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Abstract

The control samples used to monitor the vertexing algorithms and the quality of
the data in terms of tracking errors and alignment are described and results based on
the Run1 data reported.
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1 Overview

In this document we describe the control samples used to monitor the vertexing algorithms
(both single vertex and ∆z) and the quality of the data in terms of tracking errors and
alignment. Some basic track quality monitoring will be also included soon. Results based
on the Run1 data and the different alignment sets are presented.

The vertexing algorithms and techniques used in the control samples here are extensively
documented in reference [1].

If you want to have the most up-to-date version you should check-out the head of CVS:
% cvs co BAD/note183

% cd BAD

% cvs co pubboard

% ln -s ../pubboard/ .

% latex paper.tex

% ...

The majority of the results obtained in this document have been obtained using the
analysis-7 release, otherwise it will be specified.
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2 Basic tracking performances

Track parameters, residuals, pulls for Monte Carlo.
Some basic tracking quatities in data: di-muon mis-distance and pull,...
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3 τ → 3-prongs

A control sample for vertexing studies have to provide a wide collection of events with a
known topology i.e,with a set of tracks coming from the same point.

The τ pairs events in which one τ decays in one lepton and two neutrinos and the other
τ decays in three charged particles and a neutrino are ideal for this task in several respects:

• it’s possible to select this sample using only vertexing unrelated quantities i.e., events
multiplicity, particle identification for the long lived lepton, total energy. The resulting
sample is quite pure, the background being at the percent level.

• the sample size is suitable for detailed studies, (∼ 10000 events for an integrated
luminosity of one inverse femtobarn).

• the topology is suitable for a complete check of the plain geometric vertexing algorithm.

3.1 Event selection

The details of the selection along to the comparison with the Monte Carlo simulation can
be found in references [2] and [3].

We select events with 4 tracks belonging to the “GoodTracksVeryLoose” having total
charge zero. We require that the stiffest track of the event belongs to the “MuonLoose” or
“ElectronLoose” list and we identify this track as decay product of one τ .

We divide the events in two half-spaces in the center of mass frame defined by the plane
perpendicular to the momentum of the stiffest, leptonic track; we require that each half-space
contains the decay products of each τ , in turn this implies the requirements:

• neutral energy in the lepton hemisphere lesser than 100 MeV

• momenta of the remaining three tracks belonging to the opposite hemisphere

In order to reduce the contamination from γγ events we require that sinα > .05 and
E4π > 4 GeV where

sinα =
|pT

tot|
Ecm −E4π

is a variable introduced by the CLEO collaboration which equals the ratio between the
modulus of the total transverse momentum pT

t ot , and the missing charged energy Ecm−E4π

using the pion mass hypothesis for all the four tracks, in the center of mass frame.
To reduce radiative Bhabha background we require that no one of the candidates belong-

ing to the 3 prong hemisphere belongs to the “ElectronTight” list, that the missing visible
energy of the event in the center of mass frame be greater than 1.5 GeV

Emiss = Ecm − E4π −Eneut

where Eneut is computed as the sum of the energy of the neutral clusters assuming the photon
mass hypothesys in the center of amss frame.

Moreover to ensure a good reconstruction of the event we require that each track owns
at least six SVT hits.

The efficiency of this selection is ∼ 3.5% and the contamination is order of 2% mainly
from continuum uds events.
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3.2 Control variables

It’s possible to build three control variables exploiting the known topology of the events.
The strategy is to reconstruct the vertex with a pair of tracks of the three-prong side, and
then look at the miss-distances of the remaining track respect to that point. In addition to
the miss distance we derived the error on the miss-distances thus being able to check the
consistency of the evaluated errors.

The first variable is the miss distance on the transverse plane of the lonely track respect
to the pair reconstructed vertex (see fig 1).

δ = d0 − Vx sinϕ0 + Vy cosϕ0 (1)

The second and third variables are the transverse and longitudinal distances (figure 1)
of the 3rd track with respect to the vertex defined by the first two tracks, after ordering the
tracks by azimuthal and dip angle respectively.
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Figure 1: Transverse miss distance from τ events.

