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Neutrinos in the Early UniverseE
Based on

2.0 2.5 3.0 3.5 4.0

Neff

60

65

70

75

H
0

[k
m

s−
1

M
p

c−
1
]

Riess et al. (2018)

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

σ
8

JCAP 04 (2021) 073

Planck 2018

https://doi.org/10.1088/1475-7516/2021/04/073
https://doi.org/10.1051/0004-6361/201833910


History of the universe
Bi

g B
an

g

EW SB
160 GeV

QCD PT
200 MeV

C B
2 MeV

BBN
0.7 MeV

CMB
0.3 eV

inflation

reheating?

 radiation domination  
 matter domination 

dark energy domination

today (0.2 meV) 

t

W
+

H

Z

W
q

q

q g

q

g

e

e

e e

e

e

e

e

e [S
G+

IM
 2

02
0]

S. Gariazzo “Neutrino non-standard scenariosin cosmology” Neutrinos from home, 2025 1/20



History of the universe
Bi

g B
an

g

EW SB
160 GeV

QCD PT
200 MeV

C B
2 MeV

BBN
0.7 MeV

CMB
0.3 eV

inflation

reheating?

 radiation domination  
 matter domination 

dark energy domination

today (0.2 meV) 

t

W
+

H

Z

W
q

q

q g

q

g

e

e

e e

e

e

e

e

e [S
G+

IM
 2

02
0]

S. Gariazzo “Neutrino non-standard scenariosin cosmology” Neutrinos from home, 2025 1/20



The oldest picture of the Universe
The Cosmic Microwave Background, generated at t ≃ 4× 105 years

COBE (1992) WMAP (2003) Planck (2013)
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CMB spectra as of 2018
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[Planck Collaboration, 2018]

https://www.cosmos.esa.int/web/planck/publications#Planck2018


Big Bang Nucleosynthesis (BBN)

measured

theory

BBN concordance

[PDG 2018]BBN: production of light nu-
clei at t ∼ 1s to t ∼ O(102)s

temperature Tfr ≃ 1 MeV
from nucleon freeze-out

much earlier than CMB!

strong probe for physics
before the CMB

e.g. neutrinos!

ν affect
universe expansion

and
reaction rates

at BBN time. . .
(νe/ν̄e)
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Big Bang Nucleosynthesis (BBN)

measured

theory

BBN concordance

[PDG 2018]BBN: production of light nu-
clei at t ∼ 1s to t ∼ O(102)s

temperature Tfr ≃ 1 MeV
from nucleon freeze-out

much earlier than CMB!

strong probe for physics
before the CMB

e.g. neutrinos!

ν affect
universe expansion

and
reaction rates

at BBN time. . .
(νe/ν̄e) lithium problem!
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Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (ναν̄α ↔ e+e−, νe ↔ νe)

time
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Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (ναν̄α ↔ e+e−, νe ↔ νe)

time

oscillations blocked
by matter effects
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Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (ναν̄α ↔ e+e−, νe ↔ νe)

time

oscillations blocked
by matter effects

ν decoupling

ν decouple mostly before e+e− → γγ annihilation!
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Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (ναν̄α ↔ e+e−, νe ↔ νe)

time

oscillations blocked
by matter effects

ν decoupling

ν decouple mostly before e+e− → γγ annihilation!

Tν ≃ (4/11)1/3Tγ

after e+e− → γγ

fν : frozen Fermi-
Dirac distribution

Today:
Tν,0 = 1.945 K ≃
1.676 × 10−4 eV
⟨Eν⟩ ≃ 3.1Tν,0 ≃

5 × 10−4 eV
n0 = nν,0 = nν̄,0 ≃
56 cm−3 per family
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Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (ναν̄α ↔ e+e−, νe ↔ νe)

time

oscillations blocked
by matter effects

ν decoupling

ν decouple mostly before e+e− → γγ annihilation!

Tν ≃ (4/11)1/3Tγ

after e+e− → γγ

fν : frozen Fermi-
Dirac distribution

Today:
Tν,0 = 1.945 K ≃
1.676 × 10−4 eV
⟨Eν⟩ ≃ 3.1Tν,0 ≃

5 × 10−4 eV
n0 = nν,0 = nν̄,0 ≃
56 cm−3 per family

actually, the decoupling T is momentum dependent!
distortions to
equilibrium fν!

