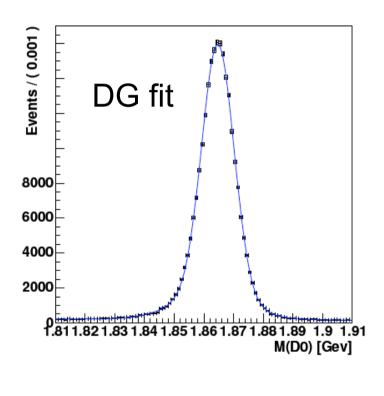
Update on Dalitz plot analysis of $D^0 \rightarrow K_S \pi^+ \pi^-$

G.Cavoto INFN Roma La Sapienza (on behalf of Y.Lau and J.Olsen) *BaBar Collaboration Meeting Dec 2006* **Charm** AWG parallel sessions

Introduction

- Dalitz plot fit results used in
 - $B^+ \rightarrow D^0 K^+$ analysis for CKM γ extraction
 - presented several times in conference paper and in one publication.
- Never finalized as an indipendent publication
 - Big $\pi^+\pi^-$ S-wave component: K-matrix parametrization vs questioned BW broad " σ "
 - Reference for model systematic on $\boldsymbol{\gamma}$ extraction
 - Last publication was from CLEO
 Phys. Rev. Lett. 89, 251802 (2002)
 (5299 candidates "σ"'s treated as perturbation...)
 - Punchline of paper would be showing S-wave
- Here Run1-Run4 data
 - 215449 events selected with a purity of >98%
- Information in BAD 1237 (v3 to come)
- Writing a PRD

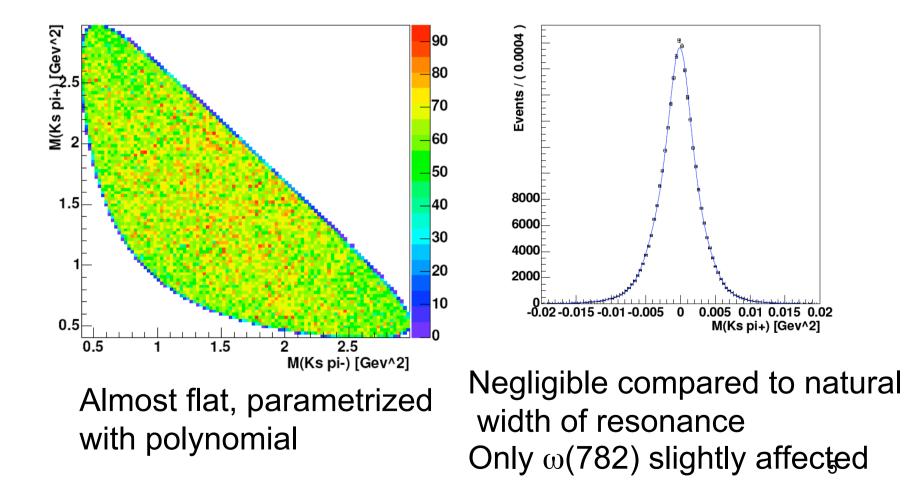

The Dalitz plot

BaBar Run1-4 data K*(892) M(Ks pi+) [Gev^2] **ρ(770)** 2 1.5 DCS K*(892) 0.5 2.5 0.5 1.5 2 1 M(Ks pi-) [Gev 2]

