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1 IntroductionThe aim of this paper is to present a new method to measure the fraction xb of b�bevents produced at the Z0 mass (xb = �b�b=�hadr). This measurement, if determinedenough accurately, has implications on the Standard Model parameters, in particular forthe top quark mass [1]. A standard technique to perform this measurement is to use theprompt leptons produced in the quark b decay. However this allows to measure actuallythe product of xb times the semileptonic branching ratio b! lX . Up to now, most of thenew techniques rely strongly on simulation models ; this is the main source of systematicerrors.We have already shown in a preliminary work [4], that it was possible to measuredirectly the composition of hadronic events by combining two independent taggings. Theimproved new method presented here is based on a Multidimensional Analysis taggingalgorithm applied separately to the two hemispheres of an event ; this could be the �rststep towards the jet tagging for Higgs search at LEP 200 . At the Z0 peak we can exploitthe associated production of q�q pairs of the same avour. In order to discriminate beautyevents from light quark events we shall use the relative long lifetime of the b hadrons (1.3ps or even more according to recent evaluations) through a high precision tracking at theinteraction point. The three layer micro-strip vertex detector of DELPHI allows to de�neobservables sensitive to the decay in ight of b-hadrons.Hemisphere tagging o�ers interesting possibilities if two conditions are full�lled:1) The tagging is the same in both hemispheres2) For a given avour the taggings in the two hemispheres are uncorrelated.In this case, it is possible to extract the avour composition of the sample directly fromthe data, together with the classi�cation matrix necessary to compute the e�ciencies andpurities of the tags. As it will be explained, this is done without any explicit referenceto the Monte Carlo simulation. By this way our determination is essentially free of bias.An other crucial advantage is that tagging one hemisphere does not bias physics in theopposite hemisphere. It can be combined also to other taggings - i.e. high pt muon events-. In this article we concentrate on the simple determination of xb. A separate paper [8]will describes how it is possible to measure the avour composition and the hemispheretagging matrix.In section 2 we describe the selection and processing of the hadronic events. In section3 we describe the principle of the extraction of xb. Section 4 gives an overview of thetagging technique and of the level of its performances. Section 5 is devoted to the results,section 6 to a preliminary evaluation of systematic errors.1



Event selection Cut valueNumber of charged particles (Nch) Nch � 6Reconstructed mass (M) M � 16:GeVReconstructed energy (E) E � 20:GeVZ of reconstructed vertex w.r.t. beam (ZV ) ZV � 3:cmR of reconstructed vertex " " (RV ) RV � 0:3cmj cos (�s) j, where �s is the sphericity axis angle j cos(�s) j� 0:75Number of charged particles required by hemisphere Nch=hem � 6Table 1: Summary of cuts for event selection.Track Selection Cut valuemomentum of charged particles (p) 0:1 � p � 30: GeVmomentum of neutral particles (p) 2: � p � 30: GeVDistance to the main vertex in xy plane (dxy) dxy � 1:0cmTrack length (L) L � 40:cmj cos(�) j where � is the angle of the track:Charged j cos(�) j� 0:85Neutral j cos(�) j 0:75R of starting track point (R) R � 45:cm�P=P for charged and neutrals �P=P � 0:5�P for charged and neutrals �P � 10:GeV=cTable 2: Summary of cuts for track selection.2 Selection and processing of the hadronic events.2.1 Description of the DELPHI Detector.The DELPHI detector has been described in detail elsewhere [5]. Therefore we shallmention here only the features of the DELPHI vertex detector which is essential to ouranalysis:The vertex detector in the 1991/92 con�guration is formed by 3 concentric shells ofSi-strips detector at radii of 6.5, 9 and 11 cm. It covers the central region over a length of24 cm and de�nes an angular acceptance of 270� 1530, 370� 1430 and 420� 1380 for hitsin one, two or three layers. Each layer is composed of 24 azimuthal modules with about10% overlap in � and each module is composed of 2x4 'plaquettes' along z. The intrinsicr� resolution per layer to the beam axis has been evaluated to be 8�m.2.2 Track and event selectionThe trajectories of charged particles include the microvertex hits after correction from thecurrent alignment data base. The re�tted trajectory is extrapolated to the 'perigee' 1,taking into account the crossed material in the error matrix. The neutral particles are1Point of closest approach of the helix to the z axis2