S. Gariazzo “Neutrino non-standard scenariosin cosmology” Neutrinos from home, 2025 5/20



ν oscillations in the early universe
comoving coordinates: a = 1/T x ≡ me a y ≡ p a z ≡ Tγ a w ≡ Tν a

density matrix:
∝ ⟨a†

j (p, t) ai(p, t)⟩

ϱ(x , y) =

(
ϱee ≡ fνe ϱeµ ϱeτ

ϱµe ϱµµ ≡ fνµ ϱµτ

ϱτe ϱτµ ϱττ ≡ fντ

)
off-diagonals to take into account coherency in the neutrino system

ϱ evolution from xH dϱ(y , x)
dx = −ia[Heff , ϱ] + bI

H Hubble factor → expansion (depends on universe content)

effective Hamiltonian Heff = MF
2y −

2
√

2GFym6
e

x6

(
Eℓ+Pℓ

m2
W

+ 4
3

Eν

m2
Z

)
vacuum oscillations matter effects

I collision integrals
take into account ν–e scattering and pair annihilation, ν–ν interactions

2D integrals over momentum, take most of the computation time

solve together with z evolution, from x dρ(x)
dx = ρ− 3P

ρ, P total energy density and pressure, also take into account FTQED corrections
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[Bennett, SG+, JCAP 2021]
[Sigl, Raffelt, 1993]

https://doi.org/10.1088/1475-7516/2021/04/073
https://doi.org/10.1016/0550-3213(93)90175-O


ν oscillations in the early universe
comoving coordinates: a = 1/T x ≡ me a y ≡ p a z ≡ Tγ a w ≡ Tν a

density matrix:
∝ ⟨a†

j (p, t) ai(p, t)⟩

ϱ(x , y) =

(
ϱee ≡ fνe ϱeµ ϱeτ

ϱµe ϱµµ ≡ fνµ ϱµτ

ϱτe ϱτµ ϱττ ≡ fντ

)
off-diagonals to take into account coherency in the neutrino system

ϱ evolution from xH dϱ(y , x)
dx = −ia[Heff , ϱ] + bI

H Hubble factor → expansion (depends on universe content)

effective Hamiltonian Heff = MF
2y −

2
√

2GFym6
e

x6

(
Eℓ+Pℓ

m2
W

+ 4
3

Eν

m2
Z

)
vacuum oscillations matter effects

I collision integrals
take into account ν–e scattering and pair annihilation, ν–ν interactions

2D integrals over momentum, take most of the computation time

solve together with z evolution, from x dρ(x)
dx = ρ− 3P

ρ, P total energy density and pressure, also take into account FTQED corrections

FORTran-Evolved PrimordIAl Neutrino Oscillations
(FortEPiaNO)

https://bitbucket.org/ahep_cosmo/fortepiano_public
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[Bennett, SG+, JCAP 2021]
[Sigl, Raffelt, 1993]

https://bitbucket.org/ahep_cosmo/fortepiano_public
https://doi.org/10.1088/1475-7516/2021/04/073
https://doi.org/10.1016/0550-3213(93)90175-O


Neutrino momentum distribution and Neff

Distortion of the momentum distribution (fFD: Fermi-Dirac at equilibrium)
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[Bennett, SG+, JCAP 2021]

https://doi.org/10.1088/1475-7516/2021/04/073


Neutrino momentum distribution and Neff

Distortion of the momentum distribution (fFD: Fermi-Dirac at equilibrium)
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[Bennett, SG+, JCAP 2021]

https://doi.org/10.1088/1475-7516/2021/04/073


Neutrino momentum distribution and Neff
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[Bennett, SG+, JCAP 2021]

https://doi.org/10.1088/1475-7516/2021/04/073


Neutrino momentum distribution and Neff
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[Bennett, SG+, JCAP 2021]

https://doi.org/10.1088/1475-7516/2021/04/073


Neff and CMB
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[Planck Collaboration, 2018]

https://www.cosmos.esa.int/web/planck/publications#Planck2018


Neff < 3?R
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e.g. low-temperature reheating scenarios
[PRD 92 (2015) 123534], [PRL 135 (2025) 181003]

https://doi.org/10.1103/PhysRevD.92.123534
https://doi.org/10.1103/j5rj-dz1k


Scenarios with low reheating temperature
Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density
during reheating: inflaton decays into standard model particles

