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Abstract

We describe a combined study of indirect CPT/CP and CP/T violation using theBABAR charmonium
CP and flavor hadronic samples. The combined use of these samples offers a way to test simultaneous and
consistently the CPT, CP and T invariances of the effective Hamiltonian of theB0

d system, in spite of the
vanishingly small width difference∆Γ between the physical states, while providing a robust extraction
of this parameter. CPT-odd, CP-odd, T-odd and temporal asymmetries are also constructed to display
the different effects.

Two different phase-convention independent formalisms have been investigated. With the(ε,δ)
formalism, similar to that used in kaon system phenomenology, an unbinned maximum likelihood

fit allows the simultaneous measurement of1−|ε|2
1+|ε|2

Reδ
1+|ε|2 , Imδ

1+|ε|2 , Reε
1+|ε|2 , Imε

1+|ε|2 , sign
(

1−|ε|2
1+|ε|2

)

∆Γ/Γ and

∆m. In the (| q/p |,λ,z) formalism, the corresponding set of parameters isReλ
|λ| Rez, Imz, | q/p |, Imλ

|λ| ,

sign(Reλ)∆Γ/Γ and∆m. The strategy, feasibility, reach and validation of the proposed analysis are re-
ported. The implementation and validation of the CPT/CP, CP/T models in theBABAR event generators
are also described.

1Primary editor.
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1 Introduction

Discrete symmetries play a fundamental role in our description of nature. The CPT theorem [1, 2],
which is based on very general principles of relativistic quantum field theories (little more than locality
and Lorentz invariance), states that any order of the tripleproduct of the discrete symmetries C, P and
T represent an exact symmetry. The theorem predicts that particles and antiparticles have equal masses,
lifetimes, charge-to-mass rations and gyromagnetic ratios.

The CPT symmetry has been tested in a variety of experiments [3], remaining to date the only com-
bination of C, P, T that is observed as an exact symmetry in nature. However, precisely because the CPT
theorem represents an essential pillar of our present description of nature, it is highly suitable to enhance
such tests through detailed studies of EPR correlations in the B meson neutral system, where the extremally
small value of the mass difference between the physical states with respect to theB mass (13 orders of
magnitude) enhances the sensitivity of theB0B0 interferometry. As can be found in the literature, the special
features of the neutral B meson system can be used to extract not only information on CP [4] but also on
CPT [5] violation. We should also keep in mind that superstring theories are not local and therefore do not
necessarily fulfil the conditions of the CPT theorem. CPT invariance has also been questioned in the context
of quantum gravity [6].

The problem of indirect violation of CP, T and CPT discrete symmetries corresponds to the non-
invariance under the corresponding transformations of theeffective hamiltonian [7] governing the time
evolution of a neutral meson system. Those properties can thus be studied by analyzing the symmetries
in the problem of mixing during the time evolution of the meson states, excluding the possible effects from
direct decays. Historically, since the discovery of CP violation in 1964 [8], such a study has been performed
in the kaon system [9] where the study offlavour-to-flavour(Bf lav) evolution allows the construction of
observables which violate CP and T, or CP and CPT. In a similarway as kaon system studies, in theB0

d me-
son system one can perform similar studies [10]. Nevertheless, these T- and CPT-odd observables need the
presence of off-diagonal absorptive components in the effective hamiltonian in order to be non-vanishing,
even in presence of T and CPT fundamental violation. For the kaon system, this ingredient is guaranteed by
the different lifetimes of physical states,K0

S andK0
L . On the contrary, in the case of theB0

d system, the width
difference∆Γ/Γ between the physical states is expected to be very small, O(10−2) [11].

Therefore the T- and CPT-odd observables proposed for kaons, which are based onflavor tag(i.e. prepa-
ration of definite flavor states), vanish for aB0

d meson system in the limit∆Γ = 0, reducing dramatically its
sensitivity and making its interpretation in terms of violation of the fundamental symmetries difficult, in
spite of the very large available statistics [10]. However,the study ofCP-to-flavour(BCP) evolution from
the entangled states ofB0

d mesons allows the construction of observables which are sensitive to indirect CP
and T, or CP and CPT violation, independently of the value of∆Γ [12, 13]. Being the indirect CP viola-
tion already established [14], testing simultaneously indirect CP, T and CPT conservation and disentangle
whether the CP violation is due to T or CPT violation is a natural step forward, and of great interest [3] as
mentioned above. This is the purpose of the analysis proposed here. As a result of the consistent treatment,
the analysis provides also a way to extract∆Γ.

The outline of this document is as follows. In section 2 we discuss the theoretical framework required for
the analysis, describing the formalisms used for this study. Section 3 describes how the relevant parameters
are extracted, and section 4 presents all checks performed to study and validate the fit. Section 5 is devoted
to study the CPT, CP and T violation reach and sensitivity. Insection 6 we summarize the conclusions of
our study.
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2 Framework

2.1 Basics

The neutralB meson system is a linear combination of the Schrödinger wave functions for the meson
B0 and its antimesonB0, |Ψ〉 = a|B0〉+ b|B0〉. The time evolution of this combination is governed by the
Schrödinger equation,∂Ψ

∂t = −iH Ψ, whereM is the 2×2 non-hermitian (probability is not conserved since
theB0B0 system decays) effective hamiltonian,

H = M− i
Γ
2

=

(

M11 M12

M∗
12 M22

)

− i
2

(

Γ11 Γ12

Γ∗
12 Γ22

)

. (1)

M andΓ represent the mass (dispersive) and lifetime (absorptive)parts of the hamiltonian. Unitarity requires
that the diagonal elements ofM andΓ are real2.

The flavor eigenstates are connected by

CP|B0〉 = CP∗
12|B0〉 (2)

where

CP12 = 〈B0|CP|B0〉 = e−iα (3)

is the unphysical relative phase between| B0〉 and| B0〉. The corresponding CP eigenstates are thus

|B±〉 =
1√
2
(I ±CP)|B0〉 =

1√
2

[

|B0〉±CP∗
12 | B0〉

]

. (4)

Inverting equation (4), one gets

|B0〉 =
1√
2

[|B+〉+ |B−〉]

|B0〉 =
1√
2

CP12[|B+〉− |B−〉] . (5)

It should be noted here that the off-diagonal elements ofH are phase-convention dependent,

H12 = 〈B0|H|B0〉 → H12CP12 (6)

However, combinationsH12CP∗
12 are independent of the phase choice in (2).

2We use the notationHi j , CPi j , etc. to represent the matrix elements of the correspondingoperators in the flavor basis, for
instanceH12 ≡ 〈B0|H|B̄0〉.
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2.2 Eigenstates of evolution

The states of evolution are the eigenstates ofH, which evolve as

|B1(t)〉 = e−iλ1t |B1(0)〉
|B2(t)〉 = e−iλ2t |B2(0)〉

(7)

whereλ j = M j − i Γ j

2 are the eigenvalues, forj = 1,2. The following relations are satisfied:M j = Re(λ j),
Γ j = −2Im(λ j), ∆λ = λ1−λ2 = ∆m+ i ∆Γ

2 , ∆m= M1−M2 = Re(λ1−λ2), ∆Γ = Γ2−Γ1 = 2Im(λ1−λ2),
m= M1+M2

2 andΓ = Γ1+Γ2
2 . Let us note the particular choice of sign in the definition of∆Γ, which coincides

with that of the kaon system but is opposite to that adopted bysome authors in theB0
d system: for∆m

positive, we are identifying| B1〉 ≡| BH〉 and| B2〉 ≡| BL〉, and∆Γ is therefore positive for kaons.

Let’s assume first CPT conservation, which imposes the condition H11 = H22. Writing the eigenvectors
|B1〉 and|B2〉 in theB0B0 basis,|B j〉 = p j |B0〉+q j |B0〉, j = 1,2, we obtain

q1

p1
=

q
p

=

√

M∗
12− iΓ∗

12/2
M12− iΓ12/2

=
M∗

12− iΓ∗
12/2

F
(8)

for j = 1, and

q2

p2
= −q

p
(9)

for j = 2, where

F =
√

(M12− iΓ12/2)(M∗
12− iΓ∗

12/2) =
1
2
(∆m+ i

∆Γ
2

) . (10)

The phase-convention dependence ofq/p is well seen in equation (8), since onlyH∗
12 terms are involved.

The reference phaseCP12 would make it invariant,

q
p
CP12 =

1− ε
1+ ε

(11)

whereε is here a phase-convention independent parameter. The eigenstates can then be written as

|B1〉 =
1

√

2(1+ |ε|2)
[

(1+ ε)|B0〉+(1− ε)|CP∗
12B

0〉
]

|B2〉 =
1

√

2(1+ |ε|2)
[

(1+ ε)|B0〉− (1− ε)|CP∗
12B

0〉
]

(12)

whereε is the same parameter as defined in equation (11). Writing theeigenstates|B1〉 and|B2〉 in the CP
basis,|B j〉 = c j |B+〉+d j |B−〉, j = 1,2, we obtain

5



|B1〉 =
1

√

1+ | ε |2
[|B+〉+ ε|B−〉]

|B2〉 =
1

√

1+ | ε |2
[|B−〉+ ε|B+〉] (13)

from which it can be seen thatε is the parameter which defines the CP mixing. The independence of ε with
the phase choice can be shown explicitly if the coefficients of the linear combination of the eigenvectors are
calculated in the CP basis. Forj = 1,

d1

c1
=

Im(Γ12CP∗
12)+2iIm(M12CP∗

12)

2Re(M12CP∗
12)− iRe(Γ12CP∗

12)+ ∆m+ i∆Γ/2
= ε (14)

where 4| M12 |2 − | Γ12 |2= (∆m)2− 1
4(∆Γ)2 and 4Re(M12Γ∗

12) = −∆m∆Γ. Similarly, for j = 2 we obtain

d2

c2
=

c1

d1
=

1
ε

. (15)

Expression (14) reveals the presence ofH12CP∗
12 terms, which are invariant under rephasing. Let us note

that the convention adopted here definingq/p (ε) uses the heavier state,| B1〉.

Corrections are due to CPT violation, which can be parameterized in terms of the variable∆ = H11−H22.
In this case equations (8) and (9) read, respectively

q1

p1
=

√

(M∗
12− iΓ∗

12/2)(ReF ′ + iImF ′−∆/2)

(M12− iΓ12/2)(ReF ′ + iImF ′ + ∆/2)
(16)

and

q2

p2
= −q1

p1
− ∆

M12− iΓ12/2
(17)

where

F ′ =
√

F2 + ∆2/4 . (18)

To leading order in∆, F ′ equals toF = (∆m+ i∆Γ/2)/2, and equations (16) and (17) are simplified as
follows:

q1

p1
=

1− ε1

1+ ε1
CP∗

12 =
q
p

(

1− ∆
∆m+ i∆Γ/2

)

(19)

and

q2

p2
= −1− ε2

1+ ε2
CP∗

12 = −q
p

(

1+
∆

∆m+ i∆Γ/2

)

(20)
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respectively.

The generalization of equations (14) and (15) to account forCPT violating effects reads

d1

c1
=

Im(Γ12CP∗
12)+2iIm(M12CP∗

12)+ ∆
2Re(M12CP∗

12)− iRe(Γ12CP∗
12)+2F ′ = ε1 (21)

and

d2

c2
=

2Re(M12CP∗
12)− iRe(Γ12CP∗

12)+2F ′

Im(Γ12CP∗
12)+2iIm(M12CP∗

12)−∆
=

1
ε2

(22)

respectively.

Alternatively toε1,2 we may use another pair of parametersε andδ, which offer a simpler interpretation
in terms of symmetries. These parameters are defined as

ε ≡ ε1 + ε2

2
=

Im(Γ12CP∗
12)+2iIm(M12CP∗

12)

2Re(M12CP∗
12)− iRe(Γ12CP∗

12)+2F ′ (23)

δ ≡ ε1− ε2 =
2∆

2Re(M12CP∗
12)− iRe(Γ12CP∗

12)+2F ′ (24)

In terms of these parameters, the eigenstates in the flavor basis are:

|B1〉 =
1

√

2(1+ |ε+ δ/2|2)
[

(1+ ε+ δ/2)|B0〉+(1− ε−δ/2)|CP∗
12B

0〉
]

|B2〉 =
1

√

2(1+ |ε−δ/2|2)
[

(1+ ε−δ/2)|B0〉− (1− ε+ δ/2)|CP∗
12B

0〉
]

(25)

and in the CP basis are:

|B1〉 =
1

√

1+ | ε+ δ/2 |2
[|B+〉+(ε+ δ/2)|B−〉]

|B2〉 =
1

√

1+ | ε−δ/2 |2
[|B−〉+(ε−δ/2)|B+〉] . (26)

By inverting (26), we can obtain the master equations for thetime evolution for an state that is initially a
pure| B±〉:

| B+(t)〉 =
e−imte−Γt/2

1− ε1ε2
{[h+(t)− ε1ε2h−(t)] | B+〉+[ε1(h+(t)−h−(t))] | B−〉}

| B−(t)〉 =
e−imte−Γt/2

1− ε1ε2
{[h−(t)− ε1ε2h+(t)] | B−〉+[ε2(h−(t)−h+(t))] | B+〉} (27)
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whereε1 = ε+ δ/2, ε2 = ε−δ/2 and

h±(t) = e±i∆λt/2 = e∓i∆mt/2e±∆Γt/4 . (28)

Similarly, for a pure| B0〉 (| B0〉) state:

| B0(t)〉 =
1
2

e−imte−Γt/2

1− ε1ε2

{

[(1+ ε1)(1− ε2)h+(t)+ (1− ε1)(1+ ε2)h−(t)] | B0〉 +

[(1− ε1)(1− ε2)h+(t)− (1− ε1)(1− ε2)h−(t)]CP∗
12 | B0〉

}

| B0(t)〉 =
1
2

e−imte−Γt/2

1− ε1ε2

{

CP12[(1+ ε1)(1+ ε2)h+(t)− (1+ ε1)(1+ ε2)h−(t)] | B0〉 +

[(1− ε1)(1+ ε2)h+(t)+ (1+ ε1)(1− ε2)h−(t)] | B0〉
}

. (29)

2.3 Hierarchy of parameters: the∆Γ = 0 limit

In order to stablish the hierarchy of the CPT, CP and T parameters, it is very useful to evaluateε andδ
in the limit ∆Γ = 0. In this limit the anti-hermitian part of the effective hamiltonian is proportional to unity,

(

Γ11 Γ12

Γ∗
12 Γ22

)

= Γ
(

1 0
0 1

)

. (30)

The hamiltonian can then be diagonalized by a unitary transformation and its physical states will be orthog-
onal. From (23) and (24), we obtain:

Re(ε) = 0
Im(ε)

1+ |ε|2 =
Im(M12CP∗

12)

∆m
Re(δ)

1+ |ε|2 =
∆

∆m
Im(δ) = 0 (31)

As can be seen,ε becomes purely imaginary andδ real. We then findε2 = −ε∗1 and the orthogonality of the
states (26) is apparent.

2.4 Restrictions imposed by discrete symmetries

When we pay attention to the restrictions imposed by discrete symmetries on the effective mass matrix,
H = M− i

2Γ, we see that:

• CP conservation imposes Im(M12CP∗
12) = Im(Γ12CP∗

12) = 0 andH11 = H22;
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• CPT invariance requiresH11 = H22;

• T invariance imposes Im(M12CP∗
12) = Im(Γ12CP∗

12) = 0.

As a consequence, CPT invariance leads toδ = 0, irrespective of the value ofε. Similarly, T invariance
leads toε = 0, independently of the value ofδ. CP conservation requires bothε = δ = 0. Another conse-
quence is that CPT or T violation requires CP violation, and CP violation implies T or CPT violation (or
both).

Therefore we have four real parameters which carry information on the symmetries of the effective mass
matrix, according to the following list:

• Reε 6= 0 signals CP and T violation, with∆Γ 6= 0;

• Imε 6= 0 indicates CP and T violation;

• Reδ 6= 0 means that CP and CPT violation exist;

• Imδ 6= 0 shows CP and CPT violation, with∆Γ 6= 0.

Thus we observe that Reε and Imδ, in spite of being true symmetry violating parameters, willnot be
helpful to decide the presence of symmetry breaking unless there are also off-diagonal absorptive parts in
the effective Hamiltonian. The traditionalflavor-to-flavorobservables constructed for the kaon system turn
out to be proportional to these quantities, so that their analogous for theB-system will be necessarily small,
even in presence of symmetry violation, due to the vanishingly small ∆Γ.

2.5 Time dependent decay rates in(ε,δ) formalism

Charge conjugation together with Bose statistics require that theB0B0 state produced from theϒ(4S)
decay is given by

|i >=
1√
2

(

|B0(~k),B
0
(−~k) > −|B0

(~k),B0(−~k) >
)

. (32)

As a consequence, one can never simultaneously have two identical mesons. This permits the performance
of aflavor tag3: if at t = 0 one of the mesons decays through a channel which is only allowed for one flavor
of the neutralB, the other meson in the pair must have the opposite flavor att = 0. The correlation (32)
between both sides of the entangled state holds at any time after the production, until the moment oneB
decays.

The entangled state can also be expressed in terms of the CP eigenstates as

|i >=
1√
2

(

|B−(~k),B+(−~k) > −|B+(~k),B−(−~k) >
)

(33)

which, as in the case of the flavor case, makes possible to carry out aCP tagat any time after the production
of the entangled stated.

The time evolution of aB meson of the entangled state (32) or (33) observed an interval ∆t after the
other B wasflavor or CP taggedis given by (27) and (29), respectively. In the following thefinal state

3In this context by flavor tag we mean ’preparation of a definiteflavor state’ (reconstructed side), which has to be distinguished
of flavor tag in the context of B tagging, i.e. flavor tag of the otherB.
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configuration will be denoted generally as(X, Y). In this notation, appearance of final stateX at t0 (with
momentum~k) always precedes that ofY at t = t0 + ∆t (with momentum−~k), i.e. ∆t > 0. For example, ifX
is a CP=− state produced by a CP conserving decay, the correlation of the entangled state ensures that att0
the otherB was aB+. Such a state evolves then for a time∆t and its subsequent decay intoY is a projection
onto the corresponding flavor state. In the following, the reconstructed CP and flavor final states are denoted
asBr± andB0

r /B0
r , respectively, while the flavor states used forB flavor tagging will be denoted asB0

t /B0
t .

All possibleB final states are denoted generally asf .

The probability to find the final state(X,Y) from the initial state (32) or (33) is obtained from (27) and
(29), and is given by:

| (X, Y) |2≡| 〈Y | H | X̄(t)〉 |2 =
1
2

e−ΓΣt

| 1− ε1ε2 |2
| AX |2| AY |2 ×

×
{

(η+ + η−)cosh

(

∆Γ∆t
2

)

+(η+−η−)sinh

(

∆Γ∆t
2

)

+ ηrecos(∆m∆t)+ ηimsin(∆m∆t)

}

(34)

whereΣt = t0 + t andAf andĀf are the decay amplitudes into an arbitrary final statef ,

Af = 〈 f | H | B0〉 , Āf = 〈 f | H | B0〉 . (35)

The underlying assumptions in equation (34) are: i) the∆B= ∆Q rule applies (AB0
t
= ĀB0

t
= AB0

r
= ĀB0

r
= 0);

ii) there is CP/CPT convervation in the decay,r f =| Ā f̄ /Af |= 1. The values of the coefficients are the
following (st denotes the flavor of the stateY, st = −1(+1) for B0

t (B
0
t )):

• CP tag,X = Br−, Y = B0
t (B

0
t ):

η+ = 1+ | ε1 |2 +st2Re(ε1)

η− = | ε1 |2
{

1+ | ε2 |2 +st2Re(ε2)
}

ηre = −2
{

Re(ε1ε2)+ | ε1 |2 [1+stRe(ε2)]+stRe(ε1)
}

ηim = 2
{

Im(ε1ε2)+st | ε1 |2 Im(ε2)+st Im(ε1)
}

(36)

• CP tag,X = Br+, Y = B0
t (B

0
t ):

η+ = | ε2 |2
{

1+ | ε1 |2 +st2Re(ε1)
}

η− = 1+ | ε2 |2 +st2Re(ε2)

ηre = −2
{

Re(ε1ε2)+ | ε2 |2 [1+stRe(ε1)]+stRe(ε2)
}

ηim = −2
{

Im(ε1ε2)+st | ε2 |2 Im(ε1)+st Im(ε2)
}

(37)
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• Flavor tag,X = B0
r (B

0
r ), Y = B0

t (B
0
t ) (unmixed):

η+ + η− =
1
2

{

| (1+ ε1)(1− ε2) |2 + | (1− ε1)(1+ ε2) |2
}

η+−η− =
1
2

st
{

| (1+ ε1)(1− ε2) |2 − | (1− ε1)(1+ ε2) |2
}

ηre =
1
2

Re{(1− ε1)(1+ ε2)(1+ ε∗1)(1− ε∗2)+ (1+ ε1)(1− ε2)(1− ε∗1)(1+ ε∗2)}

ηim = −1
2

st Im{(1− ε1)(1+ ε2)(1+ ε∗1)(1− ε∗2)− (1+ ε1)(1− ε2)(1− ε∗1)(1+ ε∗2)}
(38)

• Flavor tag,X = B0
r (B

0
r ), Y = B0

t (B
0
t ) (mixed):

η+ + η− = | (1+stε1)(1+stε2) |2

η+−η− = 0

ηre = −(η+ + η−)

ηim = 0

(39)

In all the above equations we have assumed that the CP and flavor (reconstructed side) states decay first than
the oppositeB, the one used forB tagging. When the opposite situation happens (X andY are interchanged),
expression (34) still applies by just flipping the sign of the(η+−η−) andηim coefficients. In presence of CP
violation in the decay (BCP events), the corresponding equations are modified to those derived in appendix
A. In the case ofBf lav processes CPT violation in the decay can be introduced multiplying by a globalr2

B0
r

factor the coefficients corresponding toX = B0
r . Using the lighter state instead of the heavier one to define

ε would imply the replacementε1 → 1/ε1 andε2 → 1/ε2.

