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Abstract

This paper describes a direct evaluation of the bb hadronic branching ratio at
the Z° peak (25 = I'y3/Thadar) in DELPHL. This evaluation is basically independent
of simulation models. The method uses the data from a Microvertex Detector and a
tagging of b events based on a Multidimensional Analysis technique. Two independent
fits are described which allow the extraction of z;. The method applied on about
160000 events gives x, = 0.220 + 0.004 + 0.006



1 Introduction

The aim of this paper is to present a new method to measure the fraction z; of bb
events produced at the Z° mass (2 = T,3/Thedr)- This measurement, if determined
enough accurately, has implications on the Standard Model parameters, in particular for
the top quark mass [1]. A standard technique to perform this measurement is to use the
prompt leptons produced in the quark b decay. However this allows to measure actually
the product of z times the semileptonic branching ratio b — [X . Up to now, most of the
new techniques rely strongly on simulation models ; this is the main source of systematic
errors.

We have already shown in a preliminary work [4], that it was possible to measure
directly the composition of hadronic events by combining two independent taggings. The
improved new method presented here is based on a Multidimensional Analysis tagging
algorithm applied separately to the two hemispheres of an event ; this could be the first
step towards the jet tagging for Higgs search at LEP 200 . At the Z° peak we can exploit
the associated production of gq pairs of the same flavour. In order to discriminate beauty
events from light quark events we shall use the relative long lifetime of the b hadrons (1.3
ps or even more according to recent evaluations) through a high precision tracking at the
interaction point. The three layer micro-strip vertex detector of DELPHI allows to define
observables sensitive to the decay in flight of b-hadrons.

Hemisphere tagging offers interesting possibilities if two conditions are fullfilled:
1) The tagging is the same in both hemispheres
2) For a given flavour the taggings in the two hemispheres are uncorrelated.
In this case, it is possible to extract the flavour composition of the sample directly from
the data, together with the classification matrix necessary to compute the efficiencies and
purities of the tags. As it will be explained, this is done without any explicit reference
to the Monte Carlo simulation. By this way our determination is essentially free of bias.
An other crucial advantage is that tagging one hemisphere does not bias physics in the
opposite hemisphere. It can be combined also to other taggings - i.e. high p; muon events
-. In this article we concentrate on the simple determination of z;. A separate paper [8]
will describes how it is possible to measure the flavour composition and the hemisphere
tagging matrix.

In section 2 we describe the selection and processing of the hadronic events. In section
3 we describe the principle of the extraction of z,. Section 4 gives an overview of the
tagging technique and of the level of its performances. Section 5 is devoted to the results,
section 6 to a preliminary evaluation of systematic errors.



Event selection ‘ Cut value ‘

Number of charged particles (N.z) N, >6
Reconstructed mass (M) M > 16.GeV
Reconstructed energy (E) E > 20.GeV

Z of reconstructed vertex w.r.t. beam (Zy) Zy < 3.em

R of reconstructed vertex ” ” (Ry) Ry <0.3em

| cos (65) |, where 0, is the sphericity axis angle | cos(85) < 0.75
Number of charged particles required by hemisphere | N.,/hem > 6

Table 1: Summary of cuts for event selection.

‘ Track Selection ‘ Cut value ‘
momentum of charged particles (p) 0.1 <p <30. GeV
momentum of neutral particles (p) 2. < p < 30. GeV

Distance to the main vertex in xy plane (d,,) dgy < 1.0ecm
Track length (L) L > 40.cm
| cos(8) | where 6 is the angle of the track:
Charged | cos(0) [< 0.85
Neutral | cos(0) | 0.75
R of starting track point (R) R < 45.cm
AP/P for charged and neutrals AP/P < 0.5
AP for charged and neutrals AP <10.GeV/e

Table 2: Summary of cuts for track selection.