3.3 Results

Results for the different control variables are shown in figures 3-10. Table 1 summarizes the
most relevant results of this study. Results show that tracking biasese are linked to relative
azymuthal/polar angle, and that alignment set E is actually worse than set D. More studies
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Figure 2: Longitudinal miss distance from τevents.

are under way: i) check newest local aligmnent set (need to recostruct selected tau candidate
events), ii) misaligned Monte Carlo studies.

bias set E set E Osaka4 E Osaka4 D
µm

transverse (smallest φ) 10.6 ± 1.2 10.1 ± 1.2 12.4 ± 3.5 5.6 ± 4.5
transverse (smallest φ) (transverse vertex) 0.3 ± 1.5
longitudinal forward-most track 22.3 ± 1.5 21.9 ± 1.5 22.0 ± 4.1 9.4 ± 5.3
longitudinal middle dip angle track 1.1 ± 1.2
longitudinal backward-most track 29.1 ± 1.4

Table 1: Summary of tracking biases from τ control sample studies.
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Figure 3: Transverse miss distance pulls for August 2000 and later data, alignment set E,
for 3D vertex (left) and vertex done in transverse plane (right).
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Figure 4: Longitudinal miss distance pulls for August 2000 and later data, alignment set E,
for forward track (top/left), mid track (top/right) and backward track (bottom/left).
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Figure 5: Transverse miss distance residuals for August 2000 and later data, alignment set E,
for largest φ track (top/left), medium φ track (top/right) and smallest φ track (bottom/left).
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Figure 6: Transverse miss distance residuals for August 2000 and later data, alignment set
E, when the vertex has been reconstructed only in the transverse plane, for largest φ track
(top/left), medium φ track (top/right) and smallest φ track (bottom/left).
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Figure 7: Longitudinal miss distance residuals for August 2000 and later data, alignment
set E, for forward-most track (top/left), mid dip track (top/right) and backward-most track
(bottom/left).

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140

resRF

Nent = 2765   

Mean  = 0.0005561

RMS   = 0.02385

resRF

Nent = 2765   

Mean  = 0.0005561

RMS   = 0.02385

L.A. set D

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80
100

120

140

160

180
200

220

240 resRF

Nent = 4526   

Mean  = 0.001245

RMS   = 0.02379

resRF

Nent = 4526   

Mean  = 0.001245

RMS   = 0.02379

L.A. set E

Figure 8: (Left) Transverse miss distance residual, alignment set D, for Osaka-4 data set.
(Right) Transverse miss distance residual, alignment set E, for Osaka-4 data set.
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Figure 9: (Left) Longitudinal miss distance residual, alignment set D, for Osaka-4 data set.
(Right) Longitudinal miss distance residual, alignment set E, for Osaka-4 data set.
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Figure 10: (Left) Transverse average residual as a function of φ, alignment set E for largest
φ tracks (red) and smallest φ. (Right) Same but for vertex reconstructed in the transverse
plane (read) and in space (black).
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4 D0 → K3π

4.1 The D0 → K3π sample

In the decay process D0 → K3π four charged tracks are produced from a single space
point, corresponding to the position of the D0 decay. This fact is exploited to determine the
resolution in the vertex reconstruction, and compare the Monte Carlo prediction to the real
data result, according to the following procedure.

The four particles from the D0 decay are coupled in two pairs of opposite charge tracks.
For each pair a vertex is constructed by intersecting the two particles. Neglecting resolution
effects, the two vertices so obtained must then overlap. The distance between the two
vertices, projected along the three main coordinates, is then computed event per event, and
its spread is interpreted as due only to resolution effects. The pull, defined as the ratio
between that distance and its error, is also computed.

Only the events of the so called “Osaka Sample” have been analised. To obtain a good
signal to noise ratio, events were selected from the decay chain:

e+e− → cc̄→ XD∗+,

D∗+ → π+D0,

D0 → K3π

(Here and after, the charge conjugate processes are always implied). The event selection is
similar to the one applied for the D0 lifetime measurement. To form the D0 only tracks from
charged particles surviving the following cuts were used:

• a minimum of 8 hit layers in the Silicon Vertex Detector

• a minimum of 20 firing wires in the Drift CHamber

• momentum in the transverse direction Pt > 70MeV/c

• distance of closest approach to the main vertex in the Rφ(z) direction less than 1.5
(3.0) cm

The DCH cut was not applied to the soft pion from the D∗ decay. D∗ and D0 candidates
were retained if they satisfied the further requests:

• P (D∗) > 2.5 GeV /c ;

• P (D0) > 1.5 GeV/c ;

• one track tagged as tight kaon by the SMS algorithm with charge opposite to the soft
pion ;

• the mass of the candidate D0 should lie within two sigmas from the PDG value.

(All the momenta are computed in the rest frame). The soft pion track parameters were
recomputed after the usual refitting to the beam-spot. The δM = MD∗+ −MD0 distribution
for the selected sample is plotted on the left hand side of figure 11 for the real data and on
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the right hand side for the simulated events. It should be noted that only pure signal Monte
Carlo were employed.

The mass band for the measurement, defined in the range 145.5-146.3 MeV/c2, contains
16314±127 events. Side bands in the range (140-143.5) MeV/c2 and (150-155) MeV/c2 were
used for subtraction of the small residual combinatorial background, after proper normali-
sation.

Figure 11: δM distribution for real data events (left) and pure signal Monte Carlo (right).
The continuous line in the first histogram shows the sum of the signal distribution,
parametrised by the sum of two gaussians, with the fitted combinatorial background.