Experimentally, the information available for the time sumfor the meson evolutionΣt in (34) is quite
poor compared to∆t. It is therefore appropiate to work with an integrated probability,

f (X, Y; ∆t) =

∫ +∞

∆t
dΣt|(X,Y)|2 , (40)

which gives the final general time dependent intensity.

The hierarchy of theε andδ complex parameters demonstrated in section 2.3, together with the pertur-
bative characteristic of CPT violation, allow us to calculate equations (34)-(40) to leading order in Re(ε)
andδ. Assuming CP/CPT conservation in the decay (r f = 1), the time dependent decay rate reads

f (X, Y; ∆t) =
1
2

e−Γ|∆t|

Γ
| AX |2| AY |2

{

acosh

(

∆Γ∆t
2

)

+bcos(∆m∆t)+csinh

(

∆Γ∆t
2

)

+dsin(∆m∆t)

}

. (41)
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Coefficient (B0
r ,B

0
t ) (B0

r ,B
0
t ) (B0

r ,B
0
t ) (B0

r ,B
0
t )

a 1+4 Reε
1+|ε|2 1−4 Reε

1+|ε|2 1 1

b −
(

1+4 Reε
1+|ε|2

)

−
(

1−4 Reε
1+|ε|2

)

1 1

c 0 0 −2 Reδ
1+|ε|2 2 Reδ

1+|ε|2
d 0 0 −2 Imδ

1+|ε|2 2 Imδ
1+|ε|2

Table 1: Coefficients of the various time dependencies in(B0
f /B0

f , B0
t /B0

t ) events, to leading order in Re(ε)
andδ, for the(ε,δ) formalism.

Coefficient (Br±,B0
t /B0

t )

a 1+2st
Reε

1+|ε|2 −stηCP
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 −2ηCP

Imε
1+|ε|2

Imδ
1+|ε|2

b −2st
Reε

1+|ε|2 +stηCP
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 +2ηCP

Imε
1+|ε|2

Imδ
1+|ε|2

c −ηCP
1−|ε|2
1+|ε|2

[

1+2st
Reε

1+|ε|2
]

+st
Reδ

1+|ε|2

d −2stηCP
Imε

1+|ε|2
[

1+2st
Reε

1+|ε|2
]

+st
Imδ

1+|ε|2

Table 2: Coefficients for CP-to-flavor final configurations, to leading order in Re(ε) andδ, for the (ε,δ)
formalism.st is −1(+1) for B0

t (B0
t ) tags, andηCP denotes the CP eigenstate.

where the coefficientsa, b, c, d are given in tables 1 and 2 for flavor-to-flavor and CP-to-flavor transitions,
respectively.

In BABAR, ∆t is used as a signed quantity defined as∆t = t − t0 = tREC− tTAG [23]. Compared to
the convention described in section 2.5, this is equivalentto say that in the final state(X,Y), X is always
the reconstructed side (flavor or CP),Y is the B used for tagging, and the order of appearance is given
by the ∆t sign. Given that with this convention∆t is positive for flavor-to-CP transitions and flavor-to-
flavor(reconstructed), we have to flip the signs of thec andd coefficients:

f (X,Y;∆t) =
1
N

e−Γ|∆t|

2Γ

{

acosh

(

∆Γ∆t
2

)

+bcos(∆m∆t)−csinh

(

∆Γ∆t
2

)

−dsin(∆m∆t)

}

, (42)

whereN is the normalization factor defined so that

∑
Y=B0

t ,B
0
t

∫ +∞

−∞
f (X,Y;∆t)d∆t = 1 (43)

for BCP transitions, and

∑
X=B0

r ,B0
r

∑
Y=B0

t ,B
0
t

∫ +∞

−∞
f (X,Y;∆t)d∆t = 1 (44)

12



for Bf lav transitions. It should be noted that the normalization (44)does not take into account the fact that T

violation introducesB0-B0 differences in the time integrated rates (i.e.χB0

d 6= χB0

d ). The motivation to use a
globalB0B0 normalization is the constraint from time integrated ratesthat it implies, improving significantly
the precision on∆m [24], while there is no evidence of biases on any of the physics parameters (as shown
in section 5).

Figure 1 ilustrates the shape of the time dependent decay rates for flavor-to-flavor transitions (unmixed
and mixed) for different values of∆Γ/Γ (0,0.2), Reε

1+|ε|2 (0,0.05) and Imδ
1+|ε|2 (0,0.1), asuming∆m=0.472 ps−1

and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 =0. The distributions for flavor-to-CP transitions can be seen in figure 2, for different values

of ∆Γ/Γ (0,0.2),1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2) and Reε

1+|ε|2 (0,0.05), asuming∆m=0.472 ps−1, Imε
1+|ε|2 = 0.35 and Imδ

1+|ε|2 = 0.

The 1−|ε|2
1+|ε|2 factor entering in the coefficients of the intensities can beexpressed in terms ofReε

1+|ε|2 and
Imε

1+|ε|2 . In order to find the algebraic relation, we need first to extract | ε | from Reε
1+|ε|2 and Imε

1+|ε|2 , and then

calculate1−|ε|2
1+|ε|2 .

| ε | can be related tox = Reε
1+|ε|2 andy = Imε

1+|ε|2 via a second order equation in| ε |:

| ε |2 =
1
2

[

−ρ±
√

ρ2−4
]

(45)

where

ρ = 2− 1
x2 +y2 . (46)

Both solutions are possible, providing opposite sign solutions for 1−|ε|2
1+|ε|2 . Solving equation (45) withx2 and

y2 in terms of| ε |,

1
x2 +y2 =

(1+ | ε |2)2

| ε |2 , (47)

we get that the positive solution of (45) is 1/ | ε |2, and the negative one| ε |2. This ambiguity is a conse-
quence of the choice ofε as the coefficient of the| B−〉 state for the physical state| B1〉, equation (13). State
| B1〉 could also be defined, with exactly the same physical meaning, with a coefficient 1/ε in front of | B+〉.
For consistency with the choice ofε in (13) we take the negative solution. The value of| ε |2 is constrained
to be in the physical region, which corresponds toρ2−4≥ 0.

It is worth noting that the CPT/CP, CP/T parameters are insensitive to the previous sign ambiguity.

From a detailed inspection of equation (42) and table 2, it isconcluded that a change of sign in1−|ε|2
1+|ε|2

implies a change of sign inReδ
1+|ε|2 and∆Γ. However, the product1−|ε|2

1+|ε|2
Reδ

1+|ε|2 , to which CPT asymmetries

are proportional (as discussed in section 2.8), remains unchanged, and the change in the sign of1−|ε|2
1+|ε|2

would only manisfest in∆Γ. In this case the parameter to which the analysis will be sensitive is therefore

∆Γ×sign(1−|ε|2
1+|ε|2 ).

Therefore, our choice of seven independent real physics parameters that model CPT/CP, CP/T and mix-
ing according to equation (42) is
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∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05 (B0,B0bar)
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0 (B0,B0bar)

Unmixed events
(truth)

∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05 (B0,B0bar)
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0 (B0,B0bar)

Mixed events
(truth)

Figure 1: Theoretical decay time distributions for(B0
r /B0

r ,B
0
t /B0

t ) transitions for (top) unmixed and (bottom)
mixed events. The different curves correspond to differentvalues of∆Γ/Γ, Reε

1+|ε|2 and Imδ
1+|ε|2 . ∆m is assumed

to be 0.472 ps−1 andδ=0. No mistag and time resolution have been included.
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CP, B0 tagged events
(truth)

Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CP, B0bar tagged events
(truth)

Figure 2: Theoretical decay time distributions for(Br±,B0
t /B0

t ) transitions, for (top)B0 and (bottom)B0

tagged events (CP=−). The different curves correspond to different values of1−|ε|2
1+|ε|2

Reδ
1+|ε|2 , ∆Γ/Γ and Reε

1+|ε|2 .

∆m is assumed to be 0.472 ps−1, and Imδ
1+|ε|2 = 0. No mistag and time resolution have been included.
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1−|ε|2
1+|ε|2

Reδ
1+|ε|2 , Imδ

1+|ε|2 , Imε
1+|ε|2 , Reε

1+|ε|2 , ∆Γ/Γ×sign(1−|ε|2
1+|ε|2) , ∆m , τ

2.6 Time dependent decay rates in(| q/p |,λ,z) formalism

As outlined in section 2.2, flavor and CP mixing can also be described using the parametersqi , pi ,
i = 1,2, instead ofε, δ [13]. The coherent definition of parameters and the calculation of the general
time dependent decay rates can be found in [18]. CP/T violating effects are determined here by the set
of parameters{| q/p |,λ f }, and CP/CPT violation is parameterized byz. λ f is the well-known phase-
convention independent parameter defined as

λ f =
q
p

Āf

Af
. (48)

λ f andzare complex valued parameters, while| q/p | is real.

The master equations for the time evolution for an state thatis initially a pure| B0〉 (| B0〉) state are
written as [18]:

| B0(t)〉 =
1
2

e−imte−Γt/2
{

[g+(t)+zg−(t)] | B0〉+
√

1−z2 q
p

g−(t) | B0〉
}

| B0(t)〉 =
1
2

e−imte−Γt/2
{

[g+(t)−zg−(t)] | B0〉+
√

1−z2 p
q

g−(t) | B0〉
}

(49)

where

g±(t) = h+(t)±h−(t) . (50)

The functionsh±(t) are the same as defined in equation (28). The coefficientsa, b, c andd of the general
time dependent decay rate intensity (42) calculated from (49) are given in tables 3 and 4, forBf lav and
BCP transitions, respectively. Using the lighter state instead of the heavier to defineq/p would imply the
replacementq/p→−q/p, or λ f →−λ f . Taking leading order in the CPT parameterz, the coefficientsa,
b, c andd can be written in a similar way to that used in the(ε,δ), as shown in tables 5 and 6, forBf lav and
BCP transitions.

Coefficient (B0
r ,B

0
t ) (B0

r ,B
0
t ) (B0

r ,B
0
t ) (B0

r ,B
0
t )

a | 1−z2 || q/p |−2 | 1−z2 || q/p |2 1+ | z |2 1+ | z |2
b − | 1−z2 || q/p |−2 − | 1−z2 || q/p |2 1− | z |2 1− | z |2
c 0 0 −2Rez 2Rez
d 0 0 −2Imz 2Imz

Table 3: Coefficients of the various time dependencies in(B0
r /B0

r ,B
0
t /B0

t ) events, for the(| q/p |,λ,z) for-
malism.

If we assume that the mechanisms that contribute to the decayhave the same weak phase forηCP = −1
andηCP = +1 modes, we can introduce a common phase-convention independent parameterλ,
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Coefficient (Br±,B0
t ) (Br±,B0

t )

a 1
2

[

1+ | z+
√

1−z2λ f |2
]

1
2 | q/p |−2

[

| λ f |2 + |
√

1−z2−zλ f |2
]

b 1
2

[

1− | z+
√

1−z2λ f |2
]

1
2 | q/p |−2

[

| λ f |2 − |
√

1−z2−zλ f |2
]

c −Re
(

z+
√

1−z2λ f

)

− | q/p |−2
[

−Re
(

λ∗
f

√
1−z2

)

− | λ f |2 Rez
]

d −Im
(

z+
√

1−z2λ f

)

| q/p |−2
[

| λ f |2 Imz− Im
(

λ∗
f

√
1−z2

)]

Table 4: Coefficients for CP-to-flavor final configurations, for the(| q/p |,λ,z) formalism.

Imλ f = −ηCP, f Imλ
Reλ f = ηCP, f Reλ . (51)

Coefficient (B0
r ,B

0
t ) (B0

r ,B
0
t ) (B0

r ,B
0
t ) (B0

r ,B
0
t )

a | q/p |−2 | q/p |2 1 1
b − | q/p |−2 − | q/p |2 1 1
c 0 0 −2Rez 2Rez
d 0 0 −2Imz 2Imz

Table 5: Coefficients of the various time dependencies in(B0
r /B0

r ,B
0
t /B0

t ) events, to leading order in the CPT
parameterz, for the(| q/p |,λ,z) formalism.

Coefficient (Br±,B0
t )

a 1
2

(

1+ | λ f |2
)

+RezReλ f + ImzImλ f

b 1
2

(

1− | λ f |2
)

−RezReλ f − ImzImλ f

c −(Rez+Reλ f )
d −(Imz+ Imλ f )

(Br±,B0
t )

a | q/p |−2
[

1
2

(

1+ | λ f |2
)

−RezReλ f + ImzImλ f
]

b | q/p |−2
[

1
2

(

| λ f |2 −1
)

+RezReλ f − ImzImλ f
]

c − | q/p |−2
[

Reλ f− | λ f |2 Rez
]

d | q/p |−2
[

Imλ f + | λ f |2 Imz
]

Table 6: Coefficients for CP-to-flavor final configurations, to leading order in the CPT parameterz, for the
(| q/p |,λ,z) formalism.

It should be noted that in the above coefficients we have contributions from| λ |, Imλ and Reλ, which
are related. This closure relation is exactly the same as it was described in section 2.5 for theε,δ formalism,
giving rise to the same problematics [37]. The option chosenhere is the same as it was adopted for the(ε,δ)
formalism. Reλ is expressed in terms of Imλ and| λ |,

Reλ = ±
√

| λ |2 −(Imλ)2 . (52)

The parameter RezReλ is then insensitive to the sign choice in (52), but∆Γ does not, and the actual parameter
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to which the analysis will be sensitive is∆Γ×sign(Reλ). As in the previous section, Reλ is constrained to
be within the physical region, i.e.| λ |2 −(Imλ)2 ≥ 0.

Therefore, the choice of seven independent real physics parameters that model CPT/CP, CP/T and mix-
ing in the(| q/p |,λ,z) formalism is:

Reλ
|λ| Rez , Imz , Imλ

λ , | q/p | , ∆Γ/Γ×sign(Reλ) , ∆m , τ

The correspondence between the above parameters and those defined in section 2.5 is apparent.

2.7 (ε,δ) versus(| q/p |,λ,z)

Some useful relations connecting the(ε,δ) and(| q/p |,λ,z) formalisms are derived here. Beyond the
straightforward algebra to find the relations, it should be empathized the fundamental differences between
the two approaches. The(ε,δ) formalism is requires the application of aCP tag, while (| q/p |,λ,z) is
based on aflavor tag. This implies in the(| q/p |,λ,z) formalism the need of a specific decay process to
unambiguosly define the unphysical relative phase betweenB0 andB0. In the case of the(ε,δ) approach the
specific process enters in by the need to unambiguosly define the CP tag, requiring a CP-conserving decay
into a definite CP final state (CP final state free of direct violation), and not to define the quark phases as
before [15]. This is possible toO(λ3) in the quark flavor-mixing parameter of the CKM matrix [16]. The
determination is based on the requirement of CP conservation, toO(λ3), in the (sd) and (bs) sectors. If
the decay does not fall into a CP-conserving direction, corrections are needed in order to define the CP tag
(see appendix A). In the context of(| q/p |,λ,z) this means that one is unable (up to additional corrections)
disentangle whether the symmetry violation is due to the effective hamiltonian of evolution or the one
responsible of the decay.

From equation (11) one can easily obtain the well known relation

2Reε
1+ | ε |2 =

1− | q/p |2
1+ | q/p |2 (53)

or equivalently,

| q/p |2 =
1− 2Re(ε)

1+|ε|2

1+ 2Re(ε)
1+|ε|2

. (54)

If there is no CP violation in the decay tof , | Āf |=| Af |, so thatAf andĀf are the same up to the reference
phase,CP12, times the CP charge,ηCP, f : Āf = Af ηCP, fCP12. We can then write

λ f = ηCP, f
q
p
CP12 = ηCP, f

1− ε
1+ ε

(55)

From equation (55) it can then easily be shown the following relations:

Reλ f ≡ ηCP, f Re

(

q
p
CP12

)

= ηCP, f

1−|ε|2
1+|ε|2

1+2 Reε
1+|ε|2

(56)
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Imλ f ≡ −ηCP, f Im

(

q
p
CP12

)

= −ηCP, f

2 Imε
1+|ε|2

1+2 Reε
1+|ε|2

(57)

and

| λ f |2 ≡ | q/p |2=
1−2 Reε

1+|ε|2

1+2 Reε
1+|ε|2

. (58)

In the limit ∆Γ = 0, equations (56), (57) and (58) become

Reλ f = ηCP, f
1− | ε |2
1+ | ε |2 (59)

Imλ f = −ηCP, f
2Imε

1+ | ε |2 (60)

and

| λ f |2 = 1 (61)

respectively.

From (19), (20), (23) and (24), it can be obtained the following relation,

δ
1− ε2 =

∆
∆m+ i∆Γ/2

≡ z . (62)

To linear order in Reε
1+|ε|2 andδ,

δ
1+ | ε |2 ≡ z (63)

2.8 Building the asymmetries

By comparing the intensities corresponding to the different processes we can build several time-dependent
asymmetries.

2.8.1 Flavor-to-flavor asymmetries

From the flavor-to-flavor processes three non-trivial asymmetries arise.

The first, well known mixing asymmetry,

A(Mixing) ≡ f (B0
r ,B

0
t )+ f (B0

r ,B
0
t )− f (B0

r ,B
0
t )− f (B0

r ,B
0
t )

f (B0
r ,B

0
t )+ f (B0

r ,B
0
t )+ f (B0

r ,B
0
t )+ f (B0

r ,B
0
t )

=
cos(∆m∆t)

cosh(∆Γ∆t/2)
(64)
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∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0

Mixing asymmetry (truth)

Figure 3: Mixing asymmetry as defined in equation (64). The different curves correspond to different values

of ∆Γ/Γ, Reε
1+|ε|2 and Imδ

1+|ε|2 . ∆m is assumed to be 0.472 ps−1 and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 = 0. No mistag and time

resolution have been included.

is ilustrated in figure 3. The different curves show how the asymmetry is modified by the presence of∆Γ 6=
0, assuming∆m=0.472 ps−1. Non negligible values ofReε

1+|ε|2 andδ do not affect the asymmetry, as given by
equation (64).

The second asymmetry can be constructed comparing the ratesof mixed events forB0 andB0,

A(T) ≡ f (B0
r ,B

0
t )− f (B0

r ,B
0
t )

f (B0
r ,B

0
t )+ f (B0

r ,B
0
t )

= 4
Reε

1+ |ε|2 . (65)

This Kabir asymmetry [7] is time independent. It is a genuineCP and T asymmetry, since the second process
corresponds to the CP-, or T-transformed of the first one. Thus the asymmetry cannot be faked by∆Γ 6= 0
in absence of true T violation. However, in the exact limit∆Γ = 0, Reε vanishes, and this quantity will be
zero, even if CP and T violation exist. So this observable also needs, in order to be non-zero, the presence
of ∆Γ 6= 0. ForB0

d mesons the negligible value of∆Γ predicts that this asymmetry will be small and difficult
to observe [10]. Figure 4 ilustrates this asymmetry for different values of Reε

1+|ε|2 (0,0.05) and∆Γ/Γ (0,0.2),

assuming∆m=0.472 ps−1. The asymmetry is insensitive toδ.

The third asymmetry can be constructed from the comparison of unmixed rates forB0 andB0 [17]:
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∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0

Kabir asymmetry (truth)

Figure 4: Kabir asymmetry as defined in equation (65). The different curves correspond to different values

of ∆Γ/Γ, Reε
1+|ε|2 and Imδ

1+|ε|2 . ∆m is assumed to be 0.472 ps−1 and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 = 0. No mistag and time

resolution have been included.

