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Measurement of the I';; /T4

Branching Ratio of the Z by Double
Hemisphere Tagging

DELPHI Collaboration

Abstract

Two measurements of I'y;/T',q are presented. Both measurements use about
250000 7 decays taken with the DELPHI detector in 1991 and rely mainly on
the precision of the microvertex detector. One tagging method is as simple as
possible so that background rates can reliably be predicted by Monte Carlo. The
other one uses a more involved tagging technique and reduces the Monte Carlo
dependence as much as possible. Combining both results, I'y5/['4q is found to be
0.2209 + 0.0041 (stat.) + 0.0042 (syst.) £ 0.0018 (I'.;).



1 Introduction

The ratio of the b quark partial width of the Z° to its hadronic width is a particularly
interesting quantity in the Standard Model. The propagator corrections that are measured
with great precision elsewhere [1] largely cancel and only corrections to the Zbb vertex
remain [2]. With a precise measurement of R, = [';;/1'14q the top quark mass can be
predicted essentially without residual model dependence.

In this paper we present two measurements with the DELPHI detector at LEP using
about 250000 hadronic Z° decays taken in 1991.

Both measurements take advantage of the DELPHI microvertex detector which allows
a highly efficient separation of b and light quark events. The fraction of b events and their
tagging efficiency are measured in both cases simultaneously by comparing the numbers
single and double hemisphere tagged events.

The first method which is similar to an analysis published by the ALEPH collaboration
[3] uses only the significance of the impact parameters of charged tracks. Since this method
is rather simple, the background from light quarks can be estimated reliably from a Monte
Carlo simulation.

The second method is constructed to have reduced Monte Carlo dependence. As
explained later this needs an extremely pure b sample in the limit of very hard cuts. For
this reason a more elaborate procedure combining event shape and microvertex variables
in a multivariate analysis is used.

The outline of this paper is as follows. After a brief description of the DELPHI detector
and the track and event selection, the main features of the two analysis are given. This is
followed by a section explaining the combination of the two results and by our conclusions.

2 Track and Event Selection

The DELPHI detector has been described in detail elsewhere [4]. Therefore we shall
mention here only the main features of the vertex detector (VD) which is essential to our
analysis.

The vertex detector in the 1991 configuration was formed by 3 concentric shells of
silicon strip detectors at radii of 6.5, 9 and 11 cm respectively. It covers the central region
over a length of 24 cm and defined an angular acceptance of 27° — 153%, 37° — 143° and
42° — 138° for hits in one, two or three layers. Each layer was composed of 24 azimuthal
modules with about 10% overlap in azimuth and each module consisted of 4 plaquettes
along the beam direction. The intrinsic r¢ resolution per layer, including alignment errors,
has been evaluated to be 8um.

The track and event selection was slightly different in the two analysis, however the
gross features are the same. Charged tracks were required to be well measured in the
DELPHI tracking system. For the measurement of impact parameter related variables,
they were only used if they had at least two hits in the VD. Neutral showers in the elec-
tromagnetic calorimeters were used to define hadronic 7 decays and for the measurement
of event shape variables. To select hadronic 7 decays a minimum number of 5(6) charged
tracks and 10(20) GeV of seen energy were required in first (second) analysis. To ensure
that most tracks were well contained in the VD acceptance it was also required that the
cosine of the polar angle of the thrust axis was smaller than 0.75.



3 Significance Analysis

This method is based on the fact that the b and b quarks Z° from decays (and the
corresponding heavy hadrons) are normally produced in opposite directions. On dividing
such an event into 2 hemispheres (e.g. by the thrust axis), each will in general contain
one b hadron.

If with some tag one can select a pure b flavour sample in one hemisphere, it is possible
to find the efficiency of this selection and the fraction of bb events in the initial sample in
a model-independent way by comparing the number of selected single hemispheres with
the number of events in which both hemispheres are selected.

In practice the situation becomes more difficult because the background from the other
flavours cannot be fully suppressed and thus should be subtracted properly. Additional
problems arise from the fact that the hemispheres are not absolutely independent and the
tag in one hemisphere biases the efficiency in the other, though this bias is small.

These statements may be expressed in the following form. If with some tag the effi-
ciencies to select different flavours in one hemisphere are ¢, €. and ¢, (where ¢ stands for
(uds) quarks, which are not separated) and the efficiencies to select events in which both
hemispheres are tagged are ¢, ¢, and ¢, one can write:

Ry = Rb'éb—l-Rc'éc—l-(l—Rb—Rc)-éq (1)
Rp = Ry-¢+R.-c.+(1—Ry—R.)-e,
~ Ry-{e+p-(6—€)}+ R+ (1—Ry— R.)- €. (2)

In these equations Ry is the fraction of tagged hemispheres, Rg the fraction of events in
which both hemispheres are tagged and Rj and R, the fractions of Z° — bb and Z° — c¢
events respectively in the initial sample. It is supposed that hadronic decays of the Z°
consist of bb, cé and light quark final states, so that the fraction of the light quarks may
be written as R, = (1 — Ry, — R.). The event efficiency for the b flavour, €], is expressed
as €, = € + py - (€, — €;), which takes into account the correlation between hemispheres
pp- This form comes from the definition of correlation p = w, which in the
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given case leads to p, = E;%:Eb). For ¢ and uds flavours the tag efficiencies ¢. and ¢, are
small enough that the corresponding correlations do not influence R, and ¢, and thus are
not included in the equations above.