included only for the calculation of sphericity and jet axes.After this re�t, the events are selected according table 1. The cosine sphericity cut at0.75 ensures that most of the tracks are within the microvertex acceptance.Table 2 gives the selection criteria of the particles to be used in the tagging.3 Principle of the MethodHadronic events at the Z0 pole are produced in �ve avour. In this analysis u�u ,d �d, s�savor were merged in a single uds family, since information on strange hadrons was notavailable and our tagging variables have the same distributions for the three avours. Thisleaves us with 3 genuine families of events: uds, c and b.Let us assume that a tagging algorithm provides an hemisphere tag depending on apuri�cation cut � and it is possible to increase the b-purity to almost 100% with nonnegligible e�ciencies 2. Let us call Cuds(�) , Cc(�), Cb(�) the probabilities that a uds, cor b hemisphere is tagged as b for a given value of �.The fraction of single tags Vb(�) (for one hemisphere) may be expressed as:Vb = Cudsxuds + Ccxc + Cbxband the fraction Dbb(�) of double tags (i.e. tagged equally in both hemispheres) is:Dbb = (Cuds)2xuds + (Cc)2xc + (Cb)2xbwhere xuds , xc and xb are the avour fractions in the sample.In order to express these quantities in a more convenient way, we introduce the c anduds rejection powers as: Rc(�) = Cc(�)Cb(�)Ruds(�) = Cuds(�)Cb(�)and the ratios of x's : �c = xcxb�uds = xudsxbThen : Vb = Cbxb(1 + �cRc + �udsRuds)Dbb = (Cb)2xb(1 + �c(Rc)2 + �uds(Ruds)2)If the rejection powers Rc(�) and Ruds(�) tend towards 0 in the limit of high �, and ifwe are able to evaluate Cb as a function of � from the data themselves (through a selection2The signi�cation of the puri�cation cut � will be given in the tagging section.3



of hemispheres such that the opposite hemisphere is highly puri�ed in b through a strongcut on �), we see that the ratios Vb(�)Cb(�) and Dbb(�)(Cb(�))2 tend towards xb at high �. We call thismethode the "indirect procedure".We can also compute directly (independently of Cb) an interesting ratio giving asymp-totically xb : r1 = V 2b =Dbb = xb (1 + �cRc + �udsRuds)21 + �c(Rc)2 + �uds(Ruds)2This will be called the "direct procedure".Experimentally we measure, for di�erent values of the cut (�i), the following quantities:N1b (�i) and N2b (�i) which are the number of events with a single b tag in hemisphere 1or hemisphere 2 respectively. Nbb(�i) which is the number of events with a double b tag.Then an estimator of Vb(�i) is given by N1b (�i)Ntot or equivalently N2b (�i)Ntot ; in the same wayDbb(�i) is estimated by Nbb(�i)Ntot , where Ntot is the total number of events in the sample.Then a measurement of r1, for example, is given by :N1b (�i)N2b (�i)Nbb(�i)NtotThe determination of asymptotic values through both procedures is given in Sect. 5.4 Hemisphere taggingThe tagging algorithm shoud be viewed as a technique that classify the events or hemi-spheres into tags, which are enriched samples of chosen types. More important that thetechnique itself, would be here its e�ciency. Multidimensionnal analysis has been chosen,as it provides a more e�cient separation than a set of cumulated cuts. The details on thetechnique can be found in ref [7].4.1 Partition into independent hemispheresThe aim is to subdivide the event into two sub-events, independent in all respects exceptthe fact that they have the same avour. The tagging of one hemisphere should becompletely decorrelated from the tagging in the other hemisphere.First the particles are partitioned in jets using the LUND algorithm LUCLUS withdefault parameters. Then the jet direction is de�ned from the internal thrust axis of theparticles belonging to the jet. We use the main sphericity axis and the plane perpendicularto it to de�ne the two hemispheres. The jets making an angle of less than 900 with thisaxis are attributed to hemisphere one, the others to hemisphere 2. All the particles of ajet are assigned to the hemisphere which the jet axis belongs to.4.2 Reconstruction of hemisphere vertexThe position of the hemisphere vertexAh is calculated through a robusti�cation algorithm.First all the "central" charged particles in the hemisphere are included in a single vertex�t. If the �t probability is less than 0.05 the particle which contributes the most to �2 isremoved, and a new vertex �t is attempted. The process continue until a probability over0.05 is obtained or only two particles are left.4