» CLEO model Phys. Rev. Lett. 89, 251802 (2002) $K^*(892)^+\pi^- \times B[K^*(892)^+ \to K^0\pi^+]$ $\overline{K^0}\rho^0$ $\overline{K^0}\omega \times B(\omega \to \pi^+\pi^-)$ $K^*(892)^-\pi^+ \times B[K^*(892)^- \rightarrow \overline{K^0}\pi^-]$ $\overline{K^0}f_0(980) \times B[f_0(980) \rightarrow \pi^+\pi^-]$ $\overline{K^0}f_2(1270) \times B[f_2(1270) \to \pi^+\pi^-]$ $\overline{K^0}f_0(1370) \times B[f_0(1370) \to \pi^+\pi^-]$ $K_0^*(1430)^- \pi^+ \times B[K_0^*(1430)^- \to \overline{K^0} \pi^-]$ $K_2^*(1430)^- \pi^+ \times B[K_2^*(1430)^- \to \overline{K^0} \pi^-]$ $K^*(1680)^-\pi^+ \times B[K^*(1680)^- \to \overline{K^0}\pi^-]$ $\overline{K^0}\pi^+\pi^-$ nonresonant

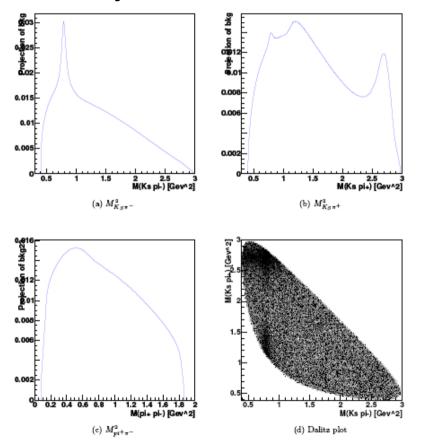
Very rich structure!

Selection



Very straightforward

- D⁰ from D* decay (ccbar)
 - pD⁰ > 2.2 GeV
 - $|\Delta m \Delta m_{mean}| < 0.5 \text{ MeV}$
- Cut on Ks mass (0.488-0.508 GeV)
 + vertex and flight direction requirements
- D⁰ daughter mass constrained (TreeFitter)
- P(χ²) (D*vertex) >0.001
- |mD⁰ -mD⁰_{mean}| < 11 MeV
- Very little background left


Binned χ^2 fit (250x250 uniform binning)

Efficiency and resolution

Model for background

Toy MC simulation

Only 1.5% of the total sample

Look at Upper and lower mD⁰ sideband

- » Parametrize separately resonances and combinatorics
- Fraction of resonance averaged between upper and lower sideband
- » Rescale momenta to signal region

BaBar Dalitz model

- S-wave
 - $-\pi\pi$: K-matrix parametrization (Anisovich et al.)
 - $K\pi$: LASS parametrization [K^{*}₀(1430)]
- P-wave
 - ππ: Gounaris-Sakurai rel BW ρ(770)
 + ω(782)
 - $[+ \rho(1450)$ allowed for syst. check]
 - Kπ: rel BW K*(892)
 [m and Γ from BaBar B J/psiK* crosscheck on signal data]
 + K*(1680)
- D-wave
 - K*₂(1430)
 - $-f_2(1270)$
 - Using Zemach tensor formalism
 - Using PDG if not otherwise noted

Allowing

Amplitude

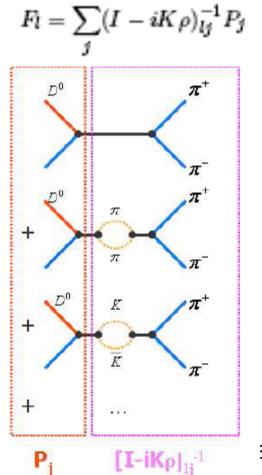
DCS

S-wave $\pi^+\pi^-$

K-matrix parametrization

Production vector

$$P_j(s) = \left\{ \sum_{\alpha} \frac{\beta_{\alpha} g_j^{(\alpha)}}{m_{\alpha}^2 - s} + \frac{f_{1j}^{proj} \frac{1.0 - s_0^{prod}}{s - s_0^{prod}} \right\}.$$