2 Selection and processing of the hadronic events.

2.1 Description of the DELPHI Detector.

The DELPHI detector has been described in detail elsewhere [5]. Therefore we shall
mention here only the features of the DELPHI vertex detector which is essential to our
analysis:

The vertex detector in the 1991/92 configuration is formed by 3 concentric shells of
Si-strips detector at radii of 6.5, 9 and 11 cm. It covers the central region over a length of
24 cm and defines an angular acceptance of 27° — 153°, 37° — 143° and 42° — 138" for hits
in one, two or three layers. Each layer is composed of 24 azimuthal modules with about
10% overlap in ¢ and each module is composed of 2x4 ’plaquettes’ along z. The intrinsic
r¢ resolution per layer to the beam axis has been evaluated to be 8um.

2.2 Track and event selection

The trajectories of charged particles include the microvertex hits after correction from the
current alignment data base. The refitted trajectory is extrapolated to the ’perigee’ !,
taking into account the crossed material in the error matrix. The neutral particles are

! Point of closest approach of the helix to the z axis



included only for the calculation of sphericity and jet axes.

After this refit, the events are selected according table 1. The cosine sphericity cut at
0.75 ensures that most of the tracks are within the microvertex acceptance.
Table 2 gives the selection criteria of the particles to be used in the tagging.

3 Principle of the Method

Hadronic events at the Z° pole are produced in five flavour. In this analysis u@ ,dd, s5
flavor were merged in a single uds family, since information on strange hadrons was not
available and our tagging variables have the same distributions for the three flavours. This
leaves us with 3 genuine families of events: uds, ¢ and b.

Let us assume that a tagging algorithm provides an hemisphere tag depending on a
purification cut § and it is possible to increase the b-purity to almost 100% with non
negligible efficiencies 2. Let us call CU4*(§) , C°(§), C®(§) the probabilities that a uds, c
or b hemisphere is tagged as b for a given value of 6.

The fraction of single tags V;(6) (for one hemisphere) may be expressed as:

Vo = C* &gy + Cze + C'ay
and the fraction Dyy(6) of double tags (i.e. tagged equally in both hemispheres) is:

Dy = (C"™)2zyq, + (C°) %z + (C°) 22y

where .4 , . and z; are the flavour fractions in the sample.
In order to express these quantities in a more convenient way, we introduce the ¢ and
uds rejection powers as:

(6= 28
()
Cuds(a)
and the ratios of x’s :
Ao = 2
Ty
Auds — Lyuds
Ty

Then :

va = Cbmb(]- + ACRC + Audslzuds)

Dy, = (Cb)Zmb(l + )\C(RC)Z + )\uds(RudS)Z)

If the rejection powers R.(§) and R,q45(6) tend towards 0 in the limit of high §, and if
we are able to evaluate C® as a function of § from the data themselves (through a selection

2The signification of the purification cut 6 will be given in the tagging section.



of hemispheres such that the opposite hemisphere is highly purified in b through a strong
cut on §), we see that the ratios g’,’,((?) and % tend towards z; at high §. We call this
methode the ”indirect procedure”.

We can also compute directly (independently of C’b) an interesting ratio giving asymp-

totically zy :

(]- + ACRC + Audslzuds)2
b]_ + )\C(RC)Z + )\uds(Ruds)Z

This will be called the ”direct procedure”.

Experimentally we measure, for different values of the cut (§;), the following quantities:
N/!(6;) and N?(6;) which are the number of events with a single b tag in hemisphere 1
or hemisphere 2 respectively. Ny,(6;) which is the number of events with a double b tag.

. . . NL(8;) . NZ(8;) .
Then an estimator of Vi(4;) is given by A, or equivalently —%-== ; in the same way

Dyp(6;) is estimated by N”#(ji), where N, is the total number of events in the sample.

Then a measurement of rq, for example, is given by :

r =V /Dy =1z

Ny (8:)N5(8:)
Npp(8;)Niot

The determination of asymptotic values through both procedures is given in Sect. 5.

4 Hemisphere tagging

The tagging algorithm shoud be viewed as a technique that classify the events or hemi-
spheres into tags, which are enriched samples of chosen types. More important that the
technique itself, would be here its efficiency. Multidimensionnal analysis has been chosen,
as it provides a more efficient separation than a set of cumulated cuts. The details on the
technique can be found in ref [7].

