
BABAR Analysis Document #102, Version 7.00
February 7, 2005

The BABAR Vertexing

Vertexing and Composition Tools Group 1

Abstract

This document describes the vertexing algorithms in BABAR, including the practical
use and basic performances.

1Direct contributors to this document are: Massimo Carpinelli (editor) (INFN-Pisa), Riccardo Faccini
(Univ. di Roma La Sapienza), Chih-hsian Cheng (Stanford University), Fernando Martinez-Vidal (ed-
itor and contact person) (INFN-Pisa), Stéphane Plaszczynski (LAL Orsay), Patrick Robbe (LAPP,

Annecy), Abi Soffer (Colorado State Univ.), Jan Stark (LPNHE, Univ. Paris 6&7), Christos Touramanis
(University of Liverpool)

Contents

1 Overview 3

2 Vertexing algorithms 4
2.1 Introduction . 4
2.2 The BtaAbsVertex class . 5
2.3 Vertexers and fitters . 6
2.4 First guess . 6
2.5 GeoKin algorithm . 6

2.5.1 General formalism . 6
2.5.2 Constraints . 8

2.6 LeastChiVertexer algorithm . 13
2.7 FastVtx algorithm . 14

2.7.1 Vertexers/Operators/Fitters . 14
2.7.2 Direct charged tacks (as B0 → π+π−) 15
2.7.3 Direct neutrals (as D0 → Kππ0) . 15
2.7.4 V 0s (as KS → π+π−) . 17
2.7.5 γ conversions (ie. γ → e+e−) . 17
2.7.6 Composites(as B0 → J/ψK0

S
) . 18

2.7.7 Exception handling . 18
2.7.8 Constraints . 18
2.7.9 Accessing refitted daughters informations 18
2.7.10 FastVtx utilities . 19

2.8 Common vertexing interface and examples 20
2.8.1 Building trees. Vertexers . 20
2.8.2 Fitters: the VtxFitterOper operator 21
2.8.3 Operation modes . 23
2.8.4 Resonances: zero-lifetime constraint 24
2.8.5 Appling constraints. Kinematic fitting 24
2.8.6 Accessing refitted daughters . 27
2.8.7 Verbosities . 27
2.8.8 Error codes . 28

3 Dedicated vertexing algorithms 29
3.1 Vertexing of γ conversions . 29

3.1.1 Description . 29
3.1.2 Interface and examples . 32

3.2 K0
S → π0π0 vertexing . 33

3.2.1 Description . 33
3.2.2 Interface and examples . 35

3.3 B0 → D∗−ℓν vertexing . 37
3.3.1 Description . 37
3.3.2 Interface and examples . 39

1

4 ∆z algorithms 40
4.1 Introduction and definition of ∆z . 40
4.2 VtxTagBtaSelFit (GeoKin) algorithm . 41

4.2.1 Parameters, unknowns and constraints 42
4.2.2 Convergence criteria . 44

4.3 FvtClusterer (FastVtx) algorithm . 45
4.3.1 Description . 45
4.3.2 How to . 47
4.3.3 Nailing tracks . 47

4.4 V 0’s and γ conversions . 48
4.5 ∆z to ∆t transformation . 50

4.5.1 An additional note . 57
4.6 Common interface . 59
4.7 Comparison among algorithms . 64

4.7.1 Fully exclusive B reconstruction . 64
4.7.2 Semi-exclusive B reconstruction . 65
4.7.3 Partial reconstruction . 66

5 Primary vertex reconstruction 70

6 Beam spot reconstruction and monitoring 71
6.1 Beam spot determination . 71
6.2 Quality of the beam spot determination . 71
6.3 Database storage and access . 72
6.4 Beam spot size from luminosity measurement 72
6.5 Beam spot information for analysis in data and Monte Carlo 72

A Transformation from track helix to X-P representations 80

B Doca calculations 81

2

1 Overview

This document describes the vertexing algorithms in BABAR, including their practical use
and basic performances. A brief summary of the beam spot reconstruction technique, per-
formances in the 2000 year and how to use it for physics analyses is also part of this docu-
ment. The document is intended to provide the primary reference for vertexing algorithms in
BABAR. Detailed performance studies, control samples and data/Monte Carlo comparisons
using the 2000 year data are provided in a separated document [1].

Vertexing and kinematic fitting is an important tool for BABAR. It has to deal with the
following two considerations. First, the BABAR detector has been designed to achieve high
resolution tracking. Second, the asymmetric design of the PEP-II collider with a boost of
βγ ≈ 0.56 in the laboratory frame has been done with the purpose of obtaining a separation
of 〈βγcτ〉 ≈ 250µm between the two B vertices (comparable to the experimental resolution,
∼ 130 µm RMS), crucial component for studying time-dependent CP asymmetries. In this
way vertexing is largely used in most of the BABAR analyses to improve four-momenta and
position measurements, as well as to measure the time difference between decaying B hadrons
in the Υ (4S) → BB decay.

If you want to have the most up-to-date version you should check-out the head of CVS:
% cvs co BAD/note102

% cd BAD

% cvs co pubboard

% cd note102

% ln -s ../pubboard/ .

% latex paper.tex

% ...

The description in this document refer to the analysis-7 release, with the following ver-
texing related tags on top:

VtxFitter V00-08-48-02

VertexingTools V00-08-44-02

BetaTools V00-10-06-03

FastVtx V03-03-07

3

2 Vertexing algorithms

2.1 Introduction

The physics properties of decay are used to apply constraints which translate to better
mass and position resolutions and larger signal-to-background ratios. For example, in the
case of B0 → J/ψK0

S
, the position measurement of the B0 can be improved using the fact

that the line-of-flight of the K0
S

intersects the J/ψ vertex and that it is aligned with the
line that joins the K0

S
and the J/ψ vertices. The energy resolution of the B0 can also be

improved by applying a mass constraint to the J/ψ . Similarly, the momentum resolution
of neutrals can be improved if a decay vertex can be identified to apply a mass constraint.
Several constraints have been considered: common decay vertex, mass, energy, momentum,
beam energy (with and without smearing), beam spot position and line-of-flight. Given the
similar tracking resolutions of the BABAR detector in the transverse plane and longitudinal
direction, calculations are in all cases performed in three dimensions. The design of vertexing
algorithms took a significant profit from other previous HEP experiments [3].

Non linearities in the fits require the application of an iterative procedure. Simple fits
involving only vertex constraints (except long-lived particles, i.e. V 0’s) are, however, accu-
rate enough with a single iteration. This has an important impact on the amount of time
consumed in vertex fitting. The other fits involving kinematic constraints and V 0’s require,
in general, more than one iteration.

One of the fundamental principles in the design was to deal in a simple way with complex
decay chains. Virtual composite particles and their error matrices are built from the original
particles. The composite particle then replaces the daughters in subsequent fits and analysis.
Once the composite particle has been built one can forget about the original particles that
went into it. The vertexing software makes use of an advanced interface for building compos-
ite (virtual) particles based on constraints and particle type: each intermediate particle has
a set of associated constraints and a vertex. To account for intermediate resonance, vertices
can be shared by different virtual states. With this approach the daughter tracks are first
fitted to a common vertex and the updated tracks are used to compute the 4-momenta of
the tracks.

To the extent that the field is uniform and the material is thin, the trajectories of a
charged particle can be approximated by a helix. Candidates used for vertexing are param-
eterized in the so-called X-P representation which gives the position and momenta of the
candidate at distance of closest approach for tracks (with respect to the BABAR origin) and
at decay point for composites. 3-momentum of neutrals is calculated assuming the BABAR

origin, but when using them for vertexing it is possible to provide the point at which it
has to be calculated (see sections below). The energy has been excluded from the internal
representation to avoid problems derived from its large correlation with the 3-momentum
components. The advantage of this representation is simplicity and better accuracy when
implementing kinematic constraints, a part of the fact that we use directly for fitting phys-
ically meaningful quantities. The main drawbacks of using the 6-parameter representation
instead of helices are: i) the BABAR tracks have to be converted into this representation
at the point of closest approach, ii) the six parameters are not independent. Appendix A
gives the details of the transformation of parameters and weight/covariance matrices from

4

the helix to the X-P representation. Only the FastVtx algorithm makes use of the helix
representation (5 parameters).

Building virtual particles and decay chains has an additional complication derived from
the fact that we need flexibility for merging different kinds of particles, some of which
have poor or no position information, as it is the case of resonances like ρ → π+ π0 or
neutrals. Manipulation of neutrals in vertex constrained fits is performed using the standard
6-parameter approach. The derivation of the covariance matrix is performed by assigning a
large error to the vertex position of the neutral, and then correcting the number of degrees
of freedom. Extensive studies showed that this approach is equivalent to use a 3-parameter
representation. Resonances are resolved by attaching the daughters to the common vertex
of the mother (only GeoKin, see below).

2.2 The BtaAbsVertex class

The information available for a candidate after fitting, is defined in the BtaCandidate struc-
ture, and can be accessed using the BtaAbsVertex interface, which class is available in the
Beta package. The following list shows the most relevant information stored, along with the
name of the corresponding accessor:

double chiSquared() χ2 of the fit;

int nDof() number of degrees of freedom of the fit;

VtxStatus status() word indicating the status of the vertex. VtxStatus has the following
possible values: Success=0, NonConverged, BadInput, Failed, UnFitted. When
creating composite candidates, the default vertex status is UnFitted. NonCoverged

means that the maximum number of iterations has been exceeded, and Failed that an
error has been produced in the matrix manipulation, typically when inverting matrices.
BadInput is there by historical reasons, but now it is obsolete and will never occur
(except when one is using the SingleTrackGeoKin option of VtxFitterOper (section
2.8) and the beam spot constraint was not applied.

VtxType type() word indicating whether the candidate has valid position information. Par-
ticles such as π0’s and γ’s do not have useful position information that can be used or
updated in a fit. This information is used by GeoKin to correct for the ’ghost’ degrees
of freedom introduced by the X terms. VtxType can take one of the following values:
None=-1, Geometric, Kinematic;

HepPoint point() fitted vertex;

HepLorentzVector p4() four-momentum at the fitted vertex;

double mass() mass at the fitted vertex;

double p() momentum magnitude at the fitted vertex;

HepSymMatrix xxCov(), HepSymMatrix ppCov(), HepMatrix xpCov() 3 × 3 covariance
matrices;

5

HepSymMatrix xxWeight(), HepSymMatrix ppWeight(), HepMatrix xpWeight() 3×3 weight
matrices;

2.3 Vertexers and fitters

We can distinguish two kinds of vertexing operators:

• Fitters, which deal with the fit of full decay chains with any kind of vertex and kine-
matic constraint.

• Vertexers, a simplified version of fitters which exploit the special feature of the vertex
constraints (track’s parameters can be related with the vertex coordinates indepen-
dently of the other tracks) to gain in execution time.

In the subsections below we describe the recommended fitters and vertexers which should
be used for BABAR analyses: GeoKin and FastVtx as fitters, VtxLeastChiVertexer as ver-
texer. GeoKin is the general and default operator for BABAR.

2.4 First guess

A common issue in vertexing is that an initial guess of the location of the vertex is required;
usually the primary interaction point can be used, but the convergence radius is of the order
of a few centimeters. This is good enough for decays of short-lived particles (B and D) but
not for long-lived particles (V 0’s). This problem is handled generally for all cases by solving
analytically (with an iterative procedure) the point of closest approach of the two tracks or
candidates (both with defined spatial information), using a second-order approximation for
the track at each point. When more than two tracks appear, the point of closest approach of
the closest pair of tracks is used. No cut on the minimal doca is applied. When the search
for the poca point fails, the BABAR origin is assumed and the vertex is still attempted. The
class VtxGeomCalculator in VtxFitter provides the access to this quantity. For neutrals,
the BABAR origin is assumed by default for estimating its momentum, but it can be changed
as explained in the following sections.

2.5 GeoKin algorithm

2.5.1 General formalism

The general GeoKin algorithm is based on the generalized least squares method using the well-
known Lagrange Multiplier technique [2]. In this method it is assumed that the constraint
equations can be linearized and summarized in three matrices, labeled in this document as
Ã, B̃ and ~c. Specific expressions for these matrices will be given in subsections below and
section 4.2.

Let ~η represent the measurable quantities (n-vector). The actually measured quantities ~y

(for instance the measure track parameters) deviate from ~η by errors ~δ. We assume that the

6

errors δi, i = 1, ..., n, are normally distributed. There are r unknowns grouped in a vector
~x. The ~x and ~η are related by m functions (constraints),

fk(~x, ~η) = fk(~x, ~y + ~δ) = 0, k = 1, ..., m (1)

Assuming that functions fk can be linearized at ~x = ~x0 and ~η = ~η0, the χ2 anszat can be
written as [2]:

χ2 = ~δT W̃y
~δ + 2~µT

(

Ã~ξ + B̃~δ + ~c
)

(2)

where ~µ is the vector of Lagrange multipliers, and

~ξ = ~x− ~x0 (3)

~δ = ~η − ~η0 (4)

W̃y is the weight matrix of parameters. Matrices Ã and B̃ are, respectively, the derivatives
(estimated at point ~x0, ~η0) of the constraints with respect to the unknowns and parameters:

akl =

(

∂fk

∂xl

)

~x0,~η0

, Ã =









a11 a12 ... a1r

a21 a22 ... a2r

...
am1 am2 ... amr









(5)

bkl =

(

∂fk

∂ηl

)

~x0,~η0

, B̃ =









b11 b12 ... b1n

b21 b22 ... b2n

...
bm1 bm2 ... bmn









(6)

~c is the vector of values of the constraints at point ~x0, ~η0,

ck = fk(~x0, ~η0) , ~c =









c1
c2
...
cm









(7)

As a first approximation, we take ~η0 = ~y. The expansion point requires also ~x0. Is here
where the first guess (section 2.4) enters in.

Resolving (2) for unknowns and parameters [2], we get:

~ξ = −
(

ÃT G̃BÃ
)−1

ÃT G̃B~c (8)

~δ = −W̃−1
y B̃T G̃B

(

~c+ Ã~ξ
)

(9)

where

G̃B =
(

B̃W̃−1
y B̃T

)−1

(10)

The covariance matrices for unknowns and parameters are:

7

G̃−1
x = G̃−1

ξ =
(

ÃT G̃BÃ
)−1

(11)

G̃−1
η = W̃−1

y − W̃−1
y B̃T G̃BB̃W̃

−1
y + W̃−1

y B̃T G̃BÃG̃
−1
ξ ÃT G̃BB̃W̃

−1
y (12)

and the correlation matrix between unknowns and parameters is:

G̃−1
xη = −W̃−1

y B̃T G̃BÃG̃
−1
ξ (13)

The minimum of (2) can be written as:

χ2
min = ~δT

(

B̃T G̃BB̃
)

~δ (14)

which follows a χ2-distribution with m − r degrees of freedom. Equation (14), projected
over a “group” of parameters allow us to estimate the contribution of it to the total χ2. By
“group” of parameters we mean any set of parameters for which the covariance matrix W̃−1

y

is block diagonal.
When (1) are already linear, equations (3), (4), (11) and (12) give the final solution. In

general constraints are not linear, and then we need a better approximation, which can be
obtained replacing ~x0, ~η0 = ~y by ~x, ~η into (5), (6) and (7). This iteration process is repeated
until a satisfactory solution is found. The default convergence criteria consist in requiring a
change in χ2, as given by equation (14), between two successive iterations less than 0.005,
with a maximum of 6 iterations.

The equations above and iterative procedure described above are implemented in the
general classes VtxGeoKin and VtxGeoKinIterator, both in the VtxFitter package. They
constitute the general engines of the GeoKin fitter, and, as described latter on, will be
used also for the vertex tag reconstruction. Some tricks are applied to speed-up matrix
manipulation.

In the particular case that parameters are candidates (in X-P representation), the covari-
ance matrix W̃−1

y will be block diagonal, and each block can be written as

W̃−1
y,i =

(

W̃−1
xx,i W̃−1

xp,i

W̃−1
xp,i W̃−1

pp,i

)

(15)

where W̃−1
xx,i, W̃

−1
xp,i and W̃−1

pp,i are the 3×3 covariance matrices for position and momentum. It
should be noted that with this approach the position-momentum correlations are accounted
for, important for kinematic fitting 2 (less relevant for pure vertex fitting). Due to their
small size the correlation can introduce some inestabilities, especially in complex decay trees
with both vertex and kinematic constraints3.

2.5.2 Constraints

This section contains a description of all the constraints available with the GeoKin fitter.
We distinguish two different kinds of constraints: Lagrange and χ2. Lagrange constraints

2E.g. the dramatic improvement in ∆m resolution in D∗ decays is possible thanks to these correlations.
3These inestabilities will cause error codes in GeoKin, generally due to the impossibility to perform matrix

inversions.

8

are exact, χ2 constraints account for the errors defining the parameters of the constraints.
Technically, the two types of constraints differ on the fact that any χ2 constraint requires
the addition of new parameters, in the same number as parameters are used to define the
constraint.

Vertex

For each input candidate i there are two constraint equations, corresponding to the
bend and non-bend planes, respectively. The linerized equations are:

1

p⊥,i

[∆yipx,i − ∆xipy,i] = 0 (16)

∆zi −
pz,i

p2
⊥

[∆xipx,i + ∆yipy,i] = 0 (17)

where p⊥,i =
√

p2
x,i + p2

y,i is the transverse momentum of candidate i, ∆xi = x − xi

∆yi = y − yi and ∆zi = z − zi. (x, y, z) is the unknown vertex position.

Starting from analysis-8 release, the equations (16) and (17) are corrected by track
curvature. The new equations read as:

1

p⊥,i

[∆yipx,i − ∆xipy,i] −
ai

2p⊥,i

[

(∆yi)
2 + (∆xi)

2
]

= 0 (18)

∆zi −
pz,i

ai
sin−1

[

ai

p2
⊥,i

(∆xipx,i + ∆yipy,i)

]

= 0 (19)

where ai = −0.00299792458Bqi MeV/c, qi being the charge of the track and B the
magnetic field (in Tesla).