From eqns. 1 and 2 one can extract the fraction R, and tagging efficiency ¢, provided
the values €., ¢, p, and R. are known. The value of R, can be taken from the world
average results [1], while €., €,, py are extracted from the Monte Carlo. If the b purity of
the tagged sample is high, the dependence on Monte Carlo is small and may be included
in the systematic uncertainties. For the correct assignment of the errors to the measured
values of R, and ¢, the correlation of the variables Ry and R which are not independent
have been taken into account.

3.1 The Tagging Technique

For the tagging of b flavour in hadronic decays of Z° we use the probability method,
proposed originally in [3]. It is based on the fact that, because of the non-zero lifetime of
hadrons with heavy flavour content, tracks of particles from decays of such hadrons have



large positive ! impact parameter with respect to the primary vertex while tracks from

the primary vertex have impact parameters which are smaller in absolute value and may
be either positive or negative with the same frequency.

For the reconstruction of the primary vertex and in the following analysis, at least 3
tracks with more than one hit in the vertex detector were required. The primary vertex
was reconstructed in every event using beam spot information as a constraint. The rms
resolution of vertex reconstruction is around 50 pm for light quarks and 85 pum for the b
quark. The poorer resolution for the events with a b quark is mainly due to the tracks from
the secondary vertices which cannot be completely removed from the fit of the primary
vertex.

The negative significance distribution, where the significance is defined as the impact
parameter divided by its error, reflects mainly the detector resolution and is used to build
the probability function P(Sg), which is by definition the probability for tracks from
the primary vertex to have an absolute significance Sy or greater. Mathematically this
function is obtained for negative values of significance by integration of the negative sig-
nificance distribution over the range below Sy, and assuming that for positive significance

P(Sp) should be the same:

o= { B B9 < o

where p() is the probability density function of the significance distribution, which is
also called the resolution curve. Additionally, to suppress tracks from the decays of b
hadrons which remain due to the wrong sign assignment to the impact parameters, for
the construction of p(S) only events which pass an anti b cut P > 0.1 are used. The
definition of the variable Pi will be given later. Here we just note that in the simulation
this cut reduces the fraction of b events in the sample to 6.5 %.

By definition, P(Sp) has a flat distribution for tracks from the primary vertex, while
for tracks from the secondary vertices the distribution peaks at low probabilities.

Using the probability function, which is calculated separately for tracks with 2 VD
hits and more than 2 VD hits, one can compute the probabilities for all tracks in the event
according to their values of significance. After that, for any group of N tracks (which
may be tracks from the total event or from one hemisphere) the N track probability is

defined as:
Py =11- Z —Inll)? /5!, where 1I = HP (4)

i=1
This variable gives the probablhty for such a group of N tracks with the observed values
of significance to all be from the primary vertex. A group of tracks from the primary
vertex should have a flat distribution of Py, provided the significances of these tracks
are uncorrelated. If the group includes tracks from secondary vertices, the distribution
has a peak at low values of Py. This is illustrated in fig. 1, where the distributions of
P} for different flavours are shown. Pf is computed using eqn. 4 for all tracks of the
event with positive significance. As one can see, the distribution of Pf for light quarks is
approximately flat, while for b quarks it has a sharp peak at 0.

!The sign of the impact parameter is defined with respect to the thrust axis. It is defined to be positive
if the thrust axis is crossed in the direction of the track.
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Figure 1: Distribution of event probability P for tracks with positive impact parameters,
for light quark events (a), charm quark events (b) and b-quark events(c) as obtained for

MC.



The variable P with the cut P# > 0.1 was used to obtain a b reduced sample of
events, which one needs to construct an undisturbed resolution curve. For the hemisphere
tag another tagging variable, Py, was used. Pp is defined as the probability, computed
using 4, for all tracks in one hemisphere, regardless of the sign of the impact parameter. It
was found that this tagging variable gives almost the same efficiency for a given purity as
the probability computed with only tracks of positive significance (Pj), but P produces
an additional correlation between hemispheres, because for the definition of the sign of
impact parameter the common thrust axis was used. A cut of § < 2.5 mm was applied
to reduce the background from K° and light hyperon decays. For the measurement of
Ry, the selection cut —log(Py) > 2.5 was applied. This gives 89% purity of the tagging
sample with a selection efficiency for b flavour events of 23% (Monte Carlo estimates).

3.2 Determination of the Resolution Function

The resolution function plays a crucial role for the method of tagging and for correct
determination of all values extracted from Monte Carlo. In this analysis the resolution
function was determined using the data only and the Monte Carlo events were forced to
have the same distribution as the data. This was achieved by the following steps.

e An analytical parameterization was found which describes the significance distribu-
tion with reasonable accuracy. It was checked not only for the spectrum integrated
over all tracks, but also for subsamples with different momenta. All coefficients for
it were extracted directly from a fit to the data.

e The errors both for data tracks and for simulated tracks were assigned in the same
way depending on the track parameters.

e The simulated tracks were smeared around their “true” position (i.e. around the
generated position of the parent vertex) according to the parameterization obtained.

