Introduction to K-matrix(Brief!)

Ben Lau

Princeton University

February Collaboration meeting
23 Feb 2005

Why K-matrix?

Adding Breit-Wigners in the "Isobar Model"

- Breaks the unitarity of the S-Matrix
- Breit-Wigner is only valid for single, isolated resonance.

K-matrix for dummies

We start from first principle: S-matrix respect Unitary: (unitary means probality conservations)

$$
\begin{array}{cl}
S S^{\dagger}=I & \text { (equation 1: unitary of S-matrix) } \\
S=I+2 i T & \text { (equation2: rewrite S-matrix as T-matrix) } \\
\left(T^{-1}+i I\right)^{\dagger}=\left(T^{-1}+i I\right) & \text { (equation3: subsitute } 2 \text { in 1) }
\end{array}
$$

Now I define K:

Equation4: Most important equation

$$
K^{-1}=T^{-1}+i I
$$

Notice: (K and T is now related)
\rightarrow Unitary condition will be preserved.
From (4): re-write T as a function of K

$$
T=K \cdot(I-i K)^{-1}
$$

Adding K-matrix!

If we added T-matrix (add BWs)
$T=B W_{1}+B W_{2}$
Unitary condition is violated.

However, if we added K-matrix
$K=K_{1}+K_{2}$
Unitary condition is respected.
(Because K is derived from the Unitary of S-matrix from first principle)

Resonance in K-matrix

In Isobar Model, we write the T-matrix as some of Breit-Wigner:

$$
T(s)=\sum_{\alpha} \frac{m_{\alpha} \Gamma}{\left(m_{\alpha}^{2}-s\right)-i m_{\alpha} \Gamma}
$$

But this does NOT perserved unitary!

In K-matrix: The resonances appear as a sum of poles

$$
K_{i j}(s)=\sum_{\alpha} \frac{g_{i} g_{j}}{m_{\alpha}^{2}-s} \quad \longleftarrow \quad \text { Good! Unitary OK! }
$$

Proof of the Breit-Wigner in K-matrix

Now, I am going to prove that in the simplest case the K-matrix formula will derive the usual Breit-Wigner formula

Start from K:

$$
K_{i j}(s)=\sum_{\alpha} \frac{g_{i} g_{j}}{m_{\alpha}^{2}-s}
$$

If we have one single resonance $\rightarrow 1$ pole is needed.

$$
K=\frac{m \Gamma}{m_{\alpha}^{2}-s} \quad \text { where } \quad g^{2}=m \Gamma
$$

$$
\begin{aligned}
& 1-i K=\frac{\left(m_{\alpha}^{2}-s\right)-i m \Gamma}{\left(m_{\alpha}^{2}-s\right)} \\
& \rightarrow K \cdot(I-i K)^{-1}=\frac{m \Gamma}{\left(m_{\alpha}^{2}-s\right)} \cdot \frac{\left(m_{\alpha}^{2}-s\right)}{\left(m_{\alpha}^{2}-s\right)-i m \Gamma} \\
& \rightarrow T=\frac{m \Gamma}{\left(m_{\alpha}^{2}-s\right)-i m \Gamma}
\end{aligned}
$$

$$
T=K \bullet(I-i K)^{-1}
$$

Breit-Wigner formula

Flatte's Formula

K matrix can be generalized to coupled channel decay, eg:

$$
f_{0}(980) \rightarrow \pi \pi, K K
$$

Rescattering is NOT
Consider 2 by 2 matrics: In picture:

$$
K=\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right)
$$

Follow the pervious exercise, one can derive the famous Flatte's Formula:

$$
\begin{aligned}
& \text { ormula: }\left(\begin{array}{cc}
g_{1}^{2} & g_{1} g_{2} \\
g_{1} g_{2} & g_{2}^{2}
\end{array}\right) \\
& \qquad T=\frac{m_{\alpha}^{2}-s-i m \Gamma\left(\rho_{1} g_{1}^{2}+\rho_{2} g_{2}^{2}\right)}{}
\end{aligned}
$$

How to write down the K-matrix?

In the Breit-Wigner description, there are two parameters, mass M and width Γ, need to be determined from experimental data. And they are all listed in the PDG.

$$
T(s)=\sum_{\alpha} \frac{m_{\alpha} \Gamma}{\left(m_{\alpha}^{2}-s\right)-i m_{\alpha} \Gamma}
$$

Similarity, we also need to determine the coupling constant, g , and pole m , in the K-matrix, from the experimental data!

$$
K_{i j}(s)=\sum_{\alpha} \frac{g_{i} g_{j}}{m_{\alpha}^{2}-s}
$$

Few words about the K-matrix pole

In the Breit-Wigner description, the mass of the pole term DOES mean the mass of the particle. Eg. rho(770) means the mass of the rho meson has 770 MeV .

$$
T(s)=\sum_{\alpha} \frac{m_{\alpha} \Gamma}{\left(m_{\alpha}^{2}-s\right)-i m_{\alpha} \Gamma}
$$

However, in the K-matrix, the mass of the pole DOES NOT mean the mass of particle, because T-matrix is the one you can measure in the experiment, not K-matrix.

$$
K_{i j}(s)=\sum_{\alpha} \frac{g_{i} g_{j}}{m_{\alpha}^{2}-s}
$$

You should:

$$
\begin{array}{ll}
\text { Perform analytic continuation of the T-matrix, } T=K \bullet(I-i K)^{-1} & \begin{array}{l}
\text { Into complex energy plane to } \\
\text { determine the position of the pole }
\end{array}
\end{array}
$$

You should NOT:
Perform K-matrix analysis by summing all the K-matrix pole using PDG values!

Real Example: $\pi \pi$ S-wave

Anisovich and Sarantev perform a global fit of the $\pi \pi$ S-wave, using 5×5 K-matrix with 5 poles.

$$
\begin{aligned}
& K^{-1}=T^{-1}+i \rho \\
& T=(I-i K \cdot \rho)^{-1} K
\end{aligned}
$$

First attempt to $\mathrm{D}^{0}->\mathrm{K}_{s} \pi \pi$ dalitz plot via K-matrix approach!

End of the talk!

Comments are welcome.

