifetime was left free.
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Parameter Analysis 1 Analysis 2

∆Γ/Γ (0.1±4.9) ·10−2 (0.4±4.8) ·10−2

| q/p | (−0.1±1.8) ·10−2 (−0.1±1.8) ·10−2

ReλCP
|λCP| Rez — (−0.1±4.6) ·10−2

Imz — (0.8±3.4) ·10−2

Parameter Analysis 1 Analysis 2

∆Γ/Γ (0.5±4.9) ·10−2 (0.4±4.8) ·10−2

| q/p | (0.0±1.8) ·10−2 (0.0±1.8) ·10−2

ReλCP
|λCP| Rez — (0.6±4.6) ·10−2

Imz — (−0.0±3.4) ·10−2

Table 78: Differences of the parameters using signal probability flat distribution instead of standard ARGUS,
for BCPK0

S
(top) andBf lav(bottom) sample. The errors are the quadratic statistical differences among the two

measurements.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −8.0·10−4

+8.4·10−4
−6.6·10−4

+6.9·10−4

| q/p | +8.7·10−5

−9.2·10−5
+1.1·10−4

−1.2·10−4

ReλCP
|λCP| Rez — +1.2·10−3

−1.2·10−3

Imz — −4.4·10−4

+4.3·10−4

Parameter Analysis 1 Analysis 2

∆Γ/Γ +9.5·10−4

−8.9·10−4
+8.2·10−4

−8.2·10−4

| q/p | −1.2·10−4

+1.2·10−4
−2.0·10−4

+1.9·10−4

ReλCP
|λCP| Rez — +2.5·10−4

−9.3·10−5

Imz — +2.6·10−4

−3.2·10−4

Table 79: Signal probability systematics using signal probability flat distribution, for BCPK0
S
(left) and

Bf lav(right) sample.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −1.3·10−4

−3.1·10−4
−1.8·10−4

+8.4·10−5

| q/p | −1.6·10−4

−7.6·10−3
−1.6·10−4

−7.5·10−3

ReλCP
|λCP| Rez — +3.9·10−4

+7.6·10−4

Imz — −1.8·10−4

+2.0·10−3

Table 80:mES endpoint systematics.

9.8 B+ mistags

Change by±σ the B+ mistags (only the average mistag atσ∆t = 0; the slope andB0B0 differences were
not varied). All the mistags were moved simultaneously oneσ up and down. The variation of the physics
parameters is given in table 91.
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Parameter Analysis 1 Analysis 2

∆Γ/Γ +5.3·10−3 +7.4·10−4

| q/p | +1.8·10−4 −1.9·10−4

ReλCP
|λCP| Rez — +6.1·10−3

Imz — −1.4·10−3

Table 81: Resolution function parameterization sys-
tematics.

Parameter Analysis 1 Analysis 2

∆Γ/Γ +1.1·10−3 +6.8·10−4

| q/p | −1.8·10−4 −2.0·10−4

ReλCP
|λCP| Rez — −2.5·10−3

Imz — +1.4·10−3

Table 82: Systematic shift fixingσoutlier to a very
large value (20 ps).

Parameter Analysis 1 Analysis 2

∆Γ/Γ +1.2·10−3

+1.7·10−3
+6.1·10−4

−6.5·10−3

| q/p | −7.4·10−5

−5.0·10−5
−9.7·10−5

−1.4·10−3

ReλCP
|λCP| Rez — −1.6·10−3

+1.1·10−2

Imz — +8.9·10−4

+8.7·10−5

Table 83: Systematic shift corresponding to the vari-
ation ofσoutlier of +4/-2 ps around the value fixed in
the standard fit (9 ps).

Parameter Analysis 1 Analysis 2

∆Γ/Γ −4.6·10−4

+9.2·10−4
+6.6·10−4

+2.7·10−4

| q/p | −4.4·10−5

−3.5·10−4
−1.8·10−6

−3.9·10−4

ReλCP
|λCP| Rez — +1.3·10−4

−2.4·10−3

Imz — +3.2·10−4

+1.5·10−3

Table 84: Systematic shift corresponding to the vari-
ation of δoutlier of ±5 ps around zero (standard fit).

Parameter Analysis 1 Analysis 2

∆Γ/Γ +1.3·10−3 +2.7·10−3

| q/p | +1.5·10−3 +1.6·10−3

ReλCP
|λCP| Rez — +6.5·10−4

Imz — −1.1·10−3

Parameter Analysis 1 Analysis 2

∆Γ/Γ +1.1·10−3 +2.2·10−3

| q/p | −6.4·10−5 −3.4·10−4

ReλCP
|λCP| Rez — +5.6·10−3

Imz — +7.6·10−4

Table 85: Variation of the fitted physical parameters, when the beam spot position is moved of 20µm (left table)
and 40µm (right table) in the positivey direction.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −1.1·10−4 −1.0·10−4

| q/p | +1.8·10−4 +1.8·10−4

ReλCP
|λCP| Rez — +2.9·10−4

Imz — +6.2·10−5

Parameter Analysis 1 Analysis 2

∆Γ/Γ −1.1·10−4 −1.0·10−4

| q/p | +1.8·10−4 +1.8·10−4

ReλCP
|λCP| Rez — +2.9·10−4

Imz — +6.2·10−5

Table 86: Variation of the fitted physical parameters, when the beam spot width is expanded of 20µm (left
table) and 40µm (right table) in they direction.

9.9 B0B0 differences in reconstruction and tagging efficiencies

Time-integrated charge asymmetries induced by a difference in the detector response for positive and neg-
ative tracks and any possible direct CP violation in the decay of flavor eigenstateB mesons (taggingB’s and
reconstructedB’s in the flavor eigenstate sample) are included in the PDF andextracted together with the other
parameters from the time-dependent analysis. By this reason no significant systematic effects are expected from
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Parameter Analysis 1 Analysis 2

∆Γ/Γ −2.5·10−3 −6.0·10−3

| q/p | −9.4·10−3 −1.2·10−2

ReλCP
|λCP| Rez — +6.5·10−3

Imz — −1.6·10−2

Table 87: Systematic contribution coming from SVT alignment. The values reported are the differences among
perfect anddiffEL alignments using the same MC sample. UPDATED.

Parameter Analysis 1 Analysis 2

∆Γ/Γ +2.0·10−3

−4.0·10−3
+1.3·10−3

−3.1·10−3

| q/p | −3.6·10−4

−3.1·10−5
−3.9·10−4

−7.6·10−6

ReλCP
|λCP| Rez — −6.4·10−5

+5.6·10−3

Imz — −3.8·10−4

−2.2·10−4

Table 88: Variation of the physics parameters by
scaling the measured∆t and its error by 0.6% in the
data sample.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −6.2·10−3

+4.5·10−3
−5.1·10−3

+4.1·10−3

| q/p | −3.4·10−4

+6.9·10−4
−4.8·10−4

+8.0·10−4

ReλCP
|λCP| Rez — +1.3·10−2

−9.7·10−3

Imz — −5.7·10−4

+6.7·10−4

Table 89: Systematics from the variation of the av-
erageB0 lifetime by±0.032 ps.

Parameter Analysis 1 Analysis 2

∆Γ/Γ +7.6·10−5

−7.5·10−5
+2.0·10−4

−2.0·10−4

| q/p | +2.0·10−5

−2.0·10−5
+3.0·10−5

−2.8·10−5

ReλCP
|λCP| Rez — −2.8·10−4

+2.8·10−4

Imz — −7.1·10−5

+7.2·10−5

Table 90: Systematics the the variation of theB+ lifetime by±0.031 ps.

this source. However, in order to account for any possible and residual effect, we used the half difference be-
tween the results given in table 67, which were obtained by fitting the dedicated full Monte Carlo sample after
a 5% killing of positive and negative tracks (5% is approximately the precision with which we have verified in
the data that there are no charge asymmetries). The final systematics from this soure is given in table 92.