A(CPT) ≡ f (B0
r ,B

0
t )− f (B0

r ,B
0
t )

f (B0
r ,B

0
t )+ f (B0

r ,B
0
t )

= 2
Reδ

1+|ε|2 sinh
(∆Γ∆t

2

)

+ Imδ
1+|ε|2 sin(∆m∆t)

cosh
(∆Γ∆t

2

)

+cos(∆m∆t)
. (66)

Contrary to the Kabir asymmetry, this depends on time as an odd function of∆t. If we keep only terms of
O(∆Γ) this asymmetry vanishes, as it is linear in both∆Γ andδ. We see that it corresponds to a genuine
CP and CPT asymmetry, but due to the proportionality of both terms to∆Γ, measuring a small limit for this
asymmetry does not give a straightforward bound on CPT violation. Figure 5 ilustrates this asymmetry for

different values of Reε
1+|ε|2 (0,0.05) and∆Γ/Γ (0,0.2), assuming∆m=0.472 ps−1 and 1−|ε|2

1+|ε|2
Reδ

1+|ε|2 = 0.

2.8.2 CP-to-flavor asymmetries

The comparison of decay rates with CP-to-flavor/flavor-to-CP transtions provides bothgenuineandnon-
genuineasymmetries [12]. The first type corresponds to pure symmetry violating quantities, i.e. asymme-
tries between conjugated mesonic processes, that will always vanish if the relating symmetry is respected.
The second category does not correspond to purely conjugated pairs of processes, so that a non-vanishing
value can arise due to the presence of off-diagonal absorptive parts in the effective hamiltonian, although
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∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0

CPT (leptonic) asymmetry (truth)

Figure 5: CPT flavor-to-flavor (leptonic) asymmetry as defined in equation (66). The different curves cor-

respond to different values of∆Γ/Γ, Reε
1+|ε|2 and Imδ

1+|ε|2 . ∆m is assumed to be 0.472 ps−1 and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 = 0.

No mistag and time resolution have been included.

in the exact limit∆Γ = 0 they turn out to be equivalent to the genuine observables, and the deviations are
governed by∆Γ if it is not null. The advantage of the second group of asymmetries is that they can be
constructed from events with the same CP charge (for example, with reconstructedJ/ψK0

S in the final state
only), not needing the reconstruction of both, CP+ and CP− states (which involve the experimentally more
challenging and less statistically and systematically powerful J/ψK0

L mode).

Genuine asymmetries

One can construct genuine asymmetries of the form

A(X,Y) =
f (J/ψK0

S ,B0
t )− f (X,Y)

f (J/ψK0
S ,B0

t )+ f (X,Y)
(67)

by comparing the intensity of(J/ψK0
S , B0

t ) with those of the configurations that correspond to conjugated
mesonic processes via de different fundamental symmetry transformations, as shown in table 7.

Transition B+ → B0 B+ → B0 B0 → B+ B0 → B+

(X, Y) (J/ψK0
S, B0

t ) (J/ψK0
S, B0

t ) (B0
t , J/ψK0

L) (B0
t , J/ψK0

L)

Transformation CP CPT T

Table 7: Transitions and final configurations connected toB+ → B0 by symmetry transformations.
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The resulting asymmetries are, to linear order in∆Γ and neglecting Imδ
1+|ε|2 terms [12]:

• The CP asymmetry,

ACP = A(J/ψK0
S ,B0

t )

≃ − 2Imε
1+ |ε|2 sin(∆m∆t)+

2Reδ
1+ |ε|2

1−|ε|2
1+ |ε|2 sin2

(

∆m∆t
2

)

+
4Reε

1+ |ε|2

[

1+2

(

2Imε
1+ |ε|2

)2
]

sin2
(

∆m∆t
2

)

−∆Γ∆t
2

1−|ε|2
1+ |ε|2

2Imε
1+ |ε|2 sin(∆m∆t)

− 8Reε
1+ |ε|2

(

2Imε
1+ |ε|2

)2

sin4
(

∆m∆t
2

)

, (68)

has contributions from CP-violating and CPT-violating terms. The first two terms in equation (68)
correspond to the limit∆Γ = 0. The first term, odd in∆t, is governed by the CP-violating Imε,
whereas the second one, which is even in∆t, is sensitive to CPT violation through the parameter Reδ.
Linear∆Γ corrections induce both∆t even and odd functions.

• The T asymmetry,

AT = A(B0
t ,J/ψK0

L )

≃ − 2Imε
1+ |ε|2 sin(∆m∆t)

[

1− 2Reδ
1+ |ε|2

1−|ε|2
1+ |ε|2 sin2

(

∆m∆t
2

)]

+
4Reε

1+ |ε|2

[

1−2

(

2Imε
1+ |ε|2

)2
]

sin2
(

∆m∆t
2

)

+
∆Γ∆t

2
1−|ε|2
1+ |ε|2

2Imε
1+ |ε|2 sin(∆m∆t)

+
8Reε

1+ |ε|2
(

2Imε
1+ |ε|2

)2

sin4
(

∆m∆t
2

)

, (69)

includes even and odd terms, needsε 6= 0. In the exact limit∆Γ = 0, given by the first term in equation
(69), the T asymmetry is purely odd in∆t. Contrary to what happens forACP, all the new terms inAT

from linear∆Γ corrections have different∆t dependencies than those of zero order.

• The CPT asymmetry,

ACPT = A(B0
t ,J/ψK0

L )

≃ −1−|ε|2
1+ |ε|2

2Reδ
1+ |ε|2

1

1−2 Imε
1+|ε|2 sin(∆m∆t)

sin2
(

∆m∆t
2

)

, (70)

needsδ 6= 0, and includes both even and odd time dependencies, so that there is no definite symmetry
under a change of sign of∆t. To the order considered in our perturbation expansion,ACPT has no
linear∆Γ corrections. The genuine character of the asymmetry would put them in higher order terms.
Therefore, a non-vanish value of Reδ will genuinely manisfest inACPT.
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If ∆Γ = 0 is a good limit, the asymmetries above present odd∆t dependency in the CP/T paramater
Imε

1+|ε|2 , and even∆t dependency in the CP/CPT parameter1−|ε|2
1+|ε|2

2Reδ
1+|ε|2 . The separation ofε andδ is therefore

associated with resolving odd and even functions of∆t, respectively. Corrections due to∆Γ 6= 0 add an
even∆t dependency in the CP/T parameterReε

1+|ε|2 in ACP andAT, as well as a linear (odd) dependency in∆Γ
which is proporcional to Imε

1+|ε|2 . It is therefore verified that even in the case of∆Γ 6= 0 the asymmetries above
vanish if the fundamental symmetries are satisfied.

Figures 6, 7 and 8 show, respectively, theseACP (for CP− and CP+), AT andACPT asymmetries. The

different curves ilustrate how the asymmetries are modifiedby the presence of CPT violation (1−|ε|2
1+|ε|2

Reδ
1+|ε|2 6=

0), ∆Γ 6= 0 and T violation ( Reε
1+|ε|2 6= 0), assuming∆m=0.472 ps−1, Imε

1+|ε|2 = 0.35 and Imδ
1+|ε|2 = 0.

Non-genuine asymmetries

The previous asymmetries are defined as a comparison betweenintensities for a conjugated pair of
mesonic processes. Nevertheless, there is a fourth discrete transformation, whose relation to the symmetries
of the problem is not straightforward. It consists in the exchange of the order of appearance of the decay
productsX andY, i.e. ∆t →−∆t. Thus, this transformation relates processes involving transitions with the

same CP charge, for example(J/ψ, K0
S ,B0

t ) to (B0
t , J/ψ, K0

S ). At the mesonic level,(B+ → B0)
∆t→ (B̄0 →

B−), so that∆t reversal cannot be associated with any fundamental symmetry. But, in the limit ∆Γ = 0 it
turns out to be equivalent to the time reversal asymmetry,

A∆t(∆Γ = 0) ≡ A(B0
t , J/ψ K0

S )
∣

∣

∆Γ=0 ≡ A(B0
t , J/ψ K0

L )
∣

∣

∆Γ=0 (71)

In general, the equivalence of T and∆t inversions is only valid for hamiltonians with the propertyof her-
miticity, up to a global (proportional to unity) absorptivepart.

There are four possible configurations of the final state withthe same CP charge (e.g.J/ψK0
S), depending

on the flavor of the opposite side (sign of the charged lepton)and on the order of appearance of the decay
products. The relation between these final configurations and the mesonic transitions and the ’symmetry’
transformations are detailed in table 8.

Transition B+ → B0 B+ → B0 B0 → B− B0 → B−
(X, Y) (J/ψK0

S, B0
t ) (J/ψK0

S, B0
t ) (B0

t , J/ψK0
S) (B0

t , J/ψK0
S)

Transformation CP ∆t CP∆t

Table 8:(X, Y) configurations involving a single final state with the same CPcharge (e.g.J/ψK0
S) and their

relation with the mesonic transitions and the ’symmetry’ transformations.

The resulting asymmetries involving the∆t temporal transformation are, to linear order in∆Γ and ne-
glecting Imδ

1+|ε|2 terms [12]:
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CP (-) asymmetry (truth)

Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CP (+) asymmetry (truth)

Figure 6: TheACP asymmetry, as defined in equation (68), for CP− (top) and CP+ (bottom). The different

curves correspond to different values of1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and Reε

1+|ε|2 (0,0.05). ∆m, Imε
1+|ε|2

and Imδ
1+|ε|2 are assumed to be 0.472 ps−1, 0.35 and 0, respectively. No mistag and time resolution have been

included.

25



Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

T genuine asymmetry (truth)

Figure 7: TheAT asymmetry, as defined in equation (69). The different curvescorrespond to different values

of 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and Reε

1+|ε|2 (0,0.05). ∆m, Imε
1+|ε|2 and Imδ

1+|ε|2 are assumed to be 0.472 ps−1,
0.35 and 0, respectively. No mistag and time resolution have been included.

• The∆t asymmetry,

A∆t = A(B0
t ,J/ψK0

S )

≃ −2
Imε

1+ |ε|2 sin(∆m∆t)

[

1−2
Reδ

1+ |ε|2
1−|ε|2
1+ |ε|2 sin2

(

∆m∆t
2

)]

+
∆Γ∆t

2
1−|ε|2
1+ |ε|2

− 2Reε
1+ |ε|2

2Imε
1+ |ε|2 sin(∆m∆t)

[

1−2sin2
(

∆m∆t
2

)]

, (72)

• The CP∆t asymmetry,

ACP∆t = A(B0
t ,J/ψK0

S )

≃ 1

1− 2Imε
1+|ε|2 sin(∆m∆t)

[

2Reδ
1+ |ε|2

1−|ε|2
1+ |ε|2 +

∆Γ∆t
2

1−|ε|2
1+ |ε|2

+
4Reε

1+ |ε|2 sin2
(

∆m∆t
2

)

− 2Imε
1+ |ε|2

2Reε
1+ |ε|2 sin(∆m∆t)

]

. (73)

The non-genuine character ofA∆t andACP∆t are explicit in expressions (72) and (73), as in the limit of exact
symmetry,ε = 0 andδ = 0, there are surviving terms, linear in∆Γ. Thus off-diagonal absorptive parts in
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CPT genuine asymmetry (truth)

Figure 8: TheACPT asymmetry, as defined in equation 70. The different curves correspond to different

values of1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and Reε

1+|ε|2 (0,0.05). ∆m, Imε
1+|ε|2 and Imδ

1+|ε|2 are assumed to be

0.472 ps−1, 0.35 and 0, respectively. No mistag and time resolution have been included.

the effective hamiltonian may originate fake contributions to these non-genuine asymmetries. In the limit
∆Γ = 0, these terms disappear, andA∆t andACP∆t become equivalent toAT andACPT, as given in equations
(69) and (70), respectively.

Figures 9 and 10 show, respectively, theA∆t and andACP∆t asymmetries. The different curves ilustrate

how the asymmetries are modified by the presence of CPT violation (1−|ε|2
1+|ε|2

Reδ
1+|ε|2 6= 0), ∆Γ 6= 0 and T violation

( Reε
1+|ε|2 6= 0), assuming∆m=0.472 ps−1, Imε

1+|ε|2 = 0.35 and Imδ
1+|ε|2 = 0. The fake effects introduced by the

absortive partΓ12 are apparent.

3 Extraction of the CPT, CP and T violation parameters

In the previous section we have derived the general time dependent decay rate expressions which govern
mixing and the CP/CPT, CP/T violation, as well as the asymmetries which reveal the different effects.

In this section, we describe how do we incorporate the various experimental effects to the theoretical
intensities (42): mistag rates, limited time resolution, detector asymmetries (differences inB0/B0 reconstruc-
tion and tagging efficiencies). The final form of the likelihood function and its technical implementation will
also be described here. The section will finish with a discussion about which are the final free parameters
used to describe signal and background, as well as the underlying assumptions of the nominal unbinned
maximum likelihood fit. The content of this section took extensive profit of the work developped for the
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

T (CP-) non-genuine asymmetry (truth)

Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

T (CP+) non-genuine asymmetry (truth)

Figure 9: TheA∆t asymmetry, as defined in equation (72), for CP− (top) and CP+ (bottom) events. The

different curves correspond to different values of1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and Reε

1+|ε|2 (0,0.05). ∆m,
Imε

1+|ε|2 and Imδ
1+|ε|2 are assumed to be 0.472 ps−1, 0.35 and 0, respectively. No mistag and time resolution have

been included.
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CPT (CP-) non-genuine asymmetry (truth)

Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CPT (CP+) non-genuine asymmetry (truth)

Figure 10: TheACP∆t asymmetry, as defined in equation (73), for CP− (top) and CP+ (bottom) events. The

different curves correspond to different values of1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and Reε

1+|ε|2 (0,0.05). ∆m,
Imε

1+|ε|2 and Imδ
1+|ε|2 are assumed to be 0.472 ps−1, 0.35 and 0, respectively. No mistag and time resolution have

been included.
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sin2β analysis [19, 20, 21, 22].

3.1 Mistag fractions andB0-B0 differences in reconstruction and tagging efficiencies

The time dependent intensities given in equation (42) have to be corrected by the fractionwα of events
with wrongly assigned flavor in tagging categoryα (Lepton, Kaon, NT1, NT2 [26]), themistag frac-
tion. On the other hand, differences in reconstruction and tagging efficiencies forB0 andB0 can induce biases
in the decay time distributions due to the presence of odd terms in∆t (even terms do not contribute). Let us
define first the quantities used to parameterize all these effects (we use the same definitions as in [19, 20]).

wα
B0 is defined as the fraction of trueB0 but are incorrectly tagged asB0 for tagging categoryα, and

similarly for wα
B0 [26]. As the mistag fraction can be different forB0 and B0 due to differences in the

material interactions (especially for kaons), it is convenient to define

wα =
wα

B0 +wα
B0

2
(74)

and

∆wα = wα
B0 −wα

B0 (75)

which give, respectively, the mean value and the differenceof the mistag fractions forB0 andB0. With these
definitions,

wα
B0 = wα + ∆wα/2 (76)

and

wα
B0 = wα −∆wα/2 . (77)

Let us define now

µα =
tα
B0 − tα

B0

tα
B0 + tα

B0

(78)

and

ν =
rB0 − rB0

rB0 + rB0
(79)

wheretα
Y is the tagging efficiency forY = B0,B0 and tagging categoryα. Similarly rX is the overall recon-

struction efficiency forX = B0,B0. If we call Tα andR the average tagging and reconstruction efficiencies,
we have

tα
B0 = Tα(1+µα) , tα

B0 = Tα(1−µα) (80)
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and

rB0 = R(1+ ν) , rB0 = R(1−ν) (81)

The corrected expressions read, forBf lav processes:

f α(X,Y;∆t) = rX
{

tα
Y (1−wα

Y) f (X,Y;∆t)+ tα
Ywα

Y f (X,Y;∆t)
}

(82)

and forBCP:

f α(X,Y;∆t) = tα
Y (1−wα

Y) f (X,Y;∆t)+ tα
Ywα

Y f (X,Y;∆t) (83)

where tα
Y , rX are the quantities defined in (80), (81), andY = B0

t ,B
0
t and X = Br−,Br+,B0

t ,B
0
t . (X, Y)

denotes the conjugate state of(X,Y), andwα
Y is the mistag fraction as given by equations (76) and (77). The

difference among equations (82) and (83) is becauseCP− andCP+ states are normalized separately.

As it is described in section 3.2, the reconstructed event-by-event∆t error is used to weight the events in
the fitting procedure. It is therefore important to make surethat there are no significant correlations among
this variable and the variables parameterizing the taggingperformance,wα and∆wα, and if there are, then
model them properly. It was found [30] an almost perfect linear correlation between the mean wrong tag
fraction, wα, and the∆t error, especially for theKaon tagging category, being much weaker or negligible
for the other categories. We then model the wrong tag fraction according to the following model:

wα = wα
0 +wα

slopeσ∆t . (84)

Detailed studies to explain the mechanism of this observed correlation can be found in [31]. The difference
of the mistag fractions forB0 andB0, ∆wα, is well constant over the fullσ∆t range, for all tagging cate-
gories [30]. The tagging performance for each tagging category is therefore characterized by a set of three
parameters,wα

0 , wα
slopeand∆wα.

µα, ν andTα can be calculated from time integrated flavor-to-flavor rates according to the prescription
documented in [32]. This prescription has to be generalizedin order to account for non-vanishing values
of ∆Γ as well as Reε. As described in appendix B, the parametersµα, ν andTα depend on the number
of B0/B0/mixed/unmixed events (x,y,z,w) and the theoretical total rates, independently of mistagsand∆t
resolution (a,b,c,d). Terms with odd∆t dependence do not contribute, so finally the dependence is with
∆m, ∆Γ and Reε

1+|ε|2 . This dependence (the exact expression can be found in appendix B) has to be taken

into account since∆m, ∆Γ and Reε
1+|ε|2 are parameters in which we are interested for, otherwise an unsuitable

circularity would be induced. The solution adopted to overcome this problem is discussed and validated in
section 4.1.10. Assuming∆m= 0.472 ps−1, ∆Γ = 0 and Reε

1+|ε|2 = 0, the measured values ofν, µα andTα

from the Monte Carlo simulation (anal10h ASCII files) are given in tables 9, 10 and 11, respectively.

3.2 ∆t resolution function

The decay time difference∆t between the two decayingB mesons is calculated from thez positions of
the reconstructed vertices, using theaverageτB approximation[23], which uses the measuredϒ(4S) boost
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Sample ν
B0 cocktail MC 0.006±0.004
B+ cocktail MC 0.010±0.004

Table 9: Measuredν values from theBf lav sample for the Monte Carlo simulation (anal10h ASCII files).

Sample Lepton Kaon NT1 NT2
B0 cocktail MC −0.014±0.015 0.016±0.008 −0.022±0.018 0.011±0.013
B+ cocktail MC 0.010±0.011 0.011±0.006 0.035±0.015 0.006±0.011

Table 10: Measuredµα values from theBf lav sample for the Monte Carlo simulation (anal10h ASCII
files).

(determined on a run-by-run basis) as well as the polar angleof the reconstructedB, therefore accounting
for the boost of theB mesons with respect to theϒ(4S). The standardBABAR algorithm,BtaSelFit, with
default configuration (beam constraints) is used for the∆z reconstruction [23]. Only events satisfying that
| ∆t |< 20 ps andσ∆t < 2.4 ps are accepted. The overall∆t reconstruction efficiency is about 97% and the
resolution is about 1.1 ps for more than 99% of the events.

The∆t resolution is modelled using two different parameterizations.

The first approach, called thereafterGG model, asumes three Gaussians [24]. Thecore component
tries to describe well measured vertices, meanwhile thetail part accounts for poorly measured decay times.
Finally, there is a small fraction ofoutliers (a few per mille) where∆t is badly reconstructed, partly due to
mistakes in the track reconstruction, partly to tracks fromsecondary decays (long living particles and hard
scatters). As the reconstructed∆t error provides a good (approximate) representation of the resolution for
the core (tail) Gaussian, it is used to weight the events on a event-by-event basis, rather than to use a global
resolution, therefore increasing the sensitivity of the analysis to well measured events. As the error is still
not a perfect representation of the resolution (especiallyfor the tail component) we allow for two global
scale factors. On the contrary, the event-by-event∆t error is not a good representation of the resolution for
the outliers component, and in this case a global and fixed (8 ps) resolution is used instead. In addition to
the increase of the sensitivity, the weighting of the eventsaccording to the reconstructed∆t error largely
eliminates small differences in resolution between the different classes of events entering in the analysis.
Very small residual effects due to differences in the scale factors can then be considered as part of the
systematic uncertainties. Figure 11 shows the distributions of the per-event error on∆t for theBf lav and CP
samples in the Monte Carlo simulation. The curves correspond to the unbinned maximum likelihood fit to
a Crystall Ball shape. The results of these fits are the basis to define the probability density function used to
generate realistic∆t error distributions in toy Monte Carlo exercises, but they do not enter in the definition
of the likelihood function (section 3.4).

