Sharpening the Physics case for Charm at SuperB

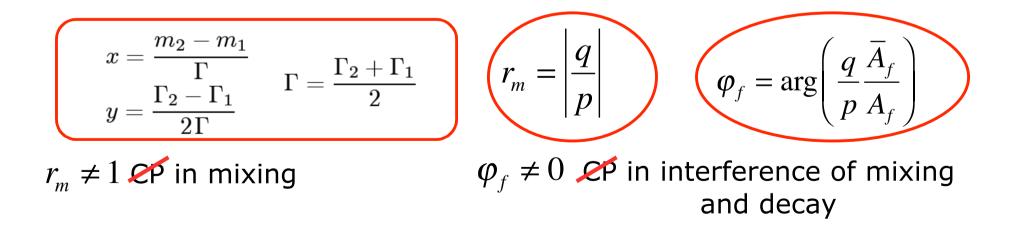
D. Asner, G. Batignani, I. Bigi,
F. Martinez-Vidal, N. Neri,
A. Oyanguren, A. Palano, G. Simi

Charm AWG report Valencia - SuperB Workshop VI

From Bigi's talk

Prologue: New Physics Scenarios & Uniqueness of Charm

- New Physics in general induces FCNC
 - their couplings could be substantially stronger for Up-type than for Down-type quarks
 (actually happens in some models which `brush the dirt of FCNC in the down-type sector under rug of the up-type sector)
- SM `background' much smaller for FCNC of Up-type quarks
 - cleaner -- albeit smaller -- signal!


Physics case for charm: search for New Physics

- The real certainty in charm physics is that *CP*, either in decay or in mixing or in interference, is the way to search for New Physics.
- At SuperB precision measurements of mixing should be considered as a tool for searches for CP.

Mixing and *EP* toolkit

Mass eigenstates	$\left D_{1,2}^{0} \right\rangle = p \left D^{0} \right\rangle \pm q \left \overline{D^{0}} \right\rangle$
≠	$\left(\frac{q}{2}\right)^2 - \frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}$
flavor eigenstates:	$\left(\frac{\overline{p}}{p}\right) = \frac{\overline{M_{12} - \frac{i}{2}\Gamma_{12}}}{M_{12} - \frac{i}{2}\Gamma_{12}}$

 $A_{f} = \left\langle f \left| H \right| D^{0} \right\rangle \qquad \overline{A}_{f} = \left\langle f \left| H \right| \overline{D}^{0} \right\rangle \qquad \frac{A_{\overline{f}}}{A_{f}} \neq 1 \qquad \text{ for decay}$

New Physics via \mathcal{LP}

(2.1) The Program

Finding \mathcal{G} somewhere in $\Delta C \neq 0$ is a seminal discovery -yet not a program, `merely' its first step!

Program (exp)

Study Ø &↗ in

• $\Delta C = 1$ vs. $\Delta C = 2$; i.e., direct vs. indirect CP via t dependence

```
• CF vs. CS vs. DCS
```

partial rates vs. Final State Distributions (FSD)

```
down to 10<sup>-3</sup> - 10<sup>-4</sup> levels
```

using runs at ~ 10 GeV & ~ 4 GeV

Program (th)

Develop phenomenology for GP & T/n FSD

- Derive reliable SM predictions
- Analyze NP scenarios -- in particular Little Higgs Models