4.2 Results

The resolution and pull were computed along the three cartesian coordinates. Only the
results for the z direction will be quoted here, a more detailed description of the results will
be presented in a dedicated note. It should be noted that the conclusions for the z coordinate
apply equally well for both x and y.

The resolution for simulated events could be well described by the sum of two gaussians
of different width, while the real data exhibited longer tails, and had to be described by the
sum of three gaussians (see figure 12 and table 4.2).

The pull distribution for the simulated events can be fitted by a single gaussian, with
a width slightly bigger than one. Long tails affect instead the real data pull, which was
fitted with two gaussians (see figure 13 and table 4.2): events with big pull values could be
either due to bad measurements, or else due to residuals in the background subtraction (see
however comments in the conclusions). It should be noted that even neglecting those events
the data pull is worse than the one in the simulation: the width of the first gaussian in the
data exceeds the simulated one by a factor 1.097±0.020.
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Figure 12: z resolution for real data, background subtracted events (left) and pure signal
Monte Carlo (right).

Sample first second third rms
M.C. 150±12 (55) 450±38 (45) - 350
data 140±10 (38) 340±40 (38) 1060±100 (24) 516

Table 2: RMS width (µm) of the two (three) gaussians describing the Monte Carlo (real
data) z resolution. To ease data-Monte Carlo comparison, the overall RMS width is also
reported. The numbers within brackets show the percent fraction of events contained in each
gaussian.

Sample first second rms
M.C. 1.075±.017 -
data 1.179±.008 45.±1. 1.47

Table 3: Pull width of the (two) gaussian(s) describing the Monte Carlo (real data). The
overall RMS width for the data is also reported.

4.3 Conclusions and Checks

Events from the Monte Carlo simulation show a RMS z resolution of about 300 µm, and a
pull width slightly bigger than one. Real data events have a bigger RMS width (∼ 500µm)
and very wide tails in the pull, which has a RMS width of about 1.5. The real data pull has
a core width of 1.179±0.008, exceeding the simulated one by a factor of about 1.1.

Several investigations have been performed to understand the data-Monte Carlo discrep-
ancy:

• Subtraction of combinatorial: the Monte Carlo study was performed on a pure signal
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Figure 13: z pull for real data, background subtracted events (left) and pure signal Monte
Carlo (right).

sample, whereas in the data the combinatorial had to be subtracted. Due in particular
to the SMS K selector, the background level is however small. The analysis was
repeated without any kaon selection and, even if the background increased by a factor
of about four, the same pattern was found;

• θ, φ dependence. The four tracks from the D0 decay are produced within a narrow
cone, centered about the D0 direction. The analisys was repeated in the data and in
the Monte Carlo in several bins of the D0 polar angle and azimuth, showing that the
discrepancy did not depend on any shaky detector region;

• ordering. Results have been presented for pair of randomly selected opposite charge
tracks. Tracks were alternatively combined according to several different criteria (mo-
mentum ordering, same charge combinations, ordering according to their polar angle,
etc.): in any case, no dependency was observed;

• processing. Events were grouped in six subsets, corresponding to different processing
(Osaka 1-6 samples). The pull for each sample was bigger than one, but due to the
reduced statistics it is not possible to observe discrepancies between the different sets.
Figure 14 shows the rms width of the pull as a function of each individual set;

As a conclusion, no clear source for the discrepancy between the data and the Monte Carlo
could be identifed.
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Figure 14: RMS width of the pull distribution, for the six Osaka sets
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5 D0 lifetime in B0 → D∗−ℓν events

The z resolution and scale factor can be estimated from the measurement of the D0 lifetime
in B0 → D∗−ℓν events, since here we have an excelent knowlegde of both the production
and decay points. For this check the dedicated B0 → D∗−ℓν vertexing algorithm proposed
in [5] and described in [1] is used. This algorithm provides as direct output the D0 lifetime,
taking into account all correlations [1].

The analysis described here (the same presented in [5], it has not been updated since
then) makes use of the reduced Kanga files produced from the B0 → D∗−ℓν expedite skims,
using the Dstarlnu package in analysis-5 release. In the case of multiple candidates per
event, the one closest to the nominal D0 mass is used for analysis. The χ2 probability of the
global fit is well behave, as shown in figure 15.
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Figure 15: χ2 probability of the global B0 → D∗−ℓν fit, for data from the expedite skims.

The ∆m distributions for background and signal regions are shown in figure 16. The
∆m for background is fit to a threshold function (independent of event-by-event errors). For
signal region, the fit is performed to a double Gaussian with scale factors on event-by-event
errors, and separate biases. The results of these MINUIT fits are given in table 5.