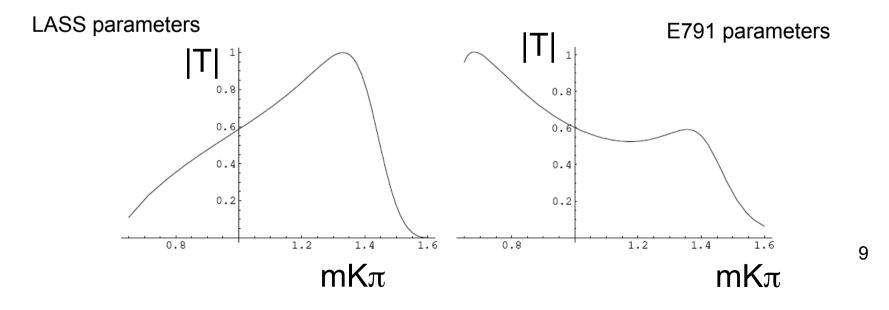

Pole

masses

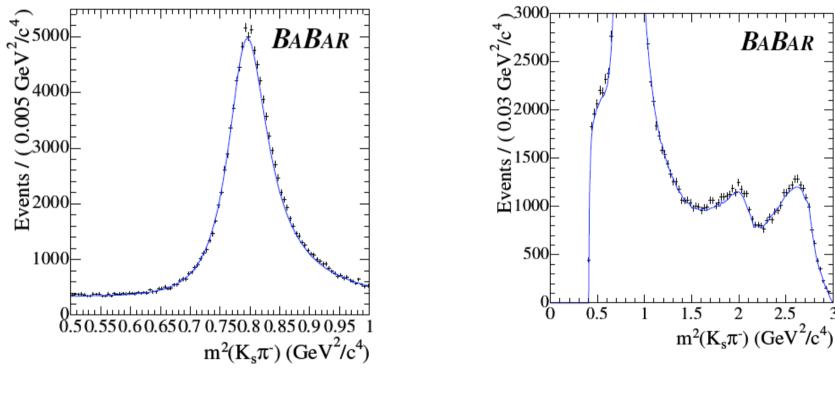
couplings

maoooo					
m_{α}	$g_{\pi\pi}$	g_{KK}	$g_{4\pi}$	$g_{\eta\eta}$	$g_{\eta\eta'}$
0.65100	0.22889	-0.55377	0.00000	-0.39899	-0.34639
1.20360	0.94128	0.55095	0.00000	0.39065	0.31503
1.55817	0.36856	0.23888	0.55639	0.18340	0.18681
1.21000	0.33650	0.40907	0.85679	0.19906	-0.00984
1.82206	0.18171	-0.17558	-0.79658	-0.00355	0.22358
8 autt	f_{11}^{scatt}	f_{12}^{scatt}	f_{13}^{scatt}	f_{14}^{scatt}	f_{15}^{soutt}
-3.92637	0.23399	0.15044	-0.20545	0.32825	0.35412
$s_{A0} = -0.15$	$s_A = 1$				

Full matrix from private comm. Other two other "solutions" used for syst. **Transition amplitude**