The beam spot center has been measured �ll by �ll, and this position has been usedas a constraint in the �t with a r.m.s of 250�m in x and 50�m in y. In 1992 data, thesize of the beam ellipse is 100�m in x and less than 40�m in y. Adding this constraintincreases the discriminating power of the tagging. This beam spot constraint which is theonly common feature of both hemispheres, introduce in principle no or little correlations.If the interaction point is exactly known, the requirement that the two hemisphere ver-tices coincide with their true position would improve decay length accuracies. It shouldnot produce correlations. With a tight beam spot ellipse, the overwhelming majority ofevents are close to that situation. It is only when the true interaction point is far awayfrom the ellipse, and the constraint forces it towards its center that a signi�cant corre-lation can be introduced. A detailed study of eventual correlations can be found in ref.[8]...4.3 Description of the tagging variablesThe Multidimensional analysis is based on a set of 2 x 12 discriminant variables. This setis divided in two subsets, one for the hemisphere 1 and the other for the hemisphere 2,both with the same list of variables but computed in di�erent hemispheres. The chargedparticles entering in the calculation of these variables are subject to tight cuts imposingthat they are well reconstruted and have their origin close to the interaction point.One variable per hemisphere ( boosted sphericity) is computed only with quadrimo-menta. The remaining variables use the parameters of the reconstructed trajectories atthe perigee after quality cuts removing poorly reconstructed tracks. Four of them areconnected to the �2 �t of vertices associated to various sets of particles. Three are dis-tances between a "candidate secondary" vertex and the primary vertex and are sensitiveto decay ranges of c and b-hadrons. The last four variables are estimators of the numberof secondary particles and of the total energy and p2t associated to them.A full description of these cuts and of the variable de�nition can be found in ref [7].4.4 Tagging algorithm4.5 Obtention of tagsEach set of 12 variables is used to compute three probabilities puds , pc and pb for anhemisphere to have the uds, c and b avour. This calculation is based on a Monte-Carlomodelisation. The avor probabilities are sorted in decreasing order as pfirst, psecond, etc.The hemisphere is tagged uds, c or b accordingly to the highest probability pfirst.At this stage, a "winner margin" � = ln(pfirst=psecond) appears a sensitive indicatorof ambiguity. We can improve the b tag purity by the condition � > � where � is thevalue of the cut mentionned in section 3.4.6 Results obtained on simulationThe quality of the tagging can be inferred from results obtained on a full simulation thatincludes the e�ect of the apparatus. We shall describe mainly only the features of the singleand double hemisphere b-tags. The results were obtained on 168861 simulated events.� Figs. 1.a and 1.c show the purity and the e�ciency of the simple hemisphere b-tagas a function of the puri�cation cut �. It can be seen that the purity succeeds in5