No attempt has been done yet to combine the ∆m with the lifetime fit. For the time
being (and for a while) we cut on ∆m and then fit the lifetime, ignoring background. As
a consequence, the lifetime result cannot be interpreted yet as the D0 lifetime, but it is
expected that the scale factor will not be significantly affected by the small background
component. Figure 17 shows the D0 decay time distribution together with the result of the
fit. The D0 lifetime is clearly visible. The results of the fit are given in table 5. From this
table it can be seen that the scale factor for the core Gaussian is

Score = 1.32 ± 0.03 ,

and for the tail
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Figure 16: ∆m distributions for background (left) and signal (right) regions.

Parameter Result Error
piPlusMass 1.39570e-01 constant

c0 7.35229e-05 7.93523e-05
deltaM1 1.45344e-01 5.68368e-06

sfac1 1.19432e+00 2.81013e-02
deltaM2 1.45195e-01 5.28780e-05

sfac2 6.93764e+00 7.10885e-01
fnarrow 7.86960e-01 1.19396e-02

bkgFraction 1.98219e-01 8.46957e-03

Table 4: ∆m fit results.

Stail = 4.6 ± 0.3 .

This analysis still requires some more work:

• add background from D∗ sideband fit;

• add background with a real D∗;

• check results in full Monte Carlo;

• compare z and Rφ measurements event-by-event.

It should be note, however, that we don’t expect the scale factors be affected significantly
by the small backgrounds.
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Figure 17: D0 decay time distribution in linear (left) and logarithmic (right) scales. Super-
imposed is the result of the likehood D0 lifetime fit.

Parameter Result Error
tauD 3.92765e-01 9.96571e-03
bias1 0.00000e+00 constant
sfac1 1.32272e+00 3.04539e-02
nfrac 8.90333e-01 1.32564e-02
bias2 0.00000e+00 constant
sfac2 4.63012e+00 2.64365e-01

Table 5: D0 lifetime fit results.
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7 ∆z control samples

Our knowledge of the resolution function in the data comes out from from the lifetime and
mixing analyses. In those fits it is difficult to desintangle the effects of the lifetime and the
detector resolution because the width of the observed ∆z distribution is the result of the
combined widths of the lifetime and the detector resolution, i.e. the information necessary
to separate the two effects is in the form of the distribution. As a consequence the measured
lifetime and the parameters describing the resolution function are highly correlated. Com-
parisons with the resolution function from the simulation are useful, but given this difficulty
data/MC discrepancies cannot univocally be attributed to the unperfect simulation of the
detector response. This situation is significantly more difficult than when using more stan-
dard techniques where the time distribution is extracted by reconstructing the production
and decay points: here the width of the negative part contains basically only the detector
resolution effects, and the positive side is the result of the convolution of the true proper
decay time distribution and the detector resultion. Therefore, a detailed understanding of
the resolution function in the data, as well as the data/simulation discrepancies is crucial
for any analysis using decay length difference techniques. Control samples are therefore an
important probe to learn as much as possible from data (and compare to Monte Carlo) about
the resolution function.

Two, complementary, control samples has been defined and used to monitor the Run1
data. The first one uses continuum events, the second one uses fully reconstructed D∗ mesons
from cc̄ events. They are described in the following.

7.1 ∆z control sample using continuum events

In this study, the charged tracks from off-resonance continuum events are randomly split
into two lists. Each list is separately vertexed using VtxTagSelBtaFit. Recall that the
resolution on ∆z is dominated by the resolution of the tag side vertex. Comparing the z-
vertex positions from the two lists for data and MC yields a direct measurement of the BTAG

resolution in a sample similar but not identical to CP events.
The pseudo-track constraint is not used in the vertexing since the jets are not fully

reconstructed. The events are required to have at least 8 charged tracks (guaranteeing that
each list is vertexed with at least 4 tracks), an R2 less than 0.6, and are vertexed using the
beam spot constraint. Figure 18 shows the comparison between data and MC for the error,
χ2 , probability of the χ2 , and the number of degrees of freedom of the fit for the z-vertex
of one of the lists. Note that there is good agreement for the error on a vertex which is a
direct input to the CP asymmetry fit. We also make comparisons between data and MC
for ∆z of the two lists and a pull which is ∆z divided by the errors in quadrature for the
vertices. Figure 19 shows the comparison of the resolution and pull on a log scale. We fit
the resolutions and pulls to the standard double gaussian plus outlier gaussian. The width
of the outlier gaussian for the resolution is fixed at 800 µm and the width of the outlier
gaussian for the pull is fixed at 8 sigma. Table 6 shows the comparison of the fit parameters
of the resolution and pull for data and MC. The RMS for data and MC are different by
approximately 15% for both the resolution and pull.
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Figure 18: Comparison of the error, χ2 , probability of the χ2 , and the number of degrees
of freedom on a taglike vertex between data (red cross) and MC (blue histogram).
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Figure 19: Comparison of ∆z, and the pull (∆z divided by the quadrature error of the
vertices) for data (red cross) and MC (blue histogram) on a log scale.
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∆z reso f1 σ1 µ1 fout
σ2