$$\begin{array}{l} \textbf{Mixing and } \textbf{P} \textbf{ violation observables} \\ \hline D^{0} \rightarrow l^{-}vX \\ \hline D^{0} \rightarrow CP \\ \hline D^{0} \rightarrow CP \\ \hline D^{0} \rightarrow K_{S}h^{+}h^{-} \\ \hline D^{0} \rightarrow K^{+}\pi^{-} \\ \hline M^{'\pm} = \left(\frac{1 \pm A_{M}}{1 \mp A_{M}}\right)^{1/4}(x'\cos\phi\pm y'\sin\phi) \\ A_{IT} = (qp)|_{K^{0}\pi\pi} = |q/p|_{ATT} \\ A_{IT} = (qp)|_{K^{0}\pi\pi} = |q/p|_{ATT} \\ g(q/p)_{K^{0}\pi\pi} = \phi \\ \hline D^{0} \rightarrow K^{+}\pi^{-} \\ \hline M^{'\pm} = \left(\frac{1 \pm A_{M}}{1 \mp A_{M}}\right)^{1/4}(y'\cos\phi\mp x'\sin\phi) \\ f(x) = \left(\frac{x'}{y'}\right) = \left(\frac{\cos\delta}{-\sin\delta}\right)\left(\frac{x}{y}\right) \\ \hline \frac{1}{2}\left[R(D^{0} \rightarrow K^{+}\pi^{-}) + R(D^{0} \rightarrow K^{-}\pi^{+})\right] = R_{D} \\ \frac{R(D^{0} \rightarrow K^{+}\pi^{-}) + R(D^{0} \rightarrow K^{-}\pi^{+})}{R(D^{0} \rightarrow K^{-}\pi^{+})} = A_{D} \end{array}$$

Valencia, Jan 7-15, 2008

Charm Working Group Report

Output from this workshop

Ikaros first homework

(1.5) First Task for WG: how to measure best x_D,y_D

Must measure x_D, y_D accurately

- serves as validation of Super-B charm analyses
- " " " time dependent CP studies
- a breakthrough in theoret. technologies might occur
- Questions for the WG
- How well can one do ?
- Running on the Y(4S) vs. near charm threshold ?
- near charm threshold:
 - 💪 Can do time dependent measurements?
 - EPR correlations?
- time dependent Dalitz plots

Valencia, Jan 7-15, 2008

Comparison with different running experiments

- SuperKEK: besides lumi difference ~10x smaller, there is no possibility to run at threshold. Expected larger background, possible impact on systematics.
- LHCb: statistics not a problem. Systematics not evaluated in sensitivity studies, possibly limiting precise measurements. Decays with neutrals, neutrinos and Ks very challenging. Coherent production not possible.
- **BESIII**: Coherent production. 100x smaller lumi.

Not possible time-dependent measurements.

 - CLEO-c: same considerations for BESIII. 26x smaller data sample wrt BESIII.

SuperB will offer the opportunity of:

- Improving precision on almost all measurements.
- Wider range of possible measurements.

Question 1: sensitivity to charm mixing

Estimates from CDR. Systematic uncertainties assumed to be kept under control. More comments later.

Mode	Observable	B Factories (2 ab^{-1})	$SuperB$ (75 ab^{-1})
$D^0 \rightarrow K^+ K^-$	y_{CP}	23×10^{-3}	$5 imes 10^{-4}$
$D^0 \rightarrow K^+ \pi^-$	y'_D	23×10^{-3}	$7 imes 10^{-4}$
	$x_D^{\prime 2}$	$1\text{-}2 \times 10^{-4}$	3×10^{-5}
$D^0 \to K^0_s \pi^+ \pi^-$	y_D	23×10^{-3}	$5 imes 10^{-4}$
	x_D	23×10^{-3}	$5 imes 10^{-4}$
Average	y_D	$1-2 \times 10^{-3}$	3×10^{-4}
	x_D	$2-3 \times 10^{-3}$	$5 imes 10^{-4}$