4.1 Partition into independent hemispheres

The aim is to subdivide the event into two sub-events, independent in all respects except
the fact that they have the same flavour. The tagging of one hemisphere should be
completely decorrelated from the tagging in the other hemisphere.

First the particles are partitioned in jets using the LUND algorithm LUCLUS with
default parameters. Then the jet direction is defined from the internal thrust axis of the
particles belonging to the jet. We use the main sphericity axis and the plane perpendicular
to it to define the two hemispheres. The jets making an angle of less than 90° with this
axis are attributed to hemisphere one, the others to hemisphere 2. All the particles of a
jet are assigned to the hemisphere which the jet axis belongs to.

4.2 Reconstruction of hemisphere vertex

The position of the hemisphere vertex Ay is calculated through a robustification algorithm.
First all the ”central” charged particles in the hemisphere are included in a single vertex
fit. If the fit probability is less than 0.05 the particle which contributes the most to x? is
removed, and a new vertex fit is attempted. The process continue until a probability over
0.05 is obtained or only two particles are left.



The beam spot center has been measured fill by fill, and this position has been used
as a constraint in the fit with a r.m.s of 250pm in x and 50pm in y. In 1992 data, the
size of the beam ellipse is 100pum in z and less than 40um in y. Adding this constraint
increases the discriminating power of the tagging. This beam spot constraint which is the
only common feature of both hemispheres, introduce in principle no or little correlations.
If the interaction point is exactly known, the requirement that the two hemisphere ver-
tices coincide with their true position would improve decay length accuracies. It should
not produce correlations. With a tight beam spot ellipse, the overwhelming majority of
events are close to that situation. It is only when the true interaction point is far away
from the ellipse, and the constraint forces it towards its center that a significant corre-
lation can be introduced. A detailed study of eventual correlations can be found in ref.[8]...

4.3 Description of the tagging variables

The Multidimensional analysis is based on a set of 2 x 12 discriminant variables. This set
is divided in two subsets, one for the hemisphere 1 and the other for the hemisphere 2,
both with the same list of variables but computed in different hemispheres. The charged
particles entering in the calculation of these variables are subject to tight cuts imposing
that they are well reconstruted and have their origin close to the interaction point.

One variable per hemisphere ( boosted sphericity) is computed only with quadrimo-
menta. The remaining variables use the parameters of the reconstructed trajectories at
the perigee after quality cuts removing poorly reconstructed tracks. Four of them are
connected to the x? fit of vertices associated to various sets of particles. Three are dis-
tances between a ”candidate secondary” vertex and the primary vertex and are sensitive
to decay ranges of ¢ and b-hadrons. The last four variables are estimators of the number
of secondary particles and of the total energy and p? associated to them.

A full description of these cuts and of the variable definition can be found in ref [7].

4.4 Tagging algorithm
4.5 Obtention of tags

Each set of 12 variables is used to compute three probabilities p,g4s , p. and p; for an
hemisphere to have the uds, ¢ and b flavour. This calculation is based on a Monte-Carlo
modelisation. The flavor probabilities are sorted in decreasing order as pf;rsi, Psecond, €tc.
The hemisphere is tagged uds, ¢ or b accordingly to the highest probability p;ys.

At this stage, a ”winner margin” A = In(pfrst/Psecond) appears a sensitive indicator
of ambiguity. We can improve the b tag purity by the condition A > § where § is the
value of the cut mentionned in section 3.