9.10 CP violation in the decay

We changed by±10% the ratio of conjugate decay amplitudes for CP eigenstates, rCP,CP. The impact on
the physics parameters is given in tables 93. No systematicsis assigned to possible direct CP violation effects
in the tagging and flavor eigenstateB samples since these effects are included in the PDF and are part of the
charge asymetries, parametersν andµα , equations (100) and (99).
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Parameter Analysis 1 Analysis 2

∆Γ/Γ +7.4·10−6

−7.4·10−6
−1.0·10−4

+1.0·10−4

| q/p | −4.0·10−7

+3.0·10−7
−1.1·10−5

+1.1·10−5

ReλCP
|λCP| Rez — +4.4·10−4

−4.4·10−4

Imz — +1.4·10−5

−1.5·10−5

Table 91: Systematic uncertainties due to the variation of oneσ variation of theB+ mistag rates. Central values
are varied simultaneously for all the tagging categories inthe same direction.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −2.6·10−3 −2.6·10−3

| q/p | −3.5·10−3 −3.4·10−3

ReλCP
|λCP| Rez — −1.5·10−3

Imz — −5.1·10−3

Table 92: Systematics from residual charge asymmetries.

Parameter Analysis 1 Analysis 2

∆Γ/Γ +1.9·10−3

−1.6·10−3
+2.1·10−3

−1.9·10−3

| q/p | −5.7·10−3

+6.3·10−3
−5.7·10−3

+6.4·10−3

ReλCP
|λCP| Rez — −7.5·10−4

+5.6·10−4

Imz — −3.0·10−3

+1.5·10−3

Table 93: Variation in the physics parameters due to a±10% direct CP violation in the CP eigenstate sample
(rCP,CP parameter).

9.11 Doubly-CKM-Suppressed decays

Systematics from Doubly-CKM-Suppressed decays arise due to uncertainties inrtag
Reλtag

|λtag| , r̄tag
Rēλtag

|λ̄tag|
, r f lav

Reλ f lav

|λ f lav|

and ¯rtag
Rēλ f lav

|λ̄ f lav|
. Uncertainties fromrk and ¯rk via the DCKM cosine terms are taken into account via the rescaling

of Imλtag

|λtag| , Imλ̄tag

|λ̄tag|
, Imλ f lav

|λ f lav| and Imλ̄ f lav

|λ̄ f lav|
, as discussed in section 2.8. As the DCKM effects are dominated by the

tagging side, the systematics was factorized and evaluatedseparately in the tagging and reconstructed sides by
generating toy Monte Carlo samples with all possible valuesof the DCKM phase which give different values
of the cosines, forB0 andB0 independently (9 combinations). The generation used a single channel since, as
discussed in 2.8 and proved in A.3, this corresponds to the worse situation. We assume the central value of
rtag andr f lav to be 0.02, estimated assuming that the amplitudes are dominated by the Standard Modelb→ c
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andb→ c transitions for the favored and suppressed decays, respectively (see figure 1), and taking the values
of the CKM matrix elements from [23]. To account for potential additional diagrams (due to new physics),
factorization andB0B0 differences, we assign an uncertainty of 100%, which gives amaximum value of 0.04.
This is the value used in the generation. The samples were then fitted with the nominal fit and including all the
experimental effects except backgrounds. From about 110 times the data statistics the largest offsets for all the
physical parameters together with their statistical uncertainties are reported in tables 94 and 95, for Analysis 2
(CPT/T/CP/∆Γ) and Analysis 1 (T/CP/∆Γ), respectively. The largest between the most significant bias and its
statistical uncertainty is used to assign the systematics from Doubly-CKM-Suppressed decays, as given in table
96. Tagging and reconstructed effects are added in quadrature.

∆m ∆Γ/Γ | q/p |
Tagging side 0.0029±0.0007 0.008±0.004 0.0063±0.0014

Reconstructed side 0.0024±0.0007 0.011±0.004 0.0050±0.0013
ReλCP
|λCP| Rez ImλCP

|λCP| Imz

Tagging side 0.027±0.004 0.008±0.005 0.005±0.003
Reconstructed side 0.011±0.004 0.012±0.006 0.007±0.004

Table 94: Largest variation of the CPT/T/CP/oscillation parameters from the DCKM systematics scanning
(Analysis 2). Estimated from≈ 110 times the data statistics.

∆m ∆Γ/Γ | q/p | ImλCP
|λCP|

Tagging side 0.0008±0.0007 0.006±0.005 0.0062±0.0012 0.022±0.006
Reconstructed side 0.0009±0.0005 0.004±0.003 0.0052±0.0011 0.005±0.006

Table 95: Largest variation of the T/CP/oscillation parameters from the DCKM systematics scanning (Analysis
1). Estimated from≈ 110 times the data statistics.

9.12 PDF asymptotic normalization

The PDF in the nominal fit was normalized asymptotically. Theeffect from this assumption was evaluated
by normalizing in the finite range defined by the∆t cuts ([−20,20] ps), according to equation (104). The effect
on the different parameters is summarized in table 97.

Parameter Analysis 1 Analysis 2
∆Γ/Γ 0.0072 0.0136
| q/p | 0.0081 0.0080

ReλCP
|λCP| Rez − 0.0292

Imz − 0.0086

Table 96: Systematics from Doubly-CKM-Suppressed decays.
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Parameter Analysis 1 Analysis 2

∆Γ/Γ −3.0·10−3 −2.3·10−3

| q/p | +1.6·10−4 +1.5·10−4

ReλCP
|λCP| Rez — +2.2·10−3

Imz — −3.4·10−4

Table 97: Systematic contribution from the usage of PDF asymptotic normalization.

9.13 Likelihood fit

The precision on which we have verified from toy Monte Carlo (section 7.6) that the fitting procedure
provides an unbiassed estimation of all the physics parameters is assigned as systematic error due to the fitting
procedure. More specifically, we take as systematic error due to this source the largest between the observed
bias (mean value of the residual distributions) and its statistical error due to the limited amount of toy Monte
Carlo experiments. The values can be found in table 98.

Parameter Analysis 1 Analysis 2

∆Γ/Γ 3.6·10−3 3.0·10−3

| q/p | 2.8·10−3 7.6·10−4

ReλCP
|λCP| Rez — 1.4·10−2

Imz — 1.5·10−3

Table 98: Likelihood fit systematics from fitting procedure.

Another source of uncertainty contributing to the likelihood fit systematics is the assumption of universality
of the∆t resolution and mistags. More specifically: i)∆t resolution and mistags forBf lav andBCP events are
the same; ii) the resolution function is the same for right and wrong tags. To evaluate this contribution we split
the complete exclusive Monte Carlo sample into data-sized samples, keeping the relative sizes of signalBf lav,
BCPK0

S
andBCPK0

L
samples as observed in the data. The dedicated Monte Carlo was also used after reweighting

it to the values of the standard sample. The nominal fit (signal only) was then applied to the samples. The small
combinatorial backgrounds in these exclusive samples was neglected (a check was also performed to verify it
by selecting only events in the signal region,mES> 5.25 GeV/c2). The total available statistics after applying
this procedure was 6 times theBf lav sample and 34 times theBCPK0

S
andBCPK0

L
. To take profit of the much

largerBCP statistics, we performed the fit for all possible combinations ofBCP andBf lav samples (6 fits). For
BCP dominated measurements (∆Γ/Γ, ReλCP

|λCP| Rez), we evaluated the mean bias from the 6×34 fits, and the error
from the combination of 34 fits (6) with the largest RMS. ForBf lav dominated measurements (| q/p |, Imz),
the mean bias and RMS was estimated from 6 randomBCP samples (as expected, no sizeable changes were
observed by selecting a different set ofBCP samples). The results obtained with this procedure are reported in
table 99. We assigned as systematics the largest between themean residual and its uncertainty, as given in table
100. No corrections were applied to the central values extracted from the data. Let us note that this procedure
also takes into account other possible missing or not accurate enough assumptions reproduced by theBABAR
Monte Carlo.
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Parameter Analysis 1 Analysis 2

∆Γ/Γ 0.0137±0.0081 0.0135±0.0078
| q/p | 0.0127±0.0081 0.0127±0.0079

ReλCP
|λCP| Rez — −0.0027±0.0122

Imz — −0.0129±0.0093

Table 99: Mean residuals with error from the data-sized fullMonte Carlo fits.