Sample Lepton Kaon NT1 NT2
B0 cocktail MC 0.1195±0.0011 0.3451±0.0017 0.0825±0.0010 0.1483±0.0013
B+ cocktail MC 0.1232±0.0014 0.3720±0.0020 0.0736±0.0011 0.1320±0.0014

Table 11: MeasuredTα values from theBf lav sample for the Monte Carlo simulation (anal10h ASCII
files).
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(a) (b) (c)

Figure 11: Event-by-event error on∆t for the (a)Bf lav, (b) BCPK0
S

and (c)BCPK0
L

samples in the Monte Carlo
simulation (anal10h ASCII files).

Although the vertex reconstruction algorithm minimizes biases due to the secondary charm decays and
V0’s in the tagging side, thezTAG position is on average biased towards positivez values, resulting in a
negative shift in∆t. This effect is accounted in the resolution function by introducing a shift in the central
value of the core and tail Gaussians. Due to the differentB decay channels populating the different tagging
categories, the average bias is category dependent [27]. Itwas found that introducing a different bias in
each tagging category for the core component but having a common tail bias provides the optimal trade-off
between systematic effects and number of different parameters in the resolution [24]. The resolution was
also found not to be sensitive to possible biases in the outliers component.

The second parameterization, calledGExp, uses one Gaussian with variable width and zero bias plus the
same Gaussian convoluted with an exponential which effective lifetime is intended to describe the charm
bias [25]. Similarly to theGG model, the reconstructed∆t error is used to weight the events, and different
effective lifetimes and fractions of the exponential part are assumed for each tagging category, in order to
take into account the differentB decay channels populating each tagging category. The outlier component
in this model is assumed the same as in theGGparameterization.

In summary, for an event with reconstructed(∆t,σ∆t), theGG resolution function for tagging category
α reads

R (∆t −∆t ′,σ∆t ;~qα) = (1− ftail − foutlier)hG(∆t −∆t ′;δα
core,Scoreσ∆t)+

ftail hG(∆t −∆t ′;δtail ,Stail σ∆t)+

foutlierhG(∆t −∆t ′, ;δoutlier,σoutlier) (85)

where

hG(t;δ,σ) =
1√
2πσ

exp(−(t −δ)2/(2σ2)) (86)

The equivalentGExpresolution function for tagging categoryα reads
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R (∆t −∆t ′,σ∆t ;~qα) = (1− f α
Exp− foutlier)hG(∆t −∆t ′;δ = 0,Sσ∆t)+

f α
Exp

1
2σ∆tτα

r

[

exp

(

S2

2(τα
r )2 +

∆t −∆t ′

σ∆tτα
r

)

er f c

(

S√
2τα

r

+
∆t −∆t ′√

2Sσ∆t

)]

+

foutlierhG(∆t −∆t ′, ;δoutlier,σoutlier) (87)

The complete signal resolution function for all tagging categories is therefore represented by 11 param-
eters in theGGmodel,

~q =
{

Score,δleptons
core ,δkaons

core ,δNT1
core,δ

NT2
core, ftail ,δtail ,Stail , foutlier,δoutlier,σoutlier

}

(88)

and 12 in theGExpparameterization,

~q =
{

S,τleptons
r ,τkaons

r ,τNT1
r ,τNT2

r , f leptons
Exp , f kaons

Exp , f NT1
Exp , f NT2

Exp , foutlier,δoutlier,σoutlier

}

. (89)

σoutlier andδoutlier are fixed, respectively, to 8 and 0 ps.

In theGG model all offsetsδα
core andδtail are modeled to be proportional to the reconstructed errorσ∆t ,

since it was found that events with highσ∆t tend to have high∆t residual [28]. TheGExpmodel accounts
implicitely for this effect.

The introduction of the resolution effects requires the convolution of equations (82/83) with (85/87),

f α
resol(X,Y;∆t,σ∆t) =

∫ +∞

−∞
R (∆t −∆t ′,σ∆t ;~qα) f α(X,Y;∆t ′)d∆t ′ . (90)

The problem can be reduced to the convolution of a set of basisfunctions,

1
2τ

exp
(

∓τe f f∆t ′
)

exp
(

i∆m∆t ′
)

(91)

with (86), where

τe f f =
2τ

2∓ τ∆Γ
=

τ
1∓∆Γ/2Γ

(92)

andτ = 1/Γ. The−(+) sign applies for∆t ′ > 0 (∆t ′ < 0). The normalization of (90) over a finite domain
[∆t1,∆t2] can then be calculated from the integral

Fα
resol(X,Y;σ∆t) =

∫ ∆t2

∆t1
f α
resol(X,Y;∆t,σ∆t)d∆t (93)

All the integrals (90) and their normalizations (93) can be calculated analytically, and expressed in terms
of complex exponentials and the complementary complex error function. The analytical expresions used in
this analysis have been taken from [29].

Figures 12 and 13 ilustrate the shape of the time dependent intensities (90) forBf lav andBCP transitions
(the equivalent to figures 1 and 2, respectively) after introducing the∆t resolution effects (realistic values)
and a mistag rate of 10%. The corresponding mixing, Kabir, leptonic,ACP, AT, ACPT, A∆t andACP∆t asym-
metries, are shown in figures 14, 15, 16, 17, 18, 19, 20 and 21, respectively. It is worth noting the fake effects
introduced by the offset of the resolution function in the CPT asymmetries. The apparent time dependence
in the Kabir asymmetry (figure 15) is due to the mistag rate.
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∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05 (B0,B0bar)
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0 (B0,B0bar)

Unmixed events
(∆t smeared/mistag)

∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05 (B0,B0bar)
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0 (B0,B0bar)

Mixed events
(∆t smeared/mistag)

Figure 12: Decay time distributions for(B0
f /B0

f /ℓ) transitions for (top) unmixed and (bottom) mixed events,
after time resolution smearing and with a mistag rate of 10%.The different curves correspond to different

values of∆Γ/Γ, Reε
1+|ε|2 and Imδ

1+|ε|2 . ∆m is assumed to be 0.472 ps−1 and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 = 0. The corresponding

theoretical distributions were shown in figure 1.
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CP, B0 tagged events
(∆t smeared/mistag)

Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CP, B0bar tagged events
(∆t smeared/mistag)

Figure 13: Decay time distributions for(Bf±, ℓ) transitions, for (top)B0 and (bottom)B0 tagged events
(CP=−), after time resolution smearing and with a mistag rate of 10%. The different curves correspond

to different values of1−|ε|2
1+|ε|2

Reδ
1+|ε|2 , ∆Γ/Γ and Reε

1+|ε|2 . ∆m is assumed to be 0.472 ps−1, and Imδ
1+|ε|2 = 0. The

corresponding theoretical distributions were shown in figure 2.
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∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0

Mixing asymmetry (∆t smeared/mistag)

Figure 14: Mixing asymmetry as defined in equation (64), after time resolution smearing and with a mistag
rate of 10%. The different curves correspond to different values of∆Γ/Γ, Reε

1+|ε|2 and Imδ
1+|ε|2 . ∆m is assumed

to be 0.472 ps−1 and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 = 0. No mistag and time resolution have been included. The corresponding

theoretical asymmetry was shown in figure 3.

3.3 Background treatment

In the presence of backgrounds, the PDF has to be extended to include a term for each significant
background source:

f α
obs(X,Y;∆t,σ∆t) = (1− f α

peak− f α
DCSD)pα

sig(mES) f α
resol,sig(X,Y;∆t,σ∆t)+

f α
peakp

α
sig(mES) f α

resol,peak(X,Y;∆t,σ∆t)+

f α
DCSDpα

sig(mES) f α
resol,sig(X̄,Y;∆t,σ∆t)+

{

1− pα
sig(mES)

}

∑
β

f α
β f α

resol,β(X,Y;∆t,σ∆t)

(94)

where f α
β , f α

peak, f α
DCSD are the combinatorial, peaking and double Cabbibo supressed (DCSD) background

component fractions for the given sample (the latter only exists for flavor-to-flavor states). It is verified that

∑
β

f α
β = 1 . (95)
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∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0

Kabir asymmetry (∆t smeared/mistag)

Figure 15: Kabir asymmetry as defined in equation (65), aftertime resolution smearing and with a mistag
rate of 10%. The different curves correspond to different values of∆Γ/Γ, Reε

1+|ε|2 and Imδ
1+|ε|2 . ∆m is assumed

to be 0.472 ps−1 and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 = 0. No mistag and time resolution have been included. The corresponding

theoretical asymmetry was shown in figure 4.

The backgrounds for theBf lav and Bf− states are small and mostly combinatoric. They are estimated
from the beam-energy substituted mass (mES) side band, assuming a single Gaussian distribution for the
signal and an Argus parameterization for the background. From unbinned maximum likelihood fits to the
mES spectrum, the event-by-event signal probability,pα

sig(mES), is calculated and then borrowed to (94).
Examples ofmESfits for each tagging category in the Monte Carlo simulation for theBf lav andBf− samples
are shown in figures 22 and 23 respectively. The signal probability is calculated separately for each tagging
category.

For each individual signal and background component,j = sig, peak,DCSD,β, and tagging category,α,
the distributions (94) are normalized so that:

∑
Y=B0

t ,B
0
t

∫ +∞(∆t2)

−∞(∆t1)
f α
resol, j (X,Y;∆t,σ∆t)d∆t = 1 (96)

for BCP events, and

∑
X=B0

r ,B0
r

∑
Y=B0

t ,B
0
t

∫ +∞(∆t2)

−∞(∆t1)
f α
resol, j (X,Y;∆t,σ∆t)d∆t = 1 (97)
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∆Γ/Γ=0 Reε=0
∆Γ/Γ=0.2 Reε=0
∆Γ/Γ=0.2 Reε=0.05
Imδ=0.1 ∆Γ/Γ=0.2 Reε=0

CPT (leptonic) asymmetry (∆t smeared/mistag)

Figure 16: CPT flavor-to-flavor (leptonic) asymmetry as defined in equation (66), after time resolution
smearing and with a mistag rate of 10%. The different curves correspond to different values of∆Γ/Γ, Reε

1+|ε|2

and Imδ
1+|ε|2 . ∆m is assumed to be 0.472 ps−1 and 1−|ε|2

1+|ε|2
Reδ

1+|ε|2 = 0. No mistag and time resolution have been
included. The corresponding theoretical asymmetry was shown in figure 5.

for Bf lav events. The integration limits,−∞(∆t1) and+∞(∆t2) correspond to asymptotic (finite) normaliza-
tion, where∆t1 ps and∆t2 are the acceptance cuts on∆t. Asymptotic normalization is used by default in this
study.

For theB0→J/ψK0
L channel the background level is significantly higher with significant non-combinatorial

component, therefore requiring an special treatment [21, 22]. Through the studies presented in this docu-
ment, signal onlyB0→J/ψK0

L fits are used.

3.4 The log-likelihood function

The likelihood function for tagging categoryα is finally defined as
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CP (-) asymmetry (∆t smeared/mistag)

Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CP (+) asymmetry (∆t smeared/mistag)

Figure 17: TheACP asymmetry, as defined in equation (68), for CP− (top) and CP+ (bottom), after time
resolution smearing and with a mistag rate of 10%. The different curves correspond to different values of
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and Reε

1+|ε|2 (0,0.05). ∆m, Imε
1+|ε|2 and Imδ

1+|ε|2 are assumed to be 0.472 ps−1,
0.35 and 0, respectively. The corresponding theoretical asymmetry was shown in figure 6.
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

T genuine asymmetry (∆t smeared/mistag)

Figure 18: TheAT asymmetry, as defined in equation (69), after time resolution smearing and with a mistag

rate of 10%. The different curves correspond to different values of 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and

Reε
1+|ε|2 (0,0.05). ∆m, Imε

1+|ε|2 and Imδ
1+|ε|2 are assumed to be 0.472 ps−1, 0.35 and 0, respectively. The corre-

sponding theoretical asymmetry was shown in figure 7.

lnLα =

Nα
Br−B0

t

∑
i

ln f α
obs(Br−,B0

t ;∆ti,σ∆t,i)+

Nα
Br−B0

t

∑
i

ln f α
obs(Br−B0

t ;∆ti,σ∆t,i)+

Nα
Br+B0

t

∑
i

ln f α
obs(Br+,B0

t ;∆ti,σ∆t,i)+

Nα
Br+B0

t

∑
i

ln f α
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t ;∆ti ,σ∆t,i)+

Nα
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r B0
t
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obs(B

0
r ,B

0
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t

∑
i

ln f α
obs(B

0
r ,B

0
t ;∆ti ,σ∆t,i)+

Nα
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r B0
t

∑
i

ln f α
obs(B

0
r ,B

0
t ;∆ti ,σ∆t,i)+

Nα
B0

r B0
t

∑
i

ln f α
obs(B

0
r ,B

0
t ;∆ti ,σ∆t,i) (98)

where f α
obs(X,Y;∆t,σ∆t) was defined in (94), withf α

resol, j (X,Y;∆t,σ∆t) as defined in (82) and (83). The
global likelihood function for all tagging categories is then calculated as

lnL = ∑
α

lnLα . (99)
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CPT genuine asymmetry (∆t smeared/mistag)

Figure 19: TheACPT asymmetry, as defined in equation 70, after time resolution smearing and with a

mistag rate of 10%. The different curves correspond to different values of1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2)

and Reε
1+|ε|2 (0,0.05). ∆m, Imε

1+|ε|2 and Imδ
1+|ε|2 are assumed to be 0.472 ps−1, 0.35 and 0, respectively. The

corresponding theoretical asymmetry was shown in figure 8.

The categories of events considered in (99) are the following:

• Br−: B0→J/ψK0
S (π+π− andπ0π0), B0→ψ(2S)K0

S (BCPK0
S

sample);

• Br+: B0→J/ψK0
L (BCPK0

L
sample);

• Bf lav: B0→D(∗)π(ρ,a1);

• Control sample forBCP transitions:B0→J/ψK∗0(K±π∓).

Each of these samples is separated by tagging category, witha total of 4 tagging categories [26, 19, 20]
(Lepton, Kaon, NT1, NT2).

In the calculation of the likelihood function, the exact expressions for the theoretical distributions are
used for the two formalisms, therefore we are not making assumptions about the size of the effects to be
measured.

An standalone fitting program, calledcptNagFit, has been developped to find the solution of (99)
and the errors on the fitted parameters. The program has been interfaced to the NAG library [33] and the
MINUIT package [34]. All the numerical and minimization routines are based on the NAG library, and
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

T (CP-) non-genuine asymmetry (∆t smeared/mistag)

Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

T (CP+) non-genuine asymmetry (∆t smeared/mistag)

Figure 20: TheA∆t asymmetry, as defined in equation (72), for CP− (top) and CP+ (bottom) events, after
time resolution smearing and with a mistag rate of 10%. The different curves correspond to different values

of 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and Reε

1+|ε|2 (0,0.05). ∆m, Imε
1+|ε|2 and Imδ

1+|ε|2 are assumed to be 0.472 ps−1,
0.35 and 0, respectively. The corresponding theoretical asymmetry was shown in figure 9.
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Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CPT (CP-) non-genuine asymmetry (∆t smeared/mistag)

Reδ=0 ∆Γ/Γ=0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.0 Reε=0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.0
Reδ=0.2 ∆Γ/Γ=0.2 Reε=0.05
Reδ=0.0 ∆Γ/Γ=0.2 Reε=0

CPT (CP+) non-genuine asymmetry (∆t smeared/mistag)

Figure 21: TheACP∆t asymmetry, as defined in equation (73), for CP− (top) and CP+ (bottom) events, after
time resolution smearing and with a mistag rate of 10%. The different curves correspond to different values

of 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 (0,0.2), ∆Γ/Γ (0,0.2) and Reε

1+|ε|2 (0,0.05). ∆m, Imε
1+|ε|2 and Imδ

1+|ε|2 are assumed to be 0.472

ps−1,0.35 and 0, respectively. The corresponding theoretical asymmetry was shown in figure 10.
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Figure 22:mES fits to each tagging category for theBf lav Monte Carlo sample.

the error estimation relies on the HESSE and MINOS methods ofMINUIT. This simultaneous interfacing
allows direct comparison and cross-checking of the fitting results using two completely different libraries.

The NAG library is a comercial and modern (end 80’s - begining90’s) numerical library which use in
HEP is becoming more and more popular, with a very large number of numerical routines. NAG is already
part of the kernel of large HEP projects, like LHC++ at CERN [35]. Among many different available
minimization routines, thee04jyf routine was chosen, which is based on a quasi-Newton algorithm [36],
one of the most powerful methods available for general problems. For the nominal global CPT/CP/T fits
(see section 3.5), MINUIT requires close to twice more iterations than NAG to find the solution. In toy
Monte Carlo exercises the rate of failed fits is also significantly larger when using MINUIT. However, when
both approaches report converged fits the agreement among them in both, the solution and reported errors,
is satisfactory. NAG is also used, among other service and utility functions, to calculate the error function
(s15aef), the complementary error function (s15adf) and the complementary complex error function
(s15ddf).
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Figure 23:mES fits to each tagging category for theBCPK0
S

Monte Carlo sample.

3.5 Assumptions in the nominal fit

The nominal CPT/CP/T fit used in these studies has finally a total of 42(44) free parameters, for the
GG(GExp) model, with the following assumptions:

• fit simultaneously for the 6 physics parameters (formalism dependent):

(ε,δ) formalism: Reδ
1+|ε|2

1−|ε|2
1+|ε|2 , Imδ

1+|ε|2 , Imε
1+|ε|2 , Reε

1+|ε|2 , ∆Γ/Γ and∆m;

(| q/p |,λ,z) formalism: Reλ
|λ| Rez, Imz, Imλ

|λ| , | q/p |, ∆Γ/Γ and∆m;

• a total of 9(11) parameters are used to describe the signal resolution function with theGG(GExp)
model:

GG: scale factors of the core and tails components,Score andStail ; tagging category dependent core
bias,δα

core; common tail bias,δtail ; fraction of tail and outlier Gaussians,ftail and foutlier; the
width and bias of the outlier Gaussian were fixed to 8 ps and 0 respectively;
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GExp: scale factor of the Gaussian,S, tagging category dependent effective lifetime (τα
r ) and expo-

nential component fraction (f α
Exp); the width and bias of the outlier Gaussian were fixed to 8 ps

and 0 respectively;

• a total of 9 parameters are used to describe the signal wrong tag fractions: for each tagging category,
wα

0 , wα
slopeand∆wα, wherewα

slope is fixed to zero for theLepton, NT1 andNT2 categories;

• 3 background components are assumed for theBf lav sample (16 parameters):

– a prompt (zero lifetime) and non-prompt (non-vanishing andfree lifetime -1 parameter-) compo-
nents, with their own effective wrong tag fraction (wα

slope and∆wα fixed to zero) (8 parameters)
and a common resolution function, described as a common single Gaussian distribution with a
scale factorSbackg and a biasδbackg (GG model) or a common single unbiassed Gaussian with a
scale factorSbackg plus the same Gaussian convoluted with an exponential function with effec-
tive lifetime τr,backg (GExpmodel), and an outlier fractionfbackg,outlier (3 parameters); the width
of the outlier component is taken to be fixed at 8 ps with zero bias; the relativef α

prompt,Bf lav
frac-

tion of prompt background for each tagging category are alsoconsidered as free parameters (4
parameters);

– a peaking contribution, which resolution function is the same as that of the signal, withB+ fixed
lifetime; the peaking background fraction is fixed;

– no oscillatory background component is assumed;

– no DCSD background component is assumed;

• 3 background components are also assumed for theBCPK0
S

sample (2 parameters):

– prompt, non-prompt and peaking background, where the peaking background fraction is also
fixed, and a common (averaged over tagging categories) prompt fraction is assumed (1 pa-
rameter); the wrong tag fraction parameters, lifetime and resolution function of the peaking
background component is assumed to be the same as those of thesignal; the lifetime of the non-
prompt background is left free (1 parameter) and assumed thesame for all tagging categories;
the effective wrong tag fractions for the prompt and non-prompt background components are as-
sumed to be 0.5 (i.e. effective dilutions zero), which correspond to no CPT, CP and T asymme-
tries in the background; finally, the resolution function parameters of the prompt and non-prompt
components are assumed the same as those of theBf lav sample.

• signal only component is assumed forBCPK0
L
;

• the B0B0 differences in reconstruction and tagging efficiencies,ν and µα, are fixed to the values
extracted from theBf lav sample, assuming for∆m, ∆Γ and Reε

1+|ε|2 the generated values. In section
4.1.10 it is described and validated an alternative approach which avoids the circularity betweenν, µα

and the fitted values of∆m, ∆Γ and Reε
1+|ε|2 ;

• ∆Γ/Γ is assumed zero for all background components;

• direct CP contribution assumed to be zero,| Āf /Af |= 1;

• in the global fit, the parameters of the signal probablity obtained from themES fits are taken as fixed.
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4 Validation of the fitting procedure

In order to validate the nominal fit procedure described in the previous section and to study its feasibility
we have performed toy and full Monte Carlo studies which are described in the following.