This procedure should give the same distributions of significance for data and Monte
Carlo, provided the distributions of the track parameters (momentum, polar angle etc...)
are the same.

A comparison of the data and simulation resolution functions obtained by this tech-
nique is shown in fig. 2. Good agreement between data and Monte Carlo simulation was
obtained practically over the whole range of significance values.

3.3 Estimates of Efficiencies and Correlations

For the measurement of I'y; , a cut —log,o(Py) > 2.5 was used. The values of ¢, ¢,
py with this cut were extracted from Monte Carlo simulation and the possible sources of
uncertainties were included as systematic errors.

The value of ¢, was found to be:

e, = (0.419 4 0.010(stat.) 4 0.038(syst.)) - 1072 (5)

The first error in 5 comes from limited Monte Carlo statistics; the second is systematic.
The different sources of systematic error are given in table 1. The systematic error due
to uncertainties in the resolution function was estimated by varying the values of the
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Figure 2: The ratio of significance distributions of Data and simulation for tracks with
negative impact parameters

parameters used to describe the resolution within the error limits obtained from the fit of
the resolution function.

Long-lived particles (K, A) and secondary interactions (including conversions of v —
ete™) are two of the main reasons for light quark background, responsible for about
40% of the total number of tagged light quark events. The systematic error from these
sources was obtained supposing 20% uncertainty in the production rate of these long-lived
particles (this number was obtained from the direct comparison of data and Monte Carlo).

The uncertainty from the difference in VD efficiencies between data and Monte Carlo
was also included in the systematic error, though it is rather small.

Source of systematics Ae, x 101
Resolution function 1.74
K°, Hyperons, v — ete™ 3.40
VD efficiency 0.30
Total 3.83

Table 1: Systematic errors of light quark efficiency ¢,

The efficiency to tag Z° — c¢ was found to be:
. = (2.16 £ 0.04(stat.) £ 0.15(syst.)) - 1072, (6)
The sources of systematic error are listed in table 2. The resolution function contribu-

tion was estimated as for the light quark background. The efficiency of tagging ¢ quarks

6



depends on the relative production rate of D¥ and D° because the lifetimes of these two
mesons differ. The relative production rate in ete™ collisions was taken from data with
/5 below the bb threshold [5], which excludes any contamination of b flavour, and was
varied by 20%. The part of the systematic error which comes from the charm hadron
lifetime uncertainties was obtained by varying them within error limits taken from [5].
To estimate the uncertainty due to charm decay multiplicity, the values and errors of the
average charge multiplicity for different mesons were taken from experimental measure-
ments [6]. The uncertainty due to the fragmentation function is relatively small and was
estimated by varying the mean energy of charmed mesons within error limits from [7].

Source of systematics Ac, x 10%
Resolution function 7.2
D*/D° production rate 8.4
D lifetime 7.0
Charm decay Multiplicity 6.5
Fragmentation 2.5
Total 14.8

Table 2: Systematic errors of charm quark efficiency e,

The correlation between hemispheres occurs due to polar angle acceptance, to the fact
that the beamspot constraint is common for both hemispheres, to the common primary
vertex which was not so well reconstructed for events with long-lived b hadrons and to
hard gluon emission in 7 decay which results in many-jet events and may boost b hadrons
into the same hemisphere.

The value of pj together with its systematic uncertainties was again determined from
the Monte Carlo simulation:

py = (—0.13 £ 0.37(stat.) £ 0.18(syst.)) - 107> (7)

As one can see, the statistical error dominates in the determination of py. The sys-
tematic error includes the influence of the resolution function, the difference in the VD
efficiency between data and Monte Carlo, a 10% change in the beamspot size (which cor-
responds to its stability and the accuracy of its determination) and a 6% variation of the
errors of the primary vertex position (which corresponds to the maximal difference be-
tween data and Monte Carlo in the accuracy of primary vertex reconstruction for samples
with different fractions of b events). The change of the lifetime of b hadrons may change
the value of the correlation between hemispheres due to poorer primary vertex reconstruc-
tion and the systematic errors also include a contribution from varying the mean b hadron
lifetime within current world average value (7, = 1.521 +0.034 [§]). The systematic error
from hard gluon emission, which may boost the two b hadrons into the same hemisphere,
is estimated to be 20% of the effect in the Monte Carlo. This number is deduced from the
uncertainty in a, and from the difference in the prediction of the Lund parton shower and
matrix element model. In addition to these sources the cut on the thrust axis direction
~ |cosOy,| — was varied from 0.65 to 0.85. With this variation the correlation factor p,
(see eq. 7) did change from -0.4 to 2.4 % but the variation of Ry is small (0.0007) and
consistent with statistical fluctuations.



Table 3 shows the influence of the different sources of systematic error in the evaluation

of py.