Figure 1: Performances of single and double hemisphere b-tagging estimated on simulatedevents: a) Purities, b) E�ciencies of single and double b-tagsapproaching the level of 100%, but at the cost of a low e�ciency. The purity and thee�ciency of the double hemisphere b-tag are plotted on Figs. 1.b and 1.d. Withoutany � cut the double b-tag purity is already 75%, and approaches rapidly 100% witha � cut, with still appreciable e�ciencies. Above � > 6:0 double-tagged b events canbe considered practically pure.� Fig. 2 shows the variation with � of the fractions of single and double b-tags Vb andDbb . The comparison between real data and simulation indicates a similar behaviourbut a shift is observed in absolute values. The (absence of) inuence of this shift onthe determination of xb will be discussed later.� Fig. 3-a shows the composition on simulation of the b tag as a function of the clearwinner margin �. In Fig. 3-b the rejection powers Rc(�) and Ruds(�) are plotted.As expected the drop of Ruds is much faster. Both can be parametrized by a secondorder exponential dependence in �.5 Results on the measurement of xb5.1 Direct procedureOn Fig 4.a, the ratio r1 = N1b (�i)N2b (�i)Nbb(�i)Ntot is plotted versus the puri�cation cut �, from 160861real hadronic events taken in 1991 and passing the selection. The asymptotical behaviourof the curve is visible.It should be pointed out that in the expression of r1 the contents of the di�erent binsare correlated: The N1b (�i) events selected with the cut �i are a subset of the ones selectedwith �j < �i. SimilarlyN1b (�i) and Nbb(�i) are imbedded in N2b (�j) and Nbb(�j) repectively.6



Figure 2: Distributions of the fractions of single and double b-tags with respect to �. a)Fractions of single b-tags Vb(�) for real data and Monte-Carlo; b) Distributions of thedouble b-tag fraction Dbb(�) ; c and d) Ratios of these fractions between data and Monte-Carlo(1.2 ps) 7



 ∆   in tag  b δ cutFigure 3: a) Distribution of the clear winner margin � in the b tag obtained on 168661simulated events and contributions of the 3 avours. b) uds and c rejection rates Ruds andRc as a fonction of the clear winner cut �.For this reason, two di�erent approaches have been used to extract xb from the data andto evaluate properly the statistical errors :1) We computed the full bin-to-bin covariance matrix cov(r1(�i); r1(�j)) and we usedits inverse to compute the �2 to be minimized in the �t.2) We removed most of this interbin correlation by de�ning the "decorrelated" ratio(see Fig 4.b): r2 = N1b (�i)N2b (�i)�N1b (�i+1)N2b (�i+1)(Nbb(�i)�Nbb(�i+1))NtotThe property of r2 is to reach the same limit of r1 in the region of large values of �.In this expression the correlation vanishes in the denominator, which gives the dominantcontribution to the statistical error.The following step is then to choose a parametrization to �nd the asymptote.We have tried, �rst, an empirical and simple parametrization of r1(�): It has beenobserved on simulation that r1(�) is adequately described by a simple expression 3:r1 = xb + p1exp(�p2� � p3�2)When �tting the data with 4 parameters ( xb, p1, p2 and p3) we �ndxb = 0:219� 0:0093In the full expression of r1 the denominator tends rapidly towards 1 and is practically constant. Theexpression in the numerator, which is squared, is dominated by the variation of Rc and Ruds. It is a sumof second order exponentials tending towards zero. This may explain why the simple parametrization bya second order exponential plus a constant term is adequate.8