Parameter Analysis 1 Analysis 2

∆Γ/Γ 0.0137 0.0135
| q/p | 0.0127 0.0127

ReλCP
|λCP| Rez — 0.0122

Imz — 0.0129

Table 100: Likelihood fit systematics from common mistags and ∆t resolution.

9.14 Peaking background fractions

The effect due to the uncertainty on the amount of chargedB background that peaks in themES Bf lav

distribution was estimated by changing the fraction of peaking background,f α
peak, by±0.6%. In the case of the

BCPK0
S

sample, it was changed by±1.0%. The impact on the physics parameters is given in tables 101.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −2.6·10−4

+2.4·10−4
+6.8·10−4

−8.5·10−4

| q/p | +6.8·10−6

−9.0·10−6
+7.0·10−5

−7.8·10−5

ReλCP
|λCP| Rez — −3.3·10−3

+3.8·10−3

Imz — +6.5·10−5

−8.0·10−5

Parameter Analysis 1 Analysis 2

∆Γ/Γ −6.0·10−5

+5.7·10−5
−9.1·10−5

+8.7·10−5

| q/p | −2.9·10−5

+2.9·10−5
−7.7·10−6

+1.2·10−5

ReλCP
|λCP| Rez — −5.5·10−4

+5.1·10−4

Imz — −2.9·10−4

+2.8·10−4

Table 101: Peaking background systematics (left:Bf lav sample; right:BCPK0
S

sample).

9.15 CP content inBCPK0
S

peaking background

The nominal fit assumes that the effectiveηCP of the peaking background for theBCPK0
S

sample is zero. The
resolution function, mistags and physics parameters are assumed to be the same as for the signal. We varied the
the effectiveηCP between+1 and−1, and we assigned as systematic error from this source the difference to
the nominal fit. The results are given in table 102.
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Parameter Analysis 1 Analysis 2

∆Γ/Γ −9.2·10−5

+8.1·10−5
−1.5·10−4

+1.3·10−4

| q/p | −4.4·10−5

+4.3·10−5
−1.5·10−5

+1.8·10−5

ReλCP
|λCP| Rez — −7.6·10−4

+7.6·10−4

Imz — −3.6·10−4

+4.2·10−4

Table 102: Systematics due to the CP content of the peaking background component in theBCPK0
S

sample.

9.16 ∆t structure in combinatorial background

Another source of systematic uncertainty originates from the assumption that the temporal structure of the
combinatorial background in the side band region is a good description of the one in the signal region. We
varied the lower edge ofmES distribution from 5.20 GeV/c2 to 5.27 GeV/c2, simultaneously for theBf lav and
BCPK0

S
samples. The variations of the fitted parameters with respect to the nominal fit are shown in figure 62.

Figure 62: Variation of the fitted physical parameters for Analysis 1 and 2 with respect to the nominal fit for
different values of the lower edge of themES distribution (nominal value is 5.2 GeV/c2).

We also split the sideband region in seven equal slices each 10 MeV/c2 wide, simultaneously for theBf lav

andBCPK0
S

samples, and used each of these ranges, in a standard fit. The results are shown in figure 63, where
we indicated also the extrapolation to signal region. We estimate as systematic uncertainty the quadratic sum
of the extrapolation and the error on it. Results are reported in table 103.
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Figure 63: Variation of the fitted physical parameters for Analysis 1 and 2 with respect to the nominal fit using
different “slices” of events in themESsideband region. The extrapolation to the signal region (blue solid circle)
from a linear fit is indicated as well.

Parameter Analysis 1 Analysis 2

0 ∆Γ/Γ 2.4·10−3 1.7·10−3

| q/p | 7.7·10−3 6.9·10−3

ReλCP
|λCP| Rez — 1.3·10−3

Imz — 8.6·10−4

Table 103: Systematic error due to the assumption of a commontemporal structure for sideband and signal
events in themES distribution. See text and figure 63 for details.

9.17 ∆Γ/CPT/T/CP/Mixing content in Bf lav and BCPK0
S

combinatorial backgrounds

The nominal fit assumes that there is no∆Γ, T/CP/CPT and mixing structure in the combinatorial back-
ground for theBf lav andBCPK0

S
samples. To evaluate the effect from this assumption we repeated the fit but

now assumming non-zero∆Γ, T/CP and mixing effects. This check was performed by introducing in the PDF
an independent set of physics parameters to those of the signal. We still assumed no CPT structure since the fit
allowing also for CPT effects did not work, due to the almost complete absence of mixing and CP violation in
the background (similar problems as when trying to fit all theparameters in theB+ control sample). Precisely
because of this any effect on the CPT parameterz is expected to be completely negligile (this is a consequence
of the fact that CPT violation cannot be observed in absence of CP violation). We assumed maximal mixing by
fixing ∆m in the combinatorial background to 0.489 ps−1 [22]. The differences with respect to the nominal fit
are assigned as systematic uncertainty from this source, and are shown in table 104. In order to evaluate this
systematics we assumedηCP = −1 for theBCPK0

S
sample (takingηCP = +1 would just change the sign of the

background∆Γ and T/CP/CPT T/CP/CPT parameters).
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Parameter Analysis 1 Analysis 2

∆Γ/Γ +4.4·10−3 +3.3·10−3

| q/p | +2.5·10−3 +2.5·10−3

ReλCP
|λCP| Rez — +2.8·10−3

Imz — −4.9·10−4

Table 104: Systematics due to the∆Γ/CPT/T/CP/Mixing content of the combinatorial backgroundcomponents
in theBf lav andBCPK0

S
samples.

9.18 Charm content

Change fraction of charm content in tagging side. Expected to be negligible since it is mostly parameterized
in the bias of the resoltion function and the correlation ofσ∆t with the mistag fractions. To be done.

9.19 J/ψK0
L specific systematics

TheBCPK0
L

specific systematics is evaluated as detailed in [18]. In thefollowing all the sources of system-
atics are listed and their contribution reported. For a summary of the different contributions, see tables 117 and
118.

9.19.1 CP content of background

The CP eigenvalue of most of the components in the fit is known.The cases where it is not known:

• B0→J/ψK∗0, K∗0→K0
L π0: Change the nominal value (−0.68) by±0.07. The effect of the variation is

shown in table 105;

• non-itemized inclusiveJ/ψ background: change the nominal net CP (+0.19 in the EMC and+0.21 in
the IFR) from 0.15 to 0.33. The effect of this variation is shown in table 106;

• non-J/ψ background: the same procedure as described in section 9.17was used here, varying the net CP
(nominal is 0) by±1. The effect of the variation can be found in table 107;

9.19.2 Prompt fraction and lifetime of non-J/ψ background

The fraction of the prompt component and the lifetime of the non-prompt of the non-J/ψ background were
varied according with the errors from the external fit to the sideband events,±0.12 and±0.3, respectively. The
effects of these variations are reported in tables 108 and 109.

9.19.3 IFRK0
L angular resolution

The same prescription as in [18] has been used to estimate thesystematics due to the difference between
data and Monte Carlo in theK0

L angular resolution (2.5 MeV∆E smearing). The effect on the parameters is
reported in table 110.
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Parameter Analysis 1 Analysis 2

∆Γ/Γ +2.3·10−5

−2.3·10−5
+5.1·10−5

−5.9·10−5

| q/p | −2.0·10−5

+2.0·10−5
−2.3·10−5

+2.5·10−5

ReλCP
|λCP| Rez — +2.2·10−4

−2.1·10−4

Imz — −2.7·10−4

+2.7·10−4

Table 105:J/ψK0
L specific systematics: assumed CP eigenvalue of theB0→J/ψK∗0, K∗0→K0

L π0 background.