σ1

µ2 − µ1 RMS µ

MC 43.3 85. ± 0.2 µm -0.20± 0.10 µm 11.2 2.09± 0.00 0.61± 0.23 µm 141.± 1. µm 0.10 µm
Data 34.8 96. ± 0.6 µm -0.35± 0.23 µm 15.6 2.04± 0.01 0.79± 0.45 µm 162.± 1. µm 0.09 µm

∆z pull f1 σ1 µ1 fout
σ2

σ1

µ2 − µ1 RMS µ

MC 70.0 0.96 ± 0.00 0.00± 0.00 3.88 1.59± 0.01 0.01± 0.00 1.14± 0.01 0.00
Data 55.9 1.06 ± 0.01 0.00± 0.00 6.05 1.55± 0.01 0.00± 0.01 1.32± 0.02 0.00

Table 6: Resolution function parameters for data and MC continuum fits.

7.2 ∆z control sample using D∗ events

For the selection of this control sample, fully reconstructed D∗ mesons from cc̄ events are
used. The topology of the control events is sketched on Figure 20. Having set aside the
tracks from the fully reconstructed D∗, the remainder of the event (fragmentation tracks
+ charm prongs) can be sujected to the vertex tag algorithm, in this case the default one
VtxTagBtaSelFit with default configuration (i.e. beam constraints). One expects to find a
no flight distribution smeared with a resolution function which mimics that for ∆z in BB̄
events. Fragmentation tracks mimic here the prompt tracks in B events.

Figure 20: Topology of the events in the control sample.

As fragmentation tracks have a softer spectrum than prompt tracks from B decays,
tracks from secondary decays will have higher weight, so it is expected that the resolution
function will be in this case slightly more asymmtric and bias biased than for B events.
This introduces differences between the resolution function in D∗ and B events. However,
this feature can be exploited to check how well the Monte Carlo simulation reproduces the
charm bias observed in the data. The softer spectrum of the fragementation tracks will be
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somewhat compensated by the harder spectrum of tracks from secondary decays, so it is
not expected large differences in resolution among both samples. In any case, it is not the
purpose of the control sample to provide the resolution function to be used for B physics
analysis but rather to have a simple method, as close as possible to the real B events, to
make comparisons between the data and the Monte Carlo, for both the resolution and the
scale.

The D∗+ → D0π+ selection is rather standard:

• K − π+, K−π+π0 and K−π+π−π+ modes;

• p∗(D0) > 3 GeV/c;

• D0 mass within 3 standard deviation of the per-candidate mass error;

• beam spot soft pion refitting, assuming a beam spot width in y of 10 µm;

• D∗+−D0 mass difference within 3 standard deviation of the mass difference resolution,
taken as 500 KeV/c;

• use standard SMS kaon selector for K − π+ mode, and very tight for K−π+π0 and
K−π+π−π+;

• when there are multiple candidates per event, take the one with the best D0 mass pull
(with respect to the PDG mass).

Figure 21 shows the D∗+ −D0 mass difference spectra (before the D∗+ −D0 mass cut) for
on-peak and off-peak Run1 data, for all modes together. A high statistics and very clean
signal is observed.

Figure 22 shows a comparison for B and D∗ events obtained from Monte Carlo for some
relevant variables: the number, momentum and polar angle of tracks used in the opposite
vertex. It can be seen that the distributions are very similar, being the most important
difference, as expected, the mean value of the momentum spectra: about 600 MeV for B
events and about 1 GeV for D∗’s.

In order to obtain a sample of selected D∗ events with a topology as close as possible to
that of B events, a cos θD∗ < 0 cut (where θD∗ is the polar angle of the reconstructed D∗) has
been tried. The effect of selecting backward going D∗ events on the previous variables has
been investigated and results are shown in figure 23. There is an important change in the
distribution of the polar angle distribution of the tracks, being it now significantly different
from that of B events. Therefore, in the following results this cut has not been used.

Figures 24 and 25 show, respectively, the residual and pull distributions obtained for
cc̄ Monte Carlo (left) and data (right) D∗ events, when beam constraints are applied to
the reconstruction of ∆z. The superimposed fit was performed using two Gaussians with
free bias and width together with an outlier component with 0 bias and 1.3 mm and 8.0
fixed widths for the residual and pull respectively. Figures 26 and 27 are the equivalent
distributions without the beam constraints applied to the ∆z algorithm, but still applying
the beam spot constraint to the reconstruction of the vertex of the D∗. Table 7 summarizes
the results of the fits for data and Monte Carlo. They are also ilustrated in figures 28 and
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D* - D0 mass D* - D0 mass

Figure 21: ∆m mass difference between the D∗ and the D0 for on-peak (left) and off-peak
(right) resonance data.