These equations, evaluated at each point, constitute the 2 × n vector of constraints,
where n is the number of tracks to vertex. The derivatives with respect to the param-
eters and unknowns allow us to construct the matrices Ã and B̃:

∂(18)

∂xi

=
py,i + ai∆xi

p⊥,i

(20)

∂(18)

∂yi

=
−px,i + ai∆yi

p⊥,i

(21)

∂(18)

∂zi
= 0 (22)

∂(18)

∂px,i
=

∆yi

p⊥,i
− [∆yipx,i − ∆xipy,i]

px,i

p3
⊥,i

+
ai

2

[

(∆yi)
2 + (∆xi)

2
] px,i

p3
⊥,i

(23)

∂(18)

∂py,i
=

−∆xi

p⊥,i
− [∆yipx,i − ∆xipy,i]

py,i

p3
⊥,i

+
ai

2

[

(∆yi)
2 + (∆xi)

2
] py,i

p3
⊥,i

(24)

9

∂(18)

∂pz,i
= 0 (25)

∂(19)

∂xi

= px,ipz,i
1

p2
⊥,i

√

1 −
(

ai[∆xipx,i + ∆yipy,i]/p
2
⊥,i

)2
(26)

∂(19)

∂yi
= py,ipz,i

1

p2
⊥,i

√

1 −
(

ai[∆xipx,i + ∆yipy,i]/p2
⊥,i

)2
(27)

∂(19)

∂zi

= −1 (28)

∂(19)

∂px,i
= −pz,i

1

p2
⊥,i

√

1 −
(

ai[∆xipx,i + ∆yipy,i]/p2
⊥,i

)2

[

∆xi − 2px,i
∆xipx,i + ∆yipy,i

p2
⊥,i

]

(29)

∂(19)

∂py,i
= −pz,i

1

p2
⊥,i

√

1 −
(

ai[∆xipx,i + ∆yipy,i]/p
2
⊥,i

)2

[

∆xi − 2py,i
∆xipx,i + ∆yipy,i

p2
⊥,i

]

(30)

∂(19)

∂pz,i
= −

sin−1
[

ai (∆xipx,i + ∆yipy,i) /p
2
⊥,i

]

ai
(31)

∂(18)

∂x
= −∂(18)

∂xi

,
∂(18)

∂y
= −∂(18)

∂yi

,
∂(18)

∂z
= −∂(18)

∂zi

(32)

∂(19)

∂x
= −∂(19)

∂xi
,

∂(19)

∂y
= −∂(19)

∂yi
,

∂(19)

∂z
= −∂(19)

∂zi
(33)

These constraints are implemented in the BtaGeoConstraint class in VtxBase.

Pseudo-momentum

The calculation of the 6× 6 covariance matrix requires special care because it includes
the momentum contribution from the daughter tracks, the position from the vertex
fit, the correlations from the constraints and the errors and correlations arising from
the summing process. This can produce non-negligible numerical inaccuracies. The
solution has been incorporate the 3-momentum of the virtual particle as additional un-
knowns (like the vertex position) with the corresponding kinematic constraints. These
constraints are known as Pseudo-momentum constraints, and their trivial definition is:

10

∑

i

px,i − px = 0 (34)

∑

i

py,i − py = 0 (35)

∑

i

pz,i − pz = 0 (36)

(px, py, pz) is the unknown momentum of the mother at the vertex position. The
energy E of the mother is calculated after fitting and update of the parameters of the
daughters,

E =
∑

i

Ei =
∑

i

√

(~p2
i +m2

i) (37)

where mi is the mass of the candidate. Similarly, the error on E is calculated using
the updated covariance matrices of the daughters.

The use of these pseudo-momentum constraints has been proven very efficient in im-
proving error matrix accuracy and speed, especially in complex decay chains. These
constraints are implemented in the BtaMomentumConstraint class in VtxBase.

Momentum

A Lagrange momentum constraint is also available. The constraint is applied in a given
reference frame (~β) defined by the user. The equations are:





−γβx 1 + (γ − 1)β2
x/β2 (γ − 1)βxβy/β

2 (γ − 1)βxβz/β
2

−γβy (γ − 1)βyβz/β
2 1 + (γ − 1)β2

x/β2 (γ − 1)βyβz/β
2

−γβz (γ − 1)βzβx/β2 (γ − 1)βzβy/β
2 1 + (γ − 1)β2

x/β2













E
px

py

pz









−







pfix
x

pfix
y

pfix
z






= 0

(38)

These constraints are implemented in the BtaMomentumConstraint class in VtxBase.

Invariant mass

The constraint which forces the candidate to have an invariant mass M is
(

E2 − p2
x − p2

y − p2
z

)

/M2 − 1 = 0 (39)

This constraint has been implemented in the BtaMassConstraint class in VtxBase.

Beam-spot

With this χ2 constraint the vertex position in the transverse plane (x, y) is constrained
to be compatible with the beam-spot position

(x− xBS)2 + (y − yBS)2 = 0 (40)

As this is a χ2 constraint, (xBS , yBS) are introduced as additional parameters in the
fit, so their covariance matrix is used to account for the actual size of the beam.

11

Beam-spot single track

This constraint is equivalent to the previous one with the difference that it is applied
to a single track (or candidate) instead of a vertex. It forces the track to intersect the
beam-spot position in the transverse plane. The equation of the constraint is similar
to the previous one:

(xi − xBS)2 + (yi − yBS)2 = 0 (41)

Energy

Similar to the Lagrange momentum constraint, there is a Lagrange energy constraint
which can be applied in a generic reference frame (~β). The equation is

γE − γβxpx − γβypy − γβzpz − Efix = 0 (42)

This constraint has been implemented in the BtaEnergyConstraint class in VtxBase.

Beam energy

There is the possibility of applying a beam-energy constraint. It is in fact a particular
case of the energy constraint described above, but for the specific reference frame of

the Υ (4S), for which γ =
E

e++E
e−

mΥ (4S)c2
and ~βγ =

~p
e++~p

e−

mΥ (4S)c
. Contrary to the previous case,

here the constraint is of χ2 type, so we are accounting for the spread of the beams.
The equation defining the constraint is:

(Ee+ + Ee−)E − (~pe+ + ~pe−) ~p−mΥ (4S)/2 = 0 (43)

where mΥ (4S) = ((Ee+ + Ee−)2 − (~pe+ + ~pe−)2)
1/2

.

This constraint is available in BtaBeamEnergyConstraint class in VtxBase.

Zero-lifetime constraint

There is an special constraint used for constraining the position of a zero-lifetime state
(known as “resonances” in Beta) 4 to be the same as its mother. This constraint implies
that the momentum direction of the non-resonant state has to be aligned with the line
that joints its vertex and that of the resonance (its mother). The condition is specified
by minimizing the distance between the positions of both particles:

(x− xres)
2 + (y − yres)

2 + (z − zres)
2 = 0 (44)

where (xres, yres, zres) is the vertex previously fitted of the daughter resonance. This
constraint helps in improving the vertex resolution for modes like B0 → J/ΨK0

S (the
K0

S can be used to improve the J/Ψ vertex in order to build the B0 vertex).

Non-flying constraints for resonances for which only a vertex constraint has been ap-
plied are in fact resolved by GeoKin by attaching the daughters of the resonances

4The exact definition of “resonance” is any state with cτ < 1 nm.

12

directly to its mother and vertexing all together (vertex constraint). In the case that
a kinematic constraint has been also applied, for instance a mass constraint, equation
(44) is used instead. The advantage of attaching all the daughters to the same vertex
rather than the application of the above equation is twofold: first, it is better adapted to
the design of Beta, for which resonances and their mothers share vertices. This means
that they share the BtaAbsVertex information, in particular they have the same χ2

and ndof . The consequence of not proceeding in this way would be that the χ2 and
ndof of the mother of the resonance would not contain the internal degrees of freedom
of the resonance (which would be lost), and therefore the meaning of such quantities
would be not clear. Second, and more important, allows vertexing of resonances with
poor or no position information (without this approach they would be lost). And there
are lots of resonances like this. For instance, in the decay B0 → D∗−ρ+, ρ+ → π+π0,
both the D∗− and the ρ+ are resonances. When the D∗− is reconstructed in the mode
D−π0 it has no position information, and when the mode under consideration is D0π−

the information is rather poor (of course it can be largely improved with a beam spot
constraint). The ρ+ has no position information. Vertexing of the B0 would not be
possible using equation (44). If no mass constraint is applied to the D∗−, then the
vertex of the B0 is made by vertexing directly the D0/D+ and π−/π0 from the D∗−

with the π+ and π0 from the ρ+. In this way everything is then defined and vertexing
is possible. We can find lots of other examples like this.

An example which can be vertexed using both approaches is the B0 → J/ΨK0
S. In

this case, if a mass constraint is applied to the J/Ψ, then equation (44) is applied. If it
is not, then leptons from the J/Ψ decay are vertexed directly with the K0

S. Extensive
testing was made to check the equivalence of results when vertexing in these two ways
when the mass constraint is not applied.

The zero-lifetime constraint is applied by default, but it can be disabled using the
setFlyResonances() modifier, as described in section 2.8.

Line-of-flight

The equations defining the constraint are

x− x0 − txs = 0 (45)

y − y0 − tys = 0 (46)

z − z0 − tzs = 0 (47)

where (x0, y0, z0) and (tx, ty, tz) are the fixed position and direction defining the line of
flight. The length s is the only parameter left free.

2.6 LeastChiVertexer algorithm

Riccardo

13

2.7 FastVtx algorithm

The purpose of FastVtx is to provide a user-friendly package with emphasis put on low
CPU, therefore suitable to high combinatorics vertexing. The former requirement implies
that the user can vertex any number of BtaCandidate (charged and neutrals) and use the
resulting candidate in a further fit. Unlike GeoKin, FastVtx does not work at the level of
the BtaCandidate, but at he level of the trajectory parametrized, near the vertex, by a helix
(charged) or a slope (neutrals). This avoids hardcoding in the determination of the vertex
the local magnetic field. However as soon as four-momenta are to be extracted from the fit
(which is the case), using the magnetic field value cannot be avoided.

P. Billoir [7] [8] has explicited the χ2 linearized near the vertex and provided the least
square estimate of the vertex position and refitted trajectories, in terms of matrix algebra. He
showed that the estimates can be obtained without inverting a large (3n+1,3n+1) matrix (n
being the number of tracks), reducing the complexity of the algorithm to o(n). Furthermore
many of the matrices involved exhibit a large number of zeros: by performing explicitly only
the computation of non-zero terms , one gains further on CPU. In FastVtx , a comparison
between the explicit computations (BtaFastVertexer) and the same CLHEP matrix based
algorithm (FvtBilloirVertexer) shows a factor of 2 improvement on CPU.

Finally note that FastVtx solves analytically exactly the best χ2 estimate: there is no
idea of convergence in this procedure: there is always one result (unless some track has some
problems as having non positive definite error matrix).

2.7.1 Vertexers/Operators/Fitters

Figure 1: schematic view of FastVtx design

The main engine in FastVtx is the vertexer. Its goal is to provide a vertex and re-fitted
quadrimomenta together with error matrices.All vertexers inherits from FvtVertexer (itself

14

deriving from BtaAbsVertexer which allows to apply coherently all constraints (beam spot
and kinematic) via a template method pattern to any vertexer.

Operators are devoted to providing from a set of BtaCandidate another valid BtaCandidate with
proper parent-daughters relationship. Operators in FastVtx derive from FvtOperator (it-
self deriving from BtaAbsOperator) and make use of the strategy pattern to get vertex
information through an abstract pointer to FvtVertexer*. Constraints can be applied to
any operator , which forwards them to the corresponding vertexer.

The goal of fitters is to fit recursively a tree of BtaCandidate. The main class is the Vtx-
FitterOper which uses (strategy pattern) a pointer to a VtxAbsAlgorithm. Since the interface
of a BtaAbsVertxer only slightly differs from the one of a VtxAbsAlgorithm, the adapter
pattern has been used to forward the requests to the underlying concrete FvtVertexer al-
gorithm.

This design allow the various aspects of vertexing to be treated by the same method and
presents a user friendly interface to the user who can decide whether to use an operator, a
vertexer or a fitter depending on his/her analysis.

We now review the different cases of fitting the user may encounter.

2.7.2 Direct charged tacks (as B0 → π+π−)

• Vertexer: BtaFastVertexer

• Operator: BtaOpFastVtx

• Fitter: VtxFitterOper(BtaCandidate*,VtxFitterOper::FastVtx)

This is the simplest case to fit and all matrix computations can be found in [7]. In
order to decrease CPU, BtaFastVertexer uses a wrapping to PXFVTX F77 routine, written by
P. Billoir and which was widely used in DELPHI. In this routine the matrix elements are
computed explicitly avoiding all the 0 terms.

In the process of fitting a common vertex and the re-fitted tracks at this vertex, some
track-track and track-vertex correlations arise. These terms have generally been neglected
in other experiments. In order to check that approximation another vertexer has been
developed: FvtBilloirVertexer which incorporates all these terms. Due to the complexity
of matrix products here one uses CLHEP matrix computations.

Many comparisons have been made between these 2 algorithms, and the conclusions is
that in all cases correlations can be safely neglected. For example Fig. 2 shows the resolutions
obtained without/with these correlations turned and any difference is barely visible.

Actually these correlations tend to introduce some instabilities (due to their extremely
tiny size) and one may end up with non-positive definite matrices. Also the the CPU in for
this class is about a factor 2 higher than the Fortran wrapping (about 1 ms per fit). One
should however not conclude that Fortran is a factor two faster than C++, but rather that
CLHEP based computations are not very fast. For these reasons it is not recommended to
use this class.

2.7.3 Direct neutrals (as D0 → Kππ0)

• Vertexer: BtaFastVertexer

15

ID
Entries
Mean
RMS

 20
 1332

 -2.801
 135.7

ID
Entries
Mean
RMS

 21
 1332

 -1.632
 133.9

ID
Entries
Mean
RMS

 22
 1332

 -7.171
 144.2

ID
Entries
Mean
RMS

 20
 1332
 .7988E-04
 .1238E-01

ID
Entries
Mean
RMS

 21
 1332
 -.1687E-03
 .1140E-01

ID
Entries
Mean
RMS

 22
 1332
 .9184E-03
 .1573E-01

0

20

40

60

80

100

120

140

160

-500 0 500
0

20

40

60

80

100

120

140

-500 0 500
0

20

40

60

80

100

-500 0 500

0

50

100

150

200

250

-0.1 0 0.1
0

50

100

150

200

250

-0.1 0 0.1
0

25

50

75

100

125

150

175

200

-0.1 0 0.1

Figure 2: Resolutions obtained in the three directions on the B0 vertex position (upper plots)
and momentum (lower plots) in J/ψ K0

S
decays (where J/ψ → µ+µ− and K0

S
→ π+π−.).

The full histogram shows the default FastVtx operator and the dashed one the version that
includes tracks-tracks and tracks-vertex correlations.

• Operator: BtaOpFastVtx

• Fitter: VtxFitterOper(BtaCandidate*,VtxFitterOper::FastVtx)

In some fits the user wants to add some neutrals (generally γ’s or 2 γ’s resonances). These
“tracks” differs from the charged , since they can just be defined after a reference point has
been chosen(in order to draw the ray between the reference point and the EMC cluster), they
are just affecting the kinematic part of the fit and cannot be used to fit better any position.
The reference point in FastVtx has been chosen as the vertex position obtained from charged
tracks only. Therefore FastVtx supports this kind of fits if there are enough tracks to define
a geometrical vertex. For instance you can fit D0 → Kππ0 but not B0 → π0π0 (this latter
requires some external output, as the beam spot position, which lies beyond the scope of a
purely fitting package).

16

A kinematic mass constraint can be applied to any of the 2 γ’s resonances (as pi0, η...)
through the “setTwoGammaMass” routine in operator/vertexer or usual BtaCandidate con-
straints in the case of fitters.

2.7.4 V 0s (as KS → π+π−)

• Vertexer: BtaFastV0Vertexer

• Operator: BtaOpFastVtxV0

• Fitter: VtxFitterOper(BtaCandidate*,VtxFitterOper::FastVtx)

The case of V 0s is special since one cannot assume anymore that (0,0,0) is a good start-
ing point due to the possible large flight: the χ2 linearization approximation is becoming
improper when the (transverse) radius exceeds about 1.5 cm [8].

For V 0’s one must therefore propagate the tracks (with their error matrices) up to a
good starting point. In FastVtx this point is computed as the POCA of the first two tracks.
In order to gain on CPU a numerical derivation is performed for the propagation of error
matrices (which is significantly faster than using DifNumbers). All terms must be computed
in order to get a flat χ probability.

One could use this fitting procedure in all cases and not let the user define. However it
has been chosen to let the user decide whether he/she should use BtaOpFastVtx or BtaOp-
FastVtxV0 for the following reasons:
-it could be unsafe to systematically use the intersect of the first two tracks as a starting
point. Think about D0 → K3π: if the first two tracks are very collinear, their POCA could
be significantly displaced and the fit consequently be wrong.
-it would result in unnecessary CPU increase.

In the fitter implementation the right vertexer is chosen according to the type of the
fitted node, so do not forget to fill it with the usual “setType” method; otherwise a warning
message is issued and the non-V 0 vertexer is chosen.

2.7.5 γ conversions (ie. γ → e+e−)

• Operator: BtaOpFastV0Add4

The case of gamma conversions is a special case of V 0 fitting. At the decay vertex the two
electrons are extremely collinear and the χ2 linearization breaks down. FastVtx supplies an
operator which is not a genuine vertexer. The two tracks are propagated to their POCA and
a simple 4-vector addition is performed at this point. The returned vertex has not any valid
matrix error and its status is set to “unfitted”.

Roughly corresponding to the χ2 probability cut, the user provides in the constructor the
minimum distance of approach of the two tracks (xy and z directions separately) required for
the operator to return a valid BtaCandidate. If these cuts fail, the returned BtaAbsVertex*
is simply NULL. If you don’t know which value to use for these cuts, just use the defaults.

17

2.7.6 Composites(as B0 → J/ψK0
S
)

• Vertexer: BtaFastVertexer or BtaFastV0Vertexer

• Operator: BtaOpFastVtxV0 or BtaOpFastVtxV0

• Fitter: VtxFitterOper(BtaCandidate*,VtxFitterOper::FastVtx)

The case of composite is transparent to the user and is equivalent to any of the previous
cases. Note that composites are propagated to the same reference point (0,0,0) than other
direct trajectories using DiFNumbers since in some case the distance of propagation from
the vertex to the perigee is too small to be performed accurately by numerical derivations.