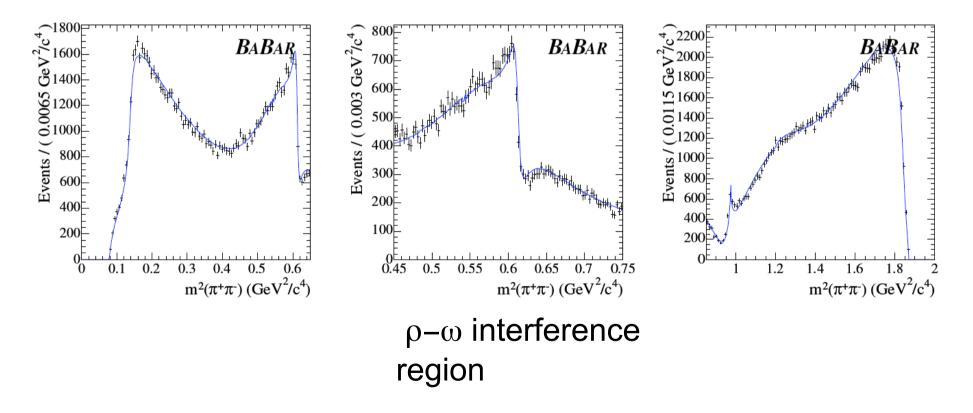

3

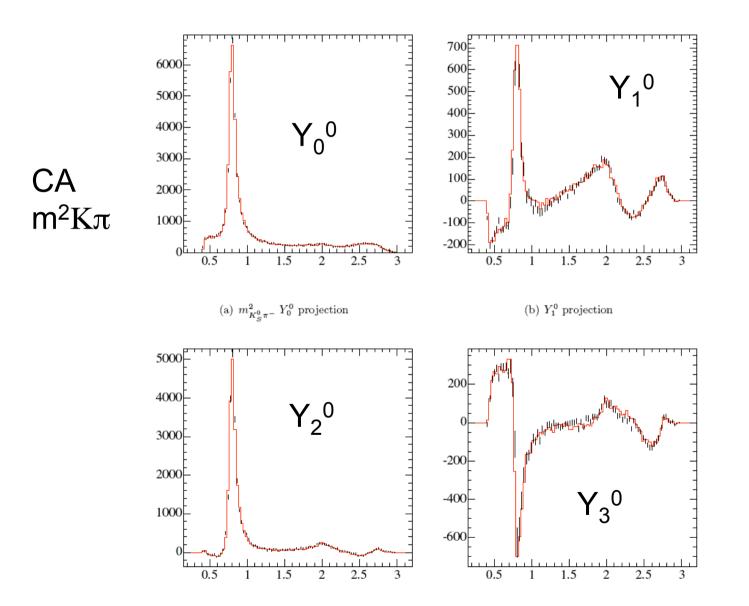
$K\pi$ S-wave


LASS parametrization

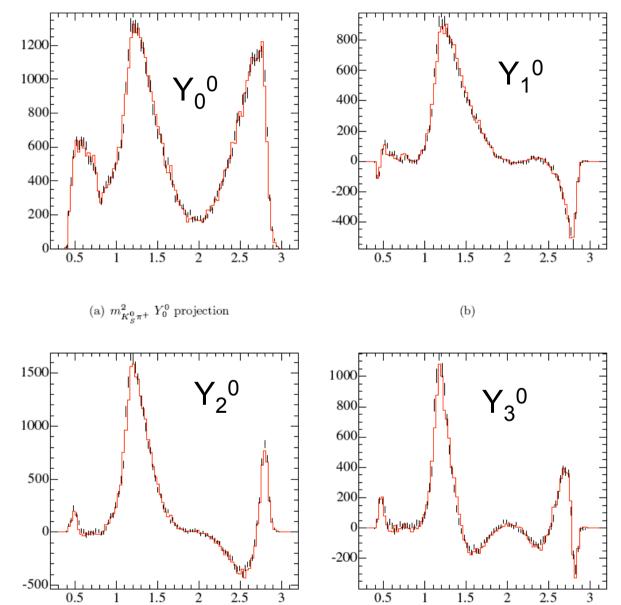
$$\mathcal{A}_{0} = B \sin \delta_{B} e^{i\delta_{B}} + R \sin \delta_{R} e^{i\delta_{R}} e^{i2\delta_{B}}$$
$$\delta_{B} = \phi_{B} + ctg^{-1}(1/(ap) + (rp)/2) \qquad \text{Non-resonant}$$
$$\delta_{R} = \phi_{R} + tg^{-1}(\frac{M \cdot \Gamma}{M^{2} - m_{K\pi}^{2}}) \qquad \text{resonant}$$

