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B The oldest picture of the Universe

The Cosmic Microwave Background, generated at t ~ 4 x 10° years
COBE (1992) WMAP (2003) Planck (2013)
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[Planck Collaboration, 2018]

B CMB spectra as of 2018
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https://www.cosmos.esa.int/web/planck/publications#Planck2018

B Big Bang Nucleosynthesis (BBN)

[PDG 2018]
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B Big Bang Nucleosynthesis (BBN)

[PDG 2018]
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B Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (Va7 <> ete™, ve < ve)

time
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Courtesy P. F. de Sal.
[Courtesy e Salas] T/ MeV

Neutrinos from home, 2025
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B Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (Va7 <> ete™, ve < ve)
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B Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (Va7 <> ete™, ve < ve)
time
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Courtesy P. F. de Sal.
[Courtesy e Salas] T/ MeV

v decouple mostly before eTe~ — 7~ annihilation!

S. Gariazzo “Neutrino non-standard scenariosin cosmology” Neutrinos from home, 2025



B Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (v, > ete™, ve + ve)
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v decouple mostly before eTe~ — 7~ annihilation!
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B Neutrinos in the early Universe
before BBN: neutrinos coupled to plasma (v, > ete™, ve + ve)

time
109 T r»oA,UELM;VVxxrlr>rlrlr;l|||| T T T T T T T T T Ty ~ (4/11)1/37’7
T after eTe™ — vy
1ot B f,. frozen Fermi-
L e — Dirac distribution
L L oscillations blocked ——_
= or | by matter effects Today:
= L v decouplin o T,o0=1945 K ~
ot 1.676 x 10™* eV
1073 0sc <El,> ~ 3.1 Ty70 ~
| | 5 x 1074 eV
Ng = nNyo = Npo =
0.01 0.1 1 10 100

Courtesy B F de Sal 56 cm~3 per family
[Courtesy P. F. de Salas] T/ MeV

v decouple mostly before ete~ — ~v annihilation! distortions to
equilibrium f£,!

actually, the decoupling T is momentum dependent!
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. . . . B G CAP
B v oscillations in the early universe et o Ratiol, 1003]

comoving coordinates: a=1/T x=mea y=pa z=Ty,a w=T,a

Dee = fue Oep Oer
density matrix: o(x,y) = Oue Oun = fu, Our
x <3}(P, t) a‘.(p7 t)) Ote Oru Orr = fu.,.
off-diagonals to take into account coherency in the neutrino system
, do(y, x .
o evolution from xH(d);’) = —ia[Hes, 0] + bZ

H Hubble factor — expansion (depends on universe content)

effective Hamiltonian H.x =

Mp _ 2V2Gpymg Lﬂrh +4E
2y X6 3m

vacuum oscillations ~——— % matter efFects

T collision integrals
take into account v—e scattering and pair annihilation, v—v interactions

2D integrals over momentum, take most of the computation time

[solve together with z evolution, from xdﬁ—(;) =p— 3PJ

p, P total energy density and pressure, also take into account FTQED corrections
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. . . . B G CAP
B v oscillations in the early universe et o Ratiol, 1003]

comoving coordinates: a=1/T x=mea y=pa z=Ty,a w=T,a

Qee = fu, Qep Qer
density matrix: o(x,y) = Qe Oup = T, Our
 (al(p,t) ai(p. t)) Ore Orp orr = fo,

off-diagonals to take into account coherency in the neutrino system

o evolution from deQ(dy’X) = —ia[Hes, 0] + bT
x

FORTran-Evolved PrimordIAl Neutrino Oscillations
(FortEPiaNOQ)
https://bitbucket.org/ahep_cosmo/fortepiano_public

vacuum oscillations ~——— L——— matter effects

T collision integrals
take into account v—e scattering and pair annihilation, v—v interactions

2D integrals over momentum, take most of the computation time

dx

[solve together with z evolution, from x 200 — , — 3PJ

p, P total energy density and pressure, also take into account FTQED corrections
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https://bitbucket.org/ahep_cosmo/fortepiano_public
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https://doi.org/10.1016/0550-3213(93)90175-O

B Neutrino momentum distribution and N, gBenett S6+ JCAP 2021]