29, with and without beam constraints, respectively. The fitted resolutions are compared to
that predicted by the simulation for B0→J/ψK0

S
events.

From these figures and table, several interesting points should be noted:

• the resolution in the no beam configuration is significantly worse than that with con-
straints applied to the ∆z algorithm. RMS resolutions are, respectively, 200 and 160
µm, to be compared to about 190 and 170 µm as typically we have for B events, in
Monte Carlo;

• the corresponding resolutions in the data are, respectively, about 230 and 170 µm, i.e.
≈ 15% and 10% worse than the Monte Carlo prediction;

• the event-by-event errors provide a good estimation of the resolution;

• there is a 15% pull RMS disagrement between data and Monte Carlo for both, total
RMS and central Gaussian, independent wether beam constraints are or are not used;

• charm biases are reasonably well reproduced by the Monte Carlo. It is interesting to
note that, contrary to what one naively would expect by similarity with the B events,
biases are here larger in the configuration where beam constraints are applied. This
can be explained by the fact that when selecting D∗ events from cc̄ continuum, the
extrapolation to the ’other side’ implied by the pseudo-track mechanism will select
predominatly tracks around the recoiling jet. As fragmentation tracks are uniformly
distributed, this mechanism favors the selection of charm prong tracks, in the same
way that in B events it favors B prongs. It would be interesting to rerun the sample
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Figure 22: Number, momentum and polar angle of tracks used in the vertex tag for B (left)
and D∗ (right) events from continuum in Monte Carlo.
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Figure 23: Number, momentum and polar angle of tracks used in the vertex tag for backward
going selected D∗ events.
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Figure 24: ∆z residual distributions for (left) cc̄ Monte Carlo and (right) data (right) D∗

events when beam constraints are applied.

applying only the beam spot constraint: in this case it is expected the maximum bias
reduction, with a resolution similar to what is found with the ∆z algorithm in default
configuration (beam constraints).

Finally, figures 30 and 31 compare several variables (∆z residual, ∆z per-event error, ∆z
pull, χ2 probability and number of tracks in the vertex) in data and Monte Carlo for the
beam and no beam configurations, respectively. Apart of the differences in resolution and
pull between data and Monte Carlo, it is quite striking (for both configurations) the large
difference in the shape χ2 distribution. An important contribution to this disagreement is
due to misalignement effects, not included in the Monte Carlo simulation. However, the
fact that differences here seem to be significantly larger than those reported for B events
[7] seems to indicate that at higher momentum tracking errors are underestimated, what
is somehow the contrary of what one would expect from differences in multiple scattering.
This effects is currently under investigation.
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Figure 25: ∆z pull distributions for (left) cc̄ Monte Carlo and (right) data (right) D∗ events
when beam constraints are applied.
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Figure 26: ∆z residual distributions for (left) cc̄ Monte Carlo and (right) data (right) D∗

events without beam constraints.
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Figure 27: ∆z pull distributions for (left) cc̄ Monte Carlo and (right) data (right) D∗ events
without beam constraints.
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Figure 28: Fitted resolution function for the D∗ control sample in data and Monte Carlo, for
a) the distance between the D∗ vertex and the vertex determined from the rest of the tracks
in the event (using beam constraints) and b) for this distance divided by the calculated error
on the distance. For comparison, the resolution function for B0→J/ψK0

S
events in Monte

Carlo is shown.
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fcore fout µ1 σ1 µ2 σ2 RMS µ

∆z Residual (µm)
cc̄ MC (with constraints) 0.598 ± 0.008 0.021 ± 0.0012 −21.8 ± 0.7 72.0 ± 1.0 −118 ± 3 232 ± 3 158 ± 2 −61 ± 2
data (with constraints) 0.604 ± 0.007 0.0189 ± 0.0010 −19.5 ± 0.7 80.8 ± 1.0 −132 ± 3 257 ± 3 174 ± 2 −64 ± 2

cc̄ MC (without constraints) 0.669 ± 0.012 0.0229 ± 0.0015 −28.2 ± 0.9 118.0 ± 1.5 −116 ± 5 309 ± 6 203 ± 3 −57 ± 2
data (without constraints) 0.645 ± 0.011 0.0196 ± 0.0013 −21.1 ± 1.1 134.5 ± 1.7 −104 ± 4 343 ± 6 231 ± 3 −51 ± 2