Source of systematics | Apy x 10*

Resolution function 10.3

Beam-spot size 9.5

Vertex-error estimate 8.7

VD efficiency 2.4

b-lifetime 7.0

Hard gluon emission 1.3

total 18.1

Table 3: Systematic errors of correlation factor p;

3.4 Results

For the measurement of R, the only remaining unknown parameter is R.. It was taken
from the value averaged over all LEP experiments [1]: R, = 0.171 £ 0.014. After the
substitution of all values of efficiencies and correlation in eqns. 1 and 2 the following
results were obtained:

¢ = 0.2354 + 0.0043(stat.) + 0.0036(syst.) (8)
Ry, = 0.2201 4 0.0040(stat.) £ 0.0044(syst.) + 0.0019(T .z syst.).

In eqn. 8 the systematic error coming from the value of I'.; is separated from all other
sources. A change in the value of R. would change Ry: AR, = —0.14 x (R. — 0.171).

The list of systematic uncertainties is given in table 6. It includes not only the errors
discussed above from light and charm quark efficiencies and the correlation factor, but
also the error due to a small bias towards bb events in the selection of hadronic Z decays.

The results in 8 were obtained for the probability cut —log,o(Pg) > 2.5 which was
selected to minimize the total error of R,. The dependence of different error sources on
the probability cut is shown in fig. 3. Figure 4 shows the variation of R, when changing
the tagging cut. As one can see, there is no systematic dependence of the result on the
value of the cut, but with variation of the cut the background content changes from 45%
to 4% and the correlation factor changes from +1.5% to —0.5%. We consider this as a
rigorous test of the procedure for the evaluation of efficiencies and correlations.

In the significance distribution there is an unavoidable contribution from the tracks
from the decays of b hadrons which changes the resolution curve and hence may change
the final result. To check the influence of this effect on the obtained value of Rj, the cut
on P, which was used to select the sample of events with reduced contents of b hadrons,
was varied from 0.05 to 0.50 and the complete analysis was repeated with the resolution
functions determined with the different cuts on Pf. The variation of the cuts changes
the content of b flavour in the sample of events used for calibration from 12% to 3.5%,
but the variation of Ry is small (around 0.0013) and well within the expected uncertainty
coming from the variation of the parameters of the resolution function.
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Figure 3: Errors of the measurement of ['y; /I'.4 as a function of the cut on —logyy Py

0.26

rbb/ rhud

0.25

0.24

0.23

0.21

|

0.19 L L L1 ‘ L1 L L ‘ L L L L ‘ L L L L ‘ L L1 L ‘ L1 L L

0.2

[N
=
o
N
I
3
w
w
3
IN

Figure 4: The value of T'y; /I'j.q as a function of the cut on —log;q Py Both the total
errors (narrow bars) and uncorrelated ones relative to the cut —logyo Py > 2.5 (wider
bars) are shown.



In 1991 DELPHI took data at 7 different centre of mass energies around the Z°
peak. The difference between the value of Ry for different energies of the colliding beams
and its value at the Z° peak (91.2 GeV) has also been measured. This difference is
not sensitive to any of the systematic effects mentioned above and the precision of the
estimate depends only on the available statistics. The small changes in efficiencies for
different centre-of-mass energies were taken from the Monte Carlo. The results obtained
are shown in fig. 5 and in table 4. The theoretical expectation of AR, was calculated
using the program ZFITTER [9]. As one can see, the results are consistent with the
Standard Model prediction.

Energy (GeV) 885 [ 89.5 [ 90.2 | 92.1 | 93.1 | 93.7
Ry(E) — Ry(91.2 GeV) x102 | -2.69 | 0.31 | -0.62 | -0.17 | -0.37 | -0.78
Error (x102) 1.33 | 1.33 | 0.81 | 0.60 | 0.93 | 0.97

Table 4: The difference Ry(F) — Ry(91.2 GeV) for the significance analysis
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4 Multivariate Analysis
This analysis is optimized to reduce as much as possible the Monte Carlo dependence. A

more detailed description of the method including some variants of the method presented
can be found in [10].
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4.1 Principle of the method

In this analysis the hadronic hemispheres are classified into three “flavours”: uds, ¢ and b.
The u, d and s flavours were merged in a single uds light “flavour”, since information on
strange hadrons was not available and the tagging variables have very similar distributions
for the three flavours.

4.1.1 Compositions and Classification Matrix

The aim of the tagging algorithm is to classify hadronic events into N tags or categories,
where Nr is greater than the number Np of separated flavours. Let C be the tagging
probability of an event of flavour [ into the category I (I = 1,...,Np and [ = 1,..., Np).
The two dimensional array, C} (hereafter called classification matriz C’) is the same for
both hemispheres. Except for very hard gluon emission, the quark and the antiquark are
produced in opposite hemispheres; 2, therefore the same flavour should appear in both
hemispheres.

The tensor of the observables Dy, (I,.J = 1,..., Nr), is defined as the fraction of events
tagged as [ and J for hemispheres 1 and 2 respectively. It is multinomially distributed. If
the hemispheres are independent, the expected fraction of events T7; can be written as

Try =3 CiChR (/,J=1,..,Nr) (9)
1

where [, is the flavour fraction for a given sample. Ry is the branching ratio we want to
extract.
The minimization of the objective function G(C,x), defined as

G(C,l’) = ZZ(DIJ—TIJ)V_I(D[/J/ —TI/J/) (10)
1J 1y
where V' is the covariance matrix of the Dj; elements, allows us to determine simultane-
ously the classification matrix ' and the composition of R;.

