Model INDEPENDENT study of T-VIOLATION (and CPT)

Pablo Villanueva Pérez IFIC(Universitat de València-CSIC)

Summary

- Theoretical motivation.
 - Why is interesting this test?
 - How we build the asymmetry?
- Analysis strategy.
- Idea based on:
 - M.C. Bañuls, J.Bernabeu, Phys. Lett. B 464,117(1999),[arXiv::hep-ph/9908353].
 - M.C. Bañuls, J.Bernabeu, Nucl. Phys. B 590,19(2000),[arXiv::hep-ph/0005323].
 - M.C. Bañuls, J.Bernabeu, JHEP 9906:032(1999),[arXiv::hep-ph/9807430].

Why? Independent

 Although CPT is a good symmetry is interesting the observation of T-violation INDEPENDENT of CP-Violation.

Problem with Kabir asymmetry in:

References:

- T.Nakada, Discrete '08 Conference, Valencia 2008', J.Phys.Conf.Ser.171:011001,2009.
- Search For T, CP, and CPT Violation in B0-0 Mixing with Inclusive Dilepton Events, Phys. Rev. Lett. 96, 251802 (2006).

Why? Independent

- Moreover for the measurement of the sin(2β) it is a CP and T dependent measurement.
- So we are looking for an odd and GENUINE T-violation observable.

- References:
 - L.Wolfenstein, Int. J. Mod. Phys E 8, 501 (1999)
 - H.R. Quinn, Discrete '08 Conference, Valencia 2008, J.Phys.Conf.Ser. 171:011001,2009

Why? Genuine

• Discard effects that are odd under time t to -t:

Non GENUINE T-Violation

Not an exchange of "in" states into "out" states

$$\Delta t = TRV \Leftrightarrow$$
 Theory with CPT invariance and absence of absorptive part

- Main ingredient:
 - EPR entanglement produced by decay of $\Upsilon(4S)$:
 - Between neutral B-mesons.
 - Between CP-tag (B₊-B₋)

$$\begin{aligned} |i\rangle &= \frac{1}{\sqrt{2}} [B^{0}(t_{1}) \overline{B}^{0}(t_{2}) - \overline{B}^{0}(t_{1}) B^{0}(t_{2})] \\ &= \frac{1}{\sqrt{2}} [B_{+}(t_{1}) B_{-}(t_{2}) - B_{-}(t_{1}) B_{+}(t_{2})] \end{aligned}$$

 We chose the following processes as reference to generate CP, T and CPT transformations (model independent):

$$B_{+} \longrightarrow B^{0}$$

$$B_{-} \longrightarrow B^{0}$$

$$\overline{B}^{0} \longrightarrow B_{+}$$

$$\overline{B}^{0} \longrightarrow B_{-}$$

Process I:

X: tagging side

Y: reco side.

Transition	$B_+ \to B^0$	$B_+ \to \bar{B}^0$	$ar{B}^0 o B_+$	$B^0 o B_+$
(X,Y)	$(J/\psi K_S, l^+)$	$(J/\psi K_S, l^-)$	$(l^+, J/\psi K_L)$	$(l^-, J/\psi K_L)$
Transformation	Reference	CP	CPT	T

Table 1. Transitions and symmetry transformations related to process I tag as reference

Process II:

Transition	$B o B^0$	$B o ar{B}^0$	$ar{B}^0 o B$	$B^0 o B$
(X,Y)	$(J/\psi K_L, l^+)$	$(J/\psi K_L, l^-)$	$(l^+, J/\psi K_S)$	$(l^-, J/\psi K_S)$
Transformation	Reference	CP	CPT	Τ

Table 2. Transitions and symmetry transformations related to process II tag as reference

Process III:

Transition	$B^0 o B_+$	$B^0 o B_+$	$B_+ \to B^0$	$B_+ \to B^0$
(X,Y)	$(l^+, J/\psi K_L)$	$(l^-, J/\psi K_L)$	$(J/\psi K_S, l^+)$	$(J/\psi K_S, l^-)$
Transformation	Reference	CP	CPT	Τ

Table 3. Transitions and symmetry transformations related to process III tag as reference

Process IV:

Transition	$B^0 o B$	$B o B^0$	$B o B^0$
(X,Y)	$(l^-, J/\psi K_S)$	$(J/\psi K_L, l^+)$	$(J/\psi K_L, l^-)$
Transformation	CP	CPT	T

Table 4. Transitions and symmetry transformations related to process IV tag as reference

Asymmetries for T-Violation:

$$A_{1} = \frac{I(J/\psi K_{S}, l^{+}) - I(l^{-}, J/\Psi K_{L})}{I(J/\psi K_{S}, l^{+}) + I(l^{-}, J/\Psi K_{L})}$$

$$A_{2} = \frac{I(J/\psi K_{L}, l^{+}) - I(l^{-}, J/\Psi K_{S})}{I(J/\psi K_{L}, l^{+}) + I(l^{-}, J/\Psi K_{S})}$$

$$A_{3} = \frac{I(l^{+}, J/\Psi K_{L}) - I(J/\Psi K_{S}, l^{-})}{I(l^{+}, J/\Psi K_{L}) + I(J/\Psi K_{S}, l^{-})}$$

$$A_{4} = \frac{I(l^{+}, J/\Psi K_{S}) - I(J/\Psi K_{L}, l^{-})}{I(l^{+}, J/\Psi K_{S}) + I(J/\Psi K_{L}, l^{-})}$$

Analysis Strategy:

- Details of the experimental analysis similar to the previous Publications:
 - Limits on the Decay-Rate Difference of Neutral B Mesons and on CP, T, and CPT Violation in B0B 0 Oscillation, Phys. Rev. Lett. 92, 181801 (2004).
 - Limits on the Decay-Rate Difference of Neutral B Mesons and on CP, T, and CPT Violation in B0B0bar Oscillations, PRD 70, 012007 (2004).

Analysis Strategy:

• We will build the asymmetries:

Analysis Strategy

As extracted in the usual way from the B_{reco} mixing fit.

