

F. Martínez-Vidal, D. Milanés IFIC-Valencia

Antecedents and motivation

- Phys.Rev.D72, 052008 (2005)
 - □ Based on 91.5 fb⁻¹
 - □ 12540 signal events
 - □ 97.3% purity

Final state	Amplitude	Phase (radians)	Fraction (%)) (GeV ² /c ⁴)
$\overline{K}{}^{0}a_{0}(980)^{0}$	1.	0.	$66.4\pm1.6\pm7.0$	
$\overline{K}{}^{0}\phi(1020)$	$0.437\pm0.006\pm0.060$	$1.91\pm0.02\pm0.10$	$45.9\pm0.7\pm0.7$	
$K^{-}a_{0}(980)^{+}$	$0.460\pm0.017\pm0.056$	$3.59\pm0.05\pm0.20$	$13.4\pm1.1\pm3.7$	
$\overline{K}{}^{0}f_{0}(1400)$	$0.435\pm0.033\pm0.162$	$-2.63\pm0.10\pm0.71$	$3.8 \pm 0.7 \pm 2.3$	
$\overline{K}^0 f_0(980)$			$0.4 \pm 0.2 \pm 0.8$	
$K^+a_0(980)^-$			$0.8 \pm 0.3 \pm 0.8$	
Sum			$130.7\pm2.2\pm8.4$	

- Now, many more data (Run1-Run5 ~x4)
 Is this model yet a good model?
 - □ Is this model yet a good model?
- Want to use for γ from B[±] \rightarrow D⁰[K_Sh⁺h⁻]K[±]
 - □ So far, $h = \pi$ only
- Other analyses (e.g. D^o mixing) can take profit

$D^0 \rightarrow K_S KK$ selection

Tagged D⁰ data, obtained from D^{*+} \rightarrow D⁰ π ⁺ decays from continuum

```
p_{D^0}^* < 2.2 \text{ GeV} From preselection
stDalitzD0 = 0.
mTotDalitzD0 = 1.8645 \text{ GeV} \left\{ D^0 \text{ mass constraint} \right\}
chi2DalitzD0 > 0.
chi2DstarBS > 0.
                                    Beam spot convergence
dofDstarBS > 0.
probChi2DstarBS > 0.
\frac{|m(K_s) - 0.4976| < 0.009 \text{ GeV}}{\cos \theta(K_s) > 0.99} \quad K_s \text{ constraints}
 \begin{array}{c} \text{chi2D0} > 0. \\ \text{chi2Ks} > 0. \end{array} \right\} \text{ Convergence of vertices} \\ \end{array}
NotPionLHKaonMicroSelection for one of the two kaon tracks
 \frac{|m(D^0) - 1.8645| < 0.0078 \text{ GeV}}{|\Delta M - 0.1454| < 0.0006 \text{ GeV} }  (2\sigma cuts)
```

- DstD0ToKsHpHm skim
- TreeFitter
- K_s from ChargedTracks, vertex and mass constrained
- Soft pions from GoodTracksVeryLoose
- D⁰ vertex and mass constrained
- D* beam spot vertex fit

m(D⁰) and Δm

All cuts applied except in the plotted variable

m(D⁰) (Signal box)

RANGE: $1.8645\pm2.2\sigma$

$$f_{Sig} = (99.3 \pm 0.4)\%$$

Dalitz isobar model and likelihood fit I

Isobar model with coherent sum of Breit-Wigner amplitudes

$$A_D(m_0^2, m_+^2) = a_{NR}e^{i\phi} + \sum_r a_r e^{i\phi_r} A_r(m_0^2, m_+^2)$$

$$A_{r}(m_{0}^{2}, m_{+}^{2}) = F_{D} \times F_{r} \times M_{r}^{J} \times BW_{r}$$

$$\uparrow$$
Zemach tensors

$$m_0^2 \equiv s_0 \equiv m_{AB}^2 \equiv m^2 (K^+ K^-)$$
$$m_+^2 \equiv s_+ \equiv m_{AC}^2 \equiv m^2 (K_S K^+)$$
$$m_-^2 \equiv s_- \equiv m_{BC}^2 \equiv m^2 (K_S K^-)$$

Angular dependence of the amplitude depends on the spin J of the resonance r. Includes F_D and F_r form factors (\approx Blatt-Weisskopf penetration factors)

Single relativistic BW with mass dependent width Γ_r

$$BW_r(s) = \frac{1}{M_r^2 - s - iM_r\Gamma_r(\sqrt{s})}$$

$$s = \{m_0^2, m_+^2, m_-^2\}$$

Resonance	<i>M</i> (MeV)	<i>Г</i> (MeV)	From
φ(1020)	1019.63±0.07	4.28±0.13	BaBar Phys.Rev.D72, 052008 (2005)
f ₀ (1370)	1350±50 1434±18	265±40 173±32	BES PLB607, 243 (2005) E791 PRL89, 121801 (2002)

Dalitz isobar model and likelihood fit II

Coupled BW (Flatté)

$$BW_{chan}(s) = \frac{g_{KK}}{M^2 - s - i[g_{KK}^2 \rho_{KK}(s) + g_{chan}^2 \rho_{chan}(s)]}$$

$$\rho_i(s) = 2q / \sqrt{s}$$

Phase space factor

Res.	g _{кк}	From	chan	g _{chan}	<i>M</i> (MeV)	From
a ₀ (980)	464±49 MeV ^{1/2}	BaBar, PRD72, 052008 (2005)	ηπ	324±15 MeV ^{1/2}	999±2	Crystal Barrel PRD57, 3860 (1998)
f ₀ (980)	165±18 MeV	BES, PLB607, 243 (2005)	ππ	695±94 MeV	965±10	BES PLB607, 243 (2005)