4.6 Results obtained on simulation

The quality of the tagging can be inferred from results obtained on a full simulation that
includes the effect of the apparatus. We shall describe mainly only the features of the single
and double hemisphere b-tags. The results were obtained on 168861 simulated events.

e Figs. 1.a and 1.c show the purity and the efficiency of the simple hemisphere b-tag
as a function of the purification cut §. It can be seen that the purity succeeds in
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Figure 1: Performances of single and double hemisphere b-tagging estimated on simulated
events: a) Purities, b) Efficiencies of single and double b-tags

approaching the level of 100%, but at the cost of a low efficiency. The purity and the
efficiency of the double hemisphere b-tag are plotted on Figs. 1.b and 1.d. Without
any § cut the double b-tag purity is already 75%, and approaches rapidly 100% with
a § cut, with still appreciable efficiencies. Above § > 6.0 double-tagged b events can
be considered practically pure.

e Fig. 2 shows the variation with § of the fractions of single and double b-tags V; and
Dy, . The comparison between real data and simulation indicates a similar behaviour
but a shift is observed in absolute values. The (absence of) influence of this shift on
the determination of z; will be discussed later.

e Fig. 3-a shows the composition on simulation of the b tag as a function of the clear
winner margin A. In Fig. 3-b the rejection powers R.(6) and R,qs(6) are plotted.
As expected the drop of R,4, is much faster. Both can be parametrized by a second
order exponential dependence in §.

5 Results on the measurement of x;

5.1 Direct procedure

1/K. 2(8.
On Fig 4.a, the ratio ry = %
real hadronic events taken in 1991 and passing the selection. The asymptotical behaviour
of the curve is visible.

is plotted versus the purification cut §, from 160861

It should be pointed out that in the expression of 71 the contents of the different bins
are correlated: The N;!(§;) events selected with the cut §; are a subset of the ones selected
with §; < §;. Similarly N} (é;) and Ny(8;) are imbedded in N2(§;) and Ny(8;) repectively.
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Figure 2: Distributions of the fractions of single and double b-tags with respect to §. a)
Fractions of single b-tags Vy(6) for real data and Monte-Carlo; b) Distributions of the
double b-tag fraction Dy (6) ; ¢ and d) Ratios of these fractions between data and Monte-
Carlo(1.2 ps)
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Figure 3: a) Distribution of the clear winner margin A in the b tag obtained on 168661
stmulated events and contributions of the 3 flavours. b) uds and c rejection rates R,q4s and
R, as a fonction of the clear winner cut §.

For this reason, two different approaches have been used to extract z; from the data and
to evaluate properly the statistical errors :

1) We computed the full bin-to-bin covariance matrix cov(r(6;),71(6;)) and we used
its inverse to compute the x? to be minimized in the fit.

2) We removed most of this interbin correlation by defining the ”decorrelated” ratio
(see Fig 4.b):

_ Ny (8N (6i) — Ny(bir1) Ny (8iga)
(Nep(8:) — Npp(8it1)) Niot

The property of 7 is to reach the same limit of 7, in the region of large values of 4.

T2

In this expression the correlation vanishes in the denominator, which gives the dominant
contribution to the statistical error.

The following step is then to choose a parametrization to find the asymptote.

We have tried, first, an empirical and simple parametrization of r1(§): It has been

observed on simulation that r(§) is adequately described by a simple expression 3:

71 = ey + prezp(—p28 — pab?)
When fitting the data with 4 parameters ( 2y, p1, p2 and p3) we find

zp = 0.219 £+ 0.009

3In the full expression of r; the denominator tends rapidly towards 1 and is practically constant. The
expression in the numerator, which is squared, is dominated by the variation of R. and R,4s. It is a sum
of second order exponentials tending towards zero. This may explain why the simple parametrization by
a second order exponential plus a constant term is adequate.



compatible with the previous estimations. Moreover, this simple parametrization can be
used also to represent the ”decorrelated” ratio ro. The distribution of this ratio is given
for data on Fig 4.b. A similar fit ( without accounting for remaining interbin correlations)
gives:

z, = 0.217 4+ 0.010
The value and its statistical errors agree with the previous ones based on 7.

An alternative, is to use the theoretical expression of 1. As explained in section 3,
the theoretical expression of 7 is :

7'1(5) = (mb + mcRc(5) + mudSR“dS(a))Z
zp + mc(Rc(6))2 + muds(Ruds(a))Z

where the rejection rates R. and R,q4, are functions of §, which can be parametrized,
according to Monte-Carlo data by ( Fig.3.b).

Ryas(6) = prezp(—p26 — p36?)
R.(8) = psezp(—ps6 — psb?)