The fit solution has to be compatible with the constraints: Y, Ry = 1, 3, O} =1 for
all values of [. A method of Lagrange multipliers is appropriate to deal with this problem
[11]. The tensor itself has to obey the normalization condition Y ;; D;; = 1 with the
optional requirement of symmetry D;; = Dyj.

V' is a singular matrix due to the normalization condition. However, if one of the Dj;
elements is excluded, a new diagonal covariance matrix V* can be defined [12] and the
objective function is reformulated as

2
G(C, ) :Z(D”U#”) (11)
1J 1J
where the Dj; elements are now considered independent with Poissonian errors, oy;.
The problem cannot be solved if the number of observables (N,) is less than the
number of unknowns (N,). We have for a given Ng and Ng, N, = Np(Np +1)/2 — 1,
N, = NyNg — 1. For example, for Ny = 3, Ny must be at least 6.

2 According to simulation, the fraction of bb pairs produced in the same hemisphere is 0.02.
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4.1.2 The Rotation Degeneracy

The solution of the above described fit is not uniquely defined since there is a degeneracy
inherent in the tensor parameterization. Let us introduce the set of vectors V; whose three
components are (C¥¥/ R4, C5\/R., C}\/Ry). Each tensor element T;; can be expressed
as the scalar product T7; = \_/} . VJ. The scalar product is invariant under rotations in the
space where the vectors are defined. The vector U defined as

0= szVI — (v/ Ruass \/Res [ R) (12)

can be interpreted as a composition vector of unit length. U and the set of V; can be
viewed as a rigid body. Once a particular solution has been found, other solutions may be
generated by moving this rigid body according to three degrees of freedom; two degrees of
freedom could be the position of the extremity of U on a sphere of unit radius, the third
one an internal rotation around the U axis.

The degeneracy is removed in the b sector if two or more estimates of the C} elements
(hereafter denoted by X?) are found. Let us define a modified objective function G'(C, x)
in which the estimates X} are introduced

G'(C,z) = G(C,x) + Z(C?;izx?)z (13)

where ('} are the same (' matrix elements as in function G(C,z) and [ only runs over the
X! considered. The o7 are errors on the X? estimates. The remaining degeneracy in the
other sector can be removed, for instance, by fixing the R, to the Standard Model value.
This constraint has no effect on any parameter of the b sector.

4.2 Hemisphere Tagging

The tagging algorithm can be viewed as a technique to distribute the events with different
flavours in a set of hemisphere categories. Multidimensional analysis has been chosen to
provide a more efficient separation than a cumulative set of cuts. The details of the
technique can be found in [13] and [14].

4.2.1 Vertex Reconstruction of Hemispheres

Each event is subdivided into two hemispheres according to the sphericity axis. The
particles are grouped in jets using the LUND algorithm (LUCLUS) with d;.;,, = 2.5 GeV
and the jet direction is given by the internal thrust axis. All particles assigned to jets
making an angle of less than 90° with the sphericity axis are attributed to hemisphere
one, the other ones to hemisphere two. In order to decrease correlations between opposite
hemispheres, a primary vertex is computed on each side with an iterative procedure which
includes all the charged particles of the hemisphere. If the fit probability of the global y*
is less than 0.05 the particle which contributes with the largest value to the y? is removed,
and a new vertex fit is attempted. The process continues until a probability greater than
0.05 is obtained or only two particles remain.

The beam spot position and dimensions were measured fill-by-fill. This information
has been used as a constraint in the vertex fit on both sides. The beam spot size in

12



x was around 150um 3. In y it was less than 50um. The inclusion of this constraint
increases the discriminating power of the tagging, but it represents a common feature of
the hemispheres. However, the inclusion of the beam spot constraint does not seriously

spoil the decorrelation of hemispheres.

4.2.2 Description of the Variables and Tags

The multidimensional analysis is based on a set of 12 discriminant variables per hemi-
sphere. One variable ( boosted sphericity) is computed with momenta only, the remainder
use the reconstructed particle trajectories near the interaction point. Three of them are
connected to the y? fit of vertices associated with various sets of particles. Three are
distances between “candidate secondary vertices” and the primary vertex, and are sensi-
tive to decay lengths. Three variables are different counters of secondary particles, and
finally two variables are estimates of the total energy and P? associated with secondary
particles. A full description of these cuts and variables can be found in [14].

The probabilities p.4s, p. and p, to observe the 12 values of the variables for each
hemisphere of an event are computed from model distributions taken from simulation. The
logarithm of these three probabilities, called hereafter “class-likelihoods” (Lygs = In pygs,
L.=1n p.and L, =1In py), are the basis of our classification.