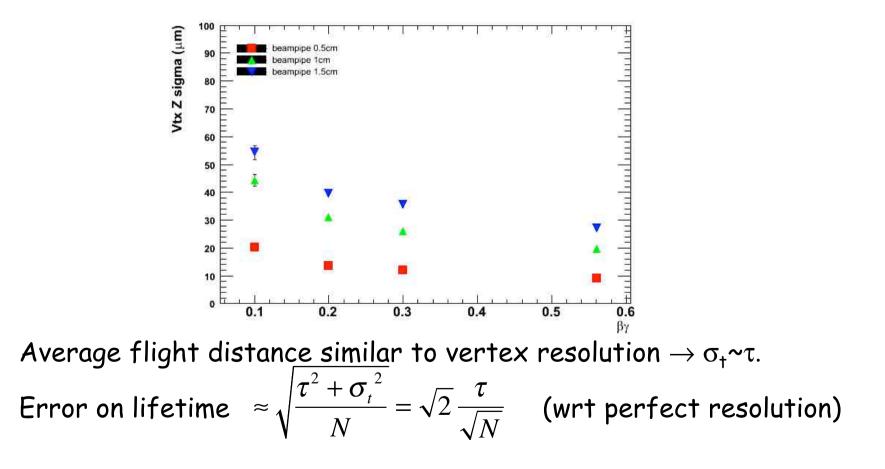
Comparison with other experiments

Exp. sensitivities	γ _{CP} (10 ⁻³)	y' (10-3)	x'² (10-4)	cosδ
B-factories (2ab ⁻¹)	2-3	2-3	1-2	-
SuperB (75 ab ⁻¹)	0.4-0.5	0.7	0.3	-
CLEO-c (750 pb ⁻¹)	10	-	2-3	0.1-0.2
BESIII (20fb-1)	4	-	0.5-1	0.05
SuperB - 4 GeV	1-2	?	0.5-1	0.01-0.02
(0.3 ab ⁻¹ or 2 month)				
LHCb 10fb ⁻¹	0.5	0.9	0.64	-
	(stat only)	(stat only)	(stat only)	

Question 2: running at $\Upsilon(4S)$ vs DD threshold

- Charm events at threshold are very clean: pure $\overline{\text{DD}},$ no additional fragmentation
- High signal/bkg ratio: optimal for decays with neutrinos.
- Quantum Coherence: new and alternative CP violation measurement wrt to $\Upsilon(4S)$. Unique opportunity to measure D-D relative phase.
- Increased statistics is not an advantage running at threshold: cross-section 3x wrt 10GeV but luminosity 10x smaller.
- SuperB lumi at 4 GeV = 10^{35} cm⁻²s⁻¹ to be compared with 10^{33} cm⁻²s⁻¹ of BESIII. Possibility to improve BESIII results by sizeable amount in few months running.
- Time-dependent measurements at 4 GeV only possible at SuperB, to be assessed.

12


A 4.0 GeV detector: important peculiarities

- BaBar-Belle detector are similar to CLEO-c detector.
- CLEO-c use CLEOIII detector operated at Y4s with some differences due to reduced particle momentum range:
 - **Multiple scattering** reduces vertexing capability.
 - Low pT tracks have lower reco efficiency since they reach only the inner layers of the DCH.
 - Low pT tracks **loops in the DCH** complicating pattern recognition.

CLEO-c $\beta\gamma=0$ replaced Vertex detector with Micro Vertex Chamber. Reduced B magnetic field 1.5T \rightarrow 1.0T Ameliorate the tracking efficiency with loss of vertex capability and reduction of invariant mass resolution.

Question 3: time dependent measurements at threshold

• Vertex resolution affected by increase of multiple scattering. D->K π decay mode as an example:

Question 4: EPR correlations

- Clean a_{SL} measurement. SL $(D^0 \rightarrow I^- \vee K^+ \vee s \ \overline{D}^0 \rightarrow I^- \vee K^+)$ and also Hadronic $(D^0 \rightarrow K^+ \pi^- \vee s \ \overline{D}^0 \rightarrow K^+ \pi^-)$. In later case only possible if mixing induced (no DCSD).
- Using CP tagged events it is a unique possibility to measure relative D-D strong phase.
- In 3-body decays (e.g. Kshh) allows to keep under control dalitz model systematics. To be assessed.
- Time-dependent measurement at threshold:
 - Time-dependent measurements can distinguish between different types of CP violation.
 - Interest besides statistics to be assessed.

Question 5: time dependent Dalitz plot

- Only method in literature sensitive to x, y directly.
 Sign of x is accessible.
- Golden channel if Dalitz model uncertainty is kept under control. Data at threshold, where evaluation of D-D relative phase is possible, are key ingredient.
- Need to understand if a Dalitz model independent measurement is feasible (as in the case of γ analysis) using data at threshold. Work started on this item.

Charm Physics Benchmarks

(2.5) Benchmarks

Allowed New Physics scenarios could produce P close to present experim. bounds, but hardly higher!