Parameter Analysis 1 Analysis 2

∆Γ/Γ +2.1·10−5

−1.7·10−5
+7.8·10−5

−4.7·10−5

| q/p | −4.7·10−5

+2.5·10−5
−5.2·10−5

+2.7·10−5

ReλCP
|λCP| Rez — +6.0·10−4

−2.5·10−4

Imz — −6.7·10−4

+2.7·10−4

Table 106:J/ψK0
L specific systematics: assumed net CP eigenvalue of the non-itemized inclusiveJ/ψ back-

ground.

Parameter Analysis 1 Analysis 2

∆Γ/Γ +4.6·10−4 −3.1·10−4

| q/p | +2.6·10−3 +2.5·10−3

ReλCP
|λCP| Rez — +3.8·10−3

Imz — +1.3·10−3

Table 107:J/ψK0
L specific systematics: assumed net CP eigenvalue of the non-J/ψ background. UPDATED.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −2.2·10−4

+2.1·10−4
−2.9·10−4

+2.8·10−4

| q/p | −9.6·10−5

+9.6·10−5
−1.2·10−4

+1.2·10−4

ReλCP
|λCP| Rez — +1.6·10−4

−1.4·10−4

Imz — −1.1·10−4

+1.0·10−4

Table 108:J/ψK0
L specific systematics: prompt fraction of non-J/ψ background.
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Parameter Analysis 1 Analysis 2

∆Γ/Γ +4.7·10−4

−4.2·10−4
+4.9·10−4

−4.6·10−4

| q/p | +5.9·10−5

−6.2·10−5
+6.7·10−5

−7.1·10−5

ReλCP
|λCP| Rez — −1.9·10−4

+2.0·10−4

Imz — −4.2·10−5

+2.8·10−5

Table 109:J/ψK0
L specific systematics: lifetime of non-J/ψ background.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −3.1·10−3 −3.0·10−3

| q/p | +2.0·10−6 +6.5·10−5

ReλCP
|λCP| Rez — −9.7·10−5

Imz — +1.8·10−3

Table 110:J/ψK0
L specific systematics:K0

L angular resolution.

9.19.4 Shape of∆E distributions

The ∆E distributions used to help to discriminate between signal and background are taken from Monte
Carlo. To have good agreement with the data, the Monte Carlo was shifted by−0.5 MeV and smeared by 0.85
MeV. The sensitivity to the uncertainties on the∆E shape were evaluated by applying an additional shift of
±0.25 MeV and an additional smearing of 0.45 MeV. The impact of the physics parameters is shown in tables
111 and 112.

Parameter Analysis 1 Analysis 2

∆Γ/Γ −7.7·10−4

+4.3·10−4
−7.8·10−4

+4.2·10−4

| q/p | −3.4·10−5

−1.9·10−4
−3.8·10−5

−2.0·10−4

ReλCP
|λCP| Rez — +6.8·10−4

−2.0·10−5

Imz — +1.5·10−4

+6.3·10−5

Table 111:J/ψK0
L specific systematics:∆E shape (∆E shift).

9.19.5 Measured sample composition from∆E fit

The relative amount of signal, inclusiveJ/ψ background, and nonJ/ψ background is determined from a
three component fit of the∆E spectrum, which is described in reference [17]. The fitted fractions for IFR
and EMC samples are variated randomly accordingly to the covariance matrix from the∆E fit and the global
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Parameter Analysis 1 Analysis 2

∆Γ/Γ −6.5·10−4 −6.9·10−4

| q/p | −1.5·10−4 −1.5·10−4

ReλCP
|λCP| Rez — +6.4·10−4

Imz — +1.7·10−4

Table 112:J/ψK0
L specific systematics:∆E shape (additional∆E smearing).

fit is performed for each of the configurations. In figure 64 we report the distributions of the fitted values
for 100 random configurations. The width of a gaussian fit to these distributions are quoted as the systematic
contribution for each variable.

Parameter Analysis 1 Analysis 2

∆Γ/Γ 5.9·10−3 6.9·10−4

| q/p | 1.3·10−4 1.6·10−4

ReλCP
|λCP| Rez — 1.4·10−3

Imz — 7.6·10−3

Table 113:J/ψK0
L specific systematics: uncertainties from the variation of the sample composition. .

9.19.6 Branching fractions

One of the inputs of the sample composition fit are the branching fractions of the variousJ/ψX modes. We
varied these numbers by either their measured errors or conservative estimates. After each variation the∆E fit
for the sample composition is recomputed. The difference among the results of the subsequent global fit and
the nominal case are taken as the sytematic error.

There is a known problem in the SP4 generation ofJ/ψK0
S , with K0

S decaying in two neutral pion, since
eachπ0 decays twice in the detector. We took in account of this effect varying the corresponding branching
fractionb varying it upward of a larger value (50% instead of10%). This approach is the same as in [18].

Parameter Analysis 1 Analysis 2

∆Γ/Γ +6.4·10−6

−4.8·10−6
+8.0·10−6

−8.2·10−6

| q/p | +1.1·10−6

−7.0·10−7
+1.6·10−6

+1.8·10−6

ReλCP
|λCP| Rez — −2.4·10−5

+6.2·10−6

Imz — +5.4·10−6

−7.8·10−6

Parameter Analysis 1 Analysis 2

∆Γ/Γ +9.2·10−5

−1.3·10−5
+7.8·10−5

−1.0·10−5

| q/p | +1.6·10−5

−2.1·10−6
+1.9·10−5

−2.3·10−6

ReλCP
|λCP| Rez — −2.3·10−4

+3.5·10−5

Imz — +1.9·10−4

−3.1·10−5

Table 114:J/ψK0
L specific systematics:±10% variation ofB→ J/ψK∗ branching fraction (left);−10%/+50%

variation ofB0 → J/ψK0
S branching fraction (right).
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Figure 64: Distribution of the (BLIND) fitted parameters from Analysis 2 varying the sample composition
extracted from∆E fit. The widths of the fitted gaussians are taken as the systematic uncertainties.

10 Summary of results

In 56 fb−1, we measure∆Γ/Γ and test the T/CPT asymmetries. The parameter results and checks for the
two analyses are:

• Analysis 1 results (blind):

∆Γ/Γ = −0.008+0.048
−0.049(stat)±0.021(syst)

| q/p |= 0.946±0.018(stat)±0.023(syst)
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Parameter Analysis 1 Analysis 2

∆Γ/Γ +3.0·10−6

+1.6·10−6
+5.8·10−6

−1.9·10−6

| q/p | −1.6·10−6

+1.9·10−6
−3.0·10−7

+2.2·10−6

ReλCP
|λCP| Rez — −2.1·10−6

−7.2·10−6

Imz — −1.7·10−5

+4.2·10−6

Parameter Analysis 1 Analysis 2

∆Γ/Γ +9.8·10−6

+2.5·10−6
−2.0·10−7

+1.5·10−5

| q/p | +6.3·10−6

−4.6·10−6
+8.6·10−6

−5.8·10−6

ReλCP
|λCP| Rez — −8.9·10−5

+6.4·10−5

Imz — +8.5·10−5

−8.8·10−5

Table 115:J/ψK0
L specific systematics:±50% variation ofB→ J/ψKLπbranching fraction (left);±50% vari-

ation ofB0 → χcKL branching fraction (right).

Parameter Analysis 1 Analysis 2

∆Γ/Γ +6.4·10−6

−4.8·10−6
+8.0·10−6

−8.2·10−6

| q/p | +1.1·10−6

−7.0·10−7
+1.6·10−6

+1.8·10−6

ReλCP
|λCP| Rez — −2.4·10−5

+6.2·10−6

Imz — +5.4·10−6

−7.8·10−6

Table 116:J/ψK0
L specific systematics:±50% variation ofB→ J/ψX residual branching fraction.