The hemispheres are first classified by 3 tags as follows. The flavour likelihoods are
sorted in decreasing order as L i sty Lsecond, Linirda. The hemisphere is tagged uds, ¢ or b
according to the highest probability, L. In order to define the six categories mentioned
in section 4.1.1, we introduce a “winning margin”

A = ln(pfirst/psecond) = LfiT’St - Lsecond (14)
which is a sensitive indicator of tag clarity. Figure 6 represents the distributions of the
“winning margin” observed in the simulation for the three tags.

The uds and b tags are afterwards subdivided into categories according with the fol-
lowing criteria:

o uds — tight : A > A%l (category 1)

uds

uds

o uds — loose : A < A% (category 2)

b—loose : A < A" (category 4)

o b—medium : A" < A < AP (category 5)

b—tight : A > Azut’high (category 6)

The values of the cuts are A% = 2.0, Agut’low = 3.0 and Azut’high = 6.0. They are

uds
chosen in order to have similar population in the categories. As can be seen in fig. 6, the

c-tag (category 3) is less populated and poorly enriched. It has not been subdivided.

3However, a size of 200 ym on average was introduced as a constraint in the fit.
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A in the uds, ¢ and b hemisphere tag. Each filled area style shows the different flavour
contributions to the events in a given tag. The dashed lines show the cuts to separate the
6 different categories.

4.2.3 Simulation Results

This overview of the tagging performances - estimated from the simulated data set -
is necessary to understand the assumptions that will be made to solve the degeneracy
problem:

e Figure 7 shows the purity and the efficiency of the single hemisphere b tag as a
function of the purification cut § = Azut’high . The purity and efficiency of the
double hemisphere b tag are also given, when the same A > Azut’high cut on A is

applied to both sides. Without any A cut, the double tag purity is already 84%

and approaches rapidly 100% when the cut is applied at the cost of a low efficiency.

In practice, the Dgg component of the tensor with a cut on § at 6 corresponds to

almost pure b events.

o The lego plot of fig. 8 shows for the simulation the population of the double tagged
categories which is the input of the fit (the population for data shows the same
features). The contributions of the three flavours are detailed also there. As can be
seen uds and b events populate opposite corners, while the ¢ events overlap largely
with uds and 0.

4.3 T;/Thea Measurement

An interesting feature of independent hemisphere tagging is that one can approach full
b purity in one hemisphere by imposing large values of the clear winning cut § in the

14
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opposite one. This good separation achieved in the b sector is not present in the other
sectors.

Among the events which have been tagged as a b in one hemisphere with a winning
margin A > §, consider the number, Nj, of events classified in the category I for the
other hemisphere and the fraction

Ni(é
PN N J(
where Rj(§) denotes the composition of the sample purified by the § cut. When the

clear winning cut, §, increases and if the hemispheres are independent, f;(§) tends to C?.
Formally

f1(d) = ZCIR/ (15)

lim f,(3) = €7 (16)

since R, , R. and R tend to 0, 0 and 1 respectively, due to the fact that increasing ¢
results in samples with higher b purity, as can be seen from fig. 6. It should be noted
that in the eqn. 15 the contents of nearby bins are highly correlated. For this reason, in
order to extract C'} and to evaluate the statistical errors, we define the uncorrelated ratio

()
Ni(8;) — Np(6i1)
2 g[Ns(8:) = Ny(6it1)]

which reaches the same limit as f;(d) for large values of 4.

e () = (1)

Different parameterizations of f; have been tried to fit the asymptotic value: uniform in
the last bins of the distribution, exponential, inverse polynomial functions, etc. However,
it was found experimentally that the best parameterization of our data is the exponential
function

o P2
frd)=p + oxp(pad £ pid?) (18)

where the p;, 1 = 1,...,4 are free parameters of the fit. Only the parameter p; has physical
meaning; it gives the asymptotic value. The plots of the f;"*"" distributions for Monte
Carlo and real data as a function of the clear winning cut value, 4, are shown in figs. 9
and 10 respectively. For simulation, good agreement can be seen between the asymptotic
limit and the expected C'? matrix element. The validity of the asymptotic fit assumption,
that there is no irreducible background from light and ¢ quarks, can be clearly seen in

fig. 9.

Introducing the estimates X2, we have minimized the function G'(z,C) fixing the R.
parameter to the measured value of 0.1714+0.014 [1]. As has already been remarked in sec-
tion 4.1.2, fixing this parameter (to an arbitrary value) has no effect on any parameter of
the b sector. Table 5 compares the C? values obtained from the minimization with the X?
estimates and with their expected values. Good agreement can be seen between the three
sets of numbers. To some extent, the agreement between €% and X? is due to the fact that
X" is used in the estimation of C'}. The fitted b fraction for the simulated sample (after
acceptance effects have been already considered) is found to be R, = 0.2174 4+ 0.0042, to
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‘ ‘ Stmulated Data Real Data

C? Matrix Expected  Asymptotic Fitted Asymptotic Fitted

elements | values of C%  values X?  wvalues of C% | wvalues Xb  values of C?
Cc? 0.0307 0.0290(20)  0.0305(19) | 0.0294(23)  0.0300(21)
C?h 0.0838 0.0853(29)  0.0827(19) | 0.0634(33)  0.0648(27)
C?h 0.1805 0.1768(55)  0.1804(32) | 0.1486(43)  0.1468(26)
Cch 0.1825 0.1800(30)  0.1796(19) | 0.2126(28)  0.2125(22)
Cct 0.1758 0.1744(41)  0.1752(20) | 0.2026(43)  0.2082(24)
ct 0.3467 0.3489(45)  0.3487(36) | 0.3393(71)  0.3378(42)

Table 5: X? parameters from asymptotic behaviour and the corresponding C*? fitted values
with the objective function G, for simulated and real data sets. Comparison with the
expected value for simulation. The errors are on the last two digits and are given in

brackets.
be compared with the generated value of 0.217.