2.7.7 Exception handling

When a fit fails, for some reason quantified in TrkdelphiPar.hh (enum Status), FastVtx sim-
ply does not return any vertex: it does NOT make use of the mechanism of BtaAbsVer-
tex::status (however it sets it to “success” when it succeeds for compatibility with other
software). However a valid BtaCandidate is returned by the operators, which contains the
proper daughter relationships but no associated “decayVtx()”. This candidate is obtained
from simple 4-vector additions at the right point.

2.7.8 Constraints

The Beams-spot and mass (sometimes called kinematic) constraints are available in FastVtx .
The beam spot constraint is naturally taken into account in the Billoir method itself, while
the mass constraint is obtained through an iterative Lagrangian multiplier method. The
default precision of this constraint is set to 1 MeV. If you wish to change that (or increase
the number of cycles to perform the computation) you have to provide some extra arguments
to the “setMassConstraint’ method.

Due to the design, these constraints can be applied to any operator,vertexer or fitter
uniformally (see next part for example). However since FastVtx neglects the correlations,
the kinematic constraint is applied after the fit (not during as in GeoKin). This means that
the user may have to define a different geometric tree from the kinematic one.

The default beam spot (as obtained from a simple “setBeamSpotConstraint()”) is ob-
tained from the eventInfo object which is loaded from the “BtaLoadBeamSpot” module.
For B-related analyses one must take into account the possible spread due to the B flight.
This is done by default in the module. If you wish to disable that feature and use the genuine
beam spot spread, add as an argument:
“setBeamSpotConstraint(false)”.

2.7.9 Accessing refitted daughters informations

A more advanced topic is to access some information about the refitted daughters as the
refitted daughter trajectories at the vertex or the individual track χ2 contribution.

The individual χ2 contribution is obtained through the method

double chi2Contribution(const BtaCandidate& bc)

18

of the vertexer, where bc represents the input daughter.
The refitted trajectories is obtained through:

const BtaCandidate* fittedCand(const BtaCandidate& bc)

which returns the associated refitted BtaCandidate.
Note Operators allow an access to the underlying vertexer, through the “vertexer()”

method, on which you can therefore apply the previous requests.
For fitters, the usual procedure must be followed, ie. “fitAll()” must be explicitly invoked

while daughters refitting is always performed in FastVtx.
As an example we show a possible use of FastVtx to obtain simply the refitted ∆M

distribution of the D∗D0π decay, after applying a beam spot constraint which improves the
soft pion refitting:

BtaOpFastVtx op;

op.setBeamSpotConstraint();

BtaCandidate dstar=op.create(*d0,*pi);

BtaCandidate* d0fit=op.vertexer()->fittedCand(*d0);

BtaCandidate* pifit=op.vertexer()->fittedCand(*pi);

double deltaM=(d0fit->p4()+pifit->p4()).mag()- d0fit->p4().mag()));

2.7.10 FastVtx utilities

FastVtx has a class FvtUtil which contains static services to simplify the user’s life:

• probMass

given a p4 with errors, one may want to test the compatibility of this vector with a
given mass. The returned value is the χ2 probability for the kinematic fit on which the
user might ant to cut.

• impactParm

computes the impact parameters of a BtaCandidate w.r.t to a given BtaAbsVertex. xy
and z component are separated and the errors on these values are computed. The main
advantage of this method (wrt to a more standard one) is again speed and simplicity.

• timer()

is a service for CPU studies. It returns a pointer to a FvtTimer, which is a slightly
enhanced version of the Rogue-Wave timer, which keeps also the number of calls to
it and can therefore produce a mean time. This service returns a single instance of
FvtTimer (via singleton pattern) in order to simplify the user instantiation in any part
of the code. So be aware to not duplicate it in many parts of the code (a very unlikely
situation). An example could be, for each event:

19

FvtUtil::timer()->start();

.....

FvtUtil::timer()->stop();

and get at the end of the job the mean CPU spend through:

FvtUtil::timer()->meanTime()

• constrainMasses

a utility related to tree fitting. Given the head of a tree apply all subsequent mass
constraints to intermediate nodes given their type. This avoids storing many pointers
and doing many operations.

2.8 Common vertexing interface and examples

This section is an update of the Vertexing User’s Guide [4] and from now replaces it.

2.8.1 Building trees. Vertexers

As it has been mentioned in section 2, the vertexing design is based on the concept of
composite particle. Therefore, before any other operation, we have to build the tree we want
to fit. For instance, for a tree like D∗+ → D0π+, D0 → K−π+, and given the following three
pointers to BtaCandidates:

pi, pi_s, K

the syntax would be

#include ‘‘BetaCoreTools/BtaOpMakeTree.hh’’

...

BtaOpMakeTree comb;

BtaCandidate* D0 = comb.create(*pi,*K);

D0->setType(K->charge()<0.0 ? ‘‘D0’’ : ‘‘anti-D0’’);

BtaCandidate* Dstar = comb.create(*D0,*pi_s);

Dstar->setType(Dstar->charge()<0.0 ? ‘‘D*-’’ : ‘‘D*+’’);

...

delete D0;

delete Dstar;

At this point, Dstar is the head of the tree. Arguments between quotes in setType()

have to be genuine entries in the PDT table. When BtaOpMakeTree has no arguments, it
just adds four-momenta. Vertexers can be used as argument:

#include "VtxFitter/VtxLeastChiVertexer.hh"

...

VtxLeastChiVertexer vertexer;

BtaOpMakeTree comb(vertexer);

20

Other vertexers are:

#include "BetaCoreTools/BtaAdd4Vertexer.hh"

#include "FastVtx/BtaFastVertexer.hh"

#include "FastVtx/BtaFastV0Vertexer.hh"

BtaAdd4Vertexer vertexer;

BtaFastVertexer vertexer;

BtaFastV0Vertexer vertexer;

BtaAdd4Vertexer is the default vertexer for BtaOpMakeTree.
The tool BetaCoreTools/BtaTreeNavigator provides information about the tree:

#include ‘‘BetaCoreTools/BtaTreeNavigator.hh’’

...

BtaTreeNavigator navigator(*Dstar);

It allows to know the number of final state candidates (nFinalCand()), unstable candi-
dates (nUnstableCand()), and the number of vertices (nVertex()). The tool implements
also iterators on the final and intermediate state candidates as well as vertices of the tree:

#include <rw/tpslist.h>

#include "Beta/BtaCandidate.hh"

#include "Beta/BtaAbsVertex.hh"

...

RWTPtrSlistIterator<BtaCandidate> finalIter = navigator.finalCandIterator();

RWTPtrSlistIterator<BtaCandidate> unstableIter = navigator.unstableCandIterator();

RWTPtrSlistIterator<BtaAbsVertex> vertexIter = navigator.vertexIterator();

It contains also an utility function member,

navigator.isCloneOf(*DstarCopy,true)

or equivalently,

Dstar->isCloneOf(*DstarCopy,true)

which can be used to test if two trees are “clones”5. If the second argument is changed to
false, then the PDT condition for final and intermediate states is removed. If this argument
is not specified, then true is assumed.

2.8.2 Fitters: the VtxFitterOper operator

Once the tree has been built with the corresponding constraints (see next subsection), there
are several fitters which can be used to resolve the tree, fitting it recursively. All of them
are integrated in a common operator, called VtxFitterOper (available in the VtxFitter

package). The syntax of this operator is:
This is the main and default BABAR vertexing operator.

The second parameter, algo, can take one of the following values:
5Two composite candidates are “clones” if the topology of the trees is the same and the final stable

candidates are copies with the same mass hypothesis (same PDT entry) of the same reconstruced objets
(tracks and clusters).

21

VtxFitterOper(const BtaCandidate&, algType algo=GeoKin,

const HepPoint& orig=HepPoint(0,0,0))

GeoKin GeoKin fitter. BABAR default.

FastVtx FastVtx fitter.

Plain LeastChi fitter. DO NOT USE.

SingleTrackGeoKin Beam Spot single track fitter. Makes use of the general GeoKin fitter.
This option has to be used when one is interested in constraining a single candidate to
pass through a point within errors (defined via a beam spot constraint).

Add4 Four-momenta addition in fitter version. Useful for debugging.

The third parameter of the VtxFitterOper operator is used by GeoKin to define an origin
for vertexing with neutrals (see below). The VtxFitterOper::fit() member function has
to be called to perform all the operations. Then, to get the fit version, the following accessors
are available:

BtaCandidate getFitted(const BtaCandidate&) const

or
const BtaCandidate* fittedCand(const BtaCandidate&) const

In the previous example of the D∗+ → D0π+, D0 → K−π+ decay,

...

setGeoConstraint(*D0);

setMassConstraint(*D0);

setGeoConstraint(*Dstar);

setBeamConstraint(*Dstar,eventInfo);

VtxFitterOper fitter(*Dstar);

fitter.fit();

BtaCandidate* fittedDstar = new BtaCandidate(fitter.getFitted(*Dstar));

BtaCandidate* fittedD0 = new BtaCandidate(fitter.getFitted(*D0));

...

delete D0;

delete Dstar;

...

delete fittedDstar;

delete fittedD0;

Another example which involves the SingleTrackGeokin option is the case of the D0

lifetime where one is interested in refitting the D0 using the beam spot information (which
provides an improved beam spot position), and then improve the slow pion track from the
D∗+ decay. The sequence would be the following:

22

// first fit the D0 to the beam spot

setGeoConstraint(*D0);

setBeamConstraint(*D0,eventInfo);

VtxFitterOper fitter(*D0,VtxFitterOper::SingleTrackGeokin);

fitter.fit();

BtaCandidate refitD0 = fitted.getFitted(*D0);

if (refitD0.decayVtx()->status()==BtaAbsVertex::Success) {

BtaFitParams paramD0 = refitD0.fitParams();

BbrPointErr beamSpotD0 = BbrPointErr(paramD0.pos(),paramD0.posCov());

// then fit the slow pion to the smaller beam spot from D0 fit

setGeoConstraint(*piSlow);

setBeamConstraint(*piSlow,beamSpotD0);

VtxFitterOper fitter(*piSlow,VtxFitterOper::SingleTrackGeokin);

fitter.fit();

BtaCandidate refitPiSlow = fitter.getFitted(*piSlow);

if (refitPiSlow.decayVtx()->status()==BtaAbsVertex::Success) {

// add improved D0 and pi together (summ of four-momentum)

BtaOpMakeTree comb;

BtaCandidate* refitDstar = comb.create(refitD0,refitPiSlow);

refitDstar->setType(refitDstar->charge()<0.0 ? ‘‘D*-’’ : ‘‘D*+’’));

}

}

It should be noted that this, rather complex sequence, is basically equivalent to the
previous one where the beam spot constraint is directly applied to the D∗+ vertex, provided
that access to the refitted daughters is inquired.

The individual χ2 contribution of daughters is obtained through the following VtxFitterOper
method:

double chi2Contribution(const BtaCandidate&) const

2.8.3 Operation modes

The GeoKin fitter have two flavors for operation:

Fast Single step (only 1 iteration, i.e. no check for convergence is applied). This operation
mode is intendeed for optimizing CPU, and it provides enough precision for fits involv-
ing “smooth” constraints. By “smooth” we mean constraints without highly non-linear
constraints. This is the case of the vertex constraints (except V 0’s). It is recomended
not to use this flavor when kinematic constraints are involved, and NEVER use it if
there is a mass constraint, since this constraint is far of being linear. The syntax is:

#include ‘‘VtxBase/VtxAbsAlgorithm.hh’’

...

fitter.setMode(VtxAbsAlgorithm::Fast);

23

Standard Default option. Performs iterations testing convergence criteria. The syntax is:

#include ‘‘VtxBase/VtxAbsAlgorithm.hh’’

...

fitter.setMode(VtxAbsAlgorithm::Standard);

By design, FastVtx has only Fast mode, except for V 0’s.

2.8.4 Resonances: zero-lifetime constraint

As it has been already explained, GeoKin contains an special zero-lifetime constraint. The
syntax to turn off this condition is

fitter.setFlyResonances();

and to turn on (default configuration) is

fitter.setNoFlyResonances();

This modifier has to be called before to perform the fit using fit() or fitAll(). This
modifier has no effect on all the other fitters and vertexers.

As a consequence of the different treatment of resonances performed by GeoKin (when
the zero-lifetime constraint is active) and the other fitters and vertexers, the meaning of
χ2 and ndof is different. As it is explained in section 2.5, resonances in Beta share vertex
information with their mothers. As the trees are fit recursively, the vertex information of
the mother superseeds that of the daughter resonances. This is not a problem for the vertex
position itself (since it will contain the one of the mother), but it is so for the χ2 and ndof
values since they will not contain the internal degrees of freedom of the resonances below.
By its design, only GeoKin accounts for this and return the correct values. Therefore, any
comparison of GeoKin with other fitters/vertexers should take into account the different
meaning of χ2 and ndof , in case that resonances are involved.

2.8.5 Appling constraints. Kinematic fitting

The constraints are owned by the candidates so they have to be applied on the BtaCandidates
before inserting them into a tree. The constraints are applied via global functions (declared
in Beta/BtaConstraint.hh). Table 1 summarizes the syntax of all the available constraints,
as well as for which fitters they are available.

It should be stressed that the constraints must be applied BEFORE building the tree,
otherwise they are applied to a “copy” of what is actually used in the fit.

The GeoKin fitter does not know by default about any constraint6. We can consider four
different situations where different minimal constrains are required. They are:

3D Vertexing This is the genuine vertexing where a 3D geometric constraint is applied. It
is identified by the following sequence(s):

6All the other fitters and vertexers apply always by default a vertex constraint.

24

Constraint Syntax Description Availability
Vertex setGeoConstraint(BtaCandidate&) 3D vertex constraint GeoKin

Pseudo-momentum setMomentumConstraint(BtaCandidate&) GeoKin

Mass setMassConstraint(BtaCandidate&) mass constraint with PDT mass All
setMassConstraint(BtaCandidate&,double) mass constraint with given mass All

(MeV/c2)
Energy setEnergyConstraint(BtaCandidate&,double, Lagrange energy constraint GeoKin

Hep3Vector&boost=(0,0,0))

Beam Energy setEnergyConstraint(BtaCandidate&, beam energy with smearing GeoKin

BbrVectorErr&p3eMinus,BbrVectorErr&p3ePlus)

setEnergyConstraint(BtaCandidate&, beam energy from DB with smearing GeoKin

const EventInfo*)

3-momentum setMomentumConstraint(BtaCandidate&, Lagrange 3-momentum constraint GeoKin

Hep3Vector&,Hep3Vector&boost=(0,0,0))

Beam Spot setBeamConstraint(BtaCandidate&,) beam spot with smearing All
BbrPointErr&beamSpot)

setBeamConstraint(BtaCandidate&, beam spot from DB with smearing All
const EventInfo*)

Line-of-flight setLineOfFlightConstraint(BtaCandidate& given direction and origin GeoKin

Hep3Vector dir,HepPoint point=(0,0,0)) (Lagrange)
setLineOfFlightConstraint(BtaCandidate& given direction, origin is PV GeoKin

Hep3Vector dir,const EventInfo*) (Lagrange)
setLineOfFlightConstraint(BtaCandidate& direction and origin from candidat GeoKin

BtaCandidate* cdir) (Lagrange)

Table 1: Syntax for the available constraints in VtxFitterOper.

• setGeoConstraint(bc),

or equivalently,

• setGeoXYConstraint(bc),

• setGeoZConstraint(bc),

• setMomentumConstraint(bc),

where bc is a BtaCandidate. On top of them, any other kinematic constraint can be
applied.

Kinematic fitting When pure kinematic fitting has to be applied, the minimal configura-
tion requires:

• setMomentumConstraint(bc)

The kinematic constraint can then be applied on top of this one.

Four-momenta addition This is an special case of the previous one where no additional
kinematic constraints is applied on top of the setMomentumConstraint(bc). This is
required when the candidate has to be used for further fitting and one is interested
only in four-momenta addition. This is the case when we are building composites
with no position information, like K∗+ → K+π0, where we cannot apply a geometric
constraint, setGeoConstraint(*Kstar).

Typical diagnostics alerting you that the constraint configuration is not correct are:

25

VtxGeoKinAlgorithm fatal error: Missing setGeoConstraint(*bta) and

setMomentumConstraint(*bta).

Please read again the Vertexing User’s Guide.

Hint: In geometric and geometric+kinematic fits you must impose the

setGeoConstraint(*bta)+any other geo/kin constraint. In pure kinematic

fits you must impose the setMomentumConstraint(*bta)+any other kin constraint.

or

VtxGeoKinAlgorithm warning: Missing setMomentumConstraint(*bta) in a geometric fit.

Hint: In geometric fits is recomended to impose also the

setMomentumConstraint(*bta). Proceed ahead anyway...

or

VtxGeoKinAlgorithm fatal error: XY and Z vertex constraints do not match.

or

VtxGeoKinAlgorithm warning: nDof negative. Your constraints could be wrong...

An example of pure kinematic fitting is the π0 (unmerged) vertexing. Here, the momenta
of the reconstructed π0 can be significantly improved by applying a mass constraint to the
π0 and assuming a fixed origin for the γ’s. The fit proceeds as follows:

• assume a fixed origin for the neutrals. Default is (0,0,0), but it can be guessed (beam
spot, primary vertex, vertex position of related decay);

• the calorimeter measurements for the photons, (Eγ
clus, x

γ
clus, y

γ
clus, z

γ
clus), can be con-

verted within errors into 3-momentum (P γ
x , P

γ
y , P

γ
z), assuming the previously guessed

origin. This operation is performed by the AbsCalo package;

• now we can fit the 3-momenta assuming: i) the mass of the π0, ii) the clusters are γ’s
(i.e. null mass).

The fit can easily be configured (we assume the primary vertex as origin for the neutrals):

...

gamma1->setType(‘‘gamma’’);

gamma2->setType(‘‘gamma’’);

BtaOpMakeTree comb;

BtaCandidate* pi0Ptr = comb.create(*gamma1,*gamma1);

pi0Ptr->setType(‘‘pi0’’);

setMomentumConstraint(*pi0Ptr);

setMassConstraint(*pi0Ptr);

BbrPointErr primaryVertex = eventInfo->primaryVertex();

HepPoint orig(primaryVertex.x(),primaryVertex.y(),primaryVertex.z());

VtxFitterOper fitter(*pi0Ptr,VtxFitterOper:GeoKin,orig);

fitter.fit();

BtaCandidate pi0Fitted = fitter.getFitted(*pi0Ptr);

...

delete pi0Ptr;

26

The fit then adjusts the momenta (P γ
x , P

γ
y , P

γ
z) of both photons, in other words, we fit

the energy and position of the clusters for the given origin and the π0 mass constraint. A
symmetric error matrix with large values is assigned to the position of the π0. As it will be
described in section 3, this technique is the basis of the K0

S → π0π0 reconstruction.