The fit with 8 parameters ( 5, 2. , p1 to pg) offers too many degrees of freedom to
fit a monotonous, decreasing distribution. However, as will be described for the indirect
procedure, it is possible to measure Cp(6). This measurement can be used to compute the
parameters p; = R,45(0) and py = R.(0) for any given set of z,4s, 2. and z.

The b-tag efficiency C3(0) has been measured to be 0.763 with an error smaller than
0.01. Cy4s(0) and C.(0) are solutions of the two equations

V(O) — Cb(O)mb = CudS(O)muds + CC(O):EC

D(O) - Cg(O)mb = Cuds(O)ZmUdS + CC(O)ZmC

From C,45(0) and C.(0), an estimator of p; and py can be computed. This procedure
forces the fitted curve to pass exactly through the first measured point, which is the most
far away from the asymptote. It will not affect the value of the asymptote itself. By this
technique, the number of parameters in the fit can be reduced to 6 and even 5, if z. is

fixed. We find :

zp, = 0.209 £+ 0.009

(the variation of z. from 0.16 to 0.20 induces a negligible variation +0.0005 on ;)

5.2 Indirect procedure

This procedure is intended to give a faster convergence, and thus to exhibit more clearly the
asymptotical behaviour. We can estimate C’b(6 ) in one hemisphere, when the condition of
full b-purity is reached in the opposite hemisphere. We estimate C?(6) for a given value of
§ as the limit , for high §’, of the ratio N}2(6, ')/ NZ(8'), or equivalently N2(6,8)/N;}(8),
where N}?(6,6’) is the number of events satisfying the cut § in hemisphere 1 and ¢’ in
hemisphere 2. Fig.5 shows the value of the ratio above for a given value of § as a function
of § : the asymptote is clearly visible ; In practice, we have chosen §’ = 12 to compute



Fig 4 : Direct procedure
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Figure 4: a) Distribution of the ratio r1(§) on 160861 real hadronic events. The curve
correspond to the simple fit by a constant plus a second order exponential. b)Distribution
of the ”decorrelated” ratio r4(§), fitted by the same parametrization and compared to r1(6).

an estimation of C®. 7108 hemispheres on real data and 4293 on simulation pass this
condition of b-purity. Fig.6.a shows C® as a function of §. Again, the statistical errors
on different bins are correlated, and we introduced as above the ”decorrelated” quantities
AC? = C*(6;) — C%(8i+1), shown on Fig.6.b .

In the second step, we build estimators of V;(§;)/C®(6) and Dy(8;)/C®(6)? introduced
in Sect.3 :

NL(8) Npw(6;)
T NLCE) T T Nw(CH(5)))2

In order to avoid inter-bin correlations, we shall use instead of s; and ¢y, ”bin-to-bin
decorrelated” ratios which are respectively :

5y = (Ny (8:) — Ny (bi11)) and  ty — (Npp(8i) — Nipp(6541))
Niot(C?(8;) — C®(8i41)) Niot((C?(8:)) = (C*(6i+1))?)

These ratios have the same asymptotical value z; as s; and ;.

Fig.7.a shows the evolution of the new decorrelated ratios s,, %2 : as expected, the con-
vergence is faster for ¢; and ¢, (in 3 the rejection powers R, and R,4s are squared), and
the plateau is now obvious ; both curves appear to be compatible with the same asymp-
totical value. The statistical errors are obtained by combining the errors on uncorrelated
numbers of events with the errors on the differential C} previously computed. We fitted
the dependence in § with a constant plus an exponential (in order to avoid correlations
between the numerator and the denominator, the fit is limited to the region § < 12).

Without smoothing the Cy and AC} distributions, the results are, based on for s,,

zp = 0.221 £+ 0.013

and for the evaluation with ¢,
zp = 0.222 + 0.008

10
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Figure 5: Principle of the determination of Cy(6). The fraction of hemispheres tagged
b with the additionnal condition A > §, as a function of the purification cut §' in the
opposite hemisphere. The fractions are plotted for a set of values of 6.