Probability density function

$$PDF = f_{Sig} \frac{\varepsilon(s_0, s_+) \sum_{i,j} c_i c_j^* A_i(s_0, s_+) A_j^*(s_0, s_+)}{\int \varepsilon(s_0, s_+) \sum_{i,j} c_i c_j^* A_i(s_0, s_+) A_j^*(s_0, s_+) ds_0 ds_+} + (1 - f_{Sig}) \frac{|A_{\phi}(s_0, s_+) + P_2(s_0, s_+)|^2}{\int |A_{\phi}(s_0, s_+) + P_2(s_0, s_+)|^2 ds_0 ds_+}$$

Efficiency mapping

- Efficiency map ε(s₀,s+) described by 2nd order asymmetric polynomial
- Very flat efficiency

Dalitz - background

Dalitz shape for small background characterized using the upper and lower D⁰ mass sidebands

> $(m_{D0}-40 \text{ MeV}, m_{D0}-5\sigma)$ $(m_{D0}+5\sigma, m_{D0}+40 \text{ MeV})$

Well described by a $\phi(1020)$ component and a 2nd order asymmetric polynomial

Base line (BL) model with new data

New Dalitz model I

Resonances	Total fit fraction	χ²/6856
a ₀ (980) ⁰ , φ, a ₀ (980) ⁺ , a ₀ (980) ⁻	133.8	9962
$a_0(980)^0, \phi, a_0(980)^+, a_0(980)^-, f_0(1370)$ (BL)	136.5	9130
$a_0(980)^0$, ϕ , $a_0(980)^+$, $a_0(980)^-$, $a_2(1230)^0$, $a_2(1230)^+$	157.9	9030
$a_0(980)^0$, ϕ , $a_0(980)^+$, $a_0(980)^-$, $a_2(1230)^0$, $a_2(1230)^+$, $a_2(1230)^-$	156.6	9027
a ₀ (980) ⁰ , \u03c6, a ₀ (980) ⁺ , a ₀ (980) ⁻ , f ₂ (1270)	135.8	9946
(BL), f ₂ (1270)	148.4	8920
(BL), a ₀ (1450) ⁰ , a ₀ (1450) ⁺	125.4	8446
(BL), a ₀ (1450) ⁰ , a ₀ (1450)⁺, a ₀ (1450)⁻	159.0	8297
(BL), a ₂ (1230) ⁰ , a ₂ (1230) ⁺	152.1	8751
(BL), a ₀ (1230) ⁰ , a ₀ (1230) ⁺ , a ₀ (1230) ⁻	149.0	8766
(BL), a ₀ (1450) ⁰ , a ₀ (1450) ⁺ , f ₂ (1270)	130.9	8210
(BL), a ₀ (1450) ⁰ , a ₀ (1450) ⁺ , a ₀ (1450) ⁻ , f ₂ (1270)	141.8	8198

- a₀(1450), a₂(1230), f₂₍1270) parameters from PDG
 Fits including f₀(980) give very large fit fractions (>160)
- Any missing resonance? $\rho(1450)$, $f_0(1500)$, $f_2'(1525)$,...? ullet

New Dalitz model II

New Dalitz model III

 $\begin{aligned} & \text{Re(phi)} = -1.26316e\text{-}01 \text{ +/- } 2.995e\text{-}03 \text{ L}(-1 \text{ - }1) \\ & \text{Re(a0p}980) = -5.68843e\text{-}01 \text{ +/- } 1.362e\text{-}02 \text{ L}(-1 \text{ - }1) \\ & \text{Re(f0}1370) = -1.76074e\text{-}01 \text{ +/- } 6.336e\text{-}02 \text{ L}(-1 \text{ - }1) \\ & \text{Re(a0m}980) = -6.37925e\text{-}02 \text{ +/- } 1.512e\text{-}02 \text{ L}(-1 \text{ - }1) \\ & \text{Re(a0m}980) = -6.37925e\text{-}02 \text{ +/- } 1.512e\text{-}02 \text{ L}(-1 \text{ - }1) \\ & \text{Re(f2}1270) = 2.66634e\text{-}01 \text{ +/- } 2.131e\text{-}02 \text{ L}(-1 \text{ - }1) \\ & \text{Re(a00}1450) = 6.07274e\text{-}02 \text{ +/- } 1.138e\text{-}01 \text{ L}(-1 \text{ - }1) \\ & \text{Re(a0p}1450) = 2.12624e\text{-}01 \text{ +/- } 6.945e\text{-}02 \text{ L}(-1 \text{ - }1) \end{aligned}$

Im(phi) = 1.89055e-01 +/- 5.314e-03 L(-1 - 1) $Im(a0p_980) = 9.52304e-02 +/- 3.119e-02 L(-1 - 1)$ $Im(f0_1370) = 2.55317e-02 +/- 4.912e-02 L(-1 - 1)$ $Im(a0m_980) = 1.13638e-01 +/- 1.552e-02 L(-1 - 1)$ $Im(f2_1270) = -4.70966e-02 +/- 2.619e-02 L(-1 - 1)$ $Im(a00_1450) = -3.99625e-01 +/- 9.838e-02 L(-1 - 1)$ $Im(a0p_1450) = 8.13207e-01 +/- 2.974e-02 L(-1 - 1)$

Summary

The analysis of all Run1-Run5 data reveals the need of the higher I=1 scalar a₀(1450) to describe the D⁰→K_sK⁺K⁻ decay