compatible with the previous estimations. Moreover, this simple parametrization can beused also to represent the "decorrelated" ratio r2. The distribution of this ratio is givenfor data on Fig 4.b. A similar �t ( without accounting for remaining interbin correlations)gives: xb = 0:217� 0:010The value and its statistical errors agree with the previous ones based on r1.An alternative, is to use the theoretical expression of r1. As explained in section 3,the theoretical expression of r1 is :r1(�) = (xb + xcRc(�) + xudsRuds(�))2xb + xc(Rc(�))2 + xuds(Ruds(�))2where the rejection rates Rc and Ruds are functions of �, which can be parametrized,according to Monte-Carlo data by ( Fig.3.b).Ruds(�) = p1exp(�p2� � p3�2)Rc(�) = p4exp(�p5� � p6�2)The �t with 8 parameters ( xb, xc , p1 to p6) o�ers too many degrees of freedom to�t a monotonous, decreasing distribution. However, as will be described for the indirectprocedure, it is possible to measure Cb(�). This measurement can be used to compute theparameters p1 = Ruds(0) and p4 = Rc(0) for any given set of xuds, xc and xb.The b-tag e�ciency Cb(0) has been measured to be 0.763 with an error smaller than0.01. Cuds(0) and Cc(0) are solutions of the two equationsV (0)� Cb(0)xb = Cuds(0)xuds + Cc(0)xcD(0)� C2b (0)xb = Cuds(0)2xuds + Cc(0)2xcFrom Cuds(0) and Cc(0), an estimator of p1 and p4 can be computed. This procedureforces the �tted curve to pass exactly through the �rst measured point, which is the mostfar away from the asymptote. It will not a�ect the value of the asymptote itself. By thistechnique, the number of parameters in the �t can be reduced to 6 and even 5, if xc is�xed. We �nd : xb = 0:209� 0:009(the variation of xc from 0.16 to 0.20 induces a negligible variation �0:0005 on xb)5.2 Indirect procedureThis procedure is intended to give a faster convergence, and thus to exhibit more clearly theasymptotical behaviour. We can estimate Cb(�) in one hemisphere, when the condition offull b-purity is reached in the opposite hemisphere. We estimate Cb(�) for a given value of� as the limit , for high �0, of the ratioN12bb (�; �0)=N2b (�0), or equivalently N12bb (�0; �)=N1b (�0),where N12bb (�; �0) is the number of events satisfying the cut � in hemisphere 1 and �0 inhemisphere 2. Fig.5 shows the value of the ratio above for a given value of � as a functionof �0 : the asymptote is clearly visible ; In practice, we have chosen �0 = 12 to compute9



Figure 4: a) Distribution of the ratio r1(�) on 160861 real hadronic events. The curvecorrespond to the simple �t by a constant plus a second order exponential. b)Distributionof the "decorrelated" ratio r2(�), �tted by the same parametrization and compared to r1(�).an estimation of Cb. 7108 hemispheres on real data and 4293 on simulation pass thiscondition of b-purity. Fig.6.a shows Cb as a function of �. Again, the statistical errorson di�erent bins are correlated, and we introduced as above the "decorrelated" quantities�Cbi = Cb(�i)� Cb(�i+1), shown on Fig.6.b .In the second step, we build estimators of Vb(�i)=Cb(�) and Db(�i)=Cb(�)2 introducedin Sect.3 : s1 = N1b (�i)NtotCb(�i) and t1 = Nbb(�i)Ntot(Cb(�i))2In order to avoid inter-bin correlations, we shall use instead of s1 and t1, "bin-to-bindecorrelated" ratios which are respectively :s2 = (N1b (�i)�N1b (�i+1))Ntot(Cb(�i)� Cb(�i+1)) and t2 = (Nbb(�i)�Nbb(�i+1))Ntot((Cb(�i))2 � (Cb(�i+1))2)These ratios have the same asymptotical value xb as s1 and t1.Fig.7.a shows the evolution of the new decorrelated ratios s2; t2 : as expected, the con-vergence is faster for t1 and t2 (in t2 the rejection powers Rc and Ruds are squared), andthe plateau is now obvious ; both curves appear to be compatible with the same asymp-totical value. The statistical errors are obtained by combining the errors on uncorrelatednumbers of events with the errors on the di�erential Cb previously computed. We �ttedthe dependence in � with a constant plus an exponential (in order to avoid correlationsbetween the numerator and the denominator, the �t is limited to the region � < 12).Without smoothing the Cb and �Cb distributions, the results are, based on for s2,xb = 0:221� 0:013and for the evaluation with t2 xb = 0:222� 0:00810