2.8.6 Accessing refitted daughters

Everytime that a new instance of VtxFitterOper is made, a clone of the whole tree in input
is created. This copy is the one used by the algorithms themselves. When fitting a tree
using the VtxFitterOper::fit() function member, then only the head of the cloned tree is
updated with the new parameters. All their daughters remain unchanged. VtxFitterOper

offers also the possibility to update the parameters for all the daughters. This is interesting,
for instance, to improve the track parameters of the soft pion in a D∗+ → D0π+ decay, after
applying a beam spot constraint. The way to access this feature is to use fitAll() instead
of fit().

But, a word of caution. When fitting with fitAll(), the parameters and also their
covariance matrices of the candidates are updated. In particular, the track/neutral candi-
dates are reset. However, it must be noted that the inter-candidate correlations are not kept
(altought they are always calculated by the fitters). If two or more of these candidates are
refit in a subsequent fit the loss of these correlations will lead to incorrect results. This
problem is automatically resolved with the “lock” of candidates, i.e. when using a candidate
for further fitting (as it happens in the recursive fitting of trees) it will not be refit but
their parameters (as obtained from the previous fit) will be used instead7. This option can,
however, be disabled:

fittedDstar->invalidatePresentFit();

will “unlock” only the head of the tree (technically this just turn the vertex status
to UnFitted, regardless its previous value). A similar modifier which performs the same
operation but now recursively for all the nodes of the tree is:

fittedDstar->invalidateFit();

With the possibility of unlocking fitted candidates, the problem of inter-candidate correla-
tions goes back: the combination of fitAll() and invalidatePresentFit()/invalidateFit()

will refit the candidate using the updated parameters and covariance matrices, which will
produce wrong results.

2.8.7 Verbosities

Some verbosities are available in VtxFitterOper. The information they provide are:

• if you are or not refitting daughters;

• option: 0=Add4,1=Plain,2=GeoKin,2=FastVtx,3=not used,4=SingleTrackGeoKin;

7BTW, this technique improves very significantly CPU since it avoids to refit candidates everytime they
appear in different trees.

27

• number and type of constraints applied;

• do fly or do not fly resonances;

• operation mode: 0=Fast, 1=Standard.

Verbosities are enabled using the following command:

fitter.setVerbose();

before to call the fit() or fillAll() function.
In addition, for the first 50 calls of the fit operation, VtxFitterOper prints out a message

telling you if you are attempting to fit a tree containing lock composites:

...VtxFitterOper: vertex already fitted with status 0. Return the same vertex

2.8.8 Error codes

In the process of vertex fitting, complex matrix manipulations, especifically matrix inversions,
are involved. Innacuracies in error matrices (in particular tracking correlation terms and
neutrals) and largely inconsistent vertices can manifest through mathematical errors. A
typical error message which alerts you that an attempted fit failed because an error has been
produced when trying to invert a matrix is the following:

...::VtxGeoKinAlgorithm.cc(1142): VtxGeoKin engine call with error code = 1

Of course, the frecuency of this message depends of how tight is your preselection before
vertexing, as well as the complexity of your decay modes and neutrals involved. Starting
from analysis-8 release, only for the first failed fits the above message will be printed out.
In analysis-7, VtxFitter V00-08-48-02 has the same feature as that included as default in
analysis-8.

28

3 Dedicated vertexing algorithms

3.1 Vertexing of γ conversions

3.1.1 Description

Opposite charged tracks are combined to construct γ → e+e− candidates. In case of real
conversions the two charged tracks are parallel at the conversion point. The principle of the
algorithm is to calculate the distance between the two tracks. This algorithm was used by
the ALEPH Collaboration, and it is also described in [12]. It first determines the distance
between the projections of the two tracks in the x− y plane and then computes the distance
along the z axis.

Calculation in the x− y plane

The two tracks are circles in the x− y plane. The first step is to find the coordinates
of the points A and B defined in fig. 3. They are the points where the two circles are
tangent, ie where the tangent vectors are parallel.

2R
d

d

R

A

B
M

O
x

y

1

01

02

Figure 3: Principle of the conversion algorithm

From the parameters R, the radius of the track, d0, the distance of closest approach
of the track and φ0, the angle with respect to the x-axis of the momentum 3-vector at
the point of closest approach, one can calculate the position of the points A and B.
All these parameters are available at the micro level.

Two quantities are computed :

29

• ∆xy, the distance between the points A and B. This quantity is defined to be
negative if the two tracks intersect, as represented in fig. 4.

• M , the middle of [AB]. This point is the Conversion point or the vertex given by
the algorithm.

M

A

B

Figure 4: ∆xy < 0

Here are the details. We know that the distance between the origin point and the
circle is d0 at the point of closest approach. At this point the tangent of the circle
(the momentum of the particle) makes an angle φ0 with the x-axis. Then if we call
xi (i = 1, 2) and yi (i = 1, 2) the coordinates of the center of each track, we have :

{

xi = − (Ri + d0i) sin φi

yi = (Ri + d0i) cosφi
(48)

Then the coordinates of the points A and B are :







xA = x1 + x2−x1√
(x2−x1)

2+(y2−y1)
2
|R1|

yA = y1 + y2−y1√
(x2−x1)

2+(y2−y1)
2
|R1|

(49)

and :






xB = x2 − x2−x1√
(x2−x1)

2+(y2−y1)2
|R2|

yB = y2 − y2−y1√
(x2−x1)

2+(y2−y1)
2
|R2|

(50)

The position of the Conversion point M is given by :

{

xM = xA+xB

2

yM = yA+yB

2

(51)

30

The value of ∆xy is given by :

∆xy =

√

(xA − xB)2 + (yA − yB)2 (52)

When the distance between the two centers is smaller than the sum of the two radiuses
:

√

(xA − xB)2 + (yA − yB)2 < |R1| + |R2|
the two circles intersect and a negative value is assigned to ∆xy.

Calculation in the z direction

Once the position of the points A and B has been determined, the elevation of these two
points can be calculated knowing z0 the z coordinate of the point of closest approach
of the track and tan λ, the angle with respect to the x− y plane of the momentum at
the point of closest approach:

zA = z0A + sA tanλA (53)

and
zB = z0B + sB tanλB (54)

where sA and sB are the length on the circle between the point of doca and the points
A and B respectively. The length sA (similarly sB) is guessed as

sA = αAR (55)

where αA is the angle between ~OcP and ~OcA in the transverse plane where Oc is the
center of the circle, P the point of closest approach to the origin. Actually P is not
needed because it is on the line joining the origin O (figure 3) and Oc. If the particle
moves clockwise, a negative sign is assigned to αA. We require also that αA be between
−π and +π adding 2π to it when necessary.

After this step, the z the z coordinate of the point of conversion M is then :

zM =
zA + zB

2
(56)

and the value of ∆z is :
∆z = |zA − zB| (57)

Final cuts

Once all parameters have been calculated, the following cuts are applied to the con-
version candidate :

• |∆xy| <5 mm,

• ∆z <1 cm,

• m(e+ e−) <30 MeV/c2, where the invariant mass has been calculated at the con-
version point.

The figures 5 and 6 are respectively showing the ∆xy, ∆z and invariant mass distri-
butions obtained running on BABAR data.

31

Figure 5: ∆xy (left) and ∆z (right) distributions (data)

Figure 6: Invariant electron-positron mass distribution (data)

3.1.2 Interface and examples

The conversion algorithm has been implemented as a vertexing operator. The main class is
called VtxGammaConvOper and can be found in the VtxFitter package. The interface to this
class is the usual operator interface. The example below shows how to use it :

32

BtaCandidate *electron; // the e-

BtaCandidate *positron; // the e+

// Construction of the operator

VtxGammaConvOper operator;

// Construction of the conversion candidate, conv

BtaCandidate *conv = operator.create(*electron,*positron);

The output values of the algorithm (∆xy, ∆z, the conversion point and the invariant
mass) can be accessed via the resulting BtaCandidate using the VtxGammaConv vertex class
available in the VtxFitter package :

// delta xy

double deltaxy = ((VtxGammaConv *)conv->decayVtx())->dxy();

// delta z

double deltaxy = ((VtxGammaConv *)conv->decayVtx())->dz();

// Conversion point

HepPoint M = conv->decayVtx()->point();

// mass

double mass = conv->mass();

There is no error matrix (yet) associated to the vertex.

3.2 K0
S → π0π0 vertexing

3.2.1 Description

Non-overlapping π0 candidates are combined to construct K0
S
→ π0π0 candidates. In the

initial step the pi0AllLoose list entries are combined. The photons are assumed to originate
from the detector’s origin. The wide π0 mass window (100–155 MeV/c2) allows to catch long
flying K0

S
decays. Lower energy cuts of 200 MeV on the individual π0 s and 800 MeV on the

K0
S

candidate are currently used in the KsToPi0Pi0Loose selector. The mass of succesfull
candidates is restricted in the 340-610 MeV/c2 window. The energy cuts are wide enough to
allow the best efficiency for charmonium B decays and can be lowered in the future for more
general use. For this energy region (1–3 GeV) the cosines of the photon pair opening angles
are restricted to positive values and the cosine of the two π0 is restricted to the region above
0.6 .

Despite the cuts listed so far, at this stage the number of random combinatorics is too
high for the time consuming vertex fit that follows. Instead of a straight K0

S
mass cut, a

combined cut on the two π0 and the K0
S

is used. This is motivated by the simple geometrical

33

argument that as the decay point moves further away from the production point (thus
approaching the EMC), the opening angles defined by the detector origin and the photon
impact points in the EMC appear smaller than the real ones. The resulting linear relation
of the K0

S
squared invariant mass to the sum of the two π0 ones can be rotated to form the

one dimensional variable 0.17m2
K0

S

−m2
π01 −m2

π02. A cut in this variable achieves the best

possible signal/background ratio and is shown in Figure 7. The 0.00–0.01 region is accepted.

Figure 7: The correlated mass variable for true and random π0 combinations (MC)

These candidates are the input of the KsToPi0Pi0 Default selector, which performs the
final vertexing :

The K0
S

is assumed to fly along the line defined by its momentum and the origin. At
regular intervals along this line (2cm) both π0 s are fitted to their mass, adjusting the energy
and position of the cluster (in fact, the free parameters of the fit are the three momentum
components). This procedure starts at negative distance (“behind” the origin) and moves
forward. The point where the product of the probabilities from the two π0 mass constraint
fits is maximum is chosen as the K0

S
decay vertex. We demand that this point lie in a region

between −10 and +40 cm from the primary vertex and that the K0
S

mass at that point is in
the range 446–540 MeV/c2. The succesfull candidates are in the KsToPi0Pi0Default list.

The method has been evaluated using B0 → J/ψK0
S

Monte Carlo. The space resolution
can be seen in Figure 8. This shows the distance in 3 dimensions between the true and
reconstructed K0

S
vertex. It is fitted with two gaussians, one constrained at 0 and one with all

parameters free. The resolutions are 1.5cm and 4.1cm with the narrow component containing
65% of the total. The wide gaussian is displaced by 2.2cm from the real vertex. Events in the

34

narrow Gaussian have a better energy resolution. This is shown in Figure 8, where events
with a vertex resolution of less than 6cm and more than 6cm are shown separately. The
dominance of the later events in the tails of the ∆E distribution is clear.

Figure 8: The space and energy resolution of the K0
S

vertexer (MC)

The inclusive K0
S

mass peak from real data, exhibiting a resolution better than 10 MeV/c2,
is shown in Figure 9.

3.2.2 Interface and examples

The algorithm to find the best vertex position has been implemented in the VtxKsToPi0Pi0WalkFit
class, living in the VtxFitter package. The main part of the interface is the following:

// ctor

VtxKsToPi0Pi0WalkFit(const BtaCandidate *bc, const HepPoint origin);

// Does the fitting

void doFit();

void doFit(int, float, int);

// Accessors

BtaCandidate* getFittedKs();

float getBestprob();

float getBestx();

float getBesty();

float getBestz();

bool getRefitted();

35

BA BA R

Figure 9: π0 π0 mass spectrum and K0
S

signal from hadronic events

The main function performing the fitting, doFit(int, float, int) has three parame-
ters: the first gives the maximum number of steps, and the second and third the maximum
distance (positive and negative, respectively) with respect to the origin. The negative dis-
tance (thrid parameter) is in fact the starting point of the algorithm. The default configu-
ration is defined in the doFit() function: 20,40 cm and -2 cm respectively. The accessors
return, respectively: the fitted candidate, the probability and position at best point, and the
status whether the fit was able to find a solution.

Below is a real example (taken from the corresponding CompositeSelector) of how to fit
a K0

S → π0π0 candidate. We assume that the the initial (raw) K0
S, rawks pointer, has been

built using mass constrained π0’s:

#include ‘‘VtxFitter/VtxKsToPi0Pi0WalkFit.hh’’

#include ‘‘VtxFitter/VtxFitterOper.hh’’

...

// access the primary vertex

BbrPointErr primaryVertex = eventInfo->primaryVertex();

HepPoint prodVtxPoint(primaryVertex.x(),primaryVertex.y(),primaryVertex.z());

// make Ks with fitted pi0s at given position

VtxKsToPi0Pi0WalkFit first(*rawks,prodVtxPoint);

36

first.doFit(1,0,0);

BtaCandidate* newks = first.getFittedKs();

// find best decay point

VtxKsToPi0Pi0WalkFit walker(newks,(HepPoint)prodVtx);

walker.doFit();

double bestp=walker.getBestprob();

double bestxv=walker.getBestx();

double bestyv=walker.getBesty();

double bestzv=walker.getBestz();

delete newks;

newks = walker.getFittedKs();

// refit Ks at best position

BtaCandidate* finalks(0);

if (walker.getRefitted())

BtaCandidate* fnewks(0);

HepPoint orig(bestxv,bestyv,bestzv);

BtaCandidate *atemp = new BtaCandidate(*newks);

atemp->invalidateFit();

setMomentumConstraint(*atemp);

setMassConstraint(*atemp);

VtxFitterOper fitter(*atemp,VtxFitterOper::GeoKin,orig);

fitter.fitAll(); // fit Kshort to its mass

finalks = new BtaCandidate(fitter.getFitted(*atemp));

delete atemp;

const BtaAbsVertex* theDecayVtx = finalks->decayVtx();

// do whatever with theDecayVtx

if(theDecayVtx!=0) {

...

}

...

}

delete newks;

...

VtxKsToPi0Pi0WalkFit algorithm makes internally extensive use of VtxFitterOper with
the three arguments in order to refit π0’s to each attempted origin.

3.3 B0 → D∗−ℓν vertexing

3.3.1 Description

The goal and motivations for this specific algorithm is to measure the D0 lifetime in B0 →
D∗−ℓν events in both, the Rφ and z projections, which allows, from the vertexing point

37

of view, a simultaneous check of the Rφ and z resolutions and scales. This algorithm was
originally proposed in [13].

The experimental fact that the refitting of the soft pion improves dramatically the ∆m
resolution is a consequence that the determination of the D0 decay length, the D0 momentum
and the soft pion momentum are all correlated. To account properly for these correlations
one needs to fit both the D0 and D∗ vertices simultaneously. And this is not possible with
the general purpose fitters. As a consequence, the ∆m (and its error) itself can also be easily
computed in this way.

The vertexing algorithm is similar in spirit to VtxTagBtaSelFit (section 4.2). The list
of parameters, unknowns and constraints are the following:

Parameters:

• charged D0 decay daughters;

• slow pion

• lepton

Unknowns:

• D0 decay vertex (~vD0);

• D∗ decay vertex (~vD∗);

• D0 lifetime (τD0). It can be split into Rφ and z lifetime.

Constraints:

• XY vertex constraint at ~vD0 for D0 daughters;

• Z vertex constraint at ~vD0 for D0 daughters;

• XY vertex constraint at ~vD∗ for D0, πs, ℓ;

• Z vertex constraint at ~vD∗ for D0, πs, ℓ;

• ~vD0 − ~vD∗ = cτD0/mD0

∑D0 daughters
i ~pi

The output of the algorithm is:

• improved versions of the inputs;

• the values of the unknowns;

• all correlations.

38

3.3.2 Interface and examples

The algorithm is available in the VtxB0 DstarlnuAlgorithm class of the VtxFitter package.
The specific interface is the following:

#include ‘‘VtxFitter/VtxB0_DstarlnuAlgorithm.hh’’

...

// ctor

VtxB0_DstarlnuAlgorithm(const BtaCandidate& Dstar, const BtaCandidate& lepton);

// accessors

bool isOK() const;

void chisq(double& chisq, unsigned& ndof);

void Dstar(double& deltaM, double& sigmaDeltaM,Hep3Vector& p3) const;

void D(double& mass, double& sigmaMass, Hep3Vector& p3,

double& life, double& lifeError) const;

void piSoft(Hep3Vector& p3) const;

void lepton(Hep3Vector& p3) const;

39

4 ∆z algorithms

4.1 Introduction and definition of ∆z

In measurements of the B lifetime, mixing rate and time-dependent CP -violating asymme-
tries, we fully or partially reconstruct only one B and then determine the distance, ∆z,
between the two B decays. The decay length of each B is not observable because of the
absence of charged stable particles emerging from the Υ (4S) decay point and so the decay
length difference ∆z has to be reconstructed. One B meson is kinematically fully recon-
structed and the decay vertex position can be measured using all the particles of the decay
chain. The other B vertex (tagging B vertex) is reconstructed with the remaining charged
tracks in the event. To retain high efficiency this has to be done using inclusive techniques.
The tagging B vertex reconstruction is difficult because secondary tracks from short and
long lived particles will bias the vertex position. Algorithms try to deal with these problems
and minimize their impact using slightly different approaches (see below). Reconstructed
V 0 candidates and veto from gamma conversions are used in an attempt to minimize tails
and outliers in the resolution. By convention, ∆z is defined as the difference between the
reconstructed B (B CP) and the recoiling B (B TAG):

∆z=zCP − zTAG

The general strategy to find the tagging B vertex, already outlined in some earlier studies
[21, 22], is the following:

• reconstruct the signal B (B CP);

• start with a list of all charged tracks in the event, except those from the B CP decay;

• remove charged tracks from reconstructed V 0’s (K0
S and Λ), and add the corresponding

composite track. Useful V 0’s will be those which decay close to the IP and have still
SVT information. The remaining ones will be removed to reduce the bias in the vertex
position and outliers in the resolution.