4.1 Toy Monte Carlo

Toy Monte Carlo events are generated in order to validate thefit and study its feasibility, and finally
to have an estimation of the sensitivity on the physical parameters and their correlation. In appendix C we
describe the details of the CPT/CP/T/Mixing Toy Monte Carlogenerator used for these studies. Typically,
toy Monte Carlo validation and reach studies have been basedon sets of at least 600 experiments with an
statistics per experiment of about 60f b−1, assuming the yields shown in table 12, which correspond roughly
to our current yields [20]. ThemESshapes for the different samples in signal only experimentscorrespond to
the distributions shown in figures 22 and 23 (∆E distributions are similarly generated for theBCPK0

L
sample,

but they are not actually used in the fits). When backgrounds were considered in theBf lav and BCPK0
S

samples, the generatedmES distributions are those shown in figure 24. Peaking background components of
1.5% and 1.0% were assumed for theBf lav andBCPK0

S
samples, respectively.

Sample Signal only Signal+background
Bf lav 21000 48000
BCPK0

S
1500 1800

BCPK0
L

450 450

Table 12: Assumed yields used in the toy Monte Carlo studies (equivalent to roughly 60f b−1) for each data
sample, signal only and signal with backgrounds.

The generated tagging efficiencies per category were 0.095,0.359, 0.080 and 0.139 for theLepton,
Kaon, NT1 andNT2 tagging categories respectively. The assumed mistag rateswα

0 were, respectively,
0.070, 0.068, 0.190 and 0.349. For theKaon category, the linear tagging/vertexing correlation slope, wkaon

slope,
was assumed to be 0.135. The resolution function parameterswere similar to that obtained from a fit to the
full Monte Carlo sample (section 4.2). TheB0B0 reconstruction and tagging efficiency differences included
were those given in tables 9 and 10.

4.1.1 Log-likelihood shape

It is very useful before to do any other study to scan the shapeof the likelihood function (99), in order to
identify possible pathological behavior of the PDF. This exercise was performed running two high statistics
experiments (≈ 200 fb−1) with the following values for the physics parameters:

• Experiment 1: reference (table 13);

• Experiment 2: reference with∆Γ/Γ=0.2.

The scan of each physics parameter in a wide interval (about 15 standard deviations, assuming Gaussian
errors) around the maximum for both single experiments, as shown in figure 25, reveals a well behaved
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(a) (b)

Figure 24: GeneratedmES fits to each tagging category for theBf lav (a) andBCPK0
S

(b) samples in presence
of background.

lihelihood function. An slightly asymmetric shape is observed for ∆Γ/Γ. As will be shown later in more
detail, the sampling of the 60 fb−1 experiments confirmed this behavior. This gave us a first indication of
the feasibility of the simultaneous extraction of all the 6 physics paramaters.

Parameter Generated value
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 0.00

Imδ
1+|ε|2 0.00

Reε
1+|ε|2 0.00

Imε
1+|ε|2 0.35

∆Γ/Γ 0.00
∆m(ps−1) 0.472

Table 13: Generated physics parameter values for the reference configuration,(ε,δ) formalism.

4.1.2 Residual distributions and Gaussian errors

The residual, defined as the fitted value minus the generated one, and Gaussian error distributions for all
the physics parameters from signal only fits in the referenceconfiguration (table 13) are shown in figures
26 and 27, for theGG andGExp resolution models, respectively. The average and RMS of theresidual
distribution as well as the average Gaussian error and its coverage are summarized in tables 14 and 15.
In figure 28 the residuals for each physics parameter is plotted against the corresponding Gaussian error
coming from the fit. The highest correlation coefficient refers to Imδ

1+|ε|2 and it is around 10%, while all the
other parameters are well below 10%.
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(a) (b)

Figure 25: Scanning of the log-likelihood function (99) around the solution for a high statistics experiment
(≈ 200 fb−1) for ∆Γ/Γ=0 (a) and∆Γ/Γ=0.2 (b).

These results show that there is no evidence of biases in the estimation of all the physics parameters,
for the two resolution models and the truth values given in table 13. For Imδ

1+|ε|2 , Reε
1+|ε|2 , Imε

1+|ε|2 and∆m the
estimated Gaussian error is a good estimator of the resolution with which each parameter is determined.

However, the Gaussian errors for∆Γ/Γ and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 underestimate slightly the resolution (∼ 10%). The

non-Gaussian effects, particularly in∆Γ/Γ, where already apparent in figure 25. Non-Gaussian errors are
investigated in section 4.1.4.

Reference configuration,GGmodel
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (1.9±2.6) ·10−3 (1.9±1.3) ·10−3 (−0.4±2.4) ·10−4 (1.9±2.1) ·10−3 (−1±3.1) ·10−4

RMS residual (7.6±0.2) ·10−2 (3.9±0.1) ·10−2 (7±0.2) ·10−3 (6.3±0.2) ·10−2 (9.2±0.3) ·10−3

Average error (Gauss) 6.8·10−2 3.9·10−2 7.1·10−3 5.3·10−2 9.5·10−3

Gaussian error coverage (59.9±3.3)% (69.3±3.7)% (68.5±3.7)% (58.7±3.3)% (70.9±3.7)%

Table 14: Summary of results for the reference configurationfrom signal only fits (GG resolution model,≈
60 fb−1).

4.1.3 ∆Γ/Γ 6= 0 effects

The behavior of the fit was also studied for non-vanishing values of∆Γ/Γ. Figure 29 shows the residual
and Gaussian error distributions for the physics parameters from signal only fits in the reference configura-
tion with ∆Γ/Γ=0.2 (GExpresolution model). The asymmetry of the residual distribution, consequence of
the asymmetry of the log-likelihood function (figure 25) for∆Γ/Γ is apparent. The average and RMS of the
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Figure 26: Residual and Gaussian error distributions for the physics parameters from signal only fits (GG
resolution model,≈ 60 fb−1). The generated values correspond to our reference configuration given in table
13. Imδ

1+|ε|2 was fixed in this set of experiments.
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Figure 27: Residual and Gaussian error distributions for the physics parameters from signal only fits (GExp
resolution model,≈ 60 fb−1). The generated values correspond to our reference configuration given in table
13.
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Figure 28: Residual vs. Gaussian error for the physics parameters from signal only fits (GExpresolution
model,≈ 60 fb−1). The correlation coefficient is reported on each plot. The sample is the same that used in
figure 27.
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Reference configuration,GExpmodel
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (3.7±2.8) ·10−3 (3.3±5.9) ·10−4 (1.5±1.5) ·10−3 (1.3±2.5) ·10−4 (−2.7±2.3) ·10−3 (−6.5±3.5) ·10−4

RMS residual (7.5±0.2) ·10−2 (1.57±0.05) ·10−2 (3.9±0.1) ·10−2 (6.7±0.2) ·10−3 (6.2±0.2) ·10−2 (9.3±0.3) ·10−3

Av. error (Gauss) 7.0·10−2 1.7·10−2 4.0·10−2 7.1·10−3 5.5·10−2 9.4·10−3

Gauss. error cov. (62.7±3.8)% (70.3±4.1)% (66.1±3.9)% (72.2±4.2)% (60.1±3.7)% (66.9±4.0)%

Table 15: Summary of results for the reference configurationfrom signal only fits (GExpresolution model,
≈ 60 fb−1).

residual distribution as well as the average Gaussian errorand its coverage are summarized in tables 16 and
17, for theGGandGExpresolution models. Figure 30(a) shows the mean residuals asa function of several
values of the true value of∆Γ/Γ. From this scan we conclude that the extraction of∆Γ/Γ over a wide range
of truth values is, for both theGGandGExpresolution models, unbiassed at 5×10−3 level, about one order
of magnitude smaller than the statistical reach, as seen in figure 30(b) where it is shown the RMS of the
residuals for the same various values of the generated∆Γ/Γ. The corresponding mean residuals for all the
other physics parameters are shown in figure 31. Again, no biases are seen up to one order of magnitude
below the statistical reach of each parameter.

∆Γ/Γ=0.2 configuration,GG model
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (1.7±2.0) ·10−3 (3.6±9.2) ·10−4 (−2.8±1.9) ·10−3 (−2.6±3.3) ·10−4 (−4.4±2.1) ·10−3 (0.3±4.6) ·10−4

RMS residual (4.4±0.2) ·10−2 (2.0±0.1) ·10−2 (4.1±0.1) ·10−2 (7.1±0.2) ·10−3 (4.4±0.1) ·10−2 (9.9±0.3) ·10−3

Av. error (Gauss) 4.6·10−2 2.0·10−2 3.9·10−2 7.0·10−3 4.6·10−2 9.9·10−3

Gauss. error cov. (68.8±5.0)% (69.0±5.0)% (67.9±5.0)% (66.4±4.9)% (70.7±5.1)% (66.4±4.9)%

Table 16: Summary of results for the∆Γ/Γ=0.2 configuration from signal only fits (GG resolution model,
≈ 60 fb−1).

∆Γ/Γ=0.2 configuration,GExpmodel
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (−2.0±1.6) ·10−3 (−2.6±7.4) ·10−4 (1.4±1.5) ·10−3 (0.0±2.7) ·10−4 (0.7±1.7) ·10−3 (−4.4±3.5) ·10−4

RMS residual (4.2±0.1) ·10−2 (1.9±0.1) ·10−2 (4.0±0.1) ·10−2 (7.1±0.2) ·10−3 (4.6±0.2) ·10−2 (9.4±0.3) ·10−3

Av. error (Gauss) 4.3·10−2 2.0·10−2 3.9·10−2 7.0·10−3 4.4·10−2 9.6·10−3

Gauss. error cov. (67.6±4.0)% (66.9±4.0)% (68.1±4.0)% (67.3±4.0)% (62.3±3.8)% (70.2±4.1)%

Table 17: Summary of results for the∆Γ/Γ=0.2 configuration from signal only fits (GExpresolution model,
≈ 60 fb−1).

The behaviour of the∆Γ error shown in figure 30(b) confirms the expectations discussed in [38]. Due
to the linear (second order) dependence of the time dependence with∆Γ for CP (flavor) events, CP events
dominate its determination for small values of∆Γ/Γ, while the larger weight is from the flavor events for
large values. For CP events, the precision on∆Γ/Γ scales as 1/

√
N, constant as a function of∆Γ/Γ. In

the case of flavor events, due to the second order dependence,the error scales as 1/N1/4 for small values,
while for large values it goes as 1/

√
N 1/∆Γ, as seen is figure 30(b). With the relative statistics of flavor and

CP events assumed in these studies (table 12), we have evaluated the∆Γ/Γ point where the relative weight
of both samples equals. This has been evaluated running toy Monte Carlo experiments for several values
of ∆Γ/Γ by fitting the flavor and CP samples together and comparing theresults to CP only fits, fixing in
both cases the resolution function and mistag parameters tothose generated. Table 18 summarizes the RMS
of the residual distributions for all the physics parameters and three configurations,∆Γ/Γ=0.0,0.1,0.2. For
∆Γ/Γ ≈ 0 the CP sample dominates the sensitivity, and at∆Γ/Γ ≈ 0.1 is where the statistical power of
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Figure 29: Residual and Gaussian error distributions for the physics parameters from signal only fits (GExp
resolution model,≈ 60 fb−1). The generated values correspond to the reference configuration given in table
13 with ∆Γ/Γ=0.2.
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(a)

(b)

Figure 30:∆Γ/Γ mean residuals (a) and RMS (b) as a function of the generated∆Γ/Γ, for theGGandGExp
resolution models, for an equivalent luminosity of≈ 60 fb−1.
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Figure 31: Reδ
1+|ε|2 , Imδ

1+|ε|2 , Reε
1+|ε|2 , Imε

1+|ε|2 and∆m mean residuals from the same experiments/fits as those used
in figure 30, for theGG andGExp resolution models. For each parameter the ordering from left to right
matches the scanning points in the previous figure.
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the CP sample equals to that of the flavor events (estimated from the combined flavor+CP fits using simple
quadratic differences),≈ 0.073. The relative contribution from each sample for all the other parameters is
also seen in table 18, in agreement with the discussion of thelast paragraph of section 4.1.5.

Flavor+CP
∆Γ/Γ = 0.0 ∆Γ/Γ = 0.1 ∆Γ/Γ = 0.2

∆Γ/Γ 0.0680±0.0018 0.0517±0.0018 0.0354±0.0010
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 0.0771±0.0020 0.0620±0.0022 0.0452±0.0015

Imδ
1+|ε|2 0.0160±0.0004 0.0168±0.0005 0.0182±0.0006

Imε
1+|ε|2 0.0382±0.0011 0.0410±0.0012 0.0379±0.0011

Reε
1+|ε|2 0.00632±0.00019 0.00628±0.00018 0.00617±0.00020

∆m 0.00800±0.00024 0.00812±0.00027 0.00832±0.00025
CP only

∆Γ/Γ = 0.0 ∆Γ/Γ = 0.1 ∆Γ/Γ = 0.2
∆Γ/Γ 0.0749±0.0024 0.0737±0.0021 0.0737±0.0024

1−|ε|2
1+|ε|2

Reδ
1+|ε|2 0.0854±0.0024 0.0833±0.0030 0.0812±0.0028

Imδ
1+|ε|2 0.0797±0.0024 0.0844±0.0024 0.0812±0.0027

Imε
1+|ε|2 0.0412±0.0014 0.0451±0.0013 0.0462±0.0014

Reε
1+|ε|2 0.0403±0.0012 0.0381±0.0014 0.0382±0.0012

∆m 0.0510±0.0019 0.0546±0.0017 0.0574±0.0018

Table 18: RMS of the residual distributions for all the physics parameters from combined flavor+CP and
CP only fits. The resolution function and mistag parameters were fixed to those generated. The statistics
corresponds to≈ 60 fb−1.

The even cosh(∆Γ∆t/2) (∆Γ2 to first order) dependence of the flavor sample has another important
consequence: the log-likelihood function is symmetric with respect to∆Γ=0, so we expect two symmetric
maxima [39]. On the contrary the CP sample has a non-vanishing odd sinh(∆Γ∆t/2) dependence, and
therefore it is sensitive to the sign of∆Γ/Γ. We expect that the measurement made with the two samples
combined breaks the ambiguity, as shown also in the likelihood scan in figure 25, in the case of∆Γ/Γ = 0.2.
In order to check this guess, we fitted 100 toy Monte Carlo samples with the equivalent statistics of 60 fb−1,
generated with∆Γ/Γ = 0.2, giving as starting point for the fit three different valuesof ∆Γ/Γ: -0.2, 0.0 and
0.2. The number of converged fits reduces if the starting point is different from the generated value, but,
if the fit converges, it gives the right value. In none of the cases the fit converged to∆Γ/Γ = −0.2. If we
compare the fitted value in the three different cases for the same experiment, we found that the difference is
negligible with respect to the statistical error, at the level of the numerical precision, as shown in figure 32.

Another set of tests has been performed to evaluate the improvement in the∆Γ/Γ measurement due to
the complementary use of the flavour and the CP sample. We generated and fitted∼600 low statistics toy
Monte Carlo experiments (30 fb−1) using just the flavour sample with theGG resolution model. In figure
33 the residual distributions of∆Γ/Γ variable are reported for three different values of generated∆Γ/Γ: 0.1,
0.2 and 0.3. In the first two cases a large part of the fits (30% and 15% respectively) converged to the value
of ∆Γ/Γ=0, corresponding to the high spike at the value of -0.1 on thefirst residual plot and -0.2 on the
second one. Few of the fits converged also at the opposite of the generated value corresponding to the bins
at -0.2 and -0.4 on the residual plots. These effects are due to the mentioned symmetric shape around zero
of the likelihood function for the mixing sample. In the caseof ∆Γ/Γ=0.3 the two maxima should be well
separated and we don’t see any effect since we used the generated values as a starting point for the fit. In
all the three cases the distribution showed a large negativebias of 5–6 standard deviations from the central

58



Figure 32: Comparison between the results obtained fitting the same 60 fb−1 samples generated with
∆Γ/Γ=0.2, using different starting points for∆Γ/Γ. The upper left plot shows the correlation among the
fitted values starting from∆Γ/Γ=0.2 and∆Γ/Γ=0.0, while the upper right shows the distribution of the dif-
fernce between the two fitted parameters. The lower plots shows the analogous for the comparison between
∆Γ/Γ=0.2 and∆Γ/Γ=-0.2.

value, never seen in all the tests made using the flavour and the CP samples together.

In order to check how these effects change with the statistics, we repeated the experiment with a much
larger data sample size (150 fb−1). In figure 34, top plots, the residual distributions for∆Γ/Γ show that
the situation is pretty similar to the low statistics case for ∆Γ/Γ=0.1, but much better for∆Γ/Γ=0.2: no fits
converged to the negative value and just a couple of them collapsed to zero. Nevertheless in all the three
cases we had a confirmation of the negative bias of the fitted values (7.5, 3.5 and 2 standard deviations
respectively).

We explored also the possibility of measuring∆Γ/Γ using the CP sample alone, performing similar toy
Monte Carlo experiments. In figure 34, bottom plots, the residual distributions give another confirmation of
the fact that the CP sample is sensitive to the sign of∆Γ. The distributions in this case show no evidences
of bias.
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Figure 33: Residual distribution for three different values of ∆Γ/Γgenerated (0.1, 0.2 and 0.3 from top to
bottom) using the flavour sample alone. Each of the plots comes from∼600 experiments with the equivalent

statistics of 30 fb−1. GG resolution model has been used. Variables1−|ε|2
1+|ε|2

Reδ
1+|ε|2 and Imε

1+|ε|2 were fixed in the
fit since the sample is not sensitive to them.

4.1.4 Non-Gaussian errors

The non-Gaussian behavior of the physics parameters has been investigated for∆Γ/Γ and 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 .

Figures 35 and 36 show the distribution of the positive and negative asymmetric errors for these two param-
eters (GExpmodel) and their correlation, for the reference and∆Γ/Γ=0.2 configurations. Tables 19 and 20
summarize the average and RMS of the residual distribution together with the average Gaussian, positive and
negative errors and the corresponding confidence interval coverages. Let us note that the set of experiments
used for this check is statistically independent of that used in section 4.1.2. For the∆Γ/Γ=0.2 configura-
tion, the∆Γ/Γ negative error is about 10% larger than the positive, reflecting the systematic asymmetry of
the log-likelihood function ilustrated in figure 25(b), which origin was discussed in last paragraph of sec-
tion 4.1.3. Within the precision of our statistics, the asymmetric confidence intervals provide the correct
coverage.
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Figure 34: Top three plots: Residual distribution for threedifferent values of generated∆Γ/Γ(0.1, 0.2 and
0.3 from top to bottom) using the flavour sample alone. Each ofthe plots comes from∼600 experiments

with the equivalent statistics of 150 fb−1. GG resolution model has been used. Variables1−|ε|2
1+|ε|2

Reδ
1+|ε|2 and

Imε
1+|ε|2 were fixed in the fit since the sample is not sensitive to them. Bottom three plots: The same for CP

sample. In this case we fixedReε
1+|ε|2 , Imδ

1+|ε|2 and tagging efficiencies and asymmetries.
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(a) (b)

Figure 35: Positive and negative asymmetric errors and their correlation for∆Γ/Γ from signal only fits
(GExpresolution model,≈ 60 fb−1). The generated values correspond to the reference configuration (a)
and reference with∆Γ/Γ=0.2 (b).

Reference configuration,GExpmodel
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (1.4±2.7) ·10−3 (−0.9±0.6) ·10−3 (3.1±1.4) ·10−3 (−1.7±2.4) ·10−4 (−1.2±2.2) ·10−3 (−3.9±3.2) ·10−4

RMS residual (7.7±0.2) ·10−2 (1.6±0.0) ·10−2 (4.1±0.1) ·10−2 (6.7±0.2) ·10−3 (6.1±0.2) ·10−2 (8.9±0.3) ·10−3

Av. error (Gauss) 7.0·10−2 1.7·10−2 3.9·10−2 7.1·10−3 5.6·10−2 9.3·10−3

Av. positive error 7.1·10−2 — — — 5.6·10−2 —
Av. negative error 7.2·10−2 — — — 5.6·10−2 —
Gauss. error cov. (61.1±3.5)% (68.5±3.8)% (67.6±3.8)% (69.3±3.9)% (61.5±3.6)% (71.4±3.9)%

Non-Gaussian err. cov. (62.9±3.6)% — — — (63.7±3.6)% —

Table 19: Summary of results for the reference configurationfrom signal only fits (GExpresolution model,
≈ 60 fb−1) with asymmetric errors calculation. This set of experiments is independent from the one used
for Table 15.

4.1.5 Correlations

Disclaimer: After running some of the toy Monte Carlo experiments documented so far, also used in
this section, it was found a wrong sign in the fitting code which affected∆Γ/Γ for CP events. This does not
change the conclusions of our studies, but we should take this into account when looking at the correlations
of ∆Γ/Γ with the other parameters, since they will have the oppositesign to that shown in the figures. The
affected figures will be explicitely marked with a comment inthe caption. The numbers quoted in the text
have already the correct sign.