Figure 5: Principle of the determination of Cb(�). The fraction of hemispheres taggedb with the additionnal condition � > �, as a function of the puri�cation cut �0 in theopposite hemisphere. The fractions are plotted for a set of values of �.
Figure 6: Classi�cation probabilities of b events in the b-tag, estimated by the previousmethod as a function of �: a) b-tag e�ciency Cb(�) ; b) Di�erential probability, �Cb(�).Both distributions are accurately described by a third order polynomial in �).11



Fig.6.a and b shows that a third order polynomial �t gives a satisfactory smoothingon the Cb and �Cb distributions in the whole range of �, with a statistical uncertaintyof the order of 0:0005, i.e. a few percent of its value in the range 0 < � < 12. In orderto reduce the errors in the denominators of s2 and t2, we have replaced the Cb and �Cbby the values of the third polynomial �ts of these quantities. After this smoothing, theresults are with s2, xs2;smoothb = 0:226� 0:007and with t2 xt2;smoothb = 0:216� 0:0055.3 Monte-Carlo cross-checkA cross-check has been performed on a Monte-Carlo hadronic sample of comparable sizeto the data (168861 evts after cuts). These events were generated with the same 1.2 pslifetime for all b-hadrons 4. It was observed that the distribution in � is less extendedin simulation than in real data : this can be mainly due to the underestimation of thesimulated lifetime (1.2 ps) ; as a consequence, the tagging is more e�cient at high puritiesin real data, and the statistical erors on xb are better.In the analysed MC sample, the true fraction of b-events within the acceptance isxb;true = 0:222, The results of a �t by a constant term plus a second order exponential isshown in Fig.8. The value of the asymptote isxfitb;MC = 0:207� 0:013Fitting r2 instead of r1 gives xfitb;MC = 0:209� 0:013in agreement with the previous value, but one � lower than the expected value. By selectingonly genuine b-events in the b-tag, we have plotted also the ratios rideal1 and rideal2 thatwould be observed in the absence of uds and c contaminations. These ratios should beindependent of �, if there is no correlation between hemispheres,. The distribution of rideal1shows a small drop for large values of � which coud be the source of a systematic e�ect inthe estimation of the asymptote. This drop is due to an small excess of double-tags eventsat the end of the spectrum, which is scarcely populated.For the indirect method, Monte-Carlo allows in addition to check the validity of theCb(�) estimation, by comparing it to its true value Ctrueb (�), which is the b-tag e�ciencyfor b-events. The Fig.9.a compares the estimated and true Cb(�), and suggest an closeagreement. The agreement can be better checked on Fig.9.b, where the relative di�erencesbetween the two quantities is plotted. Up to a value of � < 12: the agreement remainswithin 1% in relative value.The Fig.8.c and d plot the decorrelated ratios s2 and t2, obtained after smoothing ofthe distributions of Cb and �Cb. The resultsxs2;smoothb;MC = 0:221� 0:0074This simulation should be distinguished from the one needed for the modelisation of the tagging: Thetwo samples were produced with di�erent versions of the simulation/analysis chain, so that e�ciencies anderrors on trajectories. They happen to di�er signi�cantly. In that way, we mimic in the simulation possiblediscrepancies between the model used for the tagging and real data. This is important to show that thexb measurement is model independant 12
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Fig 7 : Fits of s and t ratios
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δ cut δ cutFigure 7: Ratios s2 and t2 on 160861 real events, and �t for the extraction of the asymp-totical values : a) and b) Without Cb(�) smoothing ; c) and d) with Cb(�) smoothing.13
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Fig 8 : Fits of r,s and t ratios on MC
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δ cut δ cutFigure 8: a)Fit of r1(�) on a simulated sample ; rideal1 (at distribution) is the same ratiowhen the uds and c contaminations have been removed. b) Same as before but for the"decorrelated" ratio r2 ; c and d) Indirect measurements : decorrelated ratio s2 , t2 aftersmoothing of Cb(�) 14



