I Know She Invented Fire, But What Has She Done Recently? --On Charm's Second Renaissance

Ikaros Bigi (Notre Dame du Lac) Super-B Jan 2008

1

On Valencia's `genius loci' El Cid -- most heroic figure of Valencia's past

chivalry's business practice throughout middle ages: charge enemy at first sight with passion, yet no thinking El Cid's innovation:

brainstorming before the battle

inviting feedback even from junior members of his staff

chivalry's business practice throughout middle ages: charge enemy at first sight with passion, yet no thinking El Cid's innovation:

brainstorming before the battle

inviting feedback even from junior members of his staff

Charm

Octobre Revolution' of 1974

- validated quarks as physical entities
- $impose provided great leap forward for SU(2)_L XU(1)$
- First Renaissance: Charm spectroscopy A. Polosa ("Muslim rulers of Spain expel Jews & Christians")
- Second Renaissance: D⁰ Oscillations

("Fall of Constantinople 1453")

 $\begin{array}{c|c} \Delta S \neq 0 & \text{instrumental in creation of SM} \\ \Delta C \neq 0 & \text{central in its acceptance} \\ \Delta B \neq 0 & \text{almost completed its validation} \end{array}$

now race is on which one (+ Δ top \neq 0) will show incompleteness of SM quark flavour dynamics

If evidence for D⁰ oscillat. holds up with $x_D, y_D \sim 0.01 - \Delta C \neq 0$ close behind $\Delta B \neq 0$ in this race!

Evidence for D⁰ oscillat. a tactical draw
-- x_D & y_D while possibly generated by SM alone, could contain large contributions from NP -yet a strategic victory in sight:
CP studies in the future will decide the issue
possibly paving the way for a New SM to emerge!
A historical analogy:

We had been talking about \mathcal{P} in B decays without much

resonance - till B oscill. were observed by ARGUS in 1987!

- 😕 numerical size much smaller in D decays
- 8 no definitive predictions for \mathcal{C}^{P} from New Physics
- © yet SM `background' even tinier &
- © experimentalists have become more experienced

will history repeat itself in a `centi-ARGUS' scenario?

Prologue: New Physics Scenarios & Uniqueness of Charm

I Inconclusiveness in Interpretation of D⁰ Oscillations

II *C*P with & without D⁰ Oscillations -- the Decisive Stage

III Conclusions & Outlook

Disclaimer: This is a realistic Menu for this WS, not a complete one! Not included: $D \rightarrow I_{\nu}, \tau_{\nu}, I_{\nu}h, \gamma h, I^{+}I^{-}h, e^{+}\mu^{-}h, \nu\nu h, h+familon$

Prologue: New Physics Scenarios & Uniqueness of Charm

- ➡ New Physics in general induces FCNC
 - their couplings could be substantially stronger for Up-type than for Down-type quarks
 - (actually happens in some models which `brush the dirt of FCNC in the down-type sector under rug of the up-type sector)
- SM `background' much smaller for FCNC of Up-type quarks
 cleaner -- albeit smaller -- signal!

Up-type quarks: u C t

only Up-type quark allowing full range of probes for New Phys.

- up quarks: no π^0 - π^0 oscillations possible CP asymmetries in partial widths basically ruled out by CPT

basic contention: charm transitions are a unique portal for obtaining a novel access to flavour dynamics with the experimental situation being a priori favourable (apart from absence of Cabibbo suppression)!