Distortion of the momentum distribution (frp: Fermi-Dirac at equilibrium)
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B Neutrino momentum distribution and N, gBenett S6+ JCAP 2021]

Distortion of the momentum distribution (frp: Fermi-Dirac at equilibrium)
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B Neutrino momentum distribution and N, gBenett S¢+ JCAP 2021]
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B Neutrino momentum distribution and N g2 56+ JCAP 20211
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. N " and CMB [Planck Collaboration, 2018]
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https://www.cosmos.esa.int/web/planck/publications#Planck2018

3.5 F
3.0 =
ol ~
Sl 1 e.g. low-temperature reheating scenarios
15 74 4
4 | [PRD 92 (2015) 123534], [PRL 135 (2025) 181003]
05 ’ 95% Planck 2018 |
95% Simons Obs.
0.0y CRE R 10

Trir [MeV]


https://doi.org/10.1103/PhysRevD.92.123534
https://doi.org/10.1103/j5rj-dz1k

Bl Scenarios with low reheating temperature [PRL 135 (2025)]

Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density
during reheating: inflaton decays into standard model particles

—> photons, electrons, ... are populated directly

[radiation domination begins after reheating}

S. Gariazzo “Neutrino non-standard scenariosin cosmology” Neutrinos from home, 2025


https://doi.org/10.1103/j5rj-dz1k

Bl Scenarios with low reheating temperature [PRL 135 (2025)]

Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density
during reheating: inflaton decays into standard model particles

—> photons, electrons, ... are populated directly

[radiation domination begins after reheating}

neutrinos are populated by weak interactions with electrons!

if reheating occurs too late, neutrinos are not generated and Neg < 3
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B Scenarios with low reheating temperature [PRL 135 (2025)]

Reheating: phase ending inflation

during inflation, the inflaton (non-rel. scalar) dominates the energy density
during reheating: inflaton decays into standard model particles

= photons, electrons, ... are populated directly

[radiation domination begins after reheating}

neutrinos are populated by weak interactions with electrons!

if reheating occurs too late, neutrinos are not generated and Neg < 3

Low reheating temperature: when reheating occurs at Ty, < 20 MeV

[notice: if Ton <3 MeV, BBN is broken!]

3 neutrino oscillations start to be affected when T,, < 8 MeV

what about sterile neutrinos?
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B N.g with low reheating [PRL 135 (2025)]

Ng as a function of Ty:
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Planck constraint: N.g = 2.927035 (95%, TT,TE,EE-+lowE)
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B BBN and low reheating [PRL 135 (2025)]

Light element abundances depend on Ty:

0.27 o ' - — w0

— WR

—— Tot.
0.26 E

>~(&.

025 e 1
0.24 4
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TRH [MeV] TRH [MeV]
= RHO: total energy density, = VVR:( v)veak rates
expansion rate (n <> p, Ve interactions)
. l . (- e
neutrino energy density, Neg V)e momentum distribution

Both effects are important to get Helium right!
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B Constraints on low reheating scenarios [PRL 135 (2025)]

B Planck+lensing+BOSS/eBOSS
B BBN-Planck-+lensing+ BOSS/eBOSS
B Planck+lensing+ DESI

BN BBN-Planck-+lensing+ DESI

0120

F0.116

0112

\@

Combining probes helps in
reducing degeneracies and
strengthening bounds!
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B Constraints on low reheating scenarios [PRL 135 (2025)]

Tru sampling Neg sampling

T T T T
—— Planck+lensing+DESI

Lo L0 T BENtPlancklensing - DESI /
/\_
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0.0 ! ! 0.0
4 6 8 1 2.2 2.4 2.6 2.8 3.0
TRH [MeV] Neﬁ

Ton > 5.96 MeV (95%)

T > 3.79 MeV (95%)

BBN occurs at ea(rli)er time than CMB and is more sensitive
to Negg (RHO) and ve momentum distribution functions (WR)
as a function of T,!
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B Constraints on low reheating scenarios [PRL 135 (2025)]

T T
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1.0 3 : : 1.0 F— (this work)
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Greater sensitivity will come with future CMB probes
(more precise in determining Nog)

Future CMB alone will reach the precision of
current BBN++CMB (Planck)+BAO (DESI) observations
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77777
Stage-Ill CMB experiment

107
Te[MeV]

e.g.: additional particles
[JCAP 12 (2023) 20]


https://doi.org/10.1088/1475-7516/2023/12/020

B Additional particles in the early universe? ICAP 12 (2023)]

Sterile neutrinos are coupled via oscillations to the thermal plasma

(photons, electrons, neutrinos, (muons), ... )

EWhat if we add a decoupled particle?}

let us assume a non-standard evolution of the energy density: pyg o a”
n = 0 — radiation; n = —1 — matter; n = —2 — curvature, ...

