Notes on Higgs searches plots V.A. Mitsou 3 July 2012 #### Recommended reading - ATLAS Explanatory Figures for the Higgs Boson Exclusion Plots - http://www.atlas.ch/news/2011/simplified-plots.html - fast introduction on exclusion only; nothing on p-values - Deeper into statistics for HEP - Glen Cowan's Home Page http://www.pp.rhul.ac.uk/~cowan/ - many useful links and pedagogical, lengthy lectures - → these notes: somewhere in between #### Hypothesis test - Searches for Higgs or New Physics → hypothesis testing - $^{\circ}$ H₀: null hypotheses → SM background (b) - $^{\circ}$ H₁: alternative one → SM + Higgs, New Physics (s+b) #### Hypothesis testing results - We do not quote our confidence of being right... - …instead talk about probability of being wrong - Type-I error: probability to reject H₀, when in reality it is true (claim false discovery) - estimated when Higgs evidence or discovery is studied - Type-II error: probability to accept H₀, when in fact it is wrong (wrongly exclude Higgs & miss a discovery) - useful when Higgs exclusion is claimed ## Exclusion of H₁ (Higgs boson) - Quantified in terms of power (1-β); usually set to 95% - i.e. 5% probability of being wrong if we exclude Higgs $$CL_{s+b} = \beta = \int_{-\infty}^{x_{\text{obs}}} dx f(x|H_1)$$ x (#events) directly related to σ, independently of assumed (Higgs) model • $\sigma_{95\%}$: 95% confidence limit on $\sigma \times BR$, i.e. $\langle x|H_1 \rangle$ such that $$CL_{s+b} = \int_{-\infty}^{x_{obs}} dx f(x|H_1) = 0.05$$ $^{\circ}$ depends on observable (e.g. $m_{\gamma\gamma}$) range ### "Exclusion(?) plot" - σ_{95%} only gives our excluded σ×BR - If $\sigma_{95\%} > \sigma_{SM \text{ Higgs}}$, not sensitive enough to exclude it - If $\sigma_{95\%} < \sigma_{SM Higgs}$ YES! - σ_{95%} fluctuates with experimental uncertainties - \rightarrow 1 σ and 2 σ bands ## Discovery \rightarrow exclusion of H₀ - Quantified as significance (p-value), i.e. probability to be a background fluctuation $P(p_0 \leq \alpha | H_0) = \alpha$ - $^{\circ}$ 5 σ discovery: when α < 2.9×10⁻⁷ (from one-sided Gaussian) p-value of $$H_0 = p_0(x) = \int_x^{+\infty} dx' f(x'|H_0)$$ # p₀ value: "Discovery(?) plot" - Tells us how far from background-only expectation (p₀=0.5) are: - s+b expectation - observation $$p_0(b\text{-only exp}) = 0.5$$ $$p_0(s+b \text{ exp}) \le 0.5$$ - Look-elsewhere-effect: local p₀ measures significance for specific mass window. Probability to find an excess of events increases with considered mass windows ("look elsewhere") - significance lower if correction for LEE taken into account ### Signal strength factor µ - μ defined such that - $\mu = 0$ corresponds to background-only model - $\mu = 1$ corresponds to the SM Higgs boson signal - Assuming there is a signal, μ expresses measured cross section normalised to SM Higgs Likelihood ratio for μ =1 (signal) over μ =0 (background)