=⇒ photons, electrons, . . . are populated directly

radiation domination begins after reheating
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[PRL 135 (2025)]

https://doi.org/10.1103/j5rj-dz1k


Scenarios with low reheating temperature
Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density
during reheating: inflaton decays into standard model particles

=⇒ photons, electrons, . . . are populated directly

radiation domination begins after reheating

neutrinos are populated by weak interactions with electrons!
if reheating occurs too late, neutrinos are not generated and Neff < 3
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[PRL 135 (2025)]
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Scenarios with low reheating temperature
Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density
during reheating: inflaton decays into standard model particles

=⇒ photons, electrons, . . . are populated directly

radiation domination begins after reheating

neutrinos are populated by weak interactions with electrons!
if reheating occurs too late, neutrinos are not generated and Neff < 3

Low reheating temperature: when reheating occurs at Trh ≲ 20 MeV

notice: if Trh ≲ 3 MeV, BBN is broken!

3 neutrino oscillations start to be affected when Trh ≲ 8 MeV
what about sterile neutrinos?
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[PRL 135 (2025)]

https://doi.org/10.1103/j5rj-dz1k


Neff with low reheating
Neff as a function of Trh:
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Planck constraint: Neff = 2.92+0.36
−0.37 (95%, TT,TE,EE+lowE)
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[PRL 135 (2025)]

https://doi.org/10.1103/j5rj-dz1k


BBN and low reheating
Light element abundances depend on Trh:
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RHO: total energy density,
expansion rate

neutrino energy density, Neff

WR: weak rates
(n ↔ p, (−)

νe interactions)

(−)
νe momentum distribution

Both effects are important to get Helium right!
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[PRL 135 (2025)]

https://doi.org/10.1103/j5rj-dz1k


Constraints on low reheating scenarios
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Combining probes helps in
reducing degeneracies and

strengthening bounds!
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[PRL 135 (2025)]
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Constraints on low reheating scenarios
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BBN occurs at earlier time than CMB and is more sensitive
to Neff (RHO) and (−)

νe momentum distribution functions (WR)
as a function of Trh!
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[PRL 135 (2025)]
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Constraints on low reheating scenarios
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Greater sensitivity will come with future CMB probes
(more precise in determining Neff)

Future CMB alone will reach the precision of
current BBN+CMB (Planck)+BAO (DESI) observations
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[PRL 135 (2025)]

https://doi.org/10.1103/j5rj-dz1k


Neff > 3?E
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e.g.: additional particles
[JCAP 12 (2023) 20]

https://doi.org/10.1088/1475-7516/2023/12/020


Additional particles in the early universe?
Sterile neutrinos are coupled via oscillations to the thermal plasma

(photons, electrons, neutrinos, (muons), . . . )

What if we add a decoupled particle?
let us assume a non-standard evolution of the energy density: ρ̄US ∝ an+4

n = 0→ radiation; n = −1→ matter; n = −2→ curvature, . . .

effect on early universe phenomena is purely gravitational

total energy density: ρ = ργ + ρe + ρν + δρFTQED+ρUS

Hubble factor: H2 = 8πρ/(3M2
Pl)
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[JCAP 12 (2023)]
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Additional particles in the early universe?
Sterile neutrinos are coupled via oscillations to the thermal plasma

(photons, electrons, neutrinos, (muons), . . . )

What if we add a decoupled particle?
let us assume a non-standard evolution of the energy density: ρ̄US ∝ an+4

n = 0→ radiation; n = −1→ matter; n = −2→ curvature, . . .