I Inconclusiveness in Interpretation of D⁰ Oscillations

(1.1) Basics

- © fascinating quantum mechanical phenomenon
- ambiguous probe for New Physics (=NP)
- © important ingredient for NP CP asymm. in D⁰ decays

$$x_{\rm D} = \frac{\Delta m_D}{\Gamma_D}$$
 $y_{\rm D} = \frac{\Delta \Gamma_D}{2\Gamma_D}$

2 general comments:

(A)

 $x_D \ll y_D$ a possible, yet *not* a natural scenario! If $D^0 \rightarrow f \rightarrow \overline{D^0}$ via an *on*-shell final state then $D^0 \rightarrow "f" \rightarrow \overline{D^0}$ via an *off*-shell final state \Rightarrow dispersion relation connects Δm_D and $\Delta \Gamma_D$ **(**B**)**

GIM suppression $(m_s/m_c)^4$ of usual quark box diagram un-typically severe!

statement oscillations of mesons built from up-type quarks teach us about down-type quark dynamics

(B**)**

GIM suppression $(m_s/m_c)^4$ of usual quark box diagram un-typically severe!

statement oscillations of mesons built from up-type quarks teach us about down-type quark dynamics

instead: those oscill. tell us about FCNC of up-type quarks

(1.2) Theoretical Predictions

- 2 complement. approaches to evaluating Δm_D and $\Delta \Gamma_D$ in the SM: `inclusive' vs. `semi-exclusive'

quarks & gluons + nonperturb. contributions OPE in powers of $1/m_c$, m_s , μ_{had} (quark condensates)

x_D (SM)|_{OPE}, y_D (SM)|_{OPE} ~ O (10⁻³) [x_D (SM) < y_D (SM)]
 unlikely uncertainties can be reduced
 violations of quark-hadron duality due to proximity of

thresholds could enhance in particular y_D

• can be extended to estimate $\varepsilon_{D}!$

E_D |_{SM} ≠ 0!

hadrons

SU(3)_{FI} breaking from phase space for 2-, 3-, 4-body modes

$$y_{D}(SM) \sim 0.01 \longrightarrow 0.001 \leq |x_{D}(SM)| \leq 0.01$$

dispersion relation

 \measuredangle cannot be extended to estimate ε_{D}

my judgment: 2 questions
 most likely value in SM? x_D (SM), y_D (SM)~ O (10⁻³)!
 can one rule out 0.01 ? No!

Late Spring 2007

End of 2007

- x_D > 1 % >> y_D could be interpreted as manifestation of New physics -- yet such a scenario has basically been ruled out
- Image and a suggest: x_D, y_D in range ~ 0.5 1%
- could be due `merely' to SM dynamics -
 - even then it would be a great discovery &
 - it should be measured accurately --

■ must know (i) whether $(x_D, y_D) \neq 0$ & (ii) $x_D = ?$ vs. $y_D = ?$ irrespective of theory -- like for ε'/ε_k!

yet might also contain large contributions from NP!

How to resolve this conundrum?

o theoretical breakthrough?

CP violation! Baryogenesis implies/requires NP in CP dynamics!

(1.5) First Task for WG: how to measure best x_D,y_D

Must measure x_D, y_D accurately

- serves as validation of Super-B charm analyses
- " " " time dependent CP studies
- a breakthrough in theoret. technologies might occur

Questions for the WG

- ➡ How well can one do ?
- Running on the Y(4S) vs. near charm threshold ?
- near charm threshold:
 - Can do time dependent measurements?
 - EPR correlations?
- time dependent Dalitz plots

 D^{0} (†) $\rightarrow K_{S}\pi^{+}\pi^{-}$

BELLE

Resonance	Amplitude	Phase (deg)	Fit fraction	
$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3	0.6227	
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724	
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133	Cabibbo favored
$K^{*}(1410)^{-}$	0.65 ± 0.02	111 ± 2	0.0048	
$K^{*}(1680)^{-}$	0.60 ± 0.05	147 ± 5	0.0002	
$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1	0.0054	
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047	
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013 -	doubly Cabibbo suppressed
$K^{*}(1410)^{+}$	0.333 ± 0.016	-102 ± 2	0.0013	, , , , , , , , , , , , , , , , , , , ,
$K^{*}(1680)^{+}$	0.73 ± 0.10	103 ± 6	0.0004	
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111	
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063	
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452	
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162	
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180	
$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024	
σ_1	1.387 ± 0.018	-147 ± 1	0.0914	
σ_2	0.267 ± 0.009	-157 ± 3	0.0088	
NR	2.36 ± 0.05	155 ± 2	0.0615	Belle