Fig 6 :@ Distribution of C, and AC,
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Figure 6: Classification probabilities of b events in the b-tag, estimated by the previous
method as a function of §: a) b-tag efficiency Cy(8) ; b) Differential probability, ACy(§).

Both distributions are accurately described by a third order polynomial in §).
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Fig.6.a and b shows that a third order polynomial fit gives a satisfactory smoothing
on the Cy and A(C} distributions in the whole range of §, with a statistical uncertainty
of the order of 0.0005, i.e. a few percent of its value in the range 0 < § < 12. In order
to reduce the errors in the denominators of s, and ¢, we have replaced the Cy and AC
by the values of the third polynomial fits of these quantities. After this smoothing, the
results are with s,

2320t — 0,226 + 0.007

and with ¢,
i ™ — 0,216 + 0.005

5.3 Monte-Carlo cross-check

A cross-check has been performed on a Monte-Carlo hadronic sample of comparable size
to the data (168861 evts after cuts). These events were generated with the same 1.2 ps
lifetime for all b-hadrons *. It was observed that the distribution in § is less extended
in simulation than in real data : this can be mainly due to the underestimation of the
simulated lifetime (1.2 ps) ; as a consequence, the tagging is more efficient at high purities
in real data, and the statistical erors on z; are better.

In the analysed MC sample, the true fraction of b-events within the acceptance is
zp irue = 0.222, The results of a fit by a constant term plus a second order exponential is
shown in Fig.8. The value of the asymptote is

zi'tc = 0.207+0.013

Fitting o instead of ry gives
fio
z, vre = 0.209 £ 0.013

in agreement with the previous value, but one ¢ lower than the expected value. By selecting
only genuine b-events in the b-tag, we have plotted also the ratios 7:%% and ri#°@ that
would be observed in the absence of uds and c¢ contaminations. These ratios should be
independent of §, if there is no correlation between hemispheres,. The distribution of rid°a!
shows a small drop for large values of § which coud be the source of a systematic effect in
the estimation of the asymptote. This drop is due to an small excess of double-tags events
at the end of the spectrum, which is scarcely populated.

For the indirect method, Monte-Carlo allows in addition to check the validity of the
Cy(6) estimation, by comparing it to its true value C{™¢(§), which is the b-tag efficiency
for b-events. The Fig.9.a compares the estimated and true Cy(§), and suggest an close
agreement. The agreement can be better checked on Fig.9.b, where the relative differences
between the two quantities is plotted. Up to a value of § < 12. the agreement remains
within 1% in relative value.

The Fig.8.c and d plot the decorrelated ratios s, and t,, obtained after smoothing of
the distributions of Cp and ACy. The results

e = 0.221 £ 0.007

*This simulation should be distinguished from the one needed for the modelisation of the tagging: The
two samples were produced with different versions of the simulation/analysis chain, so that efficiencies and
errors on trajectories. They happen to differ significantly. In that way, we mimic in the simulation possible
discrepancies between the model used for the tagging and real data. This is important to show that the
zp measurement is model independant

12
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Figure 7: Ratios s3 and t2 on 160861 real events, and fit for the extraction of the asymp-
totical values : a) and b) Without Cy(8) smoothing ; c) and d) with Cy(6) smoothing.
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Fig 9 ! Cross—check of C, distributions

—~ 1 £ —~ 0.15
© = L L
« 09 — g C
“—— E £, —
Yous B 168861 MC Events o 0=
8 < C
c gy =
0.7 -
e &L 005
- v = 4
oo £ o S L Lkl
s E S o B ]
B N LTI T*HHW“ T
04 N B
03 E $-005 |-
02 = -01
0.1 C
0 E _0.15 L[ Ll Ll
0 5 10 15 0 5 10
6 cut 6 cut

Figure 9: Check on the simulated sample of the asymptotical estimation of the Cy()
probabilities. a) Comparison of the estimated Cy(§) with the true tag efficiency C™¢(§).
b) Plot of the relative difference (Cy(6) — CErue(6))/CErHe(8).

e = 0.219 £ 0.007

respectively for s, and ¢,, are in better agreement with the 0.222 expected value than the
results with the direct ratios ry and r,. The better agreement is due to the removal in the
fits of the region § > 12, which is possibly affected by residual correlations.