• Analysis 1 checks (∆m, τB are unblind,ImλCP
|λCP| blind):

∆m= 0.5220±0.0098(stat)

ImλCP

| λCP |
= 0.612+0.085

−0.086(stat)

τB = 1.515±0.022(stat)

• Analysis 2 results (blind):

∆Γ/Γ = −0.021+0.048
−0.047(stat)±0.023(syst)

| q/p |= 0.946±0.018(stat)±0.023(syst)

ReλCP

| λCP |Rez= −0.064+0.074
−0.047(stat)±0.041(syst)

Imz= −0.918±0.034(stat)±0.025(syst)

• Analysis 2 checks (∆m, τB are unblind,ImλCP
|λCP| blind):

∆m= 0.523±+0.017
−0.010(stat)

ImλCP

| λCP | = 0.620±+0.081
−0.084(stat)
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Systematics ∆Γ/Γ | q/p |
CP ofK∗ bkg 2.3·10−5 2.0·10−5

CP of non itemized J/ψ bkg 2.1·10−5 7.8·10−5

CP non-J/ψ bkg 4.6·10−4 2.6·10−3

prompt fraction of non-J/ψ bkg 2.2·10−4 9.6·10−5

lifetime of non-J/ψ bkg 4.7·10−4 6.2·10−5

angular resolution 3.1·10−3 2.0·10−6

∆E shape (shift) 7.7·10−4 1.9·10−4

∆E shape (additional smearing)6.5·10−4 1.5·10−4

Measured sample composition5.9·10−3 1.3·10−4

Branching fraction:J/ψK∗ 6.4·10−6 1.1·10−6

Branching fraction:J/ψKS 9.2·10−5 7.8·10−5

Branching fraction:J/ψKLπ 3.0·10−6 5.8·10−6

Branching fraction:χcKL 9.8·10−6 6.3·10−6

Branching fraction:J/ψX other 6.4·10−6 1.1·10−6

Total 0.0068 0.0026

Table 117: Analysis 1K0
L specific systematics summary.

τB = 1.517±0.022(stat)

The break-down of the error for the two analyses are given in tables 119 and 120.

To first order in the CPT parameterδ and the T violation in mixing parameter Reε, we can alternatively
provide the above results in the{ε,δ} formalism, using the relations shown in section 2.3:

• Analysis 1 results (blind):

Reε
1+ | ε |2 = 0.028±0.008(stat)±0.010(syst)

• Analysis 1 checks (blind):
Imε

1+ | ε |2 = −0.306±0.043(stat)

• Analysis 2 results (blind):

Reε
1+ | ε |2 = 0.028±0.008(stat)±0.010(syst)

1− | ε |2
1+ | ε |2

Reδ
1+ | ε |2 = −0.064+0.074

−0.047(stat)±0.041(syst)

Imδ
1+ | ε |2 −0.918±0.034(stat)±0.025(syst)
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Systematics ∆Γ/Γ | q/p | ReλCP
|λCP| Rez Imz

CP ofK∗ bkg 5.9·10−5 2.5·10−5 2.2·10−4 2.7·10−4

CP of non itemized J/ψ bkg 7.8·10−5 5.2·10−5 6.0·10−4 6.7·10−4

CP non-J/ψ bkg 7.6·10−4 1.3·10−3 3.0·10−3 2.9·10−4

prompt fraction of non-J/ψ bkg 3.1·10−4 2.5·10−3 3.8·10−3 1.3·10−3

lifetime of non-J/ψ bkg 2.9·10−4 1.2·10−4 1.6·10−4 1.1·10−4

angular resolution 3.0·10−3 6.5·10−5 9.7·10−5 1.8·10−3

∆E shape (shift) 7.8·10−4 2.0·10−4 6.8·10−4 1.5·10−4

∆E shape (additional smearing)6.9·10−4 1.5·10−4 6.4·10−4 1.7·10−4

Measured sample composition6.9·10−4 1.6·10−4 1.4·10−3 7.6·10−3

Branching fraction:J/ψK∗ 8.2·10−6 1.8·10−6 2.4·10−5 7.8·10−6

Branching fraction:J/ψKS 7.8·10−5 1.9·10−5 2.3·10−4 1.9·10−4

Branching fraction:J/ψKLπ 5.8·10−6 2.2·10−6 7.2·10−6 1.7·10−5

Branching fraction:χcKL 1.5·10−5 8.6·10−5 8.9·10−5 8.8·10−5

Branching fraction:J/ψX other 8.2·10−6 1.8·10−6 2.4·10−5 7.8·10−6

Total 0.0034 0.0028 0.0052 0.0080

Table 118: Analysis 2K0
L specific systematics summary.

• Analysis 2 checks (blind):
Imε

1+ | ε |2 = −0.310+0.041
−0.042(stat)

Discuss the results and show the main asymmetries (those candidate to be included in the paper) in a nice
format. Will make a discussion about what is seen there.
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Systematics ∆Γ/Γ | q/p |
Signal probability (Bf lav) 1.2·10−3 1.8·10−4

Signal probability (BCPK0
S
) 8.4·10−4 2.1·10−4

mES endpoint 3.1·10−4 7.6·10−3

Resolut. function param. 5.3·10−3 1.8·10−5

σoutlier variation 1.7·10−3 7.4·10−5

σoutlier very large 1.1·10−3 2.3·10−4

δoutlier variation 9.2·10−4 3.5·10−4

Beam spot position 1.3·10−3 1.5·10−3

Beam spot expansion 1.1·10−4 1.8·10−4

SVT alignment 2.5·10−3 9.4·10−3

zscale and boost 4.0·10−3 3.6·10−4

AverageB0 lifetime 6.2·10−3 6.9·10−4

AverageB+ lifetime 7.6·10−5 2.0·10−5

B+ mistag rates 7.4·10−6 4.0·10−7

Residual charge asymmetry 2.6·10−3 3.5·10−3

Direct CP violation 1.9·10−3 6.3·10−3

Doubly CKM suppressed decays systematics7.2·10−3 8.1·10−3

PDF asymptotic normalization 3.0·10−3 1.6·10−4

Fitting procedure 3.6·10−3 2.8·10−3

Common mistag and∆t res. 1.4·10−2 1.3·10−2

Fraction of peaking bg (Bf lav) 2.6·10−4 9.0·10−6

Fraction of peaking bg (BCPK0
S
) 6.0·10−5 2.9·10−5

CP content of peaking bg 3.0·10−3 1.9·10−4

∆t structure in combinatorial background 2.4·10−3 7.7·10−3

∆Γ/CP/T/Mixing content in combinatorial bkg 4.4·10−3 2.5·10−3

Charm content . ·10− . ·10−

K0
L specific systematics 6.8·10−3 2.6·10−3

Total 0.021 0.023

Table 119: Analysis 1 systematics break-down.
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Systematics ∆Γ/Γ | q/p | ReλCP
|λCP| Rez Imz