∆z Pull
cc̄ MC (with constraints) 0.798 ± 0.010 0.0123 ± 0.0013 −0.286 ± 0.010 0.982 ± 0.010 −1.97 ± 0.08 2.11 ± 0.05 1.30 ± 0.14 −0.63 ± 0.03
data (with constraints) 0.806 ± 0.008 0.0094 ± 0.0012 −0.277 ± 0.009 1.131 ± 0.009 −2.16 ± 0.08 2.43 ± 0.04 1.48 ± 0.14 −0.64 ± 0.03

cc̄ MC (without constraints) 0.857 ± 0.009 0.0155 ± 0.0018 −0.245 ± 0.009 1.113 ± 0.010 −1.93 ± 0.11 2.38 ± 0.08 1.37 ± 0.14 −0.50 ± 0.03
data (without constraints) 0.859 ± 0.007 0.0083 ± 0.0015 −0.197 ± 0.009 1.337 ± 0.009 −2.01 ± 0.10 2.95 ± 0.06 1.66 ± 0.14 −0.45 ± 0.03

Table 7: Results from the fits to the ∆z residuals and pull in the D∗ control sample with and without beam constraints applied
to the ∆z reconstruction, for cc̄ Monte Carlo (on-resonance) and data. The RMS does not include the outlier component.
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Figure 29: Fitted resolution function for the D∗ control sample in data and Monte Carlo, for
a) the distance between the D∗ vertex and the vertex determined from the rest of the tracks
in the event (without beam constraints) and b) for this distance divided by the calculated
error on the distance. For comparison, the resolution function for B0→J/ψK0

S
events in

Monte Carlo is shown.
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Figure 30: Data/MC comparison of: ∆z residual, ∆z per-event error, ∆z pull, χ2 probability
and number of tracks in vertex, for the D∗ control sample when beam constraints are applied.
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Figure 31: Data/MC comparison of: ∆z residual, ∆z per-event error, ∆z pull, χ2 probability
and number of tracks in vertex, for the D∗ control sample without beam constraints.
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8 Estimation of the SVT Longitudinal and Transverse

Length Scales

The length scales corresponding to the reconstruction of vertices at radii less than that of
the innermost SVT layer are relevant to the systematic uncertainties associated with the
measurement of τ , charm and B lifetimes. The reconstruction of vertices corresponding to
off-beam electroproduction of hadrons in the material of the beampipe allows the possibility
of measuring its dimensions to high precision. The comparison of measured and nominal
dimensions then yields estimates of the relevant scale values.

8.1 Experimental Procedure

A detailed description of this analysis can be found in reference [6]. Off-beam electropro-
duction interactions in the material of the B-Factory detector may be characterized by the
existence of at least one baryon among the final state positively-charged particles. A global
look at dE/dx as a function of momentum for such processes reveals the dominant presence
of protons together with some production of deuterons and tritons. In the studies described
here, we choose to require the presence of a well-identified proton among the final state
particles of the events to be used.

8.1.1 Proton Identification

To identify protons in the BABAR detector, the information obtained from two subdetectors
is used :

• Drift Chamber : measurement of dE/dx,

• DIRC : value of the Čerenkov angle.

The comparison with the expected values for a proton using the Bethe-Bloch parame-
trisation contained in the condition database and the theoretical Čerenkov angle value com-
puted with the proton mass enables the selection of protons with high reliability.

8.1.2 Material Interaction Vertices

Once a proton is identified in an event, one or several tracks are vertexed with it. All vertices
formed with a χ2 probability greater than 0.1% using the same proton are compared and
that with the highest χ2 probability is kept.

In order to obtain high precision measurements, the following vertex and track quality
cuts are required :

• σx < 100 µm, σy < 100 µm, σz < 330 µm, where σ2 is the relevant diagonal element
of the vertex fit covariance matrix;

• all tracks must have at least 6 hits in the SVT;

• the proton track must have at least 20 hits in the Drift Chamber;

35



• vertices for which r < 2 cm are excluded from consideration.

This sample contains Λ decays since this particle has a large flight length (cτΛ = 7.89 cm).
The vertices associated with Λ decays constitute a background as they can occur at random
positions. To remove them an additional cut on the pπ− invariant mass is performed and
vertices with mass(pπ−) in[1.11; 1.13] GeV/c2 are rejected.

Figure 32 shows the positions in the x − y plane of the reconstructed vertices. Since
the structure of the inner detector appears clearly, we are confident that then interaction
vertices in the detector material are well-reconstructed.

8.2 Beampipe Geometry

The ruler used for this study is the Beampipe. The measurement of the z locations of the
points at each end where the amout of material increases significantly will give an estimate
of the z scale factor. The radial material distribution will likewise provide an estimate of
the radial length scale.