• ideally, we should reconstruct D and Ds mesons, and for each successful candidate
remove daughter tracks from the list and add the composite track. In practice the
fraction of D mesons we can recover is very small, so the vertex tag reconstruction
benefits very little (or nothing) by using exclusive D mesons. This step of the strategy
has never been implemented.

• fit the tagging side candidates to a common vertex. The way in which this is performed
depends on the algorithm. This part is described in detail in section 4.2 and 4.3;

• if the fit is bad (i.e. χ2 > χ2
cut), remove the candidate with the largest contribution to

χ2 and then refit (previous step). The details of the stopping criteria are also different
for each algorithm, as it is described in 4.2 and 4.3.

40

There are two different available algorithms, VtxTagBtaSelFit and FvtClusterer which
will be described below. The default one is VtxTagBtaSelFit.

4.2 VtxTagBtaSelFit (GeoKin) algorithm

The VtxTagBtaSelFit algorithm tries to make use of all the position and kinematic con-
straints available in the Υ (4S) → BB decay. The BB pair creation point is reconstructed
by intersecting the reconstructed signal B CP with the beam spot elipsoid: the line of flight
of the B TAG is given by the (reverse) momentum vector of the reconstructed B CP and
its vertex, and the interaction point is estimated from the intersection of this line with the
beam spot position in y. In practice, the information from the beam spot can be reduced to
just the y coordinate (figure 10).

BCP

BTAG

Figure 10: Geometry of Υ (4S) → BB decay in transverse plane. The line of flight of the B

TAG is given by the (reverse) momentum vector of the reconstructed B CP and its vertex.
The interaction point is the intersection of this line with the beam spot position in y.

Due to the very small size of the beam-spot in y, the decay path LCP
z = zCP − zΥ (4S) of

the B CP can be extracted insuring that the direction of the line connecting the Υ (4S) and
the vertex of the B CP is given by the fitted momentum of the reconstructed B CP . In the
limit where σy(Υ (4S)) ≈ 0,

LCP
z ≈ yCP − yΥ

py,CP/pz,CP

(58)

The dominant factor in the precision on LCP
z is the accuracy on yCP : the error on LCP

z

is, however, about one order of magnitude larger than the error on yCP . Since typically
σ(yCP) ≈ 45 µm, the final precision on LCP

z is very poor.
From momentum conservation, the momentum of the tag B meson, B TAG, is known:

~pTAG = ~pΥ (4S) − ~pCP (59)

From this momentum and the BB pair creation point we can form a “pseudo-track” which
can be used to fit a common vertex as any other tag side candidate. From the knowledge of

41

~pTAG from equation (59) and the B TAG vertex position from the vertex fit, one can get an
estimate of the decay path for the tag side, LTAG

z . In the σy(Υ (4S)) ≈ 0 limit,

LTAG
z ≈ yTAG − yΥ

py,TAG/pz,TAG

(60)

Unfortunately, as for the case of the B CP case, the precision on LTAG
z is extremelly poor.

The method above assumes that the momentum of the B CP is known, which implies
full reconstruction. Therefore, in the case of partial B reconstruction the constraint from
the B TAG pseudo-track cannot be used, and only a beam-spot constraint to the tag side
candidates can be applied. It should be noted that, contrary to the previous case, the beam-
spot used in this configuration is applied to the B decay point (B production point in the
previous case), so the beam spot size must be modified properly to take into account the
small transverse flight of the B TAG due to the B lifetime and the small Υ (4S) → BB
energy release (beamSpotBFlight() event accessor, see section 6.5).

4.2.1 Parameters, unknowns and constraints

The B TAG vertex fit strategy described above is rather simple to implement using the GeoKin
general engines described in section 2.5, so a simultaneous fit of all physical quantities can
be performed. The problem basically consists in the definition of the list of parameters,
unknowns and constraints.

Parameters:

• position and momentum of tagging side candidates: (x, y, z, px, py, pz)i, i = 1, ..., n,
where n is the total number of recoiling candidates (with defined position information);

• position and momentum of BCP candidate: (xCP , yCP , zCP , px,CP , py,CP , pz,CP);

• position of interaction point in transverse plane: (xΥ , yΥ);

• three-momentum of the beams: (px,e−, py,e−, pz,e−), (px,e+, py,e+, pz,e+).

Unknows:

• position and momentum of the tagging B: (xTAG, yTAG, zTAG, px,TAG, py,TAG, pz,TAG);

• decay lengths for CP and TAG B’s: LCP
z , LTAG

z .

Constraints:

XY V ertex constraint × n candidates (61)

Z V ertex constraint × n candidates (62)

px,CP + px,TAG − px,e− − px,e+ = 0 (63)

py,CP + py,TAG − py,e− − py,e+ = 0 (64)

pz,CP + pz,TAG − pz,e− − pz,e+ = 0 (65)

42

xCP − xΥ − px,CP

pz,CP

LCP
z = 0 (66)

yCP − yΥ − py,CP

pz,CP
LCP

z = 0 (67)

xTAG − xΥ − px,TAG

pz,TAG
LTAG

z = 0 (68)

yTAG − yΥ − py,TAG

pz,TAG
LTAG

z = 0 (69)

zTAG − zCP + LCP
z − LTAG

z = 0 (70)

Equations (61) and (62) are the standard vertex constraints as described in section 2.5,
equations (16) and (17).

In the case of partial reconstruction, the “pseudo-track” constraint cannot be applied.
This is equivalent to remove constraints (63), (64), (65), (66), (67), (68), (69) and (70). The
position and momentum of BCP candidate and the three-momenta of the beams are anymore
needed, as well as LCP

z and LTAG
z . In this case, the beam-spot constraint can be applied to

the tag side candidates in the standard way as it was described in section 2.5, equation (40).
Let us remark that when using the beam-spot as described in section 6 the tiny effect of

the xz tilt is automatically accounted for. Given that the beam-spot constraint is basically
effective only in the y component, its effect is completely negligible.

Owing to the pinched geometry, LCP
z and LTAG

z have a positive correlation close to 1,
therefore when we compute the difference ∆z=LCP

z − LTAG
z the effect of the correlation is

basically removed, and this observable becomes much more precise than the separate decay
lengths.

The beam energies have spreads of about 5.5 MeV (electrons) and 2.5 MeV (positrons).
The actual Υ (4S) momentum distribution is a convolution of the Gaussian beam overlap
distribution with the Breit-Wigner probability for Υ (4S) production and the phase space
for producing BB pairs. Generator level studies [17] show a Gaussian Υ (4S) momentum
distribution with a width of about 6 MeV. The effect of the momentum spread is two-
fold. Firstly, at ∆z reconstruction level (as the algorithm make use of the total momentum
constraint), secondly when estimating ∆t, as described in section 4.5. The impact of the
spread when reconstructing ∆z has been evaluated to be completely negligible since errors
are dominated by reconstruction8. Therefore, in the default configuration, ~py,e− and ~pe+ are
not considered as parameters but fixed quantities.

The simultaneous vertex fit involving all the constraints (61)-(70) makes the understand-
ing of the algorithm rather difficult. Reference [1] documents the systematic studies per-
formed which help to understand the details. Roughly speaking, here is the mechanism.
When the B CP direction is perperdicular to the direction in which the beam size is small
(y), φ ∼ 0, then the direct z constraints provided by the reconstructed B CP do not help.
But in this case the beam spot constraint applies directly to the B decay point, providing
the whole resolution of the beam spot in y (∼ 15 µm) (this is equivalent to apply a beam
spot constraint alone). In this case, the improvement in z resolution comes basically from
exploiting the y− z and to a less extend the x− z correlations of the tag side tracks. When
φ is maximal, then B CP constraints apply providing direct constraint on z, compensating

8χ2 contributions from this term are about ten order of magnitude smaller than the rest.

43

the loss of beam spot constraint effectiveness as consequence of the B CP transverse flight.
As the change of effective resolution of the beam spot from φ = 0 to φ = π/2 is not dramatic
(from ∼ 10 to ∼ 30 µm) compared with the tracking resolution, the improvement in reso-
lution (with respect to no constraints) is mostly provided by the beam spot alone. A part
of the rather marginal gain in resolution provided by the B CP constraints, their purpose
is basically to provide a more robust approach to select the tag side tracks, reducing charm
contamination and fraction of outliers. Thus ∆z resolution and scales are finally rather in-
sentivite to resolution and scales in B CP , and only y−z, x−z correlations from the tagging
side tracks and the reconstructed vertex, and the beam spot determine the improvement in
error on the reconstructed ∆z, compared to the case when no constraints are applied. This
mechanism allows to improve ∆z track selection and resolution, without spoiling the very
basic assumption in all the analyses that the resolution function is independent of the specific
B CP mode. Moreover, from the constraint equations (67) and (69), and to a less extend
(66) and (68), it can be seen that LCP

z and LTAG
z are sensitive to the displacement of the CP

and TAG vertices with respect to the beam spot position. As it has been already said above,
its resolution is dominated by that of the CP and TAG vertices). However, when computing
∆z as the difference between LCP

z and LTAG
z , it turn out that finally the main variable, ∆z,

is rather insensitive to the displacement of the vertices with respect to the beam spot, and
the sensitivity is mainly to the relative displacement of the TAG and CP vertices.

Given a set of tag side candidates and the B CP , the B TAG vertex fit has been imple-
mented in the class VtxTagAlgorithm in the VtxFitter package. The convergence criteria
in the minimization process requires a change in χ2, as given by equation (14), between two
successive iterations less than 0.001, with a maximum of 10 iterations.

4.2.2 Convergence criteria

The iterative procedure for track selection removes the candidate with the largest contribu-
tion to the total χ2. The procedure is iterated until there are no tracks contributing more
than 6 units to the χ2 or only n tracks remain, where n (which can be 0) is a parameter
to be tuned. The use of the “pseudo-track” allows us recover events with only an opposite
track, making the algorithm highly efficient.

The best value of parameter n has been determined studying 36K B− → D0(K−π+)π−

events. In this study we used the V 0’s as described in section 4.4, and then we compared
n = 0 and n = 2. It should be noted that even in the case n = 2, events with a single track
(candidates) can appear. The motivation for using n > 1 is because we know from previous
studies that a large fraction of the outlier contribution to the ∆z resolution function is due
to events for which the ∆z was reconstructed using a single candidate. The requirement
of an additional track in the vertex (when there are more than one in the tagging side)
introduces, in principle, a lever arm which can help in rejecting events with poor information.
Additional quality cuts based on the χ2 probability will be then needed to reject events with
poor compatibility with single vertex. Figure 11 shows the residuals, pulls and number of
candidates used to make the vertex for three configurations: n = 2 with a cut on the global
p(χ2) of the vertex at 0.1%, n = 2 without p(χ2) cut, and n = 0 with no cut on p(χ2). From
these plots it is concluded that by requiring n = 2 we increase the fraction of outliers, but
they are killed and reduced by requiring an overall χ2 probability of the vertex fit higher

44

than 0.1%. In such a configuration there is a gain in outlier reduction with respect to the
case n = 0. From these plots it can also be seen that only the number of events with 0,1 and
2 candidates are different among the different configurations. n = 2 basically moves events
from 1 to 2 candidates, and the overall χ2 cut only affects events with 2 tracks.

When n = 0, the fraction of events having a single track is ∼ 5.5%. Therefore, if we throw
away these events then we have a substantial drop in efficiency. When n = 2, this fraction
is only ∼ 1.7%. The drop in efficiency caused by the prob(χ2) cut is ∼ 3%. As there is no
overlap between the single track events and those events at prob(χ2) < 0.1%, the total drop
in efficiency requiring both conditions is ∼ 4.7%. However, it has been verified that there is
no gain by rejecting single track events, once n = 2 and prob(χ2) > 0.1% have been applied.
In conclusion, in such a configuration, there is a net outlier reduction with a small drop in
the efficiency. The issue here is whether the prob(χ2) cut introduces differences in efficiencies
among different B modes, as well as whether enhances data/Monte Carlo differences. This
is investigated in reference [1]. Another problem which can arise is the fact that good events
for vertexing can also be rejected. For instance, if there is a hard prompt lepton and kaons
from a secondary decay, it can happen that the two final tracks used to make the vertex are
the lepton and a kaon. If the D meson did fly far, more likely the χ2 probability of the vertex
will be very small, and the vertex will be rejected by the χ2 cut, when in fact, a good vertex
could be defined using only the lepton and the pseudo-track, as the n = 0 configuration
would do. Examples of events falling into this category in the data have been found [24].
In order to minimize these effects and keep as high as possible the reconstruction efficiency,
n = 0 was adopted as default configuration. In such a configuration it has been verified that
applying a cut on prob(χ2) at 0.1% has basically no effect (the cut is somehow implicit in
the track removal strategy), beyond the small drop in efficiency.

The iterative procedure for track removal is available in the VtxTagBtaSelFit class in the
VertexingTools package. The class makes use of VtxTagAlgorithm, living in VtxFitter.
Both classes have a common interface.

4.3 FvtClusterer (FastVtx) algorithm

4.3.1 Description

The FvtClusterer algorithm is a FastVtx vertexer (see section 2.7.1) whose role is to “clus-
terize” a set of (charged)tracks to the best common vertex, based on purely geometrical
criteria. It can therefore be used to determine the tag vertex of an event (once the recon-
structed B tracks are subtracted) or fit rapidly the common vertex of an event (“hadronic”
beam spot, see sections 5 and 6, and reference [10]).

In order to remove V 0’s daughters and badly reconstructed tracks, a common vertex is
formed with all charged tracks, and unless it satisfies a global p(χ2, ndof) vertex cut, the
track with the higher χ2 contribution is rejected. The procedure is repeated iteratively until
the cut is satisfied or until the minimum value for the χ2 vertex allowed is exceeded.

For the Btag vertex, the differences with VtxBtaSelFit are therefore of two sorts:

• the stopping condition is based on the global χ2 of the vertex.

• no cinematic information is used (however a beam spot constraint can be applied)

45

Residual ∆z (cm)

en
tr

ie
s

Pull ∆z

en
tr

ie
s

Number of candidates

en
tr

ie
s

chi2 probability

en
tr

ie
s

Figure 11: Comparison of ∆z residuals (top-left) and pulls (top-right), number of tracks
(bottom-left) used to make the vertex and χ2 probability (bottom-right) for n = 2 with a
cut on the global p(χ2) of the vertex at 0.1%, n = 2 without p(χ2) cut, and n = 0 with no
cut on p(χ2).

46

4.3.2 How to

The class use is equivalent to that of any FastVtx vertexer (section 2.7.1). The constructor
defines the upper limit of χ2 probability allowed and it is suggested to use the default value.
Recall that FvtClusterer provides an un-owned pointer , so that it is the client responsibility
to delete it. An example of use could be:

FvtClusterer cluster; \\uses default value of 0.001 for pchi2 cut

cluster.setBeamSpotConstraint(); \\use default BSC

BtaAbsvertex* tagB=cluster.compute(iter);

...//retrieve information from BtaAbsvertex*

delete tagB;

a few remarks:

• the iterator on charged tracks (iter) must be cleaned from BCP tracks.

• concerning the beam-spot constraint details see 2.7.8

• FvtClusterer does not compute immediately the δz variable: it is up to the user to
determine the BCP vertex in order to compute it.

After the fit, the user can access the individual χ2 contributions and the refitted tracks
trajectories in the way described in 2.7.9. Another important piece of information is to know
whether a given track was rejected during the iterative procedure. This is performed through
the “status” method of the vertexer in the following way:

FvtCandidate::Status status=cluster(*trkptr);

The status information is of 3 types:

• locked: the track is used in the fit

• unlocked: the track was rejected

• nailed: the track is always kept in the fit (see next part)

4.3.3 Nailing tracks

The user has the possibility to fix (“nail”) a given track, so that it is never rejected in the
iterative procedure. This can be used for instance to enhance tagging/vertexing correlation:
in order to reduce the charm lifetime bias one can nail the lepton so that the vertex converges
onto it.

The way to proceed is to explicitly create a list of “FvtCandidate” (which is build from
a BtaCandidateplus relevant FastVtx information) through:

47

HepAList<FvtCandidate> fvtList;

BtaCandidate* trkptr(0);

while(trkptr=iterCh()){

//if not lepton:

fvtList.append(new FvtCandidate(*trkptr,FvtCandidate::locked));

//if lepton:

fvtList.append(new FvtCandidate(*trkptr,FvtCandidate::nailed));

}

and then:

HepAListIterator<FvtCandidate> itfvt(fvtList);\\create iterator

FvtClusterer cluster; \\uses default value of 0.001 for pchi2 cut

cluster.setBeamSpotConstraint(); \\use default BSC

BtaAbsvertex* tagB=cluster.doFit(itfvt);

...//retrieve information from BtaAbsvertex*

delete tagB;

FvtClusterer predefines an algorithm that increases tagging-vertexing correlation max-
imally: the leptons are nailed, and the kaon “unlocked”(ie. not used). It has a more
user-friendly interface through:

BtaAbsVertex* tagVtx(HepAList<BtaCandidate>& tags,

HepAList<BtaCandidate>& chtrks);

where the user just provides the list of tags (leptons and kaons) and the list of charged
tracks (the two may overlap).

Studies [11] show that this procedure does indeed minimize the bias for right lepton
tagging, but (as expected) increases it for wrong leptons: one therefore increases the vertex
asymmetry between right and wrong tags which is not a desired feature. For kaons the
difference is negligible. Therefore the relative gain is not obvious and it has been decided to
not exploit these correlations.

The common interface (section 4.6) makes the use of the algorithm in a much more
userfriendly, apart of many other advantages as described there. It is therefore strongly
recomended to use it instead of the particular implementation of each algorithm.

4.4 V 0’s and γ conversions

In an attempt to reduce bias and outlier contribution to the resolution function, V 0’s and
γ conversions are used for vertexing. Special care have to be put in the selection of the V 0

candidates since fake candidates can potentially result with the opposite effect. The main

48

effect from V 0’s and γ conversions is expected from those decaying far away of the interaction
region.