$$D^{0} \rightarrow K_{s}^{0}\pi^{+}\pi^{-} \text{ features}$$
Doubly Cabibbo suppressed contributions are
enhanced at high masses BELLE

$$\frac{A_{K^{*}(892)^{+}}}{A_{K^{*}(892)^{-}}} \approx 0.1 \quad \text{seen by CLEO}$$

$$\frac{A_{K_{0}^{*}(1430)^{+}}}{A_{K_{0}^{*}(1430)^{-}}} \approx 0.3 \quad \text{makes no sense to me ---}$$

most likely incorrect

$$\frac{A_{K_{2}^{*}(1430)^{+}}}{A_{K_{2}^{*}(1430)^{-}}} \approx 0.3 \quad \text{each corresponds to ~700 events;}$$

$$\frac{A_{K^{*}(1410)^{+}}}{A_{K^{*}(1410)^{-}}} \approx 0.5 \quad D^{0} \rightarrow K^{+}\rho^{-} \rightarrow K^{+}\pi^{-}\pi^{0}$$

signal size

$$\frac{A_{K^{*}(1680)^{+}}}{A_{K^{*}(1680)^{-}}} \approx 1.2$$

8 June 2007

M. G. Wilson

II *CP* with & without D⁰ Oscillations

```
baryon # of Universe implies/requires NP in CP dynamics
\bigcirc
© existence of three-level Cabibbo hierarchy
               SM rate CF : CS : DCS ~ 1 : 1/20 : 1/400
\odot within SM:
    refer tiny weak phase in 1x Cabibbo supp. modes: V(cs) = 1 ... + i\lambda^4
    no weak phase in Cab. favoured & 2 x Cab. supp. modes
       (except for D^{\pm} \rightarrow K_{s}h^{\pm})
© CP asymmetry linear in NP amplitude
© D<sup>0</sup> oscillations at an observable rate! I
© final state interactions large
☺ BR's for CP eigenstates large
\bigcirc flavour tagging by D^{\pm^*} \rightarrow D\pi^{\pm}
\odot many H_c \rightarrow \geq 3 P, VV... with sizeable BR's
    - CP observables also in final state distributions
```

(2.1) The Program

Finding \mathcal{G}^{p} somewhere in $\Delta C \neq 0$ is a seminal discovery -yet not a program, `merely' its first step!

Program (exp)

Study CP & T in

- $\triangle C = 1 \text{ vs. } \Delta C = 2; \text{ i.e., direct vs. indirect } CP' \text{ via t dependence}$
- CF vs. CS vs. DCS
- partial rates vs. Final State Distributions (FSD)

down to 10⁻³ - 10⁻⁴ levels
 using runs at ~ 10 GeV & ~ 4 GeV

Program (th)

- Develop phenomenology for \$\$\$ & T in FSD
- Derive reliable SM predictions
- Analyze NP scenarios -- in particular Little Higgs Models

(2.2) *CP* without D^o Oscillations

(2.2.1) time integrated partial widths

final state interact. Solution: State interact. Soluti

Cabibbo favour. (CF) modes: need New Physics (except *)
 2x Cabibbo supp. modes (DCS):need New Physics (except *)

exception *: $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ interference between $D^{+} \rightarrow \overline{K^{0}} \pi^{+}$ and $D^{+} \rightarrow \overline{K^{0}} \pi^{+}$ CF DCSin KM only effect from CP in $K^{0} - \overline{K^{0}}: A_{S} = [+]_{S} - [-]_{S} = -3.3 \times 10^{-3}$

exists model by G. D'Ambrosio ('01), which creates observable effect in DCS while not affecting oscillations.