For the data, the values of ('} are in agreement with the Xbs.
corrections the fitted b fraction is

After acceptance

Ry = 0.2245 £ 0.0063 (19)

with G'/ndf = 14.1/9. The minimum of G'(C,x)/ndf is very similar to that of the
G(C,z)/ndf function. This means that the X? introduced in the objective function are
compatible with the set of degenerate solutions of the tensor fit alone. If another set of
estimators X? is used the minimum of G’(C,x) increases much more. For example, with

the X? taken from Monte Carlo, G'/ndf doubles.

4.4 Determination of Systematic Errors

The systematic errors have been determined separately for different sources.
most relevant ones are described in the following.

Only the
4.4.1 Hemisphere Correlation and C* Asymptotic Estimation

To allow for hemisphere correlations, the expressions for Ty in the function G'(C, x) are
replaced by

Ty =) C1C5(1+ ) Ry (20)
l

where the double tag hemisphere correlation factor for a given flavour, [, is defined as
Dy
iy

D' being the double tag efficiency. As before, the index I refers to the first hemisphere
tag and J to the tag for the second. The correlation factors are predicted from the

Pir = (21)
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simulation and are shown in fig. 11, with statistical errors, for the six categories. Most of
these factors are small or not significant *.

Correlations are also relevant for the asymptotic estimation of C?, so that eqn. 16 is
replaced by

lim f1(0) = {1+ Jim pho(8)} 1 (22)

The main correlation factor for the R, measurement is pl,. Figure 12 shows the
variation of this coefficient with 4. It has no dramatic behaviour at large values of § and
for the standard cut is p; = 0.018 & 0.010.

As a cross check, it is interesting to study how much R; changes when one uses
eqns. 20 and 22 (where the lims_., pj(d) have been approximated by pls(6)) assuming
the hemisphere correlations shown in fig. 11 from the Monte Carlo, instead of eqns. 9
and 16. R, varies by less than 1 %.

In the absence of hemisphere correlations the R, measurement is in principle indepen-
dent of the b lifetime. However, in the presence of small correlations, the lifetime may
change R;,. Therefore, we have checked whether the correlation depends on the b lifetime,
using the same simulated sample re-weighted to give different b lifetimes (in order to min-
imize the statistical fluctuations). The change in R, was 0.0004 when 7, changed from
1.6 ps to 1.2 ps. If one takes into account that the current uncertainty on the b lifetime
is 0.034 ps [8], this leads to a contribution smaller than 0.0001 on R,.

The effect of hard gluon emission producing a bb pair in the same hemisphere (about
2 % of the bb events according to the simulation) might be the source of an excess of b
events in the (small I,large J) and (large I,small J) cells. However, the distributions
of the tagging variables in “double ” hemispheres are, in the simulation, practically the
same as in an ordinary b hemisphere (the B hadrons have a smaller energy, so that the
b character is not enhanced). This explains why there is no special accumulation of such
hemispheres at large values of §, producing negative correlations in the C} estimates for
large [ and corresponding positive one for low I. Actually we observe a small, but statis-
tically significant depletion in the (1,6) bin of fig. 11. This suggests a cancellation with
a correlation of opposite sign, maybe between the tagging variables. In order to evaluate
systematic errors, we have performed a fits on the simulated data samples, removing the
events with two b jets in the same hemisphere and recomputing the b fraction in the
reduced sample. The difference between the fitted value of Ry and the expected one is
0.0021. As in section 3.3, 20% of this number was taken as systematic uncertainty.

The stability of the asymptotic estimation of C* was tested using alternative f; pa-
rameterization functions, as described in 4.3. The R} values obtained by minimizing the
G'(C, x) objective function show a dispersion (for the different parameterizations used)
of about 1 %.

The systematic error due to correlation effects (including contributions of the C°
asymptotic estimation) was assumed to be well described in the simulation within the
statistical error (0.0042), which can be taken, at this stage, as a conservative evaluation
of the systematic error on Rj. Adding this error in quadrature to the uncertainty from
hard gluon emission, the total systematic error does not change within the given accuracy.
Moreover, we use the difference between fitted and expected R, on simulation (0.0004),
as a correction to be applied to the R, fitted with the data.

4For example, the largest factor is p§; = 0.52 £ 0.15, but it affects only 1/1000 of bb events.
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For the standard cut at 6 = 6, the value of pgg is 0.018 & 0.010 and it remains rather
stable over the whole range.