Signal probability (Bf lav) 8.7·10−4 2.5·10−4 1.0·10−3 3.7·10−4

Signal probability (BCPK0
S
) 6.9·10−4 2.0·10−4 1.2·10−3 4.4·10−4

mES endpoint 1.8·10−4 7.5·10−3 7.6·10−4 2.0·10−3

Resolut. function param. 7.4·10−4 1.9·10−4 6.1·10−3 1.4·10−3

σoutlier variation 6.5·10−3 1.4·10−3 1.1·10−2 8.9·10−4

σoutlier very large 6.8·10−4 2.0·10−4 2.5·10−3 1.4·10−3

δoutlier variation 6.6·10−4 3.9·10−4 2.4·10−3 1.5·10−3

beam spot position 2.7·10−3 1.6·10−3 5.6·10−3 1.1·10−3

beam spot expansion 1.0·10−4 1.8·10−4 2.9·10−4 6.2·10−4

SVT alignment 6.0·10−3 1.2·10−2 6.5·10−3 1.6·10−2

zscale and boost 3.1·10−3 3.9·10−4 5.6·10−3 3.8·10−4

AverageB0 lifetime 5.1·10−3 8.0·10−4 1.3·10−2 6.7·10−4

AverageB+ lifetime 7.6·10−5 3.0·10−5 2.8·10−4 7.2·10−5

B+ mistag rates 1.0·10−4 1.1·10−5 4.4·10−4 1.5·10−5

Residual charge asymmetry 2.6·10−3 3.4·10−3 1.5·10−3 5.1·10−3

Direct CP violation 2.1·10−3 6.4·10−3 7.5·10−4 3.0·10−3

Doubly CKM suppressed decays systematics1.4·10−2 8.0·10−3 2.9·10−2 8.6·10−3

PDF asympotic normalization 2.3·10−3 1.5·10−4 2.2·10−3 3.4·10−4

Fitting procedure 3.0·10−3 7.6·10−4 1.4·10−2 1.5·10−3

Common mistag and∆t res. 1.3·10−2 1.3·10−2 1.2·10−2 1.3·10−2

Fraction of peaking bg (Bf lav) 8.5·10−4 7.8·10−5 3.8·10−3 8.0·10−5

Fraction of peaking bg (BCPK0
S
) 9.1·10−5 1.2·10−5 5.5·10−4 2.9·10−4

CP content of peaking bg 1.5·10−4 1.8·10−5 7.6·10−4 4.2·10−4

∆t structure in combinatorial background 1.7·10−3 6.9·10−3 1.3·10−3 8.6·10−4

∆Γ/CP/T/Mixing content in combinatorial bkg 3.3·10−3 2.5·10−3 2.8·10−3 4.9·10−4

Charm content . ·10− . ·10− . ·10− . ·10−

K0
L specific systematics 3.4·10−3 2.8·10−3 5.2·10−3 8.0·10−3

Total 0.023 0.023 0.041 0.025

Table 120: Analysis 2 systematics break-down.
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A Doubly-CKM-Suppressed Decays Toy Monte Carlo studies

A.1 Sensitivity studies

We investigated the numerical sensitivity of the CPT/T/CPT/Mixing parameters to DCKM effects using toy
Monte Carlo. For these studies, the samples were generated with the values of the phases that maximize and
minimize the PDF (this occurrs at the physical region boundaries of the sines and cosines of the phases). In the
most general case without model asumptions we have a total of16 possible combinations for eachB meson,
reconstructed and tagging (4 possible angles for eachB0 andB0: 0, π/2, π, 3π/2). In practice, the matrix of
combinations is “antisymmetric” underB0 andB0 interchange, which gives a total of 10 different combinations.
In order to reduce futher the number of combinations and simplify as much as possible this study, we assumed
θ = φstrong+ φweak, θ̄ = φstrong−φweak, with φweak = 2β+ γ = 1.85, which reduces to 4 combinations. This
assumption will be released for the systematic error evaluation in the final analysis. The ratesr f lav, r̄ f lav, rtag

and ¯rtag were generated to be 0.05. One single effective channel contributing to the reconstructed (flavor sample)
and tagging (common for the flavor and CP samples) sides was assumed here. The samples consisted of about
100 experiments with an statistics equivalent to about 60 fb−1 each, with perfect∆t resolution but mistags as
those observed in the data. The relative populations of flavor and CP events was kept the same as observed in
the data. Tagging-vertexing correlations andB0B0 differences in reconstruction and tagging efficiencies were
neglected here. We assumed no direct CP violation effects,rCP,CP = rCP, f lav = rCP,tag = 1. The CP phaseθCP

was generated to be 0.86 rad (which corresponds toImλCP
|λCP| =0.75). z and | q/p | were assumed to be 0 and 1,

respectively.

We first analyzed the effects in the tagging side. The mean residuals obtained when fitting the samples
neglecting the DCKM effects in both, tagging and reconstructed sides (fit configuration 1), but generating
DCKM effects in the tagging side only, are summarized in table 121. To evaluate the significance of the offsets,
these values should be compared to the RMS reported in the same table. The statiscal error on the offsets are
about 10 times smaller than the reported RMS. We observe a large impact on Imz, a non-negligible effect on
ReλCP
|λCP| Rezand to a less extend onImλCP

|λCP| . The effects for all the other parameters are negligible5.

θtag ∆m ∆Γ/Γ | q/p | ReλCP
|λCP| Rez ImλCP

|λCP| Imz

0 0.0020 -0.0032 0.0011 -0.0263 -0.0032 0.0175
π/2 0.0016 0.0019 -0.0001 -0.0098 0.0033 -0.0615
π 0.0014 0.0066 0.0005 0.0253 -0.0050 -0.0186

3π/2 0.0020 -0.0025 0.0005 0.0008 0.0185 0.0614
RMS 0.0078 0.052 0.013 0.056 0.068 0.013

Table 121: Mean residuals and RMS for fit configuration 1, tagging side phase scan.

When the same samples are fitted letting freeImλtag

|λtag| and Imλ̄tag

|λ̄tag|
, with rtag = r̄tag fixed to 0.05 andReλtag

|λtag| =

Rēλtag

|λ̄tag|
= 06 (fit configuration 2), we obtain the mean residuals and RMS listed in table 122. The large effect

on Imz has disappeared here, at the price of an increase in its statistical error (from 0.013 to 0.019). The effect
on ImλCP

|λCP| seems to be also reduced. The mean biases and statistical reach of all the other parameters remain
5The∆m mean residual should be compared to the mean residual when noDCKM effects are generated, about 0.0022. This small

bias is known to be due to the simultaneous extraction of∆m with the CPT parameters. When CPT is assumed to be a good symmetry
this small effect goes away.

6r f lav, r̄ f lav, Reλ f lav

|λ f lav| , Rēλ f lav

|λ̄ f lav|
, Imλ f lav

|λ f lav| and Imλ̄ f lav

|λ̄ f lav|
are all fixed to zero.
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basically unchanged. The RMS forImλtag

|λtag| and Imλ̄tag

|λ̄tag|
is 0.32.

θtag ∆m ∆Γ/Γ | q/p | ReλCP
|λCP| Rez ImλCP

|λCP| Imz

0 0.0018 0.0014 0.0013 -0.0253 -0.0074 -0.0009
π/2 0.0021 0.0025 -0.0003 -0.0080 0.0079 -0.0017
π 0.0017 0.0068 -0.0002 0.0252 0.0022 0.0020

3π/2 0.0019 -0.0076 0.0007 -0.0002 0.0092 0.0032
RMS 0.0078 0.054 0.013 0.056 0.069 0.019

Table 122: Mean residuals and RMS for fit configuration 2, tagging side phase scan.

The same samples were also fitted withImλtag

|λtag| , Imλ̄tag

|λ̄tag|
, Reλtag

|λtag| and Rēλtag

|λ̄tag|
free andrtag = r̄tag fixed to 0.05 (fit

configuration 3). The mean residuals and RMS obtained are those summarized in table 123. The situation
for ReλCP

|λCP| Rez is now slightly better, at the price of an increase of its statistical precision. The| q/p | and ImλCP
|λCP|

RMS’ are also slightly poorer. The RMS forImλtag

|λtag| and Imλ̄tag

|λ̄tag|
is 0.32 as before, while it is 2.1 forReλtag

|λtag| and

Rēλtag

|λ̄tag|
. We observe that the sensitivity to the real parts in the tagging side is poor.

θtag ∆m ∆Γ/Γ | q/p | ReλCP
|λCP| Rez ImλCP

|λCP| Imz

0 0.0010 0.0013 0.0025 0.0093 -0.0121 -0.0005
π/2 0.0017 0.0055 -0.0003 0.0031 0.0005 -0.0016
π 0.0004 0.0089 -0.0003 0.0016 0.0058 -0.0034

3π/2 0.0019 -0.0051 -0.0014 -0.0098 0.0090 0.0030
RMS 0.0077 0.054 0.017 0.065 0.070 0.019

Table 123: Mean residuals and RMS for fit configuration 3, tagging side phase scan.