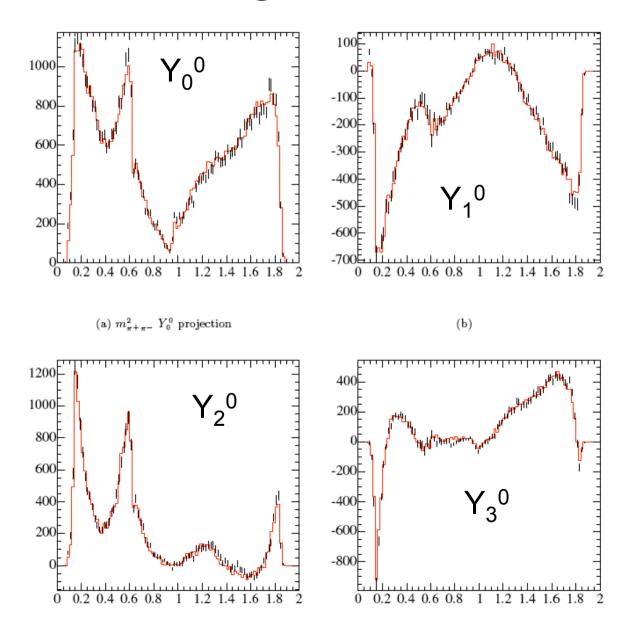
Parameters determined in our fit

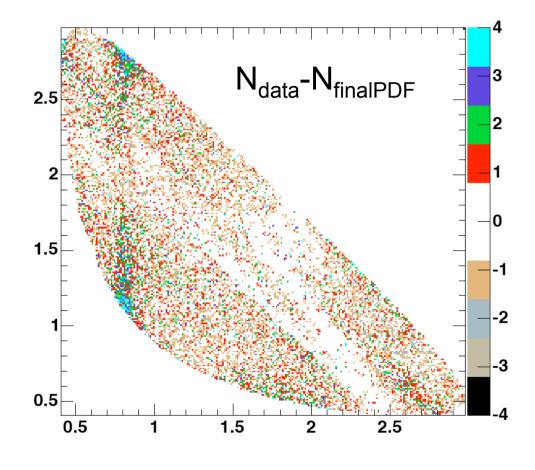

Cabibbo Allowed $m^2_{K\pi}$


K*(892) improved using m and Γ determined in our data

Improved a lot with LASS parametrization


$m_{\pi\pi}^2$ projections


Angular moments


DCS Angular moments

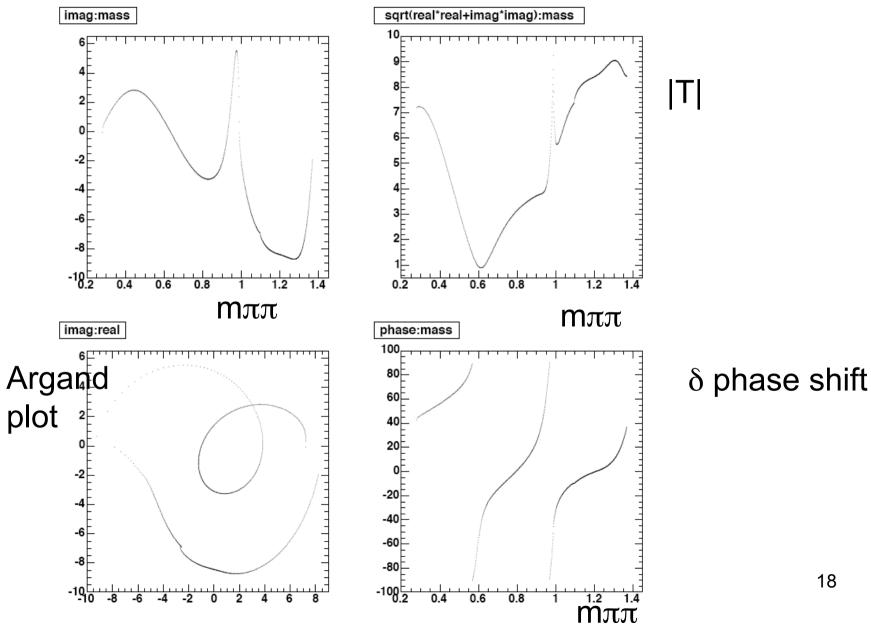
$\pi\pi$ ang.moments

Residual distribution

• Total χ^2 not good...

