Notes on Higgs searches plots

V.A. Mitsou

3 July 2012

Recommended reading

- ATLAS Explanatory Figures for the Higgs Boson Exclusion Plots
 - http://www.atlas.ch/news/2011/simplified-plots.html
 - fast introduction on exclusion only; nothing on p-values
- Deeper into statistics for HEP
 - Glen Cowan's Home Page
 http://www.pp.rhul.ac.uk/~cowan/
 - many useful links and pedagogical, lengthy lectures
- → these notes: somewhere in between

Hypothesis test

- Searches for Higgs or New Physics → hypothesis testing
 - $^{\circ}$ H₀: null hypotheses → SM background (b)
 - $^{\circ}$ H₁: alternative one → SM + Higgs, New Physics (s+b)

Hypothesis testing results

- We do not quote our confidence of being right...
- …instead talk about probability of being wrong
 - Type-I error: probability to reject H₀, when in reality it is true (claim false discovery)
 - estimated when Higgs evidence or discovery is studied
 - Type-II error: probability to accept H₀, when in fact it is wrong (wrongly exclude Higgs & miss a discovery)
 - useful when Higgs exclusion is claimed

Exclusion of H₁ (Higgs boson)

- Quantified in terms of power (1-β); usually set to 95%
 - i.e. 5% probability of being wrong if we exclude Higgs

$$CL_{s+b} = \beta = \int_{-\infty}^{x_{\text{obs}}} dx f(x|H_1)$$

 x (#events) directly related to σ, independently of assumed (Higgs) model

• $\sigma_{95\%}$: 95% confidence limit on $\sigma \times BR$, i.e. $\langle x|H_1 \rangle$ such that

$$CL_{s+b} = \int_{-\infty}^{x_{obs}} dx f(x|H_1) = 0.05$$

 $^{\circ}$ depends on observable (e.g. $m_{\gamma\gamma}$) range

"Exclusion(?) plot"

- σ_{95%} only gives our excluded σ×BR
- If $\sigma_{95\%} > \sigma_{SM \text{ Higgs}}$, not sensitive enough to exclude it
- If $\sigma_{95\%} < \sigma_{SM Higgs}$ YES!
- σ_{95%} fluctuates with experimental uncertainties
 - \rightarrow 1 σ and 2 σ bands

Discovery \rightarrow exclusion of H₀

- Quantified as significance (p-value), i.e. probability to be a background fluctuation $P(p_0 \leq \alpha | H_0) = \alpha$
 - $^{\circ}$ 5 σ discovery: when α < 2.9×10⁻⁷ (from one-sided Gaussian)

p-value of
$$H_0 = p_0(x) = \int_x^{+\infty} dx' f(x'|H_0)$$

p₀ value: "Discovery(?) plot"

- Tells us how far from background-only expectation (p₀=0.5) are:
 - s+b expectation
 - observation

$$p_0(b\text{-only exp}) = 0.5$$
$$p_0(s+b \text{ exp}) \le 0.5$$

- Look-elsewhere-effect: local p₀ measures significance for specific mass window. Probability to find an excess of events increases with considered mass windows ("look elsewhere")
 - significance lower if correction for LEE taken into account

Signal strength factor µ

- μ defined such that
 - $\mu = 0$ corresponds to background-only model
 - $\mu = 1$ corresponds to the SM Higgs boson signal
- Assuming there is a signal, μ expresses measured cross section normalised to SM Higgs

Likelihood ratio for μ =1 (signal) over μ =0 (background)