Results from tables 121, 122 and 123 confirm some of the expectations discussed in the previous section:
i) Rez(Imz) is mainly correlated with the DCKM real(imaginary) parts,ii) the effects on∆m and∆Γ are small,
iii) the effect on ImλCP

|λCP| is rather small, and comes mainly from the DCKM imaginary parts.

The above studies have been repeated but now generating the DCKM effects in the reconstructed side only
(flavor sample). The mean residuals and RMS obtained when fitting with configuration 1 are summarized in
table 124. We observe again a large offset on Imz but significantly smaller than in the previous case where
the DCKM effects were generated in the tagging side. No significant effects are observed in all the other
parameters. Comparing these results with those equivalentin the tagging side (table 121) we conclude that the
tagging side gives the largest systematic effect to the determination of the CPT/CP/T/oscillation parameters.

The effect on Imz goes away ifImλ f lav

|λ f lav| , Imλ̄ f lav

|λ̄ f lav|
are also fitted, withr f lav = r̄ f lav fixed to 0.05 (fit configuration

4) (and all the other DCKM related parameters fixed to zero), asreported in table 125. The RMS forImλ f lav

|λ f lav|

and Imλ̄ f lav

|λ̄ f lav|
is 0.32, as in the case of the tagging side. WhenReλ f lav

|λ f lav| and Rēλ f lav

|λ̄ f lav|
were considered as additional

free parameters in the fit most of them failed, due to the extremelly poor sensitivity to these parameters (RMS
∼ 10).

From these sensitivity studies we verified numerically the features anticipated from the analytical study
described in section 2.2.6 concluding that the optimal trade-off between statistical precision and systematic
uncertainties due to Doubly-CKM-Suppressed decays requires the introduction of 4 additional fit parameters
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θ f lav ∆m ∆Γ/Γ | q/p | ReλCP
|λCP| Rez ImλCP

|λCP| Imz

0 0.0021 0.0052 0.0001 0.0027 0.0050 0.0051
π/2 0.0040 0.0006 0.0001 -0.0094 -0.0145 -0.0178
π 0.0031 -0.0056 -0.0011 0.0031 -0.0019 -0.0049

3π/2 0.0012 -0.0032 0.0014 -0.0001 0.0153 0.0202
RMS 0.0078 0.054 0.013 0.056 0.069 0.013

Table 124: Mean residuals and RMS for fit configuration 1, reconstructed (flavor sample) side phase scan.

θ f lav ∆m ∆Γ/Γ | q/p | ReλCP
|λCP| Rez ImλCP

|λCP| Imz

0 0.0024 0.0046 -0.0003 0.0007 -0.0059 -0.0008
π/2 0.0037 -0.0028 0.0008 -0.0056 -0.0100 0.0003
π 0.0029 -0.0060 -0.0011 0.0030 -0.0027 0.0005

3π/2 0.0012 0.0015 0.0008 -0.0016 0.0118 -0.0009
RMS 0.0080 0.053 0.013 0.056 0.069 0.014

Table 125: Mean residuals and RMS for fit configuration 4, reconstructed (flavor sample) side phase scan.

(in addition to the 6 CPT/T/CP and oscillation parameters),the sines of the DCKM phases, 2 for the tagging
side and 2 for the reconstructed (flavor sample)B (reference fit configuration). It was verified for different
DCKM phase configurations that this fitting configuration provides unbiassed estimates for all the parameters,
and the quadratic errors reported by the fit give a good estimation of the statistical reach, within 10%. Table
126 summarizes the results obtained for a particular DCKM configuration where all phases were generated to
beπ/2, with rtag = r̄tag = r f lav = r̄ f lav = 0.05. The residual and quadratic error distributions are shown in figure
65. Table 127 summarizes the largest average correlation coefficients among the physics parameters and any
DCKM parameter.

∆m ∆Γ/Γ | q/p | ReλCP
|λCP| Rez ImλCP

|λCP| Imz

Mean residual 0.0025 0.0039 -0.0015 -0.0052 0.0101 0.0002
Error mean residual 0.0005 0.0031 0.0010 0.0031 0.0045 0.0017

RMS 0.008 0.052 0.016 0.052 0.071 0.028
Average quadratic error 0.008 0.049 0.017 0.050 0.068 0.029

Table 126: Mean residuals, RMS and average quadratic error from the reference fit configuration. The DCKM
phases were taken for this particular exercise to beπ/2, with rtag = r̄tag = r f lav = r̄ f lav = 0.05.

A.2 Effects from mistags

The feature described in the second paragraph of section 2.8was verified fitting a common set of toy
Monte Carlo experiments fixingrtag = r̄tag to 0.05 and 0.10 (the samples were generated with 0.05). Figure
66 shows the perfect one-to-one correlation (up to numerical differences) among the fitted results for all the
CPT/T/CP/oscillation parameters. In this exercise the real and imaginary parts in the tagging side were left free,
while only the imaginary parts in the reconstructed (flavor sample) side were considered as free parameters (real
parts were fixed to zero). For the same experiments/fits, figure 67 shows the rescaling of the mistag fractions
and the DCKM parameters in the tagging side.
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Figure 65: The residual and error (quadratic) distributions for the CPT/CPT/T/oscillation parameters from
the reference fit configuration. The DCKM phases were taken for this particular exercise to beπ/2, with
rtag = r̄tag = r f lav = r̄ f lav = 0.05.
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Figure 66: Experiment-by-experiment comparison (scatterand difference) of the fitted results for all the
CPT/T/CP/oscillation parameters when the same toy Monte Carlo samples are fitted with different values of
rtag = r̄tag (0.05 and 0.10).
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Figure 67: Experiment-by-experiment comparison (scatterand ratio) of the fitted results for the mistag fractions
(Kaon andNT1 tagging categories) and the DCKM parameters when the same toy Monte Carlo samples are
fitted with different values ofrtag = r̄tag (0.05 and 0.10).
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Parameter ParameterAverage correlation coefficient

Imz Imλ f lav

|λ f lav| 50
Imλ̄ f lav

|λ̄ f lav|
-55

Imλtag

|λtag| 53
Imλ̄tag

|λ̄tag|
-58

Imλ f lav

|λ f lav|
Imλtag

|λtag| 72
Imλ̄tag

|λ̄tag|
10

Imλ̄ f lav

|λ̄ f lav|
Imλtag

|λtag| 10
Imλ̄tag

|λ̄tag|
76

Imλtag

|λtag|
Imλ̄tag

|λ̄tag|
19

Table 127: Largest (>= 10%) correlations between the CPT/T/CP/oscillation parameters and the DCKM pa-
rameters, for the reference fit configuration. The DCKM phases were taken for this particular exercise to be
π/2, with rtag = r̄tag = r f lav = r̄ f lav = 0.05.

A.3 Multiple final states

In order to check that DCKM effects from semi-inclusive channels are always smaller than those from a
single channel (third paragraph of section 2.8), we generated two different sets of toy Monte Carlo samples
(about 200 experiments each), similarly as described in section A.1. In the first set each sample was split into
two same-sized sub-samples with phasesθa

tag/θb
tag = 0,π/2,π,3π/2, with θweak= 1.85 fixed. In the second set

only one single channel was considered. To enhance the effect we want to investigate,r was generated to be 0.1
in the tagging side. No DCKM effects in the reconstructed side (flavor sample) were generated for this study.
Each sample was then fitted with the standard, single channelapproach, and then we compared the results for
the two-channel and single-channel samples. The mean residuals of the fit results are shown in tables 128 and
129, for the two and single channel case. From the comparisonof these two tables we conclude that the biases
in the two-channel case are about the average of the biases from the samples generated with a single channel.
The worse case (largest bias) in the case of a single channel is always larger than any of the two-channels
configurations.