• time dependant CP asymmetries in • $D^0 \rightarrow K^+K^-, \pi^+\pi^-, K_S\rho^0, K_S\phi$ down to $\mathcal{O}(10^{-4})$ • $D^0 \rightarrow K^+\pi^-$ down to $\mathcal{O}(10^{-3})$ LHCb: $\geq 10^6$ $D^* \rightarrow D \pi \rightarrow [KK]_D \pi$ per 2 fb⁻¹ ~ 58K $D^* \rightarrow D \pi \rightarrow [K^+\pi^-]_D \pi$

o direct CP in partial widths of

- $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ down to $\mathcal{O}(10^{-3})$
- In a host of 1xCS channels down to O (10⁻³)
- in 2×CS channels down to O (10⁻²)
- o direct GP in the final state distributions: Dalitz plots, T-odd correlations etc. down to O (10⁻³)

Sensitivity to \mathcal{LP} in mixing

Observable sensitive to |q/p| ($\Delta C=2$):

•
$$A_{sl} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{|q|^4 - |p|^4}{|q|^4 + |p|^4}$$
$$N^{++} = \overline{D}^0 \to l^+ \nu K^-, \quad N^{--} = D^0 \to l^- \overline{\nu} K^+ \qquad D^0 = -, \overline{D}^0 = +, \quad l^{\pm} = \pm$$

At threshold, time dependent asymmetry can reveal a new source of WS leptons (violation of SM selection rules).

Measurement can be performed:

- at threshold with D double-tagging. Clean environment, smaller systematics.
- at $\Upsilon(4S)$ with D* tagging.

Sensitivity @ $\psi''(3770)$: (150/fb per month)

$$A_{CP} = \frac{N_{++} - N_{--}}{N_{++} + N_{--}}$$

Advantage: closed kinematics Sum of several exclusive channels: $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-$, $K^-e^+\nu$, $K^-\mu^+\nu$, $K^-\mu^+\nu$, K^+K^- , $\pi^+\pi^-$ ($\Sigma \ (\epsilon \times B) \sim 22.7\%$)

$$\begin{split} \mathsf{N}_{\mathsf{mixed \& tagged}} &= _\mathsf{N}_{\psi''} \; (x^2 + y^2) / 2 \; \Sigma \; (\epsilon \times \mathcal{B})^2 \sim 1600 \; evts/\mathsf{month} \to \delta \mathsf{A} \sim 2.5\%/\mathsf{month} \\ (\mathsf{Only sl} \; \mathsf{D}^0 \to \mathsf{K}^- \ell \, {}^+ \nu \; \delta \mathsf{A} \sim 9.5\%/\mathsf{month} \;) \end{split}$$

 \rightarrow 4 months of running @ threshold (0.6 ab) $\rightarrow \delta A \sim 1\%$

Sensitivity @ r(4S)

Advantage: tagged soft π^* from D* Search for wrong sign leptons in sl decays $D^0 \to K^- \ell \, {}^+ \nu$

 $\begin{array}{l} \mathsf{N}_{\mathsf{ws\ sl}} = 2\mathsf{N}_{\mathsf{cc}}\mathsf{P}_{\mathsf{c}\to\mathsf{D}^{\star}} \ \epsilon_{\pi^{\star}} \ \mathcal{B}(\mathsf{D}^{\star}\to\mathsf{D}^{0}\pi^{+}) \ \epsilon_{\mathsf{Kl}} \ \mathcal{B}(\mathsf{D}^{0}\to\mathsf{K}^{-}\ell^{+}\nu^{-}) \ (x^{2}+y^{2})/2 \sim 1350 \\ \text{evts/year} \to \end{array}$

 $\begin{array}{l} \delta A \sim 2.7\%/year \\ \rightarrow 5 \text{ years of running } (75 \text{ ab}) \rightarrow \ \delta A \sim 1\% \end{array}$

But more bkg Possible to tag the other c

Sensitivity to e^{P} in interference between mixing and decay Observable sensitive to $\phi = \arg\left(\frac{q}{p}\frac{\overline{A}_{f}}{A_{f}}\right)$ ($\Delta C=1$ and $\Delta C=2$):

• Lifetime measurements in CP eigenstates: time distribution is exponential only approximately. Good approximation since mixing and CPV are small.