A dedicated sequence has been implemented in VertexingTools, called VtxTagSequence,
which provides the three lists inputs for vertexing: charged tracks (GoodVtxTagTracks), V 0’s
(V0sVtxTag) and conversions (gammaConversionVtxTag). Currently the GoodVtxTagTracks
list is identical to GoodTracksVeryLoose. The selection cuts used for K0

s ’s, Λ’s and γ con-
versions is described below. For the optimization of selection criteria, about 200K B0 events
from the “TagMix cocktail” have been used.

The selection cuts for K0
s (Λ) are the following:

• the probability of the vertex fit (without mass constraint) is higher than 0.1%;

• the decay length with respect to the primary vertex in the transverse plane is higher
than 2 (5) mm;

• the aperture angle of the daughters greater than 200 mrad;

• mass of the reconstructed candidate within 7 (4) MeV of the nominal mass.

Figure 12 shows the mass distribution of the selected candidates. The dotted histograms
represent the background as predicted from the Monte Carlo truth matching. The purity
within the mass window is estimated to be about 65%. It should be noted that these plots
are obtained by considering also the tracks used for reconstructing the B meson. This tracks
will contribute mainly to the combinatorial background since the number of real K0

S in the
B side is very small, and in the case of the Λ’s is zero. As a result the purity of the final
candidates finally used for vertexing is slightly higher: it has been evaluated to be higher
than 70% for both K0

S and Λ’s (in the latter case there are large statistical uncertainties due
to the very small number of candidates found).

γ conversions are used for veto of tracks to be used for vertexing. The selection cuts are
the following:

• the xy (z) distance between the two tracks is required to be less than 5 mm (1 cm);

• the three-dimensional distance between the tracks <3 cm;

• the invariant mass of the pair of tracks < 10 MeV/c2.

Figure 13 shows the mass distribution of the selected candidates. As above, the dotted
histograms represent the background as predicted from the Monte Carlo truth matching.
The conversion contents of the sample is estimated to be about 25%.

The effect of using V 0 and γ conversions on the ∆z outliers has been evaluated running
over 36K B− → D0(K−π+)π− events. Figure 14 compares the ∆z residuals and pulls with
and without V 0’s and conversions in the vertex tag reconstruction. There is an indication
that when using them there is a net reduction of the number of events at large residual
and to a less extend at large pull. In the previous figure one can also see that there is an
almost perfect overlapping between the case that all the reconstructed V 0 and conversions
are used, and when only the truth candidates (from Monte Carlo matching) are used. This is
an indication that with the present selection fake candidates are not introducing additional
outliers. In all cases the vertex tag reconstruction efficiency is the same. The mean number
of K0

S and Λ used to make a vertex tag is 0.09 and about 0.001, respectively.

49

Figure 12: Mass distribution of the selected K0
S and Λ candidates. Arrows indicate the mass

cut applied. These plots are obtained by using also the tracks used for the CP side. Therefore,
the combinatorial background of the candidates used for vertexing will be significantly lower.

4.5 ∆z to ∆t transformation

A time-dependent analysis must estimate ∆t for each event,

∆t = tCP − tTAG = MB

[

zCP

pz,CP

− zTAG

pz,TAG

]

(71)

tCP and tTAG are, however, defined in different frames, therefore the transformation from
∆z to ∆t is not straightforward. The standard approach in BABAR consist in assuming that
both B’s have the same average boost, pz,CP = pz,TAG ≈ 〈pz〉, and take it to be the same as
for the Υ (4S) frame. This is equivalent to assume that the momentum of the B mesons in
the Υ (4S) decay frame is negligible (〈pcms

B 〉 =
√

Ee+Ee− −M2
B ≈ 340 MeV/c). With these

assumptions,

∆t = ∆z/γβzc (72)

where γ is the boost factor of the Υ (4S) in laboratory frame and βz its velocity projected
on the BABAR z axis. In BABAR, βzγ ≈ 0.56. Using βz instead of β we account for the
rotation in the (x, z) plane of the beam axis with respect to the BABAR z axis (tilt angle
about 20 mrad), reducing the full boost by about 1.2 MeV (0.02%). As a result, there is
a small boost along the x axis (about 188 MeV) which generates azimuthal dependencies.
This has, however, no direct effect when estimating ∆z. The ∆z provided by the algorithms
described above is in the BABAR z axis. This approximation, for which the B momentum
does not need to be measured, is commonly called boost approximation. Compared with the
experimental resolution on ∆z, the effects on ∆t produced by this approximation are small

50

Figure 13: Mass distribution of the γ conversion candidates. The arrow indicates the mass
cut applied. As before, this plot is obtained by using also the tracks used for the CP side.

(see below). However, this approach is a potential source of bias and systematic error in ∆t
[14, 17]. In particular, reference [14] shows analytically that for B lifetime measurements
the bias introduced by this approach about 0.4%, which is non negligible for a precision
measurement as we seek in BABAR. This result is consistent with toy Monte Carlo studies.

The discussion below shows how we can correct partially and even completely to account
for the different boosts of the two B’s in the event, in the case that we fully reconstruct one
of them.

The distance ∆z can be written in terms of tCP and tTAG [15] as:

∆z = βzγγ
cms
CP c(tCP − tTAG) + γβcms

CP γ
cms
CP cos θcms

CP c(tCP + tTAG) (73)

where βz and γ are the same quantities as defined above. γcms
CP , βcms

CP and cos θcms
CP are,

respectively, the boost factor, velocity and angle with respect to the beam direction of the
fully reconstructed B in the Υ (4S) frame. The above expression uses the fact that both B’s
are anticorrelated in the center-of-mass frame.

As (in principle) we don’t know tCP + tTAG, so we have to neglect it or best put in some
average value. Assuming an experiment with no polar angle bias and neglecting the event-by-
event variation of tCP + tTAG due to changes in ∆t, 〈cos θcms

CP 〉 = 0, i.e. on average the second
term of equation (73) vanishes. If we also neglect the energy release of the Υ (4S) → BB
decay, then we have γcms

CP = 1. These two assumptions lead with the boost approximation
described above and given by equation (72). This approach can be corrected, on average, to
account for the small momentum of the B’s,

∆t = ∆z/γβzcγ
cms
CP (74)

where γcms
CP ≈ 1.002. Equation (74) will be known thereafter as improved boost approximation.

The effect of neglecting the per-event variation of tCP + tTAG is an extra contribution to
the resolution function [16]. The size of this term can easily be estimated:

51

Figure 14: Comparison of ∆z residuals (left) and pulls (right) with (black histogram) and
without V 0 (red histogram) reconstruction. Green histogram corresponds to the case when
only MC truth V 0’s are used.

(γβcms
CP γ

cms
CP)2 〈cos2 θcms

CP 〉〈(ctCP + ctTAG)2〉 ≈ 0.0742〈(ctCP + ctTAG)2〉〈cos2 θcms
CP 〉 (µm2) (75)

since βcms
CP ≈ 0.064 and γ ≈ 1.15. The angular distribution of Υ (4S) → BB is given by

(1 − cos2 θ)d(cos θ), which gives 〈cos2 θ〉 = 1/5. Similarly,
√

< (tCP + tTAG)2 > =
√

6τB.
The RMS contribution is then 35-40 µm, to be compared to the total resolution of about
110 µm. Therefore, in terms of resolution the effect of neglecting the second term of equation
(73) is small (about 5% in quadrature). If the resolution is extracted from data themselves
from B lifetime and mixing fits, this effect is included automatically in any time-dependent
analysis.

When one of the B’s in the event is fully reconstructed we know with good precision
cos θcms

CP . The problem then is to get an estimate of tCP +tTAG. We could take 〈tCP +tTAG〉 =
2τB. This approach, however, does not account for the variation of 〈tCP + tTAG〉 with ∆t.
This effect can be taken into account by averaging over the ∆t range,

〈tCP + tTAG〉 |∆t= τB+ | ∆t | (76)

Thus ∆t can be extracted combining equations (73) and (76),

∆z = βzγγ
cms
CP c∆t+ γ

pcms
z,CP

MB

c(τB+ | ∆t |) (77)

following a two steps method: firstly, we resolve (77) for ∆t assuming that the sign of ∆t
is the same as that of ∆z; secondly, we check the consistency of signs, and in case that the

52

signs are opposite the equation is resolved again assuming now opposite signs for ∆z and
∆t. This approach will be known thereafter as average τB approximation and it corrects
for any possible polar angle bias of the experiment, as well as it minimizes the additional
contribution to the RMS from the per-event variation of tCP + tTAG, as given by equation
(75). Similarly to the boost approximation, when estimating the statistical error on ∆t we
only consider the contribution coming from ∆z, which is largely dominating the total error.

The VtxTagBtaSelFit algorithm brings a second way to correct by the different boost of
the B mesons in center-of-mass frame. As described in section 4.2, this algorithm performs
a simultaneous fit maximizing the available information in the Υ (4S) → BB decay. In the
fit, the position of the vertex tag, as well as the decay lengths of the CP and TAG sides
(with respect to the Υ (4S) decay point, LCP

z and LTAG
z respectively) are free parameters.

The beam-spot constraints applied in the transverse plane, especially in the y component,
are able to put constraints on the z component, therefore some information is obtained by
fitting LCP

z and LTAG
z . As said before, these parameters are basically +100% correlated.

In fact, ∆z is calculated using directly those parameters and their covariance matrix. The
knowledge of LCP

z and LTAG
z provide a way to estimate directly the second term of equation

(73),

(∆z)correction = γβcms
CP γ

cms
CP cos θcms

CP c(tCP + tTAG) = γγcms
CP p

cms
z,CP

[| LCP
z |

| pz,CP | +
| LTAG

z |
| pz,TAG |

]

(78)

where pz,CP and pz,TAG are the z components of the momenta of the CP and TAG B mesons,
both reconstructed. Therefore, equation (73) reads here

∆z = βzγγ
cms
CP c∆t+ γγcms

CP p
cms
z,CP

[| LCP
z |

| pz,CP | +
| LTAG

z |
| pz,TAG |

]

(79)

from which ∆t can be extracted. This approach will be known thereafter as exact ∆t
calculation. The errors on LCP

z and LTAG
z are large and fully correlated, but they rescale

according with pcms
z,CP . Therefore, as it will be shown later, it turns out that the error

contribution to ∆t coming from this term is similar to that due to the pure ∆z term. The
estimation of the total error on ∆t accounts only for the contributions from ∆z, LCP

z and
LTAG

z . All the other contributions can safely be neglected.
As already mentioned in section 4.2, the energy spread of the beams affects the ∆t

estimation (via the boost parameters β and γ). Provided that a cos θcms correction is used
when estimating ∆t, in the generator level study of reference [17] it is shown that this is a
minor source of troubles. On the other hand, the accuracy on βzγ using 2-prong events [18]
has been evaluated to be better than 0.3% [19, 20].

The calculation of ∆t from ∆z for all the four approaches has been implemented in the
class BtaDeltaTConverter in BetaTools. The boost quantities (βz and γ) used by this class
are those computed in rolling calibration by using 2-prong events [18].

The expected effect of the average τB approximation and the exact calculation methods
is to reduce the ∆t bias (due to the non-uniform acceptance of the BABAR detector). In the
case of the average τB approximation an improvement in the RMS of the resolution (about
4% according with the estimation above) is also expected. The four different approaches for
estimating ∆t have been tested using 36K B− → D0(K−π+)π− events. Figure 15 shows the

53

∆t residuals, errors and pulls for the four different ∆t calculations: (a) boost approximation,
(b) improved boost approximation, (c) average τB approximation and (d) exact calculation.
Table 2 shows the mean values and widths after fitting the residuals and pulls of figure 15
to two Gaussians. In order to account for outliers, a third Gaussian has been included with
width fixed to 8 ps for residuals and 8 for pull. The fraction of this third Gaussian is left
free. From the figure and table it can be seen that there is an almost perfect overlap between
(a) and (b), as expected. The only change which should appear is a small (0.2%) overall
shift in the distributions, which is consistent with the numbers shown in the table (although
the statistics is too low to be sensitive to this effect). The RMS for the residual and pull
distributions for (c) is improved with respect to (a) by about 5%, consistent (within errors)
with the estimation before. The bias reduction is difficult to be estimated with the present
statistics, but it is at the level of 1-2%. As expected, the RMS for (d) is, compared to (a),
slightly worse, but the difference is not dramatic (∼ 5%). This is due to the additional
error introduced by the correction term in the exact calculation method. There is also some
indication of bias reduction, at the same level as in (c).

fcore µ1 σ1 µ2 σ2 RMS µ
∆t Residual (ps)

boost approximation 0.681 ± 0.023 −0.124 ± 0.007 0.571 ± 0.012 −0.329 ± 0.019 1.28 ± 0.04 0.80 −0.189
improved boost approx. 0.689 ± 0.022 −0.125 ± 0.007 0.573 ± 0.012 −0.327 ± 0.017 1.30 ± 0.04 0.80 −0.188

average τB approximation 0.660 ± 0.022 −0.117 ± 0.007 0.524 ± 0.011 −0.329 ± 0.016 1.23 ± 0.04 0.76 −0.188
exact calculation 0.623 ± 0.022 −0.115 ± 0.007 0.548 ± 0.012 −0.306 ± 0.021 1.31 ± 0.03 0.84 −0.187

∆t Pull
boost approximation 0.60 ± 0.07 −0.191 ± 0.023 1.00 ± 0.04 −0.48 ± 0.05 1.58 ± 0.06 1.23 −0.31

improved boost approx 0.60 ± 0.08 −0.187 ± 0.023 1.00 ± 0.04 −0.49 ± 0.05 1.58 ± 0.06 1.23 −0.31
average τB approximation 0.72 ± 0.05 −0.202 ± 0.020 0.99 ± 0.03 −0.59 ± 0.07 1.63 ± 0.08 1.17 −0.31

exact calculation 0.66 ± 0.06 −0.157 ± 0.021 0.95 ± 0.03 −0.50 ± 0.03 1.49 ± 0.05 1.13 −0.27

Table 2: Comparison of ∆t resolution function parameters for residuals and pull after fitting
to two Gaussians, for the four different ∆t approximations. In order to account for outliers,
a third Gaussian has been included with width fixed to 8 ps for residuals and 8 for pull. The
fraction of this third Gaussian is left free (values always ∼ 0.015 for residuals and ∼ 0.012
for pulls).

The previous comparison of the different ∆z to ∆t conversions has been redone with more
recent Monte Carlo samples (based on 8.8.0 series) -the previous 36K B− → D0(K−π+)π−

events were produced with releases 8.6.3a to 8.6.5a-. This new check also includes some recent
vertexing bug fixes (not related to the ∆t conversion) not yet available at the time of the
previous tests. We have used now B− → J/ψK− events. Figure 16 shows the ∆t residuals
and pulls for both approximations and their two Gaussian fits with outlier component, and
table 3 summarizes the results of these fits. The net gain in RMS for both, residual and pull
distributions, is cleary visible, and it is at the level of 4%, consistent with the results above.
And there is also a clear reduction of bias, ∼ 4% in residual and ∼ 2% in pull. In the results
shown in table 2 there was not sizeable gain in bias.

It should be noted that the differences between the average τB and the boost approxi-
mations are, on average, small. However, it is not so much on an event-by-event basis. To
ilustrate this effect, figure 17 shows the spread of the ∆t and σ∆t differences between the
average τB and boost approximations for charmonium Monte Carlo events. From the fit to a

54

∆t residual (ps)

en
tr

ie
s

Error ∆t (ps)

en
tr

ie
s

∆t pull

en
tr

ie
s

Figure 15: Comparison of ∆t residuals (top,left), errors (top,right) and pull (bottom) for the
three different ∆t calculations: boost approximation, improved boost approximation, average
τB approximation and exact calculation.

55

∆t residual (ps) τB approx

ev
en

ts

∆t pull τB approx

ev
en

ts

∆t residual (ps) boost approx

ev
en

ts

∆t pull boost approx

ev
en

ts

Figure 16: ∆t residuals (left) and pulls (right) for the average τB (top) and boost (bottom)
approximations. Superimposed are the two Gaussian fits with a third Gaussian describing
the outlier component.

56

fcore µ1 σ1 µ2 σ2 RMS µ
∆t Residual (ps)

average τB approximation 0.648 ± 0.023 −0.101 ± 0.007 0.514 ± 0.011 −0.286 ± 0.020 1.21 ± 0.04 0.831 −0.166
boost approximation 0.664 ± 0.024 −0.104 ± 0.007 0.557 ± 0.012 −0.310 ± 0.022 1.26 ± 0.04 0.860 −0.173

∆t Pull
average τB approximation 0.82 ± 0.04 −0.178 ± 0.015 1.046 ± 0.019 −0.77 ± 0.08 1.81 ± 0.09 1.226 −0.289

boost approximation 0.81 ± 0.04 −0.178 ± 0.017 1.111 ± 0.022 −0.81 ± 0.11 1.84 ± 0.09 1.279 −0.296

Table 3: Comparison of ∆t resolution function parameters for residuals and pull after fitting
to two Gaussians, for the average τB and boost ∆t approximations. In order to account for
outliers, a third Gaussian has been included with width fixed to 8 ps for residuals and 8 for
pull. The fraction of this third Gaussian is left free (values always ∼ 0.013 for residuals and
∼ 0.011 for pulls).

single Gaussian, we obtain a bias of 0.004 ps with RMS 0.19 ps. The RMS of the per-event
errors is determined similarly to be 0.04 ps.

4.5.1 An additional note

In the subsection we discuss some subtleties of the use of Eq. 73 and Eq. 77 for converting
∆z to ∆t.