6 Systematic errors

The study of systematic errors is still in a preliminary status. We have considered the
following sources of errors, estimated from simulation:

e Error due to the technique of estimation of the asymptote :
A first evaluation is :

0.006 with the direct procedure
0.003 with the indirect procedure

e Inter-hemisphere correlations :
The assumption of independent hemispheres is the most crucial. On simulation, a
correlation effect seems to exist for the direct procedure. First, the fitted value is
found lower than expected as mentioned above, which reflects a drop in the r*deal
ratios. From the distributions of these ratios on Fig.8.b, we have estimated for this
contribution an upper limit of
0.009

In the direct procedure, the accuracy on the asymptote is dominated by the double
b-tag fraction Dyy(6) in the denominator. It can be seen on Fig.2.b, that this fraction
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happens to be very small for large values of §, for our simulation based on a 1.2 ps
b-lifetime (D, < 0.00073 for § > 12). With a few events left, Dy, become sensitive
to even small residual contaminations. For data, the region near the asymptote is
much more populated. There is less sensitivity, and the upper limit of 0.009 is prob-
ably pessimistic.

In the indirect procedure, the variation of the difference (Cy(8) — Cf"#(8))/Cfr<(8)
(Fig.10.a) suggests the absence of correlation on Monte-Carlo, up to § = 12. The
deviation on Cy(8) is below 1%. This gives a upper limit of 1% on relative error for
the values of s, so and 2% for the values of t1,¢,. Then we estimate this contribution

to the error on z; to :
0.004

¢ Error due to the tagging algorithm and the modelisation :

Misrepresentations of physical parameters, such as lifetimes or fragmentation func-
tions, or of the precision of the vertex detector, would affect the performances of
the tagging. We did not modify each of these factors to evaluate their incidence on
the fitted value of z; ; we just increased or decreased artificially the selectivity of
the tagging on simulated events °. The b-tag purity varied from 0.44 and 0.54 and
the b-tag efficiency from 0.63 to 0.77. For this rather wide range, the convergence
is more or less fast, but the value of the asymptote is almost independent of the
tagging. In the Fig.10 , we have plotted the distribution of r; for this set of taggings
around the nominal one.

This sets an upper limit for this contribution to

0.004

On real data, we have tried also a simpler tagging based on only 8 of the 12 variables
previously mentioned . While the range of § and the steepness of the drop are
different, the asymptotical limit remains the same within errors.

e No difference has been found if the hemisphere axis is aligned along the x-direction
(major axis of the beam spot ellipse) or y-direction.

7 Conclusions

With the direct procedure and from the ratios r; and ry, we find for the measurement of
the z;, fraction inside the acceptance defined by the cosine sphericity cut at 0.75

Xp = 0.214 4+ 0.010 £ 0.012

where the main source of systematic error, which takes into account residual inter-
hemisphere correlations, may be overestimated on data.

5We have added or subtracted one or two units of class likelihoods, if the class corresponds to the event
flavour ; this was done either for a single flavour or for all flavours
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Fig 10 : Influence of tagging
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Figure 10: a) Comparison of the ro(6) distribution, from simulated data, for a set of
modified taggings around the nominal one. b) Fits of r1 for two taggings based on 8 and
12 variables, applied to real data.

The most accurate measurement, comes for the indirect procedure, which uses a eval-
uation of the probabilities Cy(8) extracted from the data themselves. Taking the weighted
average of the fits of s, and t; after smoothing of Cy(6), we find :

xp = 0.220 £+ 0.004 £+ 0.006

fully compatible with the above result.
The indirect procedure seems to be less sensitive to possible residual inter-hemisphere
correlations.

We hope to improve these results with the 1992 data (not yet fully processed through
our analysis chain) : the statistics will be higher by a factor 3, and moreover the tagging
selectivity could be improved by the smaller size of the beam spot and the use of RICH
to identify kaons.
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