The analysis of the set of experiments in the reference configuration confirms the absence of significant
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(a) (b)

Figure 36: Positive and negative asymmetric errors and their correlation for1−|ε|2
1+|ε|2

Reε
1+|ε|2 from signal only fits

(GExpresolution model,≈ 60 fb−1). The generated values correspond to the reference configuration (a)
and reference with∆Γ/Γ=0.2 (b).

∆Γ/Γ=0.2 configuration,GExpmodel
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (2.2±1.7) ·10−3 (1.3±0.7) ·10−3 (−2.1±1.6) ·10−3 (−1.7±2.8) ·10−4 (−1.1±1.7) ·10−3 (−4.5±3.8) ·10−4

RMS residual (4.3±0.1) ·10−2 (1.9±0.1) ·10−2 (4.0±0.1) ·10−2 (7.2±0.2) ·10−3 (4.2±0.1) ·10−2 (9.7±0.3) ·10−3

Av. error (Gauss) 4.4·10−2 1.9·10−2 3.9·10−2 7.0·10−3 4.3·10−2 9.7·10−3

Av. positive error 4.6·10−2 — — — 4.2·10−2 —
Av. negative error 4.4·10−2 — — — 4.7·10−2 —
Gauss. error cov. (65.7±4.1)% (70.0±4.3)% (66.8±4.1)% (66.6±4.1)% (69.7±4.2)% (68.3±4.2)%

Non-Gaussian err. cov. (61.2±3.9)% — — — (67.6±4.2)% —

Table 20: Summary of results for the∆Γ/Γ=0.2 configuration from signal only fits (GExpresolution model,
≈ 60 fb−1) with asymmetric errors calculation. This set of experiments is independent from the one used
for Table 17.

correlations among different physics parameters at the order of few percent, as it can be seen in figures 37
and 38, where we show the scatter plot and the correlation coefficients, respectively, among all possible
combinations of the 6 physics parameters. The largest observed correlation is between∆Γ/Γ and Reε

1+|ε|2

(-11%). The largest correlation betweenReδ
1+|ε|2 and any other physics parameter is, as expected, with∆Γ/Γ

(+6%). See disclaimer at the begining of this section.

The larger identified correlation between a physics parameter and any other parameter entering in the
fit procedure is betweenReε

1+|ε|2 and the difference of the mistag fractions forB0 andB0, ∆wα. The average
correlations are 23%, 32%, 15% and 10%, for theLepton, Kaon, NT1, NT2 tagging categories, re-

63



Figure 37: Scatter distributions among all combinations ofthe physics parameters, for the reference config-
uration (GExpmodel,≈ 60 fb−1). See disclaimer at the begining of section 4.1.5.

64



Figure 38: Correlation coefficients among all combinationsof the physics parameters, for the reference
configuration (GExpmodel,≈ 60 fb−1). See disclaimer at the begining of section 4.1.5.
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spectively. The correlation between∆m and the mistag fractions,wα
0 , are, repectively, -22%, -10%, -13%

and -8%. The only significant correlation with a resolution function parameter is between∆mand the scale
of the central Gaussian (S), 25%, for theGExpmodel, and between∆m and the fraction and the bias of the
tail component (ftail andδtail ), 20% and 10% respectively, for theGG model. All the other correlations are

within few per cent. It is worth noting that the CPT parameter, 1−|ε|2
1+|ε|2

Reδ
1+|ε|2 , is largely uncorrelated with the

resolution function and mistag parameters, as shown in figure 39.

A strong correlation is however observed between thewα
0 andwα

slope for theKaon category, as expected
from the linear parameterization of the tagging/vertexingcorrelations, equation (84). Finally, several of
the resolution function parameters are internally correlated. In theGExpmodel, the correlation among the
effective lifetime,τα

r , and the fraction of the exponential part,f α
Exp, is at the -80% level, for all tagging

categories. The averaged correlation of these parameters with the scaleSof the central Gaussian is small,
below 10%. In theGGmodel the correlation pattern is much more complex. The mostcorrelated resolution
parameter with any other isScore with the Gaussian tail parameters,ftail (-65%),δtail (-42%) andStail (28%),
as well asftail with δtail andδtail , 65% and -44% respectively. The cross correlations among all δα

core and
with ftail and Stail are at the±10% level. Finally, the correlation betweenScore and δα

core is below 10%
averaged over tagging categories.

For large values of∆Γ/Γ, the correlation pattern is different. If we take as example∆Γ/Γ=0.2, the corre-
lation among the physics parameters is shown in figure 40. Correlations which become now significant and
were negligible or small in the reference configuration are:∆m−∆Γ/Γ (+10%),∆Γ/Γ− Imε

1+|ε|2 (−20%) and
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 −

Imδ
1+|ε|2 (+60%). The correlation between∆Γ/Γ and the fraction of outliers,foutlier, becomes

now also large, about -45%, while is was negligible for∆Γ/Γ=0. This effect is not surprising since the
contribution of∆Γ/Γ to the time distributions appears at relatively large∆t, just the region where the ouliers
have their larger relative contribution. This however, does not introduce any noticeable bias in the determi-
nation of∆Γ/Γ (as shown in section 4.1.3), provided that the PDF normalization is performed properly, as
discussed in section 4.1.8.

The small correlations among the physics parameters in the reference configuration can easily be under-

stood. The sensitivity to1−|ε|2
1+|ε|2

Reδ
1+|ε|2 and Imε

1+|ε|2 is largely provided by theBCP events (see table 18), for which
the ∆t dependence is even for the former and odd for the latter. TheBf lav sample contributes marginally
because for these events there is no explicit dependence onImε

1+|ε|2 , and the dependence withReδ
1+|ε|2 is scaled

by the sin(∆Γ∆t/2) term, which neglects for small∆Γ. On the contrary, Reε
1+|ε|2 and Imδ

1+|ε|2 (and∆m) are com-
pletely dominated by the large statisticsBf lav sample, for which the∆t dependence is even for the former
and odd for the latter. As it was already discussed in section4.1.3, the∆Γ/Γ determination is dominated
by the CP sample in this configuration. The physics parameters correlation pattern changes for large∆Γ/Γ
because in this regime since the flavor sample dominates its determination, and as a consequence: i) the cor-
relation with∆m increases (same sample and both parameters have even∆t dependence), ii) the dependence
with Reδ

1+|ε|2 in the flavor sample is now significant, and it is odd in∆t (as for Imδ
1+|ε|2 ), therefore inducing the

large correlation among these two parameters.

4.1.6 Correlations withτ0
B

The correlation of the averageB0 lifetime (assumed as fixed in the nominal fit) with all the physics
parameters has been evaluated by fitting also it. The check has been done for the reference configuration
and∆Γ/Γ=0.2. The results are shown in figure 41. In the reference, theonly significant correlation is with
∆m (−30%). For the∆Γ/Γ=0.2 configuration,τ0

B becomes additionally correlated with two parameters:

66



Figure 39: Correlation coefficients among1−|ε|2
1+|ε|2

Reδ
1+|ε|2 and the resolution function and mistag parameters,

for the reference configuration (GExpmodel,≈ 60 fb−1).
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Figure 40: Correlation coefficients among all combinationsof the physics parameters, for the∆Γ/Γ = 0.2
configuration (GExpmodel,≈ 60 fb−1). See disclaimer at the begining of section 4.1.5.
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∆Γ/Γ(−56%) and Imε
1+|ε|2 (−19%).

4.1.7 Fit validation with backgrounds

The analysis has also been validated in toy Monte Carlo by including backgrounds (combinatorial and
peaking) for theBf lav andBCPK0

S
samples in the generation and fitting procedure. Due to the very signifi-

cant significant increase of CPU that the inclusion of background means for the fitting part, we performed
this check rescaling yields to the equivalent of 30 fb−1. The results for the reference configuration are
summarized in table 21. The conclusions from this study do not differ from those we got with signal only
fits.

Reference configuration with backgrounds
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (−4.2±4.7) ·10−3 (−1.8±1.1) ·10−3 (0.8±2.5) ·10−3 (1.1±4.4) ·10−4 (0.6±3.8) ·10−3 (0.6±5.7) ·10−4

RMS residual (1.0±0.0) ·10−1 (2.3±0.1) ·10−2 (5.6±0.2) ·10−2 (9.5±0.4) ·10−3 (8.3±0.3) ·10−2 (1.2±0.1) ·10−2

Av. error (Gauss) 9.6·10−2 2.4·10−2 5.6·10−2 9.5·10−3 7.3·10−2 1.2·10−2

Gauss. error cov. (62.7±4.6)% (69.7±5.0)% (65.7±4.8)% (67.8±4.9)% (57.9±4.4)% (67.8±4.9)%

Table 21: Summary of results for the reference configuration(table 13) from signal + background fits (GG
resolution model,≈ 30 fb−1).

4.1.8 Asymptotic vs finite PDF normalization

In the nomalization of the PDF, equations (96), (97) and (93), asymptotic limits are used by default
through these studies. This normalization has the advantage of reducing dramatically CPU usage, but it
has the drawback that it does not take into account the event selection∆t cut, | ∆t |< 20 ps. The effect
of this simplification has been investigated in the extreme case of the∆Γ/Γ=0.2 configuration asuming a
single (unbiassed) Gaussian together with an outlier component for the resolution (| ∆t |< 20 cut applied
and asymptotic normalization is used). The results are summarized in table 22. A bias at the 4σ level is
observed on∆Γ/Γ, and about 2.5σ level on Reε

1+|ε|2 , while all the other parameters are within one sigma. The

bias in the estimation of∆Γ/Γ can be understood due to the overestimation of the PDF normalization which
originates from two different sources. First, the resolution function has an outlier component with width
σ = 8 ps, so a cut on∆t at±20 ps excludes a significant fraction of it, while it is not accounted for in the
normalization. Second, large values of| ∆Γ/Γ | contribute at large| ∆t |, so again, the∆t cut removes a
non-negligible fraction of the area. The second reason explains that the size of the∆Γ/Γ bias increases with
| ∆Γ/Γ |, and for very small values it is negligible. The apparent bias on Reε

1+|ε|2 is a consequence of the the

∆Γ/Γ bias.

Given that the value of∆Γ/Γ is expected to be very small, and in order to reduce the CPU usage, the
asymptotic normalization is used by default, and differences between it and the finite normalization can be
evaluated as a contribution to the systematic uncertainty.However, to remove any possible bias contribution
to ∆Γ/Γ in all our toy Monte Carlo studies, in particular for configurations with∆Γ/Γ 6= 0, the∆t cut was
removed. All the tables shown so far have been produced usingthis asumption. In particular, results shown
in figure 29 and table 17, corresponding to the same∆Γ/Γ=0.2 configuration used above but there using the
GExpmodel, shows no bias neither on∆Γ/Γ nor Reε

1+|ε|2 . In the full Monte Carlo checks of section 4.2 the∆t
cut was however applied.
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(a)

(b)

Figure 41: Correlation coefficients amongτ0
B and all the 6 physics parameters for (a) the reference configu-

ration and (b)∆Γ/Γ=0.2 (GExpmodel,≈ 60 fb−1).
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∆Γ/Γ=0.2 configuration,∆t = ±20 ps cut, asymptotic normalization
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (0.3±0.7) ·10−3 (−0.8±0.8) ·10−3 (−3.7±1.5) ·10−4 (3.5±0.8) ·10−3 (−0.3±2.0) ·10−4

RMS residual (3.15±0.06) ·10−2 (3.85±0.06) ·10−2 (6.88±0.12) ·10−3 (3.88±0.06) ·10−2 (9.12±0.14) ·10−3

Average error (Gauss) 3.2·10−2 3.7·10−2 6.9·10−3 4.3·10−2 9.1·10−3

Table 22: Summary of results for the reference configurationwith ∆Γ/Γ=0.2 (≈ 60 fb−1) for (top)∆t =±20
ps cut and asymptotic normalization, (middle)∆t = ±20 ps cut and finite normalization and (bottom) no
∆t cut with asymptotic normalization. The resolution model used for this study was a single unbiassed
Gaussian.

4.1.9 Validation with the (| q/p |,λ,z) formalism

The (| q/p |,λ,z) formalism outlined in section 2.7 have been also used to check the feasibility of the
analysis. From a comparison of tables 1 and 2 with tables 5 and6, the correspondence between the physics
parameters with the(ε,δ) formalism becomes apparent. It is then clear that all the studies performed so
far apply here, and there is no need to redo all of them. We checked here explicitely the feasibility of
the combined fit for the reference (table 23) and∆Γ/Γ=0.2 configurations, for an statistics of≈ 60 fb−1.
The average and RMS of the residual distributions as well as the average Gaussian error and its coverage
are summarized in tables 24 and 25. The same remarks to those of the (ε,δ) formalism apply here. The
distributions of the correlation coefficients among all possible combinations of the 6 physics parameters is
shown in figure 42. Again, all cross correlations among the physics parameters are small, at the few per cent
level, and they are the same as for(ε,δ).

Parameter Generated value
Reλ
|λ| Rez 0.00

Imz 0.00
Imλ
|λ| 0.70

| q/p | 1.00
∆Γ/Γ 0.00

∆m(ps−1) 0.472

Table 23: Generated physics parameter values for the reference configuration,(| q/p |,λ,z) formalism.

Reference configuration,GGmodel
Reλ
|λ| Rez Imz Imλ

|λ| | q/p | ∆Γ/Γ ∆m

Mean residual (2.0±3.0) ·10−3 (0.6±6.2) ·10−4 (5.2±3.1) ·10−3 (5.3±5.7) ·10−4 (−0.8±2.6) ·10−3 (0.3±3.8) ·10−4

RMS residual (7.3±0.2) ·10−2 (1.5±0.1) ·10−2 (7.5±0.2) ·10−2 (1.4±0.1) ·10−2 (6.2±0.2) ·10−2 (9.1±0.3) ·10−3

Av. error (Gauss) 7.3·10−2 1.6·10−2 7.9·10−2 1.4·10−2 5.8·10−2 9.5·10−3

Gauss. error cov. (68.0±4.4)% (70.1±4.5)% (69.3±4.5)% (70.8±4.6)% (62.5±4.2)% (69.4±4.5)%

Table 24: Summary of results for the reference configurationwith the (| q/p |,λ,z) formalism, for≈ 60
fb−1 (GGmodel).

4.1.10 Fitting for the B0B0 reconstruction and tagging differences

The nominal fitting procedure adopted for all the studies in this note, as explained in section 3.5, assumes
that theB0B0 differences in reconstruction and tagging efficiencies,ν andµα, are fixed to the values extracted
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Figure 42: Correlation coefficients among all combinationsof the physics parameters, for the reference
configuration and(| q/p |,λ,z) formalism (table 23).
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∆Γ/Γ=0.2 configuration,GG model
Reλ
|λ| Rez Imz Imλ

|λ| | q/p | ∆Γ/Γ ∆m

Mean residual (0.0±2.2) ·10−3 (6.4±8.7) ·10−4 (2.1±3.4) ·10−3 (−3.8±5.9) ·10−4 (−1.7±2.0) ·10−3 (4.0±4.1) ·10−4

RMS residual (5.2±0.2) ·10−2 (2.0±0.1) ·10−2 (8.0±0.3) ·10−2 (1.4±0.1) ·10−2 (4.6±0.2) ·10−2 (9.7±0.3) ·10−3

Av. error (Gauss) 5.4·10−2 1.9·10−2 7.8·10−2 1.4·10−2 4.6·10−2 9.9·10−3

Gauss. error cov. (70.1±4.7)% (65.1±4.4)% (66.6±4.5)% (69.7±4.6)% (66.2±4.5)% (70.1±4.7)%

Table 25: Summary of results for the∆Γ/Γ=0.2 configuration with the(| q/p |,λ,z) formalism, for≈ 60
fb−1 (GGmodel).

from theBf lav sample (see section 3.1 and appendix B for details). This approach requires to make an initial
guess about the actual values of∆m, ∆Γ and Reε

1+|ε|2 . As these are parameters to be extracted from the time
dependent analysis, there appears a potential circularityproblem. This effect is critical for the extraction of

Reε
1+|ε|2 , since this parameter is fully anti-correlated with the detector asymmetries (evaluated to be -96%).

To overcome this problem, the following approach has been investigated. The parametersν andµα can
be included as free parameters in the time dependent fit, applying the additional constraint provided by the
time integrated relationship between them and∆m, ∆Γ and Reε

1+|ε|2 , -equations (115) and (116) of the appendix

B-. To properly account for the Poisson statistics from the counting ofB0,B0 tagged and untagged events,
we can construct an Extended Likelihood,

lnLExtended = lnL+∑
α

∆ lnLα (100)

where lnL was defined in equation (99) and

∆ lnLα = − lnNB0
r ,tag α! +NB0

r ,tag α lnηB0
r ,tag α −ηB0

r ,tag α

− lnNB0
r ,tag α! +NB0

r ,tag α lnηB0
r ,tag α −ηB0

r ,tag α

− lnNB0
r ,notag α! +NB0

r ,notag α lnηB0
r ,notag α −ηB0

r ,notag α

− lnNB0
r ,notag α! +NB0

r ,notag α lnηB0
r ,notag α −ηB0

r ,notag α

(101)

NB0
r (B0

r ),tag α is the number of events reconstructed asB0(B0) and tagged in tagging categoryα, andNB0
r (B0

r ),notag α
is the number of events reconstructed asB0(B0) excluding those tagged in tagging categoryα. ηB0

r (B0
r ),tag α/notag α

denote the corresponding expected number of events. This method can be applied using only signal region
events. For background components, where we assume∆m=0, ∆Γ/Γ=0 and Reε

1+|ε|2 =0, the parametersν and
µα can be fixed to the estimates using side band events.

Two toy Monte Carlo studies, using theGG resolution model, were dedicated to check this approach.
The first one was the usual set of more than 600 experiments with an equivalent luminosity of≈ 60 fb−1and
the reference configuration for the physics parameters and the defaultB0B0 reco and tagging asymmetries,
as given in section 3.1. Table 26 shows the summary of the results of this test, which should be compared
to the results coming from the standard likelihood method, summarized in table 14. The only parameter
affected is Reε

1+|ε|2 , whose error increased by about 30%, as expected due to the correlation between Reε
1+|ε|2

and the detector asymmetries. At the end of the fitting procedure, the values ofν andµα are consistent
with those generated. The second check was devoted to verifythat this proceduce is able to disentangle
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the physics (Reε
1+|ε|2 6= 0) and detector asymmetries. Here, we generated 200 toy Monte Carlo experiments

with a large detector asymmetry (ν = 10% andµα is 5%, 10%, 5% and 5% for thelepton, kaon, NT1,
NT2 tagging categories, respectively), as well as a large valueof Reε

1+|ε|2 , 0.05. The samples were then fitted

using two different sets of starting values forν, µα, Reε
1+|ε|2 and∆Γ/Γ: i) the generated values, ii) all zero and

∆Γ/Γ=0.1. Figure 43 shows the sample-by-sample comparison of the results of the fit for∆Γ/Γ and Reε
1+|ε|2

(the correlation and the differences). From this check we conclude that with this procedure the fit is stable
and we are able to disentangle the physics and detector asymmetries which would result in an asymmetry in
the number ofB0B0 events, at the cost of a reasonable increase in the statistical error on Reε

1+|ε|2 .

Reference configuration with extendend likelihood
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (0.2±2.9) ·10−3 (−1.0±0.6) ·10−3 (−0.2±1.4) ·10−3 (−1.1±3.4) ·10−4 (0.2±2.3) ·10−3 (1.2±3.5) ·10−4

RMS residual (8.0±0.2) ·10−2 (1.7±0.1) ·10−2 (3.8±0.1) ·10−2 (9.5±0.3) ·10−3 (6.4±0.2) ·10−2 (9.7±0.3) ·10−3

Av. error (Gauss) 7.1·10−2 1.7·10−2 4.0·10−2 9.4·10−3 5.6·10−2 9.5·10−3

Gauss. error cov. (57.4±3.4)% (68.2±3.8)% (68.6±3.9)% (66.8±3.8)% (59.7±3.5)% (66.4±3.8)%

Table 26: Summary of results for the reference configuration(table 13) from signal fits (GG resolution
model,≈ 60 fb−1) using the extended likelihood approach.

4.2 Standard full Monte Carlo

High statistics full Monte Carlo fits (signal+background),with reference values (table 13) were also
performed to validate the fitting procedure, for both theGG andGExpresolution models. We used the set
anal10h of ASCII files (B0 andB+ cocktails for theBf lav sample). The total statistics of reconstructed
events (after vertexing cuts: tag vertex convergence,| ∆t |< 20 ps,σ(∆t) < 2.4 ps) for each sample is given
in table 27. It should be noted that the relative statistics among the samples as we have in the data was not
kept here, since our goal in this case was to validate the fit with maximum available statistics. Roughly, the
relative weight of theBCP sample with respect to theBf lav one in this check is about 2.5 times larger than
what we have in our current data.