To derive Eq. 73, we first assume the boost direction of Υ (4S) is along the z-axis. The B
decays with a polar angle θ∗CP with respect to the boost direction. The decay distance along
the boost direction can be derived:

pz = γp∗z + γβE∗

cγBβB = pz/mB =
γp∗z + γβE∗

mB

and

zCP = cγCPβCPtCP = c(γγ∗CPβ
∗
CP cos θ∗CP + γβγ∗CP)tCP

zTAG = cγTAGβTAGtTAG = c(−γγ∗CPβ
∗
CP cos θ∗CP + γβγ∗CP)tTAG ,

where the asterisk represents the center-of-mass system, and we have use the fact that at
the center-of-mass system, β∗

CP = β∗
TAG. Therefore, the distance along the boost axis is

∆L = cγβγ∗CP(tCP − tTAG) + cγγ∗CPβ
∗
CP cos θ∗CP(tCP + tTAG) . (80)

Since we have no way to know tCP + tTAG, we integrate out tCP + tTAG and get the
expectation value

〈tCP + tTAG〉 |∆t = τB + |∆t| . (81)

Combining Eq. 80 and 81, and naively project the distance to the real z-axis (considering
the boost angle θboost ≃ 20 mrad), we get

∆z = cγβzγ
∗
CP∆t+ cγγ∗CPβ

∗
CP cos θ∗CP(τB + |∆t|) cos θboost . (82)

Comparing Eq. 82 with Eq. 77, we found that the latter does not have the factor cos θboost

in its second term. Moreover, the projection in Eq.82 is WRONG. Because Eq.80 is already a

57

spread (∆t)tauB - (∆t)boost (ps)

ev
en

ts

spread σ(∆t)tauB - σ(∆t)boost (ps)

ev
en

ts

Figure 17: Spread of the ∆t and σ(∆t) differences between the average τB and boost ap-
proximations for charmonium Monte Carlo.

58

projection, we cannot project it to another axis by multiplying cos θ. The actual projection
is much more complicated and involves φ angle of B decay. Obviously the better choice
is to measure ∆L along the boost axis. Fortunately this effect is much smaller than the
approximation we take using Eq. 81. See Fig. 18.

1

10

10 2

10 3

10 4

-150 -50 50 150

1

10

10 2

10 3

10 4

-10 0 10

Error Approx 1

Entries

Mean

RMS

 100000

-0.3808E-01

 14.57

microns
Error Approx 2

Entries

Mean

RMS

 100000

 0.2862E-03

 0.8992

microns
Error Approx 2 v.s. cosθ

cosθ
m

ic
ro

ns

-8

-6

-4

-2

0

2

4

6

8

-1 0 1

Figure 18: (a) Errors on ∆z using true ∆t to calculate ∆z with Eq. 82. (b) Errors on ∆z
using true tCP and tTAG with Eq. 80 multiplied by cos θboost. (c) Scatter plot of ∆z errors
(for (b)) versus cos θ∗CP.

To address the issue that whether ∆t is biased using Eq. 72 and Eq. 77, we run 1 million
events using the event generator. We comapre the difference between two ∆t’s and cos θ∗CP

distributions for all events and those survive “acceptance cut”, i.e., at least one B’s final
daughters (charged and neutral) are all within polar angle 17◦ – 150◦ in the lab frame. 759440
events survive the cut.

The results are shown in Fig.19. The mean and rms of δ∆t for all events are 0.000201
ps and 0.198876 ps, and for selected events are 0.000109 ps and 0.198788 ps. Both means
are consistent with zero. The statistics for cos θ∗CP are mean = −0.000565, rms = 0.447005
for all events and mean = −0.000377 and rms = 0.446766. Again, they are consistent with
no bias. I fit the ratios of these two sets of histograms to a linear function. The slopes are
consistent with one.

The conclusions are: (1) there are no biases between ∆t using Eq. 72 and Eq. 77; (2)
there is no evidence that the acceptance can bias ∆t; (3) Eq. 77 is not exactly right, but it
does not change the conclusion.

4.6 Common interface

The access to the vertex tag algorithms can be done, either using their own interface, either
using an special class, VtxTagMaker, available in VertexingTools. The definition of a
common interface would be a more suitable solution but the current differences in design,
implementation and input/output for both algorithms, makes it somewhat difficult. It is

59

0

2000

4000

6000

8000

10000

x 10

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

-2 -1 0 1 2

0

2000

4000

6000

8000

10000

12000

14000

16000

-1 -0.5 0 0.5 1

Entries
Mean
RMS

 1000000
 0.2039E-03

 0.1992

dt1-dt2 (ps)

 16.50 / 92
A0 0.7594
A1 -0.1915E-02

dt1-dt2 (ps)

Entries

Mean
RMS

 1000000

-0.5624E-03
 0.4471

cosθ

 15.16 / 98

A0 0.7594
A1 0.7166E-03

cosθ

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Figure 19: (a) ∆t Difference between using Eq. 72 and Eq. 77. Solid histogram is for all
events. Dashed one is for events that pass the acceptance cut. (b) Ratio of the two histograms
in (a) fitted to a linear function. (c) cos θ∗CP distribution for all events and passed events.
(d) Ratio of the two histograms in (c). Histogram statistics are a little different from those
mentioned in text because of the binning effect.

60

recommended to use this class rather than the specific interfaces [6, 9]. The advantages of
using it are the following:

• the class manages properly the input for tag vertexing, providing a common input for
all algorithms;

• one can switch easily from one to another algorithm;

• defines the default configuration of the algorithms according to our best understanding
of them;

• it defines common modifiers and accessors for all the algorithms;

• gives access to all the possible ∆t approaches;

• gives access to ∆z and ∆t blinding.

The list of candidates for vertexing (charged tracks and V 0’s) as well as the list of
candidates to veto are provided at constructor level:

VtxTagMaker(const BtaCandidate* theB,

HepAList<BtaCandidate>* listOfTracks,

HepAList<BtaCandidate>* listOfV0s,

HepAList<BtaCandidate>* listOfVetos,

bool doUseV0s=true, bool doUseVeto=true,

HepString blindString="");

The build of the final list for vertexing (direct input for the algorithms) is the following:

• if listOfV0s is provided and doUseV0s is true, then the list of V 0’s is made exclusive
(overlapping V 0’s are removed), using as criteria the χ2 probability of the vertex fit;

• candidates appearing in the listOfTracks and not overlapping with any of the above
V 0 candidates are then added to the list. In this way, V 0’s will be used for vertexing
instead of their daughters;

• when the list listOfVetos is provided and doUseVeto is true, candidates in the resulting
list which overlap with any of the candidates in listOfVetos are then removed;

• finally, candidates which have a common track with the fully reconstructed B (theB),
are excluded from the list.

Default configuration of the algorithms is performed at constructor level, and it is the
following:

• the default algorithm is VtxTagBtaSelFit;

• VtxTagBtaSelFit defaults:

61

– make use of the beam constraints (“pseudo-track” and beam-spot constraints),
without beam energy smearing. With this constraint the beam spot used is the
one provided by beamSpot();

– the stopping criteria requires that there are no tracks contributing more than 6
to the total χ2 or than only 2 tracks remain;

– a “good” ∆z (goodDeltaZ, see below) is considered if | ∆z |< 0.3 cm, σ∆z < 0.04
cm and the global χ2 of the fit is < −0.1% (i.e. no χ2 cut);

• FvtClusterer defaults:

– make use of the beam spot constraint. The beam spot used is the one provided
by beamSpotBFlight();

– the χ2 probability cut for track removal is 0.001;

– a “good” ∆z (goodDeltaZ, see below) is considered if | ∆z |< 0.3 cm and σ∆z <
0.04 cm;

The list of modifiers and accessors provided by the interface, with defaults for the ∆t
accessors, are listed in tables 4 and 5, respectively. Names are self-explanatory.

It should be stressed the fact that the default configuration is the one which has been
found optimal when the reconstructed side has been fully reconstructed. In the case of
partial reconstruction these defaults have to be changed. The required changes in order do
not screw-up results are the following:

• disable the beam constraints (“pseudo-track”) via setBeamConstraints(false) mod-
ifier. The beam spot constraint will be still enabled after the above command;

• don’t use the average τB approximation since it requires the momentum of the recon-
structed B. Use the standard boost approximation deltaT(VtxTagMaker::NoCorrection)

or the improved boost approximation deltaT(VtxTagMaker::BoostCorrection) in-
stead.

All the other items of the configuration are common to the case of fully reconstructed events.

Modifiers Default Other values/comments
Common

void setAlgorithm(algType) BtaSelFit BtaSelFit ,Clusterer

void setBeamSpotConstraint(bool) true
void setDeltaZCut(double) 0.3 cm Only used for goodDeltaZ definition

void setDeltaZErrCut(double) 0.04 cm Only used for goodDeltaZ definition
VtxTagBtaSelFit

void setBeamConstraints(bool) true
void setBeamEnergySmearing(bool) false

void chi2JumpCut(double) 6.
void setMinTrk(int) 0

void chi2ProbGlobalCut(double) -0.001 Only used for goodDeltaZ definition
FvtClusterer

void chi2ProbJumpCut(double) 0.001

Table 4: List of modifiers available with the VtxTagMaker interface.

62

Accessors Remarks
Common

HepAList<BtaCandidate>* usedList() List of candidates used in the vertex
HepAList<BtaCandidate>* usedListRefitted() List of refitted candidates used in the vertex

HepAList<BtaCandidate>* initialList() Input list of candidates used for vertexing
BtaAbsVertex* vertex() vertex tag

BtaCandidate* getInitialCP() initial CP candidate
BtaCandidate* getRefittedCP() refitted CP candidate
HepMatrix getCPTagVertexCov() CP-Tag vertex correlation matrix
HepMatrix getTagVertexBSCov() Tag vertex-beam spot correlation matrix
HepMatrix getCPVertexBSCov() CP vertex-beam spot correlation matrix

bool defined() is the vertex defined?
BtaAbsVertex::VtxStatus status() status of the vertex

int nDof() ndof of the fit
double chiSquared() χ2 of the fit

double prob() χ2 probability of the fit
HepPoint position() vertex position

HepSymMatrix positionCov() covariance matrix of vertex tag position
BbrDoubleErr deltaZ() ∆z and it covariance

double deltaZBlind(double) blind ∆z
bool goodDeltaZ() is a “good” ∆z?

BbrDoubleErr deltaT(deltaTtype dTtype=TauBCorrection) ∆t and its covariance
dTtype can be: NoCorrection,BoostCorrection

TauBCorrection,ExactCorrection

double deltaTBlind(double,deltaTtype dTtype=TauBCorrection) blind ∆t
int nK0s() number of K0

S in vertex tag
int nLambda() number of Λ in vertex tag

int nSingleTrack() number of single tracks in vertex tag
int nComp() number of composite objects in vertex tag

int nUsedTrk() total number of single tracks in vertex tag
HepLorentzVector p4CP() four-momentum of the B CP candidate

double getChi2Contribution(BtaCandidate* c) χ2 contribution of a given candidate
VtxTagBtaSelFit

double LzCP() LCP
z

double LzTAG() LTAG
z

HepSymMatrix LzCov() Covariance matrix of LCP
z and LTAG

z

double pHighest() momentum of most energetic object in the vertex
HepLorentzVector p4TAG() four-momentum of B TAG candidate

double pTAG() momentum of B TAG candidate
double phiTAG() azimuthal angle of B TAG candidate
double thetaTAG() polar angle of B TAG candidate
double pstar() momentum of B TAG in center-of-mass frame

Table 5: List of accessors available with the VtxTagMaker interface.

BTaggingTools ntuples [5] make use of this new class to access the vertex tag information.
The default configuration is the same as defined in VtxTagMaker with only one exception:
the definition of “good” ∆z only considers the cut on ∆z, needed for blinding. Al the other
cuts are not applied. V 0’s and vetoes are used with the configuration defined in the following
section. The tcl piece with the current (analysis-7 release) vertex tag configuration is given
below (extracted from BTaggingTools/BTaggingMicroSequence.tcl):

Configuration of tag vertex reconstruction

doVtxTag set f

doFvtClusterer set f

vtxTrackList set GoodVtxTagTracks

vtxV0List set V0sVtxTag

vtxVetoList set gammaConversionVtxTag

useVtxV0 set t

63

useVtxVeto set t

useBeamSpotConstraint set t

useDeltaTCorrection set t

useDeltaTTauBCorrection set t

Configuration of VtxTagBtaSelFit

cutVtxChi set 6.

useDeltaTExactCorrection set f

cutVtxChiProbGlobal set 0.

cutVtxNtrk set 0

doVtxTrackRemoval set true

useBeamConstraints set true

useBeamEnergySmearing set false

Configuration of FvtClusterer

cutFvtChiProb set 0.001

4.7 Comparison among algorithms

Let us first recall the difference between the two algorithms:

1. dropping/stopping criterion: individual track χ2 (VtxBtaSelFit) or global vertex χ2

(FvtClusterer)

2. kinematics information used in VtxBtaSelFit not in FvtClusterer

Both algorithms use a beam spot constraint. The second point is only possible in the
case of fully exclusive B reconstruction, so one has to distinguish performances depending
on the channel under study.

4.7.1 Fully exclusive B reconstruction

This is the case where VtxBtaSelFit uses more information than FvtClusterer and should
therefore be more precise.

Efficiency and χ2 The χ2 probability distributions are different, as shown in figure 20
(left). For FvtClusterer it is significantly more peaked at 0. This is natural since one
does not fit geometrically the genuine B vertex position (due to the charm bias). The
fact that the same distribution for the other algorithm is flatter can be an artifact of
the threshold on the single track χ2 contribution. Figure 20 (right) shows the efficiency
of both algorithms as a function of the track event multiplicity (ChargedTracks). At
low multiplicity VtxTagBtaSelFit tends to be slightly more efficient, but differences
decrease at high multiplicity. The mean efficiency measured in B0 charmonium signal
events is 0.9589± 0.0011 and 0.9383± 0.0013, respectively. And for B0→JΨKS events,
0.9598 ± 0.0018 and 0.9454 ± 0.0021.

Resolution and pulls Figure 21 compares the ∆z residuals and pulls for both algorithms,
using charmonium events. A similar comparison is shown in figure 22. In this case both
distributions are fitted to a double gaussian and the outliers fraction (defined as the
relative number of events lying above 3.5 × σ2) is also shown. An extra quality cut is

64

χ2 probability

VtxTagBtaSelFit (B0 charmonium)

FvtCluster (B0 charmonium)

N tracks in event

VtxTagBtaSelFit (B0 charmonium), no cut p(χ2)

FvtCluster (B0 charmonium)

Figure 20: (Left) χ2 probability distributions and (Right) efficiency as a function of the track
event multiplicity for VtxTagBtaSelFit and FvtClusterer for the B0 reco signal events.

also used: |∆z| < 3 mm and σ∆z < 400µm. It appears indeed that VtxBtaSelFit has
a better resolution and lower tails. And it is also clearly less biased.

Correlations between algorithms Figure 23 (left) shows the correlation between the ∆z
residuals from both algorithms. Figure 23 (right) shows the difference between the ∆z
measured with each algorithm. The distribution can be fitted to two Gaussians, with
∼ 82% for the core component. The RMS is estimated to be 40 µm, with no bias.

4.7.2 Semi-exclusive B reconstruction

This is the case where all the B meson final state particles are not explicitly reconstructed;
however all the other charged tracks in the event come really from the other B, as in B0 →
D∗ℓν̄. VtxBtaSelFit has therefore to turn off the kinematics information part and both
algorithms should give similar results.

Figure 24 shows the ∆z residuals and pulls for both algorithms. Both distributions are
fitted to a double gaussian and the outliers fraction (defined as the relative number of events
lying above 3.5 × σ2) is also shown. An extra quality cut is also used: |∆z| < 3 mm and
σ∆z < 400µm.

Both algorithms give indeed similar results. It is interesting to compare VtxBtaSelFit re-
sults between Fig. 22 and 24 which allows to asses the importance of the kinematic con-
straints

65

∆z (cm)

VtxTagBtaSelFit (B0 charmonium)

FvtClusterer (B0 charmonium)

∆z pull

Figure 21: ∆z residuals and pulls for VtxTagBtaSelFit and FvtClusterer, from Bz char-
monium signal events.

4.7.3 Partial reconstruction

This is the case where all B meson final states particles are not explicitly reconstructed;
however all the other charged tracks in the event do not come really from the other B. As
before, VtxBtaSelFit has therefore to turn off the kinematic information part and both
algorithms should give similar results. As an additional problem , one has to remove in some
way all the tracks which are not candidate to come from the B tag vertex. This can be an
additional source of biases, and it has to be evaluated for each particular analysis.

66

1

10

10 2

10 3

10 4

-20 -10 0 10 20

 311.4 / 58
N .2517E+05
frac .7406
δ1 -.1105
σ1 .5866
δ2 -.4128
σ2 1.583

1

10

10 2

10 3

10 4

-20 -10 0 10 20

 341.7 / 65
N .2480E+05
frac .7663
δ1 -.1321
σ1 .6162
δ2 -.4894
σ2 1.744

1

10

10 2

10 3

10 4

-20 -10 0 10 20

 110.0 / 29
N .2537E+05
frac .8995
δ1 -.2062
σ1 1.109
δ2 -1.268
σ2 2.629

1

10

10 2

10 3

10 4

-20 -10 0 10 20

 161.2 / 32
N .2496E+05
frac .8893
δ1 -.2435
σ1 1.136
δ2 -1.256
σ2 2.919

Figure 22: ∆z residuals and pulls for VtxTagBtaSelFit and FvtClusterer, on fully recon-
structed B0 signal events(B0 → J/ψK0

S
). The box shows the parameters to a double gaussian

fit. The fraction of outliers is also shown: a)-c) VtxBtaSelFit , b)-d) FvtClusterer

67

∆z residual (cm) FvtClusterer

∆z
 r

es
id

ua
l (

cm
)

V
tx

T
ag

B
ta

Se
lF

it

∆z (cm) VtxTagBtaSelFit-FvtClusterer

Figure 23: Comparison among VtxTagBtaSelFit and FvtClusterer: (left) correlation be-
tween the ∆z residuals for both algorithms; (right) difference between the ∆z measured with
each algorithm.

68

1

10

10 2

10 3

-20 -10 0 10 20

 299.8 / 65
N .2233E+05
frac .7298
δ1 -.1168
σ1 .6678
δ2 -.4404
σ2 1.926

1

10

10 2

10 3

-20 -10 0 10 20

 380.1 / 67
N .2193E+05
frac .7224
δ1 -.1350
σ1 .6603
δ2 -.4510
σ2 1.868

1

10

10 2

10 3

10 4

-20 -10 0 10 20

 129.8 / 32
N .2248E+05
frac .8757
δ1 -.1963
σ1 1.105
δ2 -.8523
σ2 2.922

1

10

10 2

10 3

10 4

-20 -10 0 10 20

 155.9 / 32
N .2212E+05
frac .8760
δ1 -.2389
σ1 1.136
δ2 -.8879
σ2 3.028

Figure 24: ∆z residuals and pulls for VtxTagBtaSelFit and FvtClusterer, on semi-
exclusive B0 signal events (B0 → D∗ℓν̄) . The box shows the parameters to a double gaussian
fit. The fraction of outliers is also shown: a)-c) VtxBtaSelFit , b)-d) FvtClusterer

69

5 Primary vertex reconstruction

For many physics analyses and reconstruction tasks, it is necessary to have a more accurate
estimate of the collision point in x and z. For instance, reconstruction of γ and π0 candidates
uses, in many cases, the primary vertex as the point of origin in reconstructing vectors.