effect on early universe phenomena is purely gravitational

total energy density: ρ = ργ + ρe + ρν + δρFTQED+ρUS

Hubble factor: H2 = 8πρ/(3M2
Pl)

neutrino decoupling: dϱ(y)
dx = 1

xH

{
−i x3

m3
e

[Heff , ϱ] + m3
e

x3 I(ϱ)
}

BBN abundances: dXi
dx = Γi

xH
Xi = ni /NB abundance relative to total baryons, Γi effective reaction rate for nuclide i
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[JCAP 12 (2023)]

https://doi.org/10.1088/1475-7516/2023/12/020


Results from Neff
consider ρUS = ρrad at xC = me/TC for the new particle

Evolution of the energy density:
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[JCAP 12 (2023)]

https://doi.org/10.1088/1475-7516/2023/12/020


Results from Neff
consider ρUS = ρrad at xC = me/TC for the new particle

From neutrino decoupling we obtain:
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[JCAP 12 (2023)]

https://doi.org/10.1088/1475-7516/2023/12/020


Results from BBN
consider ρUS = ρrad at xC = me/TC for the new particle

Compare to current measurements (Deuterium, Helium):
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even current precision can strongly constrain TC
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[JCAP 12 (2023)]

https://doi.org/10.1088/1475-7516/2023/12/020


Neff ≃ 3?N
It can still relate to new physics!
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L e.g.:
Non-Standard Interactions (NSI)
[PLB 820 (2021)]

https://doi.org/10.1016/j.physletb.2021.136508


Non-standard neutrino-electron interactions
Can neutrinos have interactions beyond the SM ones?

e.g.: L = LSM + LNSIe, with LNSIe ∝ GF
∑
α,β

ϵL,R
αβ (ν̄αγµPLνβ)(ēγµPL,Re)

see e.g. [Farzan+, 2018]

coupling strength governed by the ϵL,R
αβ coefficients (α = e, µ, τ)

new interactions affect all phenomena involving neutrinos and electrons
including neutrino decoupling:

collision terms
GL

SM = diag(gL, g̃L, g̃L)
GR

SM = diag(gR , gR , gR)
gR = sin2 θW , gL = gR + 1/2, g̃L = gR − 1/2

GL,R = GL,R
SM +


ϵL,R
ee ϵL,R

eµ ϵL,R
eτ . . .

ϵL,R
eµ ϵL,R

µµ ϵL,R
µτ . . .

ϵL,R
eτ ϵL,R

µτ ϵL,R
ττ . . .

... . . .



matter effects in oscillations
(subdominant!)

Heff,SM ⊃ k · diag(ρe + Pe , 0, 0)

Heff ⊃ k(ρe + Pe)

 1 + ϵee ϵeµ ϵeτ

ϵeµ ϵµµ ϵµτ

ϵeτ ϵµτ ϵττ


with ϵαβ = ϵL

αβ + ϵR
αβ
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NSI effects on Neff

GL,R = GL,R
SM +


ϵL,R
ee ϵL,R

eµ ϵL,R
eτ . . .

ϵL,R
eµ ϵL,R

µµ ϵL,R
µτ . . .

ϵL,R
eτ ϵL,R

µτ ϵL,R
ττ . . .

... . . .


e.g.:
GL

ee → 0.727 + ϵL
ee

GL
ττ → −0.273 + ϵL

ττ

GR
αα → 0.233 + ϵR

αα
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Reactions governing BBN

n

p D T

3He 4He

6Li 7Li

7BeBBN abundances are determined by a complex
network of weak and nuclear reactions.

The lightest elements involved are:

n←→ p reactions (weak rates):
depend on (−)

νe momentum distribution

n ↔ p + e− + ν̄e

n + νe ↔ p + e−

n + e+ ↔ p + ν̄e

Deuterium bottleneck:
controls beginning of nucleosynthesis

4He: most abundant element

Lithium (anomaly)
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NSI effects on BBN
NSI with electrons, such as LNC

NSIe ∝
∑

ϵL,R
αβ (ν̄αγµPLνβ)(ēγµPL,Re),

have secondary effect on BBN rates because there are no (−)
νe interactions!

WR depend on n ↔ p processes, for which it is more relevant
LCC

NSIq ∝ GF Vud
∑

α

ϵudV
eα (ūγµPLd)(ēγµPL,Rνα)!
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udV
ee , NACRE II rates
udV
ee , PRIMAT rates
udV
e , NACRE II rates
udV
e , PRIMAT rates

Observational measurements

Effect of ϵudV
eα

on BBN abundances
can be exploited

to derive constraints:

Bounds are comparable and
complementary to the ones
from terrestrial experiments!
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ConclusionsZ



What do we learn about non-standard ν scenarios?
Neutrino decoupling: precision calculations
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Combine multiple probes in order to reduce degeneracies!
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Future probes will have better sensitivity!
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Thanks for your attention!
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