$$2y_{CP} = \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) (\pm y) \cos(\phi) - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) (\pm x) \sin(\phi)$$
$$2A_{\Gamma} = \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) (\pm y) \cos(\phi) - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) (\pm x) \sin(\phi)$$

$$A_{\Gamma} = \frac{\tau(\bar{D}^{0} \to CP) - \tau(D^{0} \to CP)}{\tau(\bar{D}^{0} \to CP) + \tau(D^{0} \to CP)}$$

•Sensitivities with 75 ab⁻¹: $\sigma(\cos\Phi) \sim 0.04\%/y$, $\sigma(\sin\Phi) \sim 0.03\%/x$

Valencia, Jan 7-15, 2008

Charm Working Group Report

Sensitivity to \mathcal{P} in decay

Estimates from BaBar analysis to 75 ab⁻¹:

• D⁰
$$\rightarrow$$
 K⁺ π^{-} in time dependent analysis

$$A_{D} = \frac{R(D^{0} \rightarrow K^{+}\pi^{-}) - R(\bar{D}^{0} \rightarrow K^{-}\pi^{+})}{R(D^{0} \rightarrow K^{+}\pi^{-}) + R(\bar{D}^{0} \rightarrow K^{-}\pi^{+})} \qquad \sigma(A_{D}) \sim 0.4\%$$

• $D^0 \rightarrow K^+ K^+$, $\pi^- \pi^+$ in time independent analysis

$$A_{CP} = \frac{R(D^{0} \to K^{+}K^{-}) - R(\bar{D}^{0} \to K^{-}K^{+})}{R(D^{0} \to K^{+}K^{-}) + R(\bar{D}^{0} \to K^{-}K^{+})} \qquad \sigma(A_{CP}) \sim 0.03\%$$

Dalitz plot analysis, time integrated (e.g. Kshh)

Strong phase variation over resonances of the Dalitz plot can improve the sensitivity to the asymmetry and help reducing systematic uncertainties.

Search for T-odd correlations.

 \Box Consider the Cabibbo Suppressed D^0 decay:

$$D^0 \to K^+ K^- \pi^+ \pi^-$$

 \square T-odd correlations can be formed using the momenta of the particles:

$$C_T = p_{K^+} \cdot (p_{\pi^+} \times p_{\pi^-})$$

□ Under time reversal T, we have $C_T \to -C_T$. □ $C_T \neq 0$ does not necessarily established T violation. □ Consider also:

 $\overline{D^0} \to K^+ K^- \pi^+ \pi^-$

where we can compute:

$$\overline{C_T} = p_{K^-} \cdot (p_{\pi^-} \times p_{\pi^+})$$

 \Box Finding:

$$C_T \neq -\overline{C_T}$$

establishes CP violation.

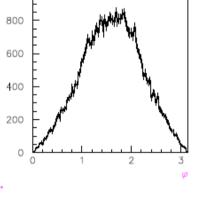
K⁺

K-

 π^{-}

A different approach (I. Bigi).

 \square Compute the angle ϕ between the K^+K^- and $\pi^+\pi^-$ decay planes for $D^0 \to K^+K^-\pi^+\pi^-$. Then one has:


$$\frac{d\Gamma}{d\phi}(D^0 \to K^+ K^- \pi^+ \pi^-) = \Gamma_1 \cos^2 \phi + \Gamma_2 \sin^2 \phi + \Gamma_3 \cos \phi \sin \phi$$

$$\frac{d\Gamma}{d\phi}(\overline{D^0} \to K^+ K^- \pi^+ \pi^-) = \bar{\Gamma}_1 cos^2 \phi + \bar{\Gamma}_2 sin^2 \phi + \bar{\Gamma}_3 cos\phi sin\phi$$

$$\Gamma_3 \neq \overline{\Gamma}_3 \rightarrow CP$$
 violation

 \square Distribution of ϕ using BaBar data.

Sensitivity to T violation ~ 0.04% with 75 ab⁻¹

 \square Not necessarily the above expression gives a good fit.

Plans for the report

CP violation is the charm physics case for SuperB:

- Refine estimates of sensitivities for CP violation.
- Evaluation of time-dependent measurements at threshold.
- Assess impact of threshold data on dalitz model uncertainty.
- Feasibility of dalitz model independent analysis for mixing and CP violation.