Sample Statistics (after vertexing cuts)
Bf lav 160900
BCPK0

S
30600

BCPK0
L

8700
B+ 112800

Table 27: Full Monte Carlo statistics (anal10h ASCII files) for each sample used in the fit procedure
validation. The generated values correspond to our reference configuration given in table 13.

The results of different fit configurations are given in tables 28 and 29 for the signal parameters,GG
andGExpresolution models respectively. The corresponding tablesfor the parameters describing the back-
ground are 30 and 31. Table 32 gives the physics parameters from a similar fit (GG model) using the
(| q/p |,λ,z) formalism. The peaking background in these fits was assumed to be 0. Asymmetric errors,
extremelly CPU consuming, were not switched on in these fits.Figures 44 and 45 show the projections on
the ∆t axis of the nominal CPT/CP/T fits for theBf lav, BCPK0

S
andBCPK0

L
samples, for theGExpresolution

model. The corresponding normalized residuals (defined as the difference between data and the fit projection
divided by the error) are shown in figures 46 and 47.
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Parameter Bf lav lifetime B+ mixing Bf lav mixing Bf lav+BCPK0
S

Bf lav+BCP sin2β
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 − − − −0.003±0.019 0.004±0.016 −

Imδ
1+|ε|2 − − 0.004±0.006 0.002±0.005 0.002±0.005 −

Imε
1+|ε|2 − − − 0.350±0.010 0.353±0.009 0.354±0.009

Reε
1+|ε|2 − − −0.0009±0.0027 −0.0008±0.0026 −0.0005±0.0025 −
∆Γ/Γ − − 0.000±0.043 −0.020±0.015 −0.008±0.013 −
∆m − 0 0.4778±0.0034 0.4767±0.0033 0.4774±0.0033 0.4774±0.0033
τ 1.528±0.009 1.643±0.011 1.548 1.548 1.548 1.548

Score 1.163±0.023 1.09±0.04 1.164±0.020 1.155±0.019 1.155±0.018 1.154±0.018
δlepton

core −0.078±0.03 −0.10±0.04 −0.064±0.024 −0.071±0.022 −0.070±0.022 −0.071±0.022
δkaon

core −0.244±0.016 −0.238±0.023 −0.249±0.015 −0.243±0.014 −0.244±0.014 −0.245±0.014
δNT1

core −0.153±0.03 −0.137±0.04 −0.14±0.03 −0.13±0.03 −0.13±0.03 −0.13±0.03
δNT2

core −0.200±0.022 −0.22±0.03 −0.196±0.022 −0.200±0.020 −0.205±0.020 −0.206±0.019
ftail 0.058±0.010 0.07±0.03 0.047±0.008 0.047±0.008 0.047±0.007 0.047±0.007
Stail 4.0±0.3 3.4±0.5 3.83±0.24 3.78±0.22 3.79±0.21 3.78±0.21
δtail −1.6±0.3 −0.8±0.3 −1.8±0.3 −1.9±0.3 −1.9±0.3 −1.9±0.3

foutlier 0.0024±0.0007 0.0001±0.0006 0.0021±0.0006 0.0022±0.0005 0.0023±0.0005 0.0023±0.0005

wlepton
0 − 0.0370±0.0016 0.070±0.003 0.070±0.003 0.069±0.003 0.069±0.003

wkaon
0 − 0.1087±0.0016 0.058±0.006 0.059±0.006 0.060±0.006 0.060±0.006

wNT1
0 − 0.165±0.004 0.185±0.005 0.185±0.005 0.185±0.005 0.185±0.005

wNT2
0 − 0.351±0.004 0.348±0.004 0.349±0.004 0.349±0.004 0.349±0.004

wlepton
slope − 0 0 0 0 0

wkaon
slope − 0 0.139±0.009 0.138±0.009 0.138±0.009 0.138±0.009

wNT1
slope − 0 0 0 0 0

wNT2
slope − 0 0 0 0 0

∆wlepton − −0.003±0.003 −0.007±0.005 −0.005±0.005 −0.006±0.005 −0.006±0.005
∆wkaon − −0.009±0.003 −0.016±0.004 −0.013±0.004 −0.014±0.004 −0.014±0.003
∆wNT1 − 0.021±0.008 0.019±0.008 0.019±0.007 0.023±0.007 0.023±0.007
∆wNT2 − 0.028±0.008 −0.031±0.007 −0.033±0.006 −0.030±0.006 −0.030±0.006

Table 28: Full Monte Carlo validation signal parameter results (GG resolution model).
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Parameter Bf lav lifetime B+ mixing Bf lav mixing Bf lav+BCPK0
S

Bf lav+BCP sin2β
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 − − − −0.006±0.019 0.0017±0.016 −

Imδ
1+|ε|2 − − 0.003±0.006 0.002±0.005 0.001±0.005 −

Imε
1+|ε|2 − − − 0.350±0.010 0.353±0.009 0.354±0.009

Reε
1+|ε|2 − − −0.0009±0.0027 −0.0011±0.0026 −0.0007±0.0026 −
∆Γ/Γ − − −0.00±0.10 −0.019±0.016 −0.007±0.013 −
∆m − 0 0.4751±0.0034 0.4744±0.0033 0.4750±0.0032 0.4750±0.0032
τ 1.546±0.009 1.662±0.010 1.548 1.548 1.548 1.548
S 1.092±0.021 1.06±0.03 1.099±0.017 1.089±0.015 1.087±0.015 1.087±0.015

τlepton
r 2.1±0.4 1.4±0.5 2.1±0.4 2.1±0.3 2.2±0.3 2.2±0.3
τkaon

r 1.26±0.012 0.97±0.14 1.28±0.10 1.33±0.09 1.32±0.09 1.32±0.09
τNT1

r 1.2±0.4 1.9±0.6 1.6±0.3 1.8±0.3 1.8±0.3 1.8±0.3
τNT2

r 1.70±0.15 1.01±0.21 1.69±0.15 1.65±0.14 1.67±0.14 1.67±0.13
f lepton
Exp 0.083±0.020 0.10±0.05 0.071±0.017 0.071±0.016 0.071±0.016 0.071±0.016
f kaon
Exp 0.25±0.03 0.29±0.04 0.249±0.023 0.241±0.019 0.243±0.018 0.244±0.018

f NT1
Exp 0.18±0.07 0.11±0.04 0.12±0.03 0.10±0.03 0.106±0.024 0.107±0.024

f NT2
Exp 0.177±0.021 0.27±0.06 0.172±0.021 0.177±0.020 0.179±0.019 0.180±0.019

foutlier 0.0035±0.0007 0.0038±0.0006 0.0032±0.0006 0.0032±0.0005 0.0033±0.0005 0.0033±0.0005

wlepton
0 − 0.0370±0.0016 0.072±0.003 0.071±0.003 0.071±0.003 0.071±0.003

wkaon
0 − 0.1087±0.0016 0.059±0.006 0.060±0.006 0.060±0.006 0.060±0.006

wNT1
0 − 0.165±0.004 0.187±0.005 0.186±0.005 0.186±0.005 0.186±0.005

wNT2
0 − 0.351±0.004 0.349±0.004 0.349±0.004 0.349±0.004 0.349±0.004

wlepton
slope − 0 0 0 0 0

wkaon
slope − 0 0.139±0.009 0.138±0.009 0.138±0.009 0.138±0.009

wNT1
slope − 0 0 0 0 0

wNT2
slope − 0 0 0 0 0

∆wlepton − −0.003±0.003 −0.006±0.005 −0.006±0.005 −0.006±0.005 −0.006±0.005
∆wkaon − −0.009±0.003 −0.016±0.004 −0.014±0.004 −0.014±0.004 −0.014±0.003
∆wNT1 − 0.021±0.008 0.020±0.008 0.019±0.007 0.023±0.007 0.023±0.007
∆wNT2 − −0.028±0.008 −0.031±0.007 −0.034±0.006 −0.030±0.006 −0.030±0.006

Table 29: Full Monte Carlo validation signal parameter results (GExpresolution model).
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Parameter Bf lav lifetime B+ mixing Bf lav mixing Bf lav+BCPK0
S

Bf lav+BCP sin2β

f lepton
prompt,Bf lav

0.0000±0.0013 0.43±0.12 0.31±0.05 0.31±0.05 0.31±0.05 0.31±0.05
f kaon
prompt,Bf lav

0.12±0.04 0.25±0.09 0.35±0.03 0.36±0.03 0.36±0.03 0.36±0.03
f NT1
prompt,Bf lav

0.09±0.06 0.27±0.13 0.33±0.05 0.33±0.05 0.33±0.05 0.33±0.05

f NT2
prompt,Bf lav

0.19±0.05 0.32±0.10 0.42±0.05 0.43±0.05 0.43±0.05 0.43±0.05
Sback 1.41±0.07 1.76±0.12 1.76±0.06 1.78±0.06 1.78±0.06 1.78±0.06
δback −0.24±0.03 −0.32±0.07 −0.25±0.03 −0.24±0.03 −0.24±0.03 −0.24±0.03

fback,outlier 0.013±0.004 0.011±0.009 0.006±0.003 0.007±0.003 0.007±0.003 0.007±0.003
wlepton

0,prompt − 0.11±0.06 0.0000±0.0002 0.0000±0.0002 0.0000±0.0002 0.0000±0.0002
wkaon

0,prompt − 0.22±0.08 0.0000±0.0003 0.0000±0.0003 0.0000±0.0003 0.0000±0.0003
wNT1

0,prompt − 0.30±0.18 0.0000±0.0003 0.0000±0.0003 0.0000±0.0003 0.0000±0.0003
wNT2

0,prompt − 0.51±0.12 0.25±0.05 0.24±0.05 0.24±0.05 0.24±0.05

wlepton
0,non−prompt − 0.07±0.05 0.31±0.03 0.31±0.03 0.31±0.03 0.31±0.03

wkaon
0,non−prompt − 0.16±0.03 0.458±0.023 0.460±0.022 0.460±0.022 0.460±0.022

wNT1
0,non−prompt − 0.19±0.07 0.52±0.04 0.52±0.04 0.52±0.04 0.52±0.04

wNT2
0,non−prompt − 0.40±0.06 0.51±0.04 0.51±0.04 0.51±0.04 0.51±0.04

τnon−prompt 1.41±0.04 1.57±0.14 1.61±0.05 1.59±0.05 1.59±0.05 1.59±0.05
fprompt,B

CPK0
S

− − − 0.37±0.09 0.37±0.09 0.37±0.09

Table 30: Full Monte Carlo validation background parameterresults (GG resolution model).
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Parameter Bf lav lifetime B+ mixing Bf lav mixing Bf lav+BCPK0
S

Bf lav+BCP sin2β

f lepton
prompt,Bf lav

0.0000±0.0006 0.42±0.13 0.30±0.05 0.30±0.05 0.30±0.05 0.30±0.05
f kaon
prompt,Bf lav

0.12±0.04 0.22±0.10 0.37±0.03 0.37±0.03 0.37±0.03 0.37±0.03
f NT1
prompt,Bf lav

0.07±0.06 0.30±0.15 0.33±0.05 0.33±0.05 0.34±0.05 0.34±0.05

f NT2
prompt,Bf lav

0.18±0.05 0.30±0.11 0.44±0.05 0.44±0.05 0.44±0.05 0.44±0.05
Sback 1.28±0.08 1.71±0.13 1.64±0.06 1.66±0.06 1.66±0.06 1.66±0.06
τr,back 1.8±0.3 3.6±0.7 1.5±0.3 1.5±0.3 1.5±0.3 1.5±0.3

fback,outlier 0.012±0.003 0.0000±0.0001 0.005±0.003 0.006±0.003 0.006±0.003 0.006±0.003
wlepton

0,prompt − 0.11±0.07 0.0000±0.0002 0.0000±0.0002 0.0000±0.0002 0.0000±0.0002
wkaon

0,prompt − 0.23±0.10 0.0000±0.0003 0.0000±0.0003 0.0000±0.0003 0.0000±0.0003
wNT1

0,prompt − 0.34±0.20 0.0000±0.0003 0.0000±0.0003 0.0000±0.0003 0.0000±0.0003
wNT2

0,prompt − 0.54±0.14 0.24±0.05 0.24±0.05 0.24±0.05 0.24±0.05

wlepton
0,non−prompt − 0.06±0.05 0.31±0.03 0.31±0.03 0.31±0.03 0.31±0.03

wkaon
0,non−prompt − 0.16±0.03 0.466±0.024 0.469±0.024 0.469±0.024 0.469±0.024

wNT1
0,non−prompt − 0.17±0.08 0.52±0.04 0.52±0.04 0.52±0.04 0.52±0.04

wNT2
0,non−prompt − 0.39±0.07 0.52±0.04 0.53±0.04 0.53±0.04 0.53±0.04

τnon−prompt 1.35±0.04 1.40±0.11 1.58±0.05 1.57±0.05 1.57±0.05 1.57±0.05
fprompt,B

CPK0
S

− − − 0.37±0.09 0.37±0.09 0.37±0.09

Table 31: Full Monte Carlo validation background parameterresults (GExpresolution model).
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Figure 43: Comparison between the results obtained fitting the same 60 fb−1 samples generated with large
B0B0 differences in reconstruction and tagging efficiencies andlarge Reε

1+|ε|2 , using different starting points
for the corresponding parameters (see text for details). The upper left plot shows the correlation among the
fitted values of∆Γ/Γ from the two sets of starting points, while the upper right shows the distribution of the
differnce between the two fitted parameters. The lower plotsshow the analogous for theReε

1+|ε|2 parameter.

The cross correlation coefficients among all 6 fitted physicsparameters in the(ε,δ) formalism for the
GG andGExpmodels can be found in tables 33 and 34, respectively. For the(| q/p |,λ,z) formalism the
corresponding correlations are similar, and compatible with those predicted by toy Monte Carlo exercises
(sections 4.1.5 and 4.1.9).

4.3 Non-standard full Monte Carlo

The general CPT/CP, CP/T models (including∆Γ effects) in mixing and CP events have been imple-
mented and validated inEvtGen [40]. They are briefly described below:

• VSS BMIXCPT: BrFr B1 B2 VSS BMIX dm dgog absqop argqop absAf argAf absAbarf ar-
gAbarf absAfbar argAfbar absAbarfbar argAbarfbar rez imz This model is an extension of
the standardVSS BMIX model [40], the difference being only the CPT effects in mixing as well as
possible double Cabbido supressed contributions and CPT violation in the decay. The sign convention
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(a) (b)

(c) (d)

Figure 44:∆t projections of the nominal CPT/CP/T fit for (a) mixedB0, (b) mixedB0, (c) unmixedB0 and
(d) ubmixedB0 events, for the different tagging categories (GExpmodel).
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(a) (b)

(c) (d)

Figure 45:∆t projections of the nominal CPT/CP/T fit for (a)BCPK0
S

B0, (b) BCPK0
S

B0, (c) BCPK0
L

B0 and (d)

BCPK0
L
B0 events, for the different tagging categories (GExpmodel).
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(a) (b)

(c) (d)

Figure 46: Normalized residuals of the∆t projections of the nominal CPT/CP/T fit for (a) mixedB0, (b)
mixedB0, (c) unmixedB0 and (d) ubmixedB0 events, for the different tagging categories (GExpmodel).
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(a) (b)

(c) (d)

Figure 47: Normalized residuals of the∆t projections of the nominal CPT/CP/T fit for (a)BCPK0
S

B0, (b)

BCPK0
S

B0, (c) BCPK0
L

B0 and (d)BCPK0
L
B0 events, for the different tagging categories (GExpmodel).
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Parameter Bf lav mixing Bf lav+BCP
Reλ
|λ| Rez − 0.003±0.016

Imz −0.0041±0.006 −0.010±0.005
Imλ
|λ| − 0.703±0.018

| q/p | 1.002±0.005 1.001±0.005
∆Γ/Γ 0.000±0.043 −0.011±0.013
∆m 0.4778±0.0034 0.4771±0.0033
τ 1.548 1.548

Table 32: Full Monte Carlo validation physics parameter results for the(| q/p |,λ,z) formalism (GG reso-
lution model).

1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

1−|ε|2
1+|ε|2

Reδ
1+|ε|2 1.000 0.031 -0.004 -0.099 0.197 0.014

Imδ
1+|ε|2 1.000 -0.125 0.000 -0.011 -0.022

Imε
1+|ε|2 1.000 -0.003 -0.011 -0.085

Reε
1+|ε|2 1.000 -0.192 -0.006

∆Γ/Γ 1.000 0.011
∆m 1.000

Table 33: Correlations among the 6 physics parameters for the reference configuration with theGG resolu-
tion function model.

for ∆Γ/Γ is ΓL −ΓH. Four combinations of parameters can be provided to the model (3,8,12,14).

• SSDCP: BrFr V S SVS CP dm dgog absqop argqop absAf argAf absAbarf argAbarf ab-
sAfbar argAfbar absAbarfbar argAbarfbar rez imz This is un upgraded version of an already
existing model [40] (but not yet used in production), the difference again being the CPT effects. As
above, the sign convention for∆Γ/Γ is ΓL −ΓH . Theq/p convention used here uses the light state,
which is opposite to the convention used in this document. This introduces a relativeπ phase in
argqop. Three combinations of parameters can be provided to the model (8,12,14).

The implementation of the models (based on the amplitude) was cross-validated with the calculations of
the time dependent intensities and their implementation byproducing standardASCII files when running
testEvtGen and then fitting them to truth information. About 150kBf lav, BCPK0

S
andBCPK0

L
each were

generated for several sets of parameters. The samples were fitted separately and all together, using the two
formalisms. In all cases the fit results reproduced the inputvalues. As an example, table 35 reports the
results of the combined fit for a configuration with non-zero values for all the parameters. Figure 48 shows
the corresponding generated and fitted time distributions and their residuals.
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(a)

(b) (c)

Figure 48: Generated and fitted time distributions and theirresiduals used for the validation of the
VSS BMIXCPT andSSDCP models. Each generated sample (Bf lav, BCPK0

S
and BCPK0

L
) had about 150k

events.
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1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

1−|ε|2
1+|ε|2

Reδ
1+|ε|2 1.000 0.029 -0.011 -0.103 0.205 0.017

Imδ
1+|ε|2 1.000 -0.123 -0.008 -0.003 -0.019

Imε
1+|ε|2 1.000 -0.002 -0.008 -0.084

Reε
1+|ε|2 1.000 -0.198 -0.006

∆Γ/Γ 1.000 0.016
∆m 1.000

Table 34: Correlations among the 6 physics parameters for the reference configuration with theGExpreso-
lution function model.

Parameter Generated value Fit result
τB (ps) 1.54774 1.5497± 0.0024

∆m(ps−1) 0.472 0.4715± 0.0011
∆Γ/Γ 0.20 0.1979± 0.0029
| q/p | 1.05 1.0517± 0.0022
Reλ
|λ| Rez 0.1428 0.1393± 0.0024

Imλ
|λ| 0.70 0.7030± 0.0026

Imz 0.05 0.0488± 0.0025

Table 35: Results from the combined fit toEvtGen generated events. The input values provided to the
models are∆m=0.472 ps−1, ∆Γ/Γ=0.20,| q/p |=1.05,arg(q/p) = −0.776565, Rez=0.20 and Imz=0.05.

5 CPT, CP and T reach and sensitivity

5.1 Projections and sensitivity at low luminosity

In addition to the physics parameters configurations described in section 4.1, which results were sum-
marized in tables 14, 15, 16 and 17 and figure 30, we consideredhere the following:

• reference with1−|ε|2
1+|ε|2

Reδ
1+|ε|2 = 0.20;

• reference with Imδ
1+|ε|2 = 0.05;

• reference with Reε
1+|ε|2 = 0.05.

The average and RMS of the residual distribution as well as the average Gaussian error and its coverage are
summarized in tables 36, 37 and 38.

5.2 High luminosity projections

Different values of integrated luminosity experiments have been considered in order to evaluate the error
behaviour and scaling as a function of the data sample size. We considered for the reference configuration
two additional data sample integrated luminosity:
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1−|ε|2
1+|ε|2

Reδ
1+|ε|2 =0.2 configuration,GGmodel

1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (−2.8±2.3) ·10−3 (1.7±1.3) ·10−3 (−2.3±2.3) ·10−4 (1.4±1.1) ·10−3 (−1.8±2.9) ·10−4

RMS residual (6.7±0.2) ·10−2 (3.8±0.1) ·10−2 (6.9±0.2) ·10−3 (3.4±0.1) ·10−2 (8.8±0.2) ·10−3

Average error (Gauss) 7.1·10−2 3.9·10−2 7.1·10−3 3.4·10−2 9.5·10−3

Gaussian error coverage (71.5±3.7)% (67.8±3.6)% (69.0±3.6)% (67.4±3.6)% (71.4±3.7)%

Table 36: Summary of results for the1−|ε|2
1+|ε|2

Reδ
1+|ε|2 =0.2 configuration from signal only fits (GG resolution

model,≈ 60 fb−1).