The primary vertex is estimated on an event-by-event basis from a vertex fit (for both
two-prong and hadronic events) which uses charged tracks with an impact parameter (with
respect to the beam spot position measured in the previous run with the two-prong DOCA-φ
fit) less than 1 mm in the transverse plane. The window is set to ±3 mm in z. Tracks are
required to have also a minimum transverse momentum of 100 MeV/c, and a maximum total
momentum of 10 MeV/c2, with 20 DCH hits9. Tracks with high χ2 contribution to the vertex
fit are removed until an overall χ2 probability greater than 1% is obtained.

First and second moments of vertex coordinates are accumulated. The mean position is,

〈

xi
〉

=

∑N
k=1 x

i
k

N
, (83)

where N is the number of vertices, and the covariance matrix of vertices distribution is

M ij =

∑N
k=1 x

i
kx

j
k

N
−

〈

xi
〉〈

xj
〉

. (84)

The errors on xi are estimated by
√

M ii/N , and those on σi are σi/
√

2N where σ’s are
along the beam axes. The error on the tilt angles on i-j plane is

σiσj

(σ2
i σ2

j)
√

N
in a small angle

approximation. The nine errors squared can form an error matrix with diagonal terms only.
The primary vertex is computed in production by the VtxProdCreateSequence sequence

(VertexingTools package), module VtxEvent. It makes use of the FvtClusterer algorithm.
Before release 8.6.0, the vertex was reconstructed using the PrimVtxFinder module.

For events where the e+e− collision produces light quarks, the reconstructed vertex is a
good estimate of the true primary vertex. For BB events, where both B mesons travel along
the z axis in lab frame, the z position of the primary vertex will be shifted in the positive z
direction with respect the e+e− collision point, giving an average B decay position (midway
point between the two decays). The resolution is about 70µm in x, y and z for hadronic
events.

Few Monte Carlo plots of resolution...
The primary vertex information can be accessed from eventInfo->primaryVtx().

9This corresponds to the definition of the GoodTracksTight list.

70

6 Beam spot reconstruction and monitoring

The determination of the position and size of the beam-spot (luminous region) is an im-
portant component of many BABAR analyses: D∗ reconstruction, D lifetime and ∆z recon-
struction are standard examples. Details about the physics motivation and reconstruction
methods can be found in reference [10]. In this document we provide a brief summary of
how it is reconstructed as well as we provide some monitoring quality plots. We put special
emphasis in how the beam spot information is used in reconstruction and how it has to be
used for analysis.

In order to accommodate the movements of the PEP-II beam with respect to the BABAR

detector, the position of the collision point at PEP-II is determined from track-based meth-
ods. The apparent size from two-prong events is about 200µm in x (after rotation), 35µm
in y and 0.8 cm in z. The apparent size in the y direction is totally dominated by the track
resolution. A better estimate of σy can be obtained from the knowledge of the luminosity,
the beam currents and the size in x, providing a value of about 4µm, varying within 10%
on a time scale of hours.

6.1 Beam spot determination

Details about how the beam spot is determined can be found in reference [10].
To determine the position, size and rotation of the beamspot, we select well-reconstructed

tracks from two-prong events and fit the distance of closest approach with respect to the
z-axis to a sinusoidal function −x sin φ + y cosφ. The z information can be obtained from
simple geometry with the fact that these two tracks are back-to-back in transverse plane
and are boosted approximately along the z-axis. The beamspot size can be determined from
residuals. The parameter space is then extended to 9 parameters (3 means, 3 sigmas, and 3
rotations). The fitting procedure is linearized so that we can accumulate track information
for a given period of time (typically a run) and approximately maximize the likelihood
function with one matrix operation. Typically this procedure converges in a few runs after a
major changes in beamspot position. We also accumulate the pirmary vertices of two-prong
and multi-hadron events for cross check of beamspot parameters.

The beamspot parameters are stored in the conditions database on a run-by-run basis
with rolling callibration. Since we fit parameters with one linear operation, the initial values
of the parameters have to be close to the final estimation. Otherwise the linear approximation
would not hold. In rolling calibration, the initial condition is taken from the results of the
previous run. During normal data taking, the rolling calibration can keep up the slow
beamspot movement (typically less than 10 µm/hour) mainly due to the diurnal motion of
support tube with respect to the whole BaBar detector.

6.2 Quality of the beam spot determination

The beam spot parameters across the whole year 2000 data are shown in Fig. 25-Fig. 28.
The values are taken from the top layer of the conditions database with sampling time being
5 minutes. The band at the bottom of each plot (labeled C, D and E) indicates the ranges
that differnt SVT local alignment constants are used. From these plots there is no clear

71

correlation between beam spot parameters and local alignment sets. Figure 29 shows the
differences in the x and y beam spot positions for SVT local alignment sets E and D. A shift
of ∼ 9 µ and m∼ 17 µ m for x and y, respectively, is observed.

The major discontinuities are corresponding to machine accesses. A couple of “flat”
regions (the parameters remain constant) across several days are during normal data taking.
This indicates some problem with conditions database.

The errors on the mean are typically of the order of 1 µm on x and y. The histograms
for error and size on y-axis is shown in Fig 30. Although the error on the mean y position
is typically around 1 µm, the beam position can move significantly compared with 1 µm
during a run due to machine operation and diurnal motion. We have not had a reliable way
to examine this issue. Nevertheless, by looking the fluctuation between adjacent runs, we
can get some idea of the order of magnitude of the smearing within a run. Fig. 31 shows the
changes on x and y mean position between adjacent runs. The RMS for y is about 10 µm,
and about 20 µm for x.

The xz and yz tilt angles are, respectively, ∼ 19.6 and 1 mrad.

6.3 Database storage and access

The 10 beamspot parameters determined by rolling calibration are stored in the BaBar
conditions database along with their 10×10 error matrix. Parameters obtained using events
collected during a given time period are stored in a time validity interval that spans the
corresonding event collection period. The unique time-stamp of each event enables users of
this information to obtain the beamspot parameters the correct time interval. By default,
the beamspot parameters provided by PepBeams and EventInfo are those obtained with the
2-prong sample.

6.4 Beam spot size from luminosity measurement

The PEP-II luminosity is given by

L =
IHER ILER

8πe2fc σxσy

, (85)

where IHER and ILER are the individual beam currents, e is the electron charge, fc is the
collision frequency, and σx and σy are the x and y Gaussian widths of the luminous region.
Note that σx and σy are smaller than the single beam sizes by a factor of sqrt2. sigmay can
be extracted from this expression, given a measurement of all the other quantities. Fig. 32
shows sigmax and σy as a function of time during owl shift on September 1, 1999. σy is
seen to be around 4− 5 µm, decreasing as the bunch currents decrease during the course of
each run. Since σy is much smaller than the BaBar vertexing resolution, it is not monitored
online.

Variation of σy within a run...

6.5 Beam spot information for analysis in data and Monte Carlo

At the analysis level the beam spot is obtained from the condition database via eventInfo->beamSpot():

72

...

HepAList<EventInfo>* eventInfoList;

getTmpAList (anEvent, eventInfoList, IfdStrKey(‘‘Default’’));

EventInfo* eventInfo = eventInfoList->first();

BbrPointErr beamSpot(eventInfo->beamSpot());

If you are running on data, the values returned here are those shown in the previous
subsections. We have seen there that the apparent beam spot size in y is determined to be
of the order of 35 µm, while the true σy is estimated to be between 4 and 5 µm. In Monte
Carlo, the beam spot in the condition database is taken from a typical run from the range
5765-8000. The position, withs and xz tilt are:

• position: (0.1,0.33,-0.9) cm;

• widths: (125,4.2,8500) µm;

• xz tilt: -18.8 mrad.

The 4.2 µm for σy is an estimate from luminosity measurement, smaller than the tracking
resolution (rolling callibration). It should be noted that in the Monte Carlo the beam spot
position is generated at a fixed position (no smearing), although the B vertex positions are
well smeared.

The question now is which is the right value of σy to be used for physics analysis. It is
obvious that it will depend on our analysis, especifically whether we are analysing continuum
or B events, and in the case of ∆z reconstruction which algorithm and configuration are we
using.

In order to deal with the different possibilities, there is a set of tcl parameters available
in the BtaLoadBeamSpot object which allows to adapt the beam spot to the analysis needs.
The default configuration is intendeed to be valid for most (if not all) the BABAR analyses:

sigmaY if positive, superseeds the width in y from the condition database. In order to
account for the smaller real size compared to the apparent one, the movement within
a run (following the previous results) and the small yz tilt angle, the default value has
been set-up at 10 µm;

errorYPos if positive, an smearing on the y position is applied in the Monte Carlo. This
is done in an attempt to account for errors on the y mean position. The default value
is 5 µm;

errorXPos same as before but in x. Default is -1 (no smearing);

errorZPos same as before but in z. Default is -1 (no smearing);

sigmaYBFlight if positive, defines the width in y for the beam spot accounting for the
flight of the B as well as the intrinsic beam spot spread. This new beam spot is
available via eventInfo->beamSpotBFlight(). The default value is 30 µm, quadratic
sum of the B flight component (∼ 25 µm) and the intrinsic beam spot spread (same
as before, 10 µm). Parameters errorYPos, errorXPos and sigmaYBFlight also apply
here.

73

offsetY defines an offset in the y position of the beam spot. To be used for systematic
studies. Default is 0;

offsetX same as before but in x;

offsetZ same as before but in z;

A particular application of these two beam spots, beamSpot() and beamSpotBFlight(),
is the vertex tag reconstruction. FvtClusterer and VtxTagBtaSelFit in partial reconstruc-
tion have to apply the beam spot constraint directly to the tagging B, therefore the beam
spot to be used has to account for the B flight. Meanwhile, VtxTagBtaSelFit in full recon-
struction applies the constraint directly to the Υ (4S) decay point (in fact, it makes use of
the B momentum to translate it to the tagging B vertex), therefore the standard beam spot
can be used in this case. This operation is, however, transparent for the user.

The estimation of 25 µm RMS as effect of the B lifetime is similar to that used in section
4.5 to estimate the impact in terms of RMS of the assumptions made in the boost approx-
imation. The transverse flight of the B meson can be written as ∆y = βcms

CP sin θcms
CP ctCP .

Taking into account the Υ (4S) → BB angular distribution and assuming no polar angle bias,
〈sin θcms

CP 〉 = 0, so 〈∆y〉 = 0, as expected. The B lifetime component can then be extrated
from the RMS, 〈sin2 θcms

CP 〉 = 4/5, therefore

√

〈∆2y〉 ≈ βcms
CP 〈sin2 θcms

CP 〉1/2〈ctCP 〉 ≈ 0.057cτB ≈ 25µm (86)

Generator level charmonium events have been used to check this estimation. Figure 33 shows
the distance between the B decay vertex and the Υ (4S) production point. The RMS of the
distribution is about 25 µm. However, it is clear that the distribution is highly non-Gaussian.
If we attempt a single Gaussian fit (in order to estimate the RMS) to that distribution, χ2

and likelihood approaches provides significantly different results, ∼ 15 µm for the former, ∼
25 µm for the latter. As in the beam spot constraint we use a Gaussian approach for the
meaning of the width induced by the B flight, one could rise the question of which is the
most appropiate estimate, 15 or 25 µm. Using B0 → D∗−ℓν it has been verified that there
is no sizeable difference when using either of both values (see for instance [23]). Therefore,
as default value we have adopted finally 25 µm (30 µm when accounting for the intrinsic
width).

74

500

1000

1500

2000

2500

3000

x
po

si
tio

n
(u

m
)

2800

3000

3200

3400

3600

y
po

si
tio

n
(u

m
)

-1.5

-1.25

-1

-0.75

-0.5

z
po

si
tio

n
(c

m
)

Figure 25: Mean positions on x, y and z axes, respectively.

0

2

4

6

8

10

er
ro

r
x

(u
m

)

0

1

2

3

4

er
ro

r
y

(u
m

)

0

100

200

300

er
ro

r
z

(u
m

)

Figure 26: Errors on mean positions.

75

0

50

100

150

200

250

si
ze

 x
 (

um
)

0

20

40

60

si
ze

 y
 (

um
)

0

0.2

0.4

0.6

0.8

1

si
ze

 z
 (

cm
)

Figure 27: Apparent sizes of the projections on three axes.

-25

0

25

50

75

ro
t o

n
xy

 (
m

ra
d)

-1

0

1

ro
t o

n
yz

 (
m

ra
d)

-22

-21

-20

-19

-18

-17

ro
t o

n
zx

 (
m

ra
d)

Figure 28: Major axes tilt angles projected on three planes.

76

Figure 29: Dependence of x and y beam spot positions on SVT Local Alignment (sets E -
D).

0
1000
2000
3000
4000
5000
6000
7000
8000

0 1 2 3 4

ID

Entries
Mean

RMS

 1000000

 75744
 0.9812

 0.5348

err Y (um)

ID

Entries
Mean

RMS

 1000000

 75744
 32.10

 2.894

size Y (um)

0
1000
2000
3000
4000
5000
6000
7000
8000

10 20 30 40 50

Figure 30: Error on the mean y position and apparent size.

77

0
20
40
60
80

100
120
140
160
180

-100 -50 0 50 100

fluctuation in x

ID

Entries
Mean

RMS

 10

 2905
 0.6362E-01

 20.24

um
fluctuation in y

ID

Entries
Mean

RMS

 20

 2905
-0.2397

 10.31

um

0
20
40
60
80

100
120
140
160

-40 -20 0 20 40

Figure 31: Changes of mean beam position between adjacent runs.

Figure 32: Top: The measured horizontal beamspot size, σx, as a function of time during
owl shift, September 1, 1999. Bottom: The vertical beam size, σy, calculated from σx, the
luminosity, and the beam currents.

78

yB-yUps mc truth, χ2 fit

ev
en

ts

yB-yUps mc truth, Likehood fit

ev
en

ts

Figure 33: y distance between the B decay vertex and the Υ (4S) production point at
generator level. Fits are to a single Gaussian, using χ2 (top) and likelihood (bottom) fits. .

79

A Transformation from track helix to X-P representa-

tions

The transformation from the X-P representation to the helix parameters is:

d0 =
−xpx + ypy

p⊥
(87)

φ0 = tan−1 py

px

(88)

ω =
1

p⊥
(89)

z0 = z − pz(xpx + ypy)

p2
⊥

(90)

λ = tan θdip =
pz

p⊥
(91)

where p⊥ =
√

p2
x + p2

y is the transverse momentum.
Using the difNumber’s class, the derivatives needed are also obtained.

80

B Doca calculations

81

References

[1] BABAR Analysis Document # 130, Performances and control samples of the BABAR

Vertexing.

[2] Statistical and Computational Methods in Data Analysis, Siegmund Brandt, North
Holland Publishing.

[3] Data Analysis and Kinematic Fitting With the KWFIT Library, Paul Avery, CSN 98-
355. 1998

[4] R. Faccini, F. Martinez-Vidal Vertexing/Kinematic Fitting User’s Guide,
http://www.slac.stanford.edu/BFROOT/www/Physics/Tools/Vertex/VtxGuide/index.html

[5] BABAR Analysis Document # 119, B Tagging in BABAR: Status for the Spring 2001
Conferences.

[6] F. Martinez-Vidal VtxTagBtaSelFit: a vertex tag reconstruction tool. User’s Guide,
http://www.slac.stanford.edu/BFROOT/www/Physics/Tools/Vertex/VtxGuide/VtxTagBtaSelFit.html

[7] P Billoir, R Fruhwith and M Regler , Nucl. Instr. Meth. A 242 (1985) 115-131

[8] P Billoir, S. Qian , Nucl. Instr. Meth. A 311 (1992) 139-150

[9] S. Plaszczynski, FastVtx How-To,
http://www.lal.in2p3.fr/recherche/babar/Analyse/FastVtx/HowTo/index.html

[10] BABAR Analysis Document # 13, Beam spot determination and use in BABAR.

[11] S. Plaszczynski, Tagging/vertexing correleations at sin 2β workshop, 3rd Nov 2000.

[12] B. Dunwoodie et al, BABAR Analysis Document # 106, Study of material interactions
with gamma conversions and protons.

[13] G. Raven, D∗− − D0 vertexing in B0 → D∗−ℓν events, talk at sin 2β WorkShop, 3rd
November, 2000,
http://www.slac.stanford.edu/BFROOT/www/Physics/CP/beta/Meetings/03Nov00/S2bWorkshop00.html

[14] S. Meztler, BABAR Analysis Document # 65, Measurement of B Lifetimes at BABAR.

[15] Bill Dunwoodie, private communication.

[16] Art Synder, ∆z vs ∆t,
http://babar-hn.slac.stanford.edu:5090/HyperNews/get/recoTracking/386/4.html

[17] D. Kirkby, Generator Level Studies for B B̄ Mixing,
http://www.slac.stanford.edu/∼davidk/BBMix/GenStudy/

[18] BABAR Analysis Document # 14, Measuring the PEP-II Boost.

[19] Presentations at the Forum meeting on May 16th (200),
http://www.slac.stanford.edu/BFROOT/www/Physics/Forum/forum/phonemeetings/forum 16may00/doc.html

82

[20] A. Soffer, Beam parameters in data and Monte Carlo, talk at sin 2β WorkShop, 3rd
November, 2000,
http://www.slac.stanford.edu/BFROOT/www/Physics/CP/beta/Meetings/03Nov00/S2bWorkshop00.html

[21] Ch. De la Vaissiere et al., Lifetimes with full B reconstruction, BaBar Note # 436
(1998).

[22] R. Muller-Pfefferkorn, R. Waldi, BaBar Note # 373 (1997).

[23] http://babar-hn.slac.stanford.edu:5090/HyperNews/get/VertexTools/173/1/1/1.html

[24] An example is the event 160029/c6888dd3:H reported by Art Snyder,
http://www.slac.stanford.edu/ snyder/badVertex-160029-c6888dd3.html

83