θa
tag / θb

tag ∆m ∆Γ/Γ | q/p | ReλCP
|λCP| Rez ImλCP

|λCP| Imz

0 / π
2 (2.67±0.55) ·10−3 (−4.8±3.7) ·10−3 (−1.4±1.3) ·10−3 (−4.27±0.37) ·10−2 (3.7±4.9) ·10−3 (0.9±1.4) ·10−3

0 / π (2.94±0.59) ·10−3 (2.7±3.6) ·10−3 (−1.3±1.3) ·10−3 (−5.6±4.5) ·10−3 (5.7±4.8) ·10−3 (0.8±1.5) ·10−3

0 / 3
2π (1.86±0.56) ·10−3 (2.7±3.8) ·10−3 (−1.2±1.3) ·10−3 (−1.87±0.40) ·10−2 (−5.0±4.7) ·10−3 (−0.2±1.5) ·10−3

π
2 / π (1.53±0.53) ·10−3 (4.2±4.2) ·10−3 (−2.8±1.3) ·10−3 (1.34±0.40) ·10−2 (0.9±4.1) ·10−3 (1.4±1.2) ·10−3

π
2 / 3

2π (2.49±0.57) ·10−3 (0.4±4.2) ·10−3 (−2.3±1.3) ·10−3 (0.8±4.1) ·10−3 (8.7±5.3) ·10−3 (−0.6±1.3) ·10−3

π / 3
2π (2.62±0.55) ·10−3 (4.4±4.0) ·10−3 (−0.9±1.3) ·10−3 (3.03±0.38) ·10−2 (3.8±5.3) ·10−3 (−1.8±1.3) ·10−3

Table 128: Mean residuals with error from about 200 toy MonteCarlo experiments generated with two channels
in the tagging side (rtag was generated to be 0.1).
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θtag ∆m ∆Γ/Γ | q/p | ReλCP
|λCP| Rez ImλCP

|λCP| Imz

0 (3.62±0.60) ·10−3 (−5.7±4.0) ·10−3 (−0.7±1.3) ·10−3 (−4.87±0.35) ·10−2 (2.3±5.3) ·10−3 (−1.0±1.4) ·10−3

π
2 (1.66±0.61) ·10−3 (1.4±3.9) ·10−3 (−1.9±1.2) ·10−3 (−1.98±0.38) ·10−2 (6.5±4.6) ·10−3 (0.0±1.4) ·10−3

π (2.83±0.59) ·10−3 (−2.8±3.7) ·10−3 (−4.5±1.3) ·10−3 (5.27±0.34) ·10−2 (3.2±4.7) ·10−3 (1.1±1.4) ·10−3

3
2π (2.03±0.57) ·10−3 (−2.5±3.7) ·10−3 (−2.5±1.2) ·10−3 (1.32±0.41) ·10−2 (−1.2±4.8) ·10−3 (−0.3±1.4) ·10−3

Table 129: Mean residuals with error from about 200 toy MonteCarlo experiments generated with one single
channel in the tagging side (rtag was generated to be 0.1).
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B Time-integrated constraints for the extraction of the B0B0 reconstruction
and tagging efficiency differences

As it was originally proposed in [14], the differences in tagging and reconstruction efficiencies can be
determined using time-integrated data. The method proposed counts the numbers of events with the various
tagging categories and the events that are untagged in the high statisticsBf lav sample, and then they are extrap-
olated to theBCP samples. This method does not spoil the statistical precision while the associated systematic
uncertainties will be under control.

Integrating over−∞ < ∆t < +∞ equation (97) for the most general case, we obtain:

Hα
B0

tagB
0
f lav

= (1+ν)
{

(1+µα)Tα(1−wα −∆wα/2)HB0
tagB

0
f lav

+

(1−µα)Tα(wα −∆wα/2)H
B

0
tagB

0
f lav

}

Hα
B0

tagB
0
f lav

= (1−ν)
{

(1+µα)Tα(1−wα −∆wα/2)H
B0

tagB
0
f lav

+

(1−µα)Tα(wα −∆wα/2)H
B

0
tagB

0
f lav

}

Hα
B

0
tagB

0
f lav

= (1+ν)

{

(1−µα)Tα(1−wα +∆wα/2)H
B

0
tagB

0
f lav

+

(1+µα)Tα(wα +∆wα/2)HB0
tagB

0
f lav

}

Hα
B

0
tagB

0
f lav

= (1−ν)
{

(1−µα)Tα(1−wα +∆wα/2)H
B

0
tagB

0
f lav

+

(1+µα)Tα(wα +∆wα/2)H
B0

tagB
0
f lav

}

Hα
no tagB0

f lav
= (1+ν)

{

[1−Tα(1+µα)]HB0
tagB

0
f lav

+

[1−Tα(1−µα)]H
B

0
tagB

0
f lav

}

Hα
no tagB

0
f lav

= (1−ν)
{

[1−Tα(1+µα)]H
B0

tagB
0
f lav

+

[1−Tα(1−µα)]H
B

0
tagB

0
f lav

}

(138)

whereν, µα andTα where defined in equations (93), (94), (95) and (96); andHk1k2 =
∫ +∞
−∞ hk1k2(∆t)d∆t, where

hk1k2(∆t) was given in equation (53). Only∆t odd terms of (53) are relevant (the even terms cancel out). The
above expressions have been normalized for a reconstruction efficiencyR= 1.

We form now combinations of the above quantities:

Hα
any tagB0

f lav
= Hα

B0
tagB

0
f lav

+Hα
B

0
tagB

0
f lav

=

(1+ν)Tα
[

(1+µα)HB0
tagB

0
f lav

+(1−µα)H
B

0
tagB

0
f lav

]

(139)
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Hα
any tagB

0
f lav

= Hα
B0

tagB
0
f lav

+Hα
B

0
tagB

0
f lav

=

(1−ν)Tα
[

(1+µα)H
B0

tagB
0
f lav

+(1−µα)H
B

0
tagB

0
f lav

]

(140)

Hα
B0

f lav
= Hα

no tagB0
f lav

+Hα
any tagB0

f lav
=

(1+ν)

[

HB0
tagB

0
f lav

+H
B

0
tagB

0
f lav

]

(141)

Hα
B

0
f lav

= Hα
no tagB

0
f lav

+Hα
any tagB

0
f lav

=

(1−ν)
[

H
B0

tagB
0
f lav

+H
B

0
tagB

0
f lav

]

(142)

or equivalently,

x = (1+ν)Tα [(1+µα)a+(1−µα)b] (143)

y = (1−ν)Tα [(1+µα)c+(1−µα)d] (144)

z+x = (1+ν)(a+b) (145)

w+y = (1−ν)(c+d) (146)

where

a = HB0
tagB

0
f lav

, b = H
B

0
tagB

0
f lav

, c = H
B0

tagB
0
f lav

, d = H
B

0
tagB

0
f lav

x = Hα
any tagB0

f lav
, y = Hα

any tagB
0
f lav

, z= Hα
no tagB0

f lav
, w = Hα

no tagB
0
f lav

.

Equations (143), (144), (145) and (146) can be worked out to obtainν, µα andTα :

ν =
1
2

(z+x)(c+d)− (w+y)(a+b)

(a+b)(c+d)
(147)

µα =
x(1−ν)(c+d)−y(1+ν)(a+b)

y(1+ν)(a−b)−x(1−ν)(c−d)
(148)

Tα =
1

1− (ν)2

x(c−d)(1−ν)−y(a−b)(1+ν)

2(bc−da)
(149)

These expressions are also valid when the∆t resolution is considered. Let us note the reuse of events in the
evaluation ofν, µα andTα : for each tagging category it is required the number of tagged events in that category
together with the excluded events (events tagged by other categories plus the untagged events).
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