LHCb specific: $D^{\pm} \rightarrow K^{\pm} \pi^{+} \pi^{-}$

 Ix Cabibbo supp. modes (SCS) possible with KM -- benchmark: O(λ⁴) ~ O(10⁻³) New Physics models: O(%) conceivable useful & detailed: Grossman, Kagan, Nir hep-ph/0609178
 if observe direct CP ~ 1% in SCS decays --

- Is it New Physics for sure?
- Size of weak phase (and chirality) of its effective operator?

must analyze host of channels in an exercise in theor. engineering

- choose set of reduced ME -- involves judgment of decay top.
- fit to comprehensive data on $D \rightarrow PP, PV, VV$
- quality control provided by over-redundancy in fit
 Cleo-c & BESIII will provide data base

(2.2.2) Final state distributions: Dalitz plots, T-odd moments

A few general remarks on \mathcal{C}^{P} in *final state distributions*

 $D \rightarrow PPP$

A Catholic Scenario:

single path to heaven: asymmetries in the Dalitz plot

 $D \rightarrow PPPP$

A Calvinist Scenario

many paths to heaven -- success reveals Heaven's blessing

very promising -- most effective theoretical tools not developed yet for small asymmetries (except Dalitz plot) Pilot study by Focus (CLEO-c?)

- Objective Content in the symmetry likely to be larger than integrated one
- angular asymmetry can provide info on chirality of underlying effective operator!

Dalitz plots asymmetries

final state interact. State interact. State will be there Cannot fake signal

considerable initial overhead -- yet will pay handsome dividends in the long run due to overconstraints

T-odd moments

- final state interact. intera

An example for a T odd distribution

 $\mathsf{D} \to \mathsf{K} \ \overline{\mathsf{K}} \ \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$

 $\phi = \text{ angle between } \pi^{+}\pi^{-} \& \mathsf{K} \ \overline{\mathsf{K}} \ \text{planes}$ $d\Gamma/d\phi \ (\mathsf{D} \rightarrow \mathsf{K} \ \overline{\mathsf{K}} \ \pi^{+}\pi^{-}) = \Gamma_{1} \cos^{2}\phi + \Gamma_{2} \sin^{2}\phi + \Gamma_{3} \cos \phi \sin \phi$ $d\Gamma/d\phi \ (\mathsf{D} \rightarrow \mathsf{K} \ \overline{\mathsf{K}} \ \pi^{+}\pi^{-}) = \Gamma_{1} \cos^{2}\phi + \Gamma_{2} \sin^{2}\phi + \Gamma_{3} \cos \phi \sin \phi$

• Γ_3 drops out after integrating over ϕ • Γ_1 vs. Γ_1 & Γ_2 vs. Γ_2 : \mathcal{CP} in partial widths

- -1_1 vs. 1_1 α 1_2 vs. 1_2 · ζ r in partial widths
- Todd moments $\Gamma_3, \Gamma_3 \neq 0$ can be faked by FSI yet $\Gamma_3 \neq \overline{\Gamma}_3 \longrightarrow \mathcal{CP}!$

• Integrated (over 2 quadrants) T odd moment $\langle A \rangle = 2\Gamma_3 / \pi (\Gamma_1 + \Gamma_2)$ vs. $\langle \overline{A} \rangle = 2\overline{\Gamma_3} / \pi (\overline{\Gamma_1} + \overline{\Gamma_2})$

2 Differential T odd moment $d\Gamma/d\phi(D \rightarrow K K \pi^{+}\pi^{-}) = \Gamma_1 \cos^2\phi + \Gamma_2 \sin^2\phi + \Gamma_3 \cos\phi \sin\phi$ same dynamical info, yet valuable experim. check

- 6 Full amplitude analysis
 - © more dynamical info
 - Some model dependence (?)

For a different perspective see Antimo Palano's talk Thursday morning!

(2.3) CP with D⁰ Oscillations

All the previously given justifications for CP searches *plus*

L(∆C=2) ≠ 0
provides a much wider stage for C^P to surface
allowing us to decide whether NP is involved.