As a check on the correlation due to the limited VD acceptance, the cut on | cosf; |
was moved from 0.65 to 0.85. No significant change was observed on Rj.

4.4.2 Effect of Tagging and Modelling

Two training samples have been used to compute the “class-likelihoods” of section 4.1
(with different lifetimes 1.2 and 1.6 ps, and different versions of the simulation program).
We have found a difference of 0.0007 on K. Another effect to be considered is the choice
of Aj* v and Azut’high which define the boundaries of b categories. A change in the
boundaries modifies the C%, C! and C¢ values, but C(b,b) = Cb + C2 + C¢ and the
compositions (in particular R) should remain constant. The spread of values gives a
contribution to the systematic error of 0.0009. In principle the method is insensitive to
tagging and modelling effects, but nevertheless we conservatively add these contributions.

4.4.3 Other Errors

o Acceptance correction. This contribution is mainly due to the selection criteria for
hadronic 7Z events. The Monte Carlo is generated with a [';;/T'.4 of 0.217. After
acceptance cuts, this value is modified to 0.2211 4+ 0.0007.

o Dependence on U'ez/T .. We refer here to actual number of charm events, which
should be distinguished from R, in the fit. When changing the c¢ fraction by + one
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sigma of its measured value (R. = 0.171 £+ 0.014 [1]), in the fit to the Monte Carlo
we found a variation of 0.0012 .

Table 6 summarizes the sources of systematic error and their contributions to the error
on Fbg/rhad.

Therefore we quote as final value, including acceptance and systematic corrections,

Toi/Thad = 0.2241 + 0.0063(stat.) + 0.0046(syst.). (23)

5 Combination of the Methods

To combine the two measurements the statistical correlation has been measured by apply-
ing both methods to six independent Monte Carlo event samples yielding a correlation of
11% with large uncertainties. The corresponding 90% C.L. upper limit gives a correlation
of 60%. Conservatively, this 60% correlation between the statistical errors has used in
combining the two results.

The errors due to hemisphere correlation, I'.; and acceptance bias, have been taken
as fully correlated between the two analyses; the rest were assumed to be uncorrelated.
Table 6 summarizes the systematic errors of both analysis.

Source of systematics Significance Analysis | Multivariate Analysis
Hemisphere Correlation 0.0031 0.0042

Br(Z — bb) acceptance bias 0.0010 0.0007

Light quark efficiency 0.0020

Charm efficiency 0.0021

Effect of tagging and modelling 0.0011

I'.z 0.0019 0.0012

| Total | 0.0048 | 0.0046 |

Table 6: Systematic errors in the two analysis. Errors on the same line of the table
(excluding the total) have been assumed to be fully correlated.

As our final result we find
Ry = 0.2209 + 0.0041 (stat.) £+ 0.0042 (syst.) + 0.0018 (I'.z)

This value agrees well with the one measured by other experiments [3, 15] and with
the one predicted by the Standard Model [2]. The current precision is not sufficient to
constrain the Standard Model parameters. However with the analysis of the coming data,
constraints on the top quark mass will be possible.

Acknowledgements

We are greatly indebted to our technical collaborators and to the funding agencies for
their support in building and operating the DELPHI detector, and to the members of the
CERN-SL Division for the excellent performance of the LEP collider.

23



References

1]

2]
3]

[10]

[11]

[12]

[13]

[14]

[15]

The LEP Collaborations, Updated Parameters of the Z° Resonance from Combined
Preliminary Data of the LEP Fxperiments, CERN-PPE/93-157.

W. Hollik, Fortsch.Phys. 38 (1990) 165.

ALEPH collaboration, A Precise measurement of Ty;  /Th.a, CERN-PPE/93-
108(1993).

P. Aarnio et al. (DELPHI Collaboration). NIM A 303 (1991) 233-276.
K.Hikasa et al. (Particle Data Group), Phys. Rev. D45 (1992) n.11.

D. Coffman et al. (MARK III Collaboration), Phys.Lett. B263 (1991) 135.
P.Abreu et al. (DELPHI Collaboration) Z.Phys. C59 (1993) 533

W. Venus b Weak Interaction Physics in High Energy Erperiments, Talk given at
Cornell Conference, 1993.

D.Bardin et al., ZFITTER, An Analytical Program for Fermion Pair Production in
ete™ Annihilation, CERN-TH 6443 /92.

P. Billoir et al., Measurement of the I'y;/I',,4 branching ratio of the Z by hemi-
sphere double tagging with minimal Monte Carlo dependence, Valencia pre-print in
preparation.

NAGLIB Manual. CERN Program Library.

A.G. Frodesen, O. Skjeggestad, H. Tofte. 'Probability and Statistics in Particle
Physics’. Universitetsforlaget 1979.

Ch de la Vaissiere, S. Palma-Lopes. in the AIP Heavy Flavour workshop proceedings
(1989) p440.

P. Billoir et al. 'B-tagging by hemisphere: description of variables and results on
Monte Carlo’. LPNHE pre-print in preparation.

OPAL collaboration, R. Akers et al., CERN PPE 93-155;
L3 collaboration, O. Adriani et al. , Phys. Lett. 307B (1993) 237.

24