Amplitude: fit results

Кл LASS parameters DC	K*892_im K*892_re K0*1430_im K0*1430_re K0*1430_mass K0*1430_width a phiB phiR r B K2*1430_width a k2*1430_width k2*1430_width k2*1430_width k2*1430_im K2*1430_re K*1680_re K*892_DCS_im K*892_DCS_re	$\begin{array}{c} 1.22 \pm 0.01 \\ -1.193 \pm 0.01 \\ 4.3 \pm 0.2 \\ 2.5 \pm 0.3 \\ 1.431 \pm 0.003 \\ 0.28 \pm 0.01 \\ 0.356 \pm 0.008 \\ 109 \pm 2 \\ -172.2 \pm 5 \\ -10.49 \pm 0.2 \\ 0.00 \pm 0.07 \\ \hline 0.97 \pm 0.03 \\ -0.829 \pm 0.03 \\ -0.266 \pm 0.09 \\ -0.252 \pm 0.10 \\ \hline -0.1133 \pm 0.004 \\ 0.103 \pm 0.005 \end{array}$	o f f b b b b b b b b f f f f f	omega782_im omega782_re 2_1270_im 22_1270_re oeta1_im oeta1_re oeta2_im oeta2_re oeta3_im oeta3_re oeta4_im oeta4_re prod1_im prod1_re prod2_re prod2_re prod3_im	$\begin{array}{c} 0.036 \pm 0.001 \\ -0.0133 \pm 0.001 \\ 0.10 \pm 0.03 \\ -0.529 \pm 0.02 \\ \hline \\ -9.11 \pm 0.2 \\ -0.23 \pm 0.2 \\ -7.68 \pm 0.2 \\ -7.68 \pm 0.2 \\ -15.26 \pm 0.2 \\ -13.3 \pm 2 \\ -66.0 \pm 2 \\ 2.2 \pm 0.6 \\ -1.26 \pm 0.7 \\ 13.3 \pm 0.2 \\ 9.9 \pm 0.2 \\ 21.5 \pm 0.8 \\ 29.5 \pm 0.8 \\ 54 \pm 2 \\ 18 \pm 2 \\ 18 \pm 2 \end{array}$	ππ K-matrix Production vector
DCS amplitudes	K*1680_re K*892_DCS_im	$\begin{array}{c} -0.252 \pm 0.10 \\ \hline -0.1133 \pm 0.004 \end{array}$	f f f f f	prod2_re	29.5 ± 0.8	ரா K-matr

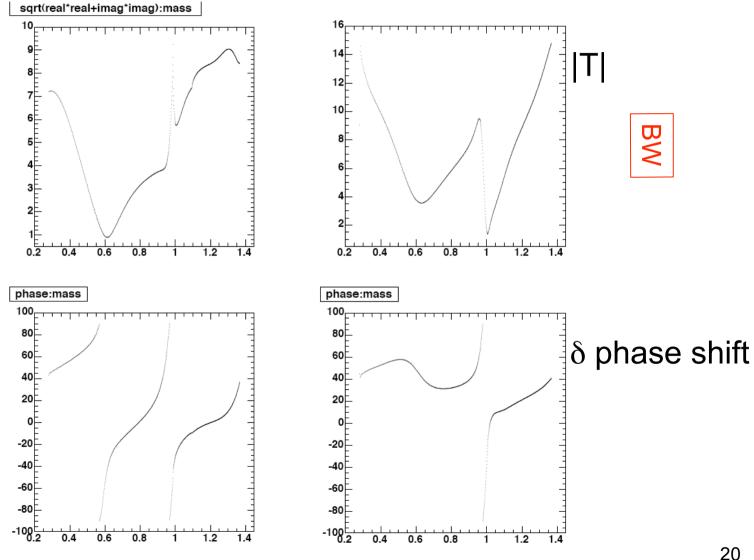

- Amplitude $\rho(770)$ fixed to 1 (phase to zero)
- Use cartesian parametrization
 - To be converted into module and phase for the Pub