Figure 9: Check on the simulated sample of the asymptotical estimation of the Cb(�)probabilities. a) Comparison of the estimated Cb(�) with the true tag e�ciency Ctrueb (�).b) Plot of the relative di�erence (Cb(�)� Ctrueb (�))=Ctrueb (�).xt2;smoothb;MC = 0:219� 0:007respectively for s2 and t2, are in better agreement with the 0.222 expected value than theresults with the direct ratios r1 and r2. The better agreement is due to the removal in the�ts of the region � > 12, which is possibly a�ected by residual correlations.6 Systematic errorsThe study of systematic errors is still in a preliminary status. We have considered thefollowing sources of errors, estimated from simulation:� Error due to the technique of estimation of the asymptote :A �rst evaluation is : 0:006 with the direct procedure0:003 with the indirect procedure� Inter-hemisphere correlations :The assumption of independent hemispheres is the most crucial. On simulation, acorrelation e�ect seems to exist for the direct procedure. First, the �tted value isfound lower than expected as mentioned above, which reects a drop in the ridealratios. From the distributions of these ratios on Fig.8.b, we have estimated for thiscontribution an upper limit of 0:009In the direct procedure, the accuracy on the asymptote is dominated by the doubleb-tag fractionDbb(�) in the denominator. It can be seen on Fig.2.b, that this fraction15



happens to be very small for large values of �, for our simulation based on a 1.2 psb-lifetime (Dbb < 0:00073 for � > 12). With a few events left, Dbb become sensitiveto even small residual contaminations. For data, the region near the asymptote ismuch more populated. There is less sensitivity, and the upper limit of 0.009 is prob-ably pessimistic.In the indirect procedure, the variation of the di�erence (Cb(�)�Ctrueb (�))=Ctrueb (�)(Fig.10.a) suggests the absence of correlation on Monte-Carlo, up to � = 12. Thedeviation on Cb(�) is below 1%. This gives a upper limit of 1% on relative error forthe values of s1; s2 and 2% for the values of t1; t2. Then we estimate this contributionto the error on xb to : 0:004� Error due to the tagging algorithm and the modelisation :Misrepresentations of physical parameters, such as lifetimes or fragmentation func-tions, or of the precision of the vertex detector, would a�ect the performances ofthe tagging. We did not modify each of these factors to evaluate their incidence onthe �tted value of xb ; we just increased or decreased arti�cially the selectivity ofthe tagging on simulated events 5. The b-tag purity varied from 0.44 and 0.54 andthe b-tag e�ciency from 0.63 to 0.77. For this rather wide range, the convergenceis more or less fast, but the value of the asymptote is almost independent of thetagging. In the Fig.10 , we have plotted the distribution of r1 for this set of taggingsaround the nominal one.This sets an upper limit for this contribution to0:004On real data, we have tried also a simpler tagging based on only 8 of the 12 variablespreviously mentioned . While the range of � and the steepness of the drop aredi�erent, the asymptotical limit remains the same within errors.� No di�erence has been found if the hemisphere axis is aligned along the x-direction(major axis of the beam spot ellipse) or y-direction.7 ConclusionsWith the direct procedure and from the ratios r1 and r2, we �nd for the measurement ofthe xb fraction inside the acceptance de�ned by the cosine sphericity cut at 0.75xb = 0:214� 0:010� 0:012where the main source of systematic error, which takes into account residual inter-hemisphere correlations, may be overestimated on data.5We have added or subtracted one or two units of class likelihoods, if the class corresponds to the eventavour ; this was done either for a single avour or for all avours16
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Fig 10 : Influence of tagging
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