Imδ
1+|ε|2 =0.05 configuration,GGmodel

1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (4.2±2.6) ·10−3 (0.2±6.0) ·10−4 (−1.1±1.4) ·10−3 (−1.7±2.5) ·10−4 (0.0±2.2) ·10−3 (2.3±3.3) ·10−4

RMS residual (7.2±0.2) ·10−2 (1.6±0.0) ·10−2 (4.0±0.1) ·10−2 (6.9±0.2) ·10−3 (6.1±0.2) ·10−2 (9.1±0.3) ·10−3

Av. error (Gauss) 6.9·10−2 1.7·10−2 4.0·10−2 7.1·10−3 5.6·10−2 9.5·10−3

Gauss. error cov. (65.7±3.8)% (67.6±3.9)% (67.1±3.8)% (70.6±4.0)% (62.5±3.7)% (69.8±4.0)%

Table 37: Summary of results for theImδ
1+|ε|2 =0.05 configuration from signal only fits (GG resolution model,

≈ 60 fb−1).

Reε
1+|ε|2 =0.05 configuration,GG model

1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

Mean residual (1.6±2.5) ·10−3 (−0.4±1.3) ·10−3 (0.5±2.4) ·10−4 (−1.8±2.1) ·10−3 (1.3±3.2) ·10−4

RMS residual (7.5±0.2) ·10−2 (4.0±0.1) ·10−2 (7.0±0.2) ·10−3 (6.2±0.2) ·10−2 (9.4±0.2) ·10−3

Average error (Gauss) 6.8·10−2 3.9·10−2 7.0·10−3 5.4·10−2 9.5·10−3

Gaussian error coverage (61.0±3.4)% (68.6±3.6)% (68.3±3.6)% (59.1±3.3)% (67.8±3.6)%

Table 38: Summary of results for theReε
1+|ε|2 =0.05 configuration from signal only fits (GG resolution model,

≈ 60 fb−1). Imδ
1+|ε|2 was fixed in these fits.

• 200 fb−1 (100 experiments);

• 400 fb−1 (100 experiments).

Table 39 shows the RMS of the residual distribution and the average estimated (Gaussian) error on all the
physics parameters, comparing them to the low luminosity (60 fb−1) projections. It can be seen that the
scaling of the error with 1/

√
N applies well. Let us note the 2% statistical precision couldbe reach with 400

fb−1 for ∆Γ/Γ.

5.3 Impact from an eventual improved∆t resolution

Here we plan to estimate the improvement in the statistical error due to an eventual improved∆t resolu-
tion (better∆zalgorithms, beam pipe reduction, additional and closer SVTlayers).
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Scaling of the error on physical parameters
1−|ε|2
1+|ε|2

Reδ
1+|ε|2

Imδ
1+|ε|2

Imε
1+|ε|2

Reε
1+|ε|2 ∆Γ/Γ ∆m

RMS residual
60 fb−1 (7.6±0.2) ·10−2 (1.80±0.05) ·10−2 (4.0±0.1) ·10−2 (7.0±0.2) ·10−3 (6.4±0.2) ·10−2 (9.2±0.2) ·10−3

200 fb−1 (4.1±0.4) ·10−2 (7.7±1.0) ·10−3 (2.0±0.2) ·10−2 (4.3±0.5) ·10−3 (3.2±0.5) ·10−2 (6.5±0.6) ·10−3

400 fb−1 (2.4±0.3) ·10−2 (6.6±0.9) ·10−3 (1.6±0.2) ·10−2 (2.5±0.3) ·10−3 (2.4±0.3) ·10−2 (2.8±0.3) ·10−3

Average error
60 fb−1 6.8·10−2 1.9·10−2 4.0·10−2 7.0·10−3 5.3·10−2 9.5·10−3

200 fb−1 4.0·10−2 8.5·10−3 2.1·10−2 4.0·10−3 3.2·10−2 5.2·10−3

400 fb−1 2.8·10−2 6.0·10−3 1.5·10−2 2.7·10−3 2.3·10−2 3.6·10−3

Table 39: Summary of results for the error scaling with the reference configuration, for 60-200-400 fb−1.

6 Summary and conclusions

We have shown in this note that with the already available statistics accumulated by theBABAR exper-
iment, an analysis probing simultaneous and consistenly the CPT/CP and CP/T discrete symmetries of the
effective Hamiltonian of evolution for theB0

d system is feasible, and all that with independence of the van-
ishingly small expected value of∆Γ. The analysis, which exploits the complete flavor-tag and∆t structure of
theB0

d-B0
d meson system, will help to disentangle whether the CP violation is due to T or CPT violation. The

number of theoretical inputs required are mininum if we restrict to samples free of direct CP violation (both
flavor and CP specific). Nevertheless, the possible competing contributions from direct CP violation and
double-Cabbibo supressed decays can be parameterized and included as systematic uncertainties. Effects
from non-vanishing values of∆Γ, the main competing source which can contribute producing fake effects
on the asymmetries, are parameterized and extracted simultenously from the data, providing a robust and
precise measurement of∆Γ/Γ.

The study has been performed using two phase-convention independent formalisms: the(ε,δ), similar
to that used in kaon system phenomenology, and the(| q/p |,λ,z). As expected, the conclusions of the
study are the same whatever approach is adopted. The physicsparameters to which the analysis is sensitive

are, for the former,1−|ε|2
1+|ε|2

Reδ
1+|ε|2 , Imδ

1+|ε|2 , Reε
1+|ε|2 , Imε

1+|ε|2 , sign
(

1−|ε|2
1+|ε|2

)

∆Γ/Γ and∆m, and for the latter,Reλ
|λ| , Imz,

| q/p |, Imλ
|λ| , sign(Reλ)∆Γ/Γ and∆m. The averageB0

d lifetime is kept fixed. The determination of all these
parameters is unbiassed and largely uncorrelated (few per cent). The statistical reach for all the physics
parameters for an integrated luminosity of≈ 60 fb−1 is:

scaling well according to the 1/
√

N rule.
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Physics ParameterEstimated statistical error,≈ 60 fb−1

(ε,δ) formalism
1−|ε|2
1+|ε|2

Reδ
1+|ε|2 7.6×10−2

Imδ
1+|ε|2 1.6×10−2

Imε
1+|ε|2 4.0×10−2

Reε
1+|ε|2 6.7×10−3

(| q/p |,λ,z) formalism
Reλ
|λ| Rez 7.6×10−2

Imz 1.6×10−2

Imλ
|λ| 8.0×10−2

| q/p | 1.3×10−2

Common
∆Γ/Γ 6.2×10−2

∆m 9.3×10−3
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A Parameterization of direct CP effects in the(ε,δ) formalism

Possible direct CP violation inBCP processes implies that the final statesBr± have contributions from
both CP eigenstates,| B±(t)〉, as given in equation (27) (the one with the same CP eigenvalue and a small
contribution from the opposite one):

| Br+(t)〉 =
1

√

1+ | ξ |2
[| B+(t)〉+ ξ | B−(t)]〉

| Br−(t)〉 =
1

√

1+ | ξ |2
[| B−(t)〉+ ξ | B+(t)]〉 . (102)

ξ is the complex valued parameter which parameterizes the degree of CP violation in the decay.

Equations (102) can be worked out in the same way as it was donein section 2.5 to obtain the coefficients
of the time dependent decay rate:

• CP tag,X = Br−, Y = B0
t (B

0
t ):

η+ = | 1−ξε2 |2 + | ε1−ξε1ε2 |2 +st2Re[(ε1−ξε1ε2)(1−ξ∗ε∗2)]
η− = | ξε2− ε1ε2 |2 + | ξ− ε1 |2 +st2Re[(ξ− ε1)(ξ∗ε∗2− ε∗1ε∗2)]
ηre = 2Re{(ξε2− ε1ε2)(1−ξ∗ε∗2)+ (ξ− ε1)(ε∗1−ξ∗ε∗1ε∗2)}+

st2Re{(ξε2− ε1ε2)(ε∗1−ξ∗ε∗1ε∗2)+ (ξ− ε1)(1−ξ∗ε∗2)}
ηim = −2Im{(ξε2− ε1ε2)(1−ξ∗ε∗2)+ (ξ− ε1)(ε∗1−ξ∗ε∗1ε∗2)}−

st2Im{(ξε2− ε1ε2)(ε∗1−ξ∗ε∗1ε∗2)+ (ξ− ε1)(1−ξ∗ε∗2)} (103)

• CP tag,X = Br+, Y = B0
t (B

0
t ):

η+ = | ξε1− ε1ε2 |2 + | ξ− ε2 |2 +st2Re[(ξ− ε2)(ξ∗ε∗1− ε∗1ε∗2)]
η− = | 1−ξε1 |2 + | ε2−ξε1ε2 |2 +st2Re[(ε2−ξε1ε2)(1−ξ∗ε∗1)]
ηre = 2Re{(1−ξε1)(ξ∗ε∗1− ε∗1ε∗2)+ (ε2−ξε1ε2)(ξ∗− ε∗2)}+

st2Re{(1−ξε1)(ξ∗− ε∗2)+ (ε2−ξε1ε2)(ξ∗ε∗1− ε∗1ε∗2)}
ηim = −2Im{(1−ξε1)(ξ∗ε∗1− ε∗1ε∗2)+ (ε2−ξε1ε2)(ξ∗− ε∗2)}−

st2Im{(1−ξε1)(ξ∗− ε∗2)+ (ε2−ξε1ε2)(ξ∗ε∗1− ε∗1ε∗2)} . (104)

It is verified that in the limitξ = 0 we recover equations (36) and (37).
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B B0B0 reconstruction and tagging efficiency differences from time-integrated
data in presence of∆Γ and T/CP violation

As it was originally proposed in [32], the differences in tagging and reconstruction efficiencies can be
determined using time-integrated data. The method proposed counts the numbers of events with the various
tagging categories and the events that are untagged in the high statisticsBf lav sample, and then they are
extrapolated to theBCP samples. This method does not spoil the statistical precision while the associated
systematic uncertainties will be under control.

Integrating over−∞ < ∆t < +∞ equation (82) for the different(X,Y) configurations for flavor-to-flavor
transitions, we obtain:

Fα(B0
r ,B

0
t ) = (1+ ν)

{

(1+µα)Tα(1−wα −∆wα/2)F(B0
r ,B

0
t )+

(1−µα)Tα(wα −∆wα/2)F(B0
r ,B

0
t )

}

Fα(B0
r ,B

0
t ) = (1−ν)

{

(1+µα)Tα(1−wα −∆wα/2)F(B0
r ,B

0
t )+

(1−µα)Tα(wα −∆wα/2)F(B0
r ,B

0
t )

}

Fα(B0
r ,B

0
t ) = (1+ ν)

{

(1−µα)Tα(1−wα + ∆wα/2)F(B0
r ,B

0
t )+

(1+µα)Tα(wα + ∆wα/2)F(B0
r ,B

0
t )

}

Fα(B0
r ,B

0
t ) = (1−ν)

{

(1−µα)Tα(1−wα + ∆wα/2)F(B0
r ,B

0
t )+

(1+µα)Tα(wα + ∆wα/2)F(B0
r ,B

0
t )

}

Fα(B0
r ,no tag) = (1+ ν)

{

[1−Tα(1+µα)]F(B0
r ,B

0
t )+

[1−Tα(1−µα)]F(B0
r ,B

0
t )

}

Fα(B0
r ,no tag) = (1−ν)

{

[1−Tα(1+µα)]F(B0
r ,B

0
t )+

[1−Tα(1−µα)]F(B0
r ,B

0
t )

}

(105)

whereν, µα andTα where defined in equations (78), (79), (80) and (81); andF(X,Y) =
∫ +∞
−∞ f (X,Y;∆t)d∆t,

where f (X,Y;∆t) was given in equation (42). Only the∆t odd terms of (42) are relevant (the even terms
cancel out), thereforeF(X,Y) dependends only on∆m, ∆Γ and Reε

1+|ε|2 . The above expressions have been
normalized for a reconstruction efficiencyR= 1.

We form now combinations of the above quantities:

Fα(B0
r ,any tag) = Fα(B0

r ,B
0
t )+Fα(B0

r ,B
0
t ) =

(1+ ν)Tα [

(1+µα)F(B0
r ,B

0
t )+ (1−µα)F(B0

r ,B
0
t )

]

(106)

Fα(B0
r ,any tag) = Fα(B0

r ,B
0
t )+Fα(B0

r ,B
0
t ) =

(1−ν)Tα [

(1+µα)F(B0
r ,B

0
t )+ (1−µα)F(B0

r ,B
0
t )

]

(107)

Fα(B0
r ) = Fα(B0

r ,no tag)+Fα(B0
r ,any tag) =

(1+ ν)
[

F(B0
r ,B

0
t )+F(B0

r ,B
0
t )

]

(108)
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Fα(B0
r ) = Fα(B0

r ,no tag)+Fα(B0
r ,any tag) =

(1−ν)
[

F(B0
r ,B

0
t )+F(B0

r ,B
0
t )

]

(109)

or equivalently,

x = (1+ ν)Tα [(1+µα)a+(1−µα)b] (110)

y = (1−ν)Tα [(1+µα)c+(1−µα)d] (111)

z = (1+ ν)(a+b) (112)

w = (1−ν)(c+d) (113)

where

a = F(B0
r ,B

0
t ) , b = F(B0

r ,B
0
t ) , c = F(B0

r ,B
0
t ) , d = F(B0

r ,B
0
t )

x = Fα(B0
r ,any tag) , y = Fα(B0

r ,any tag) , z= Fα(B0
r ) , w = Fα(B0

r )

Equations (110), (111), (112) and (113) can be worked out to obtainTα, µα andν:

Tα =
1

1−ν2

x(c−d)(1−ν)−y(a−b)(1+ ν)

2b(c−d)
(114)

µα =
1

Tα(a−b)

[

x
1+ ν

− (a+b)

]

(115)

ν =
z−w− (a+b−c−d)

a+b+c+d
(116)

These expressions are also valid when the∆t resolution is considered.
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C The CPT/CP/T/Mixing Toy Monte Carlo generator

Toy Monte Carlo events are extensively used in this work to validate the fitting strategy, to study the
behaviour of the different parameters (physics, resolution function, mistags and background parameters)
and to estimate the physics reach and sensitivity. The generated events are used as input to the fitter in the
same way as when using full Monte Carlo events and in a future,real data events. The generation and fitting
procedures can be done in a single step or separately via the production ofASCII files in standard format.
The generator has been extensively tests. Among many other validation checks, we generated very high
statistics samples and then we compared to the truth values (for both, time integrated and time dependent
quantities).

C.1 General description

Each generated event is characterized by the following items:

1. error on∆t, σ(∆t);

2. tagging category;

3. reconstructed beam-energy-substituted mass (mES) for Bf lav andBCPK0
S

samples, and∆E for theBCPK0
L

sample;

4. reco (Bf lav samples only) and tagging sideB0-B0 flavors;

5. ∆t.

The generation of the previous quantities considers the following effects:

• signal or background (prompt, non-prompt, peaking,...) event;

• mistag rates,B0B0 differences in the mistags and linear correlation between the average mistag frac-
tions andσ(∆t);

• B0B0 differences in the reconstruction (Bf lav samples only) and tagging efficiencies;

• ∆t dependence according to the theoretical time distribution;

• ∆t smearing using aGGor GExpresolution model.

The generation of theσ(∆t) distribution is performed using theFUNLUX subroutine of the CERN library,
which generates random numbers according to a given normalized distribution f (x). This distribution is
taken as a Crystall Ball shape, and the parameters are tuned from an unbinned likelihood fit to theσ(∆t)
distributions of the fullBf lav, BCPK0

S
andBCPK0

L
Monte Carlo samples (figure 11). The soubroutineFUNLUX

finds the desired random number by callingRANLUX(V115) and uses a 4-point interpolation algorithm
to transform the uniform random number to the distribution specified. RANLUX generates pseudorandom
numbers uniformily in the interval(0,1) with a period of the sequence greater than 10165. A 32-bit integer
provides initialization of the sequence, which guaranteesstatistical independence and reproducibility of the
different experiments.
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C.2 Generation of time-integrated rates

The generation of 2, 3 and 4 is the most delicate part of the procedure. The complication arises due to the
interplay between the time integrated theoretical rates (mixing, CPT/CP/T violation and∆Γ) and detector
effects (reconstruction and tagging efficiencies,B0B0 differences in reconstruction and tagging efficiencies,
mistag fractions andB0B0 differences in the mistags, background levels, tagging innefficiencies,...). All
these effects together determine the rates of events falling in the various event categories (tagging categories,
B0B0 tagged, mixed/unmixed, right/wrong tag, untagged) and themES/∆E value. This implies that 2,3 and
4 have to be generated in a single shot, as described below.

CandidatemES (∆E) values for all tagging categories, according to the tagging category dependentmES

(∆E) distributions, are first generated using an acceptance/rejection method based on theRANLUX subrou-
tine. The candidatemES (∆E), for each tagging category, is then used to calculate the signal probability,
pα

sig(mES). The calculated signal probability together with the background fractions,f α
β and f α

peak-see equa-
tion (94)-, are then used to generate the signal/backgroundcomponent candidate, for each tagging category
separately. Let us note here that

(1− f α
peak)pα

sig(mES)+ fpeakp
α
sig(mES)+∑

β
(1− pα

sig(mES)) f α
β = 1 (117)

The tagging category in wich the event will fall in will be decided later.

Time-integrated rates for each tagging category are then calculated for all signal/background compo-
nents using equations (105) forBf lav samples. In the case of CP events, the corresponding time-integrated
expressions read

Fα(B0
t ) = (1+µα)Tα(1−wα −∆wα/2)F(B0

t )+ (1−µα)Tα(wα −∆wα/2)B0
t )

Fα(B0
t ) = (1−µα)Tα(1−wα + ∆wα/2)F(B0

t )+ (1+µα)Tα(wα + ∆wα/2)F(B0
t )

Fα(no tag) = [1−Tα(1+µα)]F(B0
t )+ [1−Tα(1−µα)]F(B0

t ) (118)

All rates together verify

∑
α

{

Fα(B0
r ,B

0
t )+Fα(B0

r ,B
0
t )+Fα(B0

r ,B
0
t )+Fα(B0

r ,B
0
t )+

Fα(B0
r ,no tag)+Fα(B0

r ,no tag)
}

= 1 (119)

and

∑
α

{

Fα(B0
t )+Fα(B0

t )+Fα(no tag)
}

= 1 (120)

Let us stress the fact that these rates account for tagging efficiencies,B0B0 differences in reconstruction
and tagging efficiencies andB0B0 differences in the mistag fractions. Is here were the mixing/∆Γ and
CPT/CP/T violating effects in time integrated rates enter in. Splitting each equation in (105) and (118) into
the two parts on the right hand side, we can also calculate thetime-integrated rates of right and wrongly
tagged events, for each tagging category and signal/background component.

To define the final boundaries of the event categories, rates (105) and (118) are multiplied by the compo-
nent (signal/background) probabilities:(1− f α

peak)pα
sig(mES)Fα(X,Y) for signal, fpeakpα

sig(mES)Fα(X,Y) for
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peaking background and(1− pα
sig(mES)) f α

β Fα(X,Y) for combinatorial background components. Summed
over all components and tagging categories, it can be verified that the total rate is consistently normalized to
1.

In this way, we have defined a total ofNT ×NC ×NE event categories, whereNT = 4 is the number
of tagging categories,NC the number of components (signal+background) andNE is 10 for Bf lav samples
(mixedB0

t right tag, unmixedB0
t right tag, mixedB0

t right tag, unmixedB0
t right tag, mixedB0

t wrong tag,
unmixedB0

t wrong tag, mixedB0
t wrong tag, unmixedB0

t wrong tag, untaggedB0
r , untaggedB0

r ) and 5 for
BCP samples (B0

t right tag,B0
t right tag,B0

t wrong tag,B0
t wrong tag, untagged). Summation over all the

NT ×NC×NE event categories is again 1, and with their boundaries the generator decides the event class for
the current event.

C.3 Time-dependence generation and smearing

Once it has been decided the event category, the time dependence can be generated unambiguously. To
do so, the theoretical dependence is generated first, using the PDF (42). Again, an acceptance/rejection
method based onRANLUX is used here. When deciding the∆t limits, special attention has to be put to
insure that the limits are well beyond the region with non-negligible contribution from the theoretical distri-
bution and resolution function, otherwise the generated distribution would be truncated, causing undesirable
effects in the fitting procedure. The value used through thisstudy has been±40 ps. The∆t smearing is
performed in a similar way, using as PDF the equations (85) and (87), for theGG andGExp resolution
models, respectively. Present∆t smearing limits are also±40 ps.
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