8.2.1 Longitudinal Structure

The beampipe in essence consists of two Beryllium cylinders with a layer of cooling water in
between. The radius of the outer cylinder, the water jacket, increases at both extremities of
the beampipe. With respect to the Interaction Point, the z coordinates of those two points
are :

• zbackward = −78.720 mm

• zforward = +101.370 mm

Two layers of Tantalum foil are wrapped around the outside of the water jacket. The foil
was aligned to the points where the width of the beryllium changes. Since the interaction
rate is much higher in the Tantalum than in the beryllium, our measurment will be sensitive
to the position of the Tantalum foil more than to the position of the jumps in the water
jacket. For that reason we assign a 200 µm error on the distance between the two points of
interest. Then the nominal distance to be measured using material interactions is :

distancenominal = 180.090 ± 0.200 mm (2)

8.2.2 Radial Structure

8.3 Results

The results presented in this section were obtained using isPhysicsEvent collections processed
with releases 8.6.3c, 8.6.4b and 8.6.5a in a range of run numbers between 11332 and 12708.
This represents a total of 3.4 fb−1. SVT Local Alignment Conditions C were applied to
process these runs.
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8.3.1 Beampipe Position

As a first step, we must establish the position of the beampipe with respect to the BABAR

coordinate system. It turns out that the beampipe is indeed rotated and translated with
respect to the z axis of the coordinate system. Figures 33 are scatter plots of R versus φ
in different z regions. The presence of a one period sinusoidal shape on those plots is a
confirmation of a shift of the beampipe.

The beampipe rotation and shift parameters are obtained with the following procedure.
Each vertex with coordinates (x, y, z) found in the beampipe is rotated and shifted according
to :

• xc, the x coordinate of the center of the beampipe in the z = 0 plane,

• yc, the y coordinate of the center of the beampipe in the z = 0 plane,

• dxdz, the rotation angle in the y = 0 plane,

• dydz, the rotation angle in the x = 0 plane.

The result of this transformation is a point with coordinates (x′, y′, z′). A χ2 value is then
calculated as indicated in (3), and is minimized with respect to the four above parameters
and R, the mean value of the radius of the beampipe.

χ2 =
N
∑

i=1

(

R−
√

x
′2
i + y

′2
i

σi
R

)2

(3)

The fit is performed with MINUIT and the results are given in table 8.
As a check, after applying those corrections, the R versus φ scatter plot of figure 34 does

not show any sinusoidal shape.

8.3.2 Absolute z Scale

Figure 35 shows the mean radius versus z profile distribution. The increase of radius at both
ends of the beampipe due to the Tantalum foil is clearly visible.

The measurement of the location of each discontinuity will consist in fitting the local
mean R versus z distribution using the function f (z;R1, R2, zstep, σ) defined in (4).

f (z;R1, R2, zstep, σ) = (R1θ (z′ − zstep) +R2θ (zstep − z′)) ⊗ g (z − z′; σ) (4)

=
1

2

(

R1erfc
z − zstep√

2σ
+R2erfc

zstep − z√
2σ

)

In this expression, θ(z) is the Heavyside function, g(z; σ) a Gaussian of resolution σ and
the fitted parameters are :

• R1, the left part mean radius,

• R2, the right part mean radius,
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• zstep, the position of the step,

• σ, the resolution of the Gaussian.

At each end, a z interval of 5.5 mm centred approximately on the discontinuity is used
for the χ2 fit. The result for each region is shown in figure 36.

The results are as follows :

• (z < 0) zstep = −79.583 ± 0.042 mm

• (z > 0) zstep = 100.540 ± 0.085 mm

The fitted distance between the two steps is then :

distancefitted = 180.123 ± 0.095 mm (5)

Using (2) and (5), an estimate of the z scale factor can now be obtained :

z Scale Factor =
distancefitted

distancenominal

= 100.02 ± 0.12 % (6)

8.3.3 Absolute R Scale

8.4 Absolute z Scale for SVT LA Sets C, D and E

Table 9 gives the z Scale factors determined using the method described above for three
different SVT Local Alignment Sets.

38



Figure 32: Position of the Reconstructed Vertices in the x− y plane.

Table 8: Beampipe position parameters for Local Alignment Set C

Parameter Value

xc 223 µm
yc −4 µm
dxdz 1.26 mrad
dydz −1.51 mrad

Table 9: Absolute z Scale for Local Alignment Sets C, D and E

SVT LA Set Absolute z Scale

C 100.02 ± 0.12%
D 99.99 ± 0.12%
E 100.22 ± 0.14%
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(a) (b)

(c) (d)

Figure 33: R versus φ scatter plots for (a) −70 < z < 0 mm, (b) 0 < z < 20 mm, (c)
20 < z < 50 mm and (d) 50 < z < 100 mm.
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Figure 34: R(mm) versus φ(◦) scatter plot after shift and rotation correction.

Figure 35: < R > (mm) versus z(mm) profile plot after shift and rotation correction.
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Figure 36: The < R > (mm) versus z(mm) distribution at each end of the beampipe; the
curve shows the result of the fit.
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