Analogies with two other cases, one from the past & one from the present: $K^0 \& B_s$ oscillations

∆S=2:

Assume -- contrary to history -- that people had accepted the SM with 2 families when $\Delta M_{K} \neq 0$ was observed & knew about possibility of \mathcal{CP} .

They would have reasoned that LD dynamics could produce ~ 1/3 of ΔM_{K} via $K^{0} \rightarrow "\pi, \eta, \eta', \pi\pi, ... " \rightarrow \overline{K^{0}}$ and SD dynamics via the quark box diagram the rest. This might have led to the proposal to search for $K_{L} \rightarrow \pi\pi$ to establish the presence of NP, namely the 3rd family (which is irrelevant for ΔM_{K}).

 $\Delta B=2$ -- the topical example: The observed value of $\Delta M(B_s)$ is fully consistent with SM expectations -- within sizable uncertainties. Yet a subdominant NP contribution to $\Delta M(B_s)$ could still provide the dominant source of time dependent \mathcal{SP} in $B_s \rightarrow \psi \phi$! oscillations can generate time *dependent* CP asymmetries

- none seen so far down to the 1% (1%/tg² θ_c) level --
- reference they are ~ (x_D or y_D) (t/τ_D)sin ϕ_{weak} ;

• with x_D , $y_D \le 0.01$ a signal would not have been credible

vet now it is getting interesting!

Scenario (B)

NP contributes significantly to $L(\Delta C=2)$

• expect significant source for \mathscr{L}^{P} in $\mathcal{L}(\Delta C=2)$: (i) $|q| \neq |p|$, (ii) $|T(D \rightarrow f)| \neq |T(\overline{D} \rightarrow \overline{f})|$, (iii) Im $(q/p)\overline{\rho}(f) \neq 0$

$$\Box \quad CF: D^{0} \rightarrow K_{S} \phi \qquad A_{CP}(t) = (x_{D} \sin \phi_{NP} - y_{D} \varepsilon_{NP} \cos \phi_{NP})(t/\tau_{D})$$
$$L(\Delta C=2) \rightarrow \phi_{NP} \& \varepsilon_{NP} = 1 - |q/p|$$

 $\Box \quad CS: D^{0} \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-} \quad A_{CP}(t) = (x_{D} \sin \phi'_{NP} - y_{D} \varepsilon_{NP} \cos \phi'_{NP})(t/\tau_{D})$ $D^{0} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \Gamma_{3}(t), \ \overline{\Gamma}_{3}(t) \text{ time dependence!}$

□ DCS: $D^0 \rightarrow K^+\pi^- - - ditto (+NP models a la D'Ambrosio)$

the SM amplitude suppressed by $tg^2\theta_c$

The `Dark Horse'

SL: $D^0 \rightarrow \Gamma \nu K^+ \nu s$. $D^0 \rightarrow \Gamma^+ \nu K^$ $a_{SL} \sim Min[\Delta\Gamma/\Delta M, \Delta M/\Delta\Gamma] sin\phi_{NP}$, $\Delta\Gamma/\Delta M \sim O(1)$

• $a_{SL} \sim 0.1$ conceivable (even few x 0.1) -- i.e. relatively few wrong-sign leptons, yet with a large asymmetry! vs. $a_{SL}(K_L) = 3.3 \times 10^{-3}$ with $\Delta\Gamma/\Delta M \sim O(1)$ & $sin\phi_{CKM,eff} \ll 1$ $a_{SL}(B_d) \sim 4 \times 10^{-4}$ with $\Delta\Gamma/\Delta M \sim O(few \times 10^{-3})$ $a_{SL}(B_s) \sim 2 \times 10^{-5}$ with $\Delta\Gamma/\Delta M \sim O(few \times 10^{-3})$ $a_{SL}(B_s) \sim 2 \times 10^{-5}$ with $\Delta\Gamma/\Delta M \sim O(few \times 10^{-3})$

$$(2.4) e^+ e^- \rightarrow D^0 \overline{D}^0$$

Two special cases:

Case (A)

So far all observed \mathcal{P} in partial widths -- except for one:

 ϕ = angle between $\pi^+\pi^-$ & e^+e^- planes analyzes γ^* polarization

 ϕ = angle between K⁺K⁻ & $\mu^+ \mu^-$ planes analyzes γ^{\star} polarization

interference between \mathcal{P} E1 & CP M1 amplitude

Forw-Backw asymmetry A in ϕ

preliminary studies: factor ~ 10 - 50 enhancement of \mathcal{G}^{p} in $D_{L} \rightarrow K^{+}K^{-}$ example for a unique capability of Super-FI. Fact.: $e^{+}e^{-} \rightarrow \psi''(3770) \rightarrow D\overline{D} \rightarrow (K^{+}K^{-})_{D}D_{L}$ $\downarrow K^{+}K^{-}\mu^{+}\mu^{-}$

$$e^+ e^- \rightarrow D^0 \overline{D}^0 \rightarrow f^{(1)}_{CP=\pm} f^{(2)}_{CP=\pm}$$

 $CP = +$
 $CP = -$

 $BR(D^{0} D^{0} \rightarrow f^{(1)}_{CP=\pm} f^{(2)}_{CP=\pm}) = BR(D^{0} \rightarrow f^{(1)}_{CP=\pm})BR(D^{0} \rightarrow f^{(2)}_{CP=\pm})x$ $\left[2|\bar{\rho}(f^{(1)}_{CP=\pm}) - \bar{\rho}(f^{(2)}_{CP=\pm})|^{2} + x_{D}^{2}(1 - (q/p)^{2}\rho(f^{(1)}_{CP=\pm})\rho(f^{(2)}_{CP=\pm}))\right]$

 $f_{CP=+}$ = KK, ππ, K_Lφ

 $f_{CP=-}$ = K_Sφ, K_Sπ, K_Sη(')

(2.5) Benchmarks

Allowed New Physics scenarios could produce P close to present experim. bounds, but hardly higher!

o time dependant CP asymmetries in

▷ D⁰ → K⁺K⁻, π⁺ π⁻, K_Sρ⁰, K_Sφ down to O (10⁻⁴)
▷ D⁰ → K⁺ π⁻ down to O (10⁻³)
LHCb: ≥ 10⁶ D* → D π → [KK]_D π per 2 fb⁻¹
~ 58K D* → D π → [K⁺ π⁻]_D π

o direct \mathcal{CP} in partial widths of

• $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ down to $\mathcal{O}(10^{-3})$

- In a host of 1×CS channels down to O (10⁻³)
- in 2xCS channels down to $O(10^{-2})$
- direct CP in the final state distributions:
 Dalitz plots, T-odd correlations etc. down to O (10⁻³)

III Conclusions & Outlook

- ◆ a lot of work of great importance to be done
 - establish $(x_D, y_D) \neq 0$
 - determine $x_D = ? vs. y_D = ?$
 - go after CP main message
 - in all of its possible manifestations
 - time dependent & independent,
 - partial widths, Dalitz plots, T odd moments ...
 - o and on all Cabibbo levels
 - (i) $D^0 \rightarrow K_S \pi^+ \pi^- / K_S K^+ K^-$
 - (ii) $D^0 \rightarrow \pi^+\pi^-/K^+K^-$
 - (iii) $D^0 \rightarrow K^+ \pi^-$
 - o down to the 10⁻³ (or even better) level <u>systematics</u>!
 - present no-signal not telling!
- can expect a positive learning curve for theorists -- 38
 yet do not count on miracles

The Big Picture

detailed study of charm decays provides a
 novel & possibly unique window onto flavour dynamics

- See great opportunity for LHCb $D^0 → K^+K^-, \pi^+\pi^-, K^+\pi^-, K^+K^-\mu^+\mu^- \text{ good channels for LHCb}$
- 🛯 yet need
 - more statistics &
 - more channels!
 - need Super-Flavour Factory!