Fit fraction results

_ ·	Component	Fit fraction (%)	
Errors using	$K^{*}(892)^{-}$	54.23 ± 0.25	
full covariance matrix	$K_0^*(1430)^-$ CA	4.79 ± 0.19	
[500 extraction,	$K_2^*(1430)^-$	1.888 ± 0.079	
Fit fraction is	$K^{*}(1680)^{-}$	0.055 ± 0.023	
mean	$K^{*}(892)^{+}$	0.443 ± 0.029	
of distribution	$K_0^*(1430)^+$ DCS	0.0143 ± 0.0056	
Error is RMS]	$K_2^*(1430)^+$	0.0037 ± 0.0029	
	$ \rho(770) $	20.88 ± 0.17	
	$\omega(782)$	0.507 ± 0.035	
Total fit fraction 99.9%	$f_2(1270)$	0.449 ± 0.040	
No Non-resonant term needed!	sum of $\pi^+\pi^-$ S-wave	16.64 ± 0.37	

NB: fit fractions contain BF of intermediate resonance

Total fitted S-wave



Alternative fit

K*892_im	1.32 ± 0.02
K*892_re	-1.348 ± 0.02
K0*1430_im	5.2 ± 0.2
K0*1430_re	-6.30 ± 0.2
K0*1430_mass	1.465 ± 0.002
K0*1430_width	0.180 ± 0.004
K*1410_im	-0.118 ± 0.05
K*1410_re	-0.150 ± 0.05
K*1680_im	-1.24 ± 0.2
K*1680_re	-1.07 ± 0.1
K2*1430_im	0.89 ± 0.04
K2*1430_re	-0.801 ± 0.03
K*892_DCS_im	-0.1110 ± 0.005
K*892_DCS_re	0.117 ± 0.006
K0*1430_DCS_im	-0.533 ± 0.10
K0*1430_DCS_re	-0.741 ± 0.09
K2*1430_DCS_im	-0.040 ± 0.03
K2*1430_DCS_re	0.10 ± 0.03
omega782_im	0.039 ± 0.001
omega782_re	-0.0139 ± 0.001
$rho1450_{im}$	1.05 ± 0.08
rho1450_re	0.58 ± 0.04

	sigma1_im	0.24 ± 0.07
	sigma1_re	1.42 ± 0.07
()	sigma1_mass	0.500 ± 0.006
S-wave	sigma1_width	0.39 ± 0.01
N N	sigma2_im	0.51 ± 0.06
Ž	sigma2_re	0.45 ± 0.07
	sigma2_mass	1.059 ± 0.005
BW	sigma2_width	0.20 ± 0.01
<	f0_980_im	0.16 ± 0.01
	f0_980_re	0.433 ± 0.008
	f0_1370_im	-2.58 ± 0.2
	f0_1370_re	3.0 ± 0.2
	 f2_1270_im	0.16 ± 0.04
	f2_1270_re	-0.944 ± 0.03
Γ	NonReson_im	-3.71 ± 0.3
	NonReson_re	4.4 ± 0.3

S-wave K-matrix vs BW

K-matrix

Systematics

- Efficiency correction
 - » Almost flat, fit with no correction
- Background parametrization
 - » 1.5%, fit with flat background
- Resolution and binning
 - » Fit with different binning (100x100)
- Resolution
 - » Fit with ω width increased of resolution (8.7 MeV)
- Include flavour mistag probability
 - » Fit with mistag fraction (from MC: 0.1%)

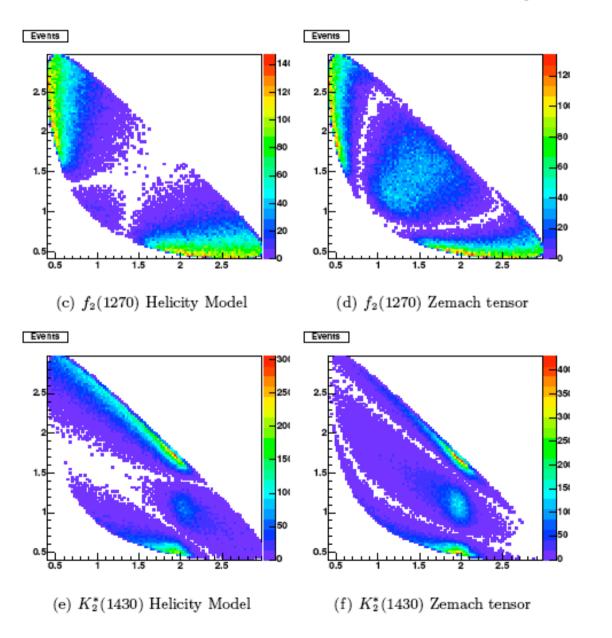
Model systematics

- S-wave
 - K-matrix, fit with A&S alternative solutions (2)
 - Kp : rel BW fit (with parameters from E791)
- P-wave
 - Vary m and Γ within exp. Uncertainty
 - Float m and Γ of K*(892)
- D-wave
 - Vary m and Γ within exp. Uncertainty
- Helicity formalism
 - Fit with helicity formalism
- Change Blatt-Weisskopf penetration factor
 - Deafult is 1.5, fit with 0.0 and 3.0
- Inclusion of more resonances
 - r(1450), K₁(1410),K*(1680)

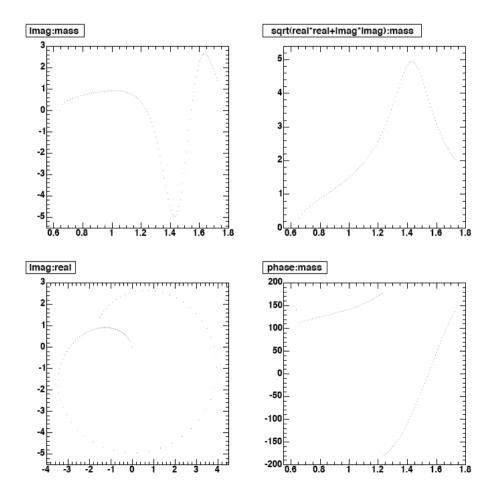
Total systematics

Component	Fit fraction $(\%)$	syst error (%)
$K^{*}(892)^{-}$	54.23 ± 0.25	0.70
$K_0^*(1430)^-$	4.8 ± 0.2	2.2
$K_2^*(1430)^-$	1.89 ± 0.08	0.53
$K^{*}(1680)^{-}$	0.06 ± 0.02	0.94
$K^{*}(892)^{+}$	0.443 ± 0.029	0.005
$K_0^*(1430)^+$	0.0143 ± 0.0056	0.023
$K_{2}^{*}(1430)^{+}$	0.0037 ± 0.0029	0.009
$\rho(770)$	20.88 ± 0.17	0.93
$\omega(782)$	0.507 ± 0.035	0.043
$f_2(1270)$	0.45 ± 0.04	0.36
sum of $\pi^+\pi^-$ S-wave	16.6 ± 0.4	2.6

» RMS of variation for all the various alternative fits


- » Still incomplete and preliminary
- » But comparable or smaller than CLEO's

Plans


- Run more fits to compute systematics
- Propagate stat and syst error on phase and amplitude.
- Write a draft of a paper
 - Document nominal Dalitz model
 - Add results for alternative fit with BW " σ "
 - Would like to converge by Moriond
- Move on to time dependent fit for D-mixing
 - Reuse technology developed for $D^0 \rightarrow K^+ \pi^- \pi^0 [K^- \pi^+ \pi^0]$

Back up

Zemach vs helicity

Total Kπ Swave