+4

[effect on early universe phenomena is purely gravitational}

total energy density: p = py 4 pe + py + IPFTQED +PUS
2 =8mp/(3M3))
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B Additional particles in the early universe? ICAP 12 (2023)]

Sterile neutrinos are coupled via oscillations to the thermal plasma

(photons, electrons, neutrinos, (muons), ...)

EWhat if we add a decoupled particle?}

let us assume a non-standard evolution of the energy density: pyg < a”
n =0 — radiation; n = —1 — matter; n = —2 — curvature, ...

+4

[effect on early universe phenomena is purely gravitational}

total energy density: p = py + pe + pv + OpFTQED +PUS
2 =8mp/(3M3))

d 1 3 3
neutrino decoupling: ﬁ(xy) =<5 {—i:;g [Hest, 0] + ,:;I(g)}
Xi T
BBN abundances: d = —
dx X

Xi = nj/Ng abundance relative to total baryons, I'; effective reaction rate for nuclide i
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B Results from N.g

pH?

consider pys = prad at xc = me/ Tc for the new particle

Evolution of the energy density:

[JCAP 12 (2023)]
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M Results from Neg [JCAP 12 (2023)]

consider pys = prad at xc = me/ Tc for the new particle
From neutrino decoupling we obtain:
4.0_ T T T T 1T ] T T T T T T 1717 ]
C — n=4 1
: — s
3.5F 3
£ L .
(] - .
2 C ]
3.07 %
F Stage-lll CMB experiment ]
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25 10T 100 107
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B Results from BBN

[JCAP 12 (2023)]
Deutenum abuqdance as a functlon of Tc

1

consider pys = prad at xc = me/ Tc for the new particle

-== n= 3
“==n=2

Compare to current measurements (Deuterium, Helium):

270 Helium-4 mass fractlon as a function of T,
. i
‘\‘\\ \\ === n=1 =---n=3
--- n=4 2.65F %% N “-- n=2 ---n=4
IR ™
2.60F W\ N
S2ssE N Y
N
B 240
L L
2457 qgp 107
Te [MeV]

235

FO re

Tc [MeV]

102

g
error bands (gray) are current constraints on the abundances

even current precision can strongly constrain T¢
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N Neﬂ: ~ 37

It can still relate to new physics!
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e.g.:
Non-Standard Interactions (NSI)
[PLB 820 (2021)]


https://doi.org/10.1016/j.physletb.2021.136508

B Non-standard neutrino-electron interactions [PLE 820 (2021)]

Can neutrinos have interactions beyond the SM ones?

e.g.: L = ESM + ENSIQ, with ﬁNSIe X GFZF(L‘"\If(ﬂa"y”PLZ/B)(E"}/“PL,RG)
see e.g. [Farzan+, 2018] a,B

coupling strength governed by the (,L\’R

)
o)

coefficients (o = e, u, 7)

new interactions affect all phenomena involving neutrinos and electrons
including neutrino decoupling:

matter effects in oscillations

inant!
GL, = diag(eL, 81, 21) (subdominant!)

GRy = diag(gr. gr- &R) Hett M O k - diag(pe + Pe,0,0)
gr=sin’0w, g =gr+1/2, & =gr—1/2 l
(LR LR LR 1+cee €ep €er
ee e er .
(L-R (L/.R LR Het D k(pe + ’De) €ep €up €ur
LR _ ~LR ep o T cee - B .
G =0Ggy | LR Lk LR €er  Eur Er

R

af

. L
with €5 = ¢, +¢
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https://doi.org/10.1016/j.physletb.2021.136508

B NSI effects on Nog [PLB 820 (2021)]

LR LR LR 3.00 - future'Cl\/I'B .
€ee  €ep  €er ... :
(LR LR (LR 3.08 g /1
GL)R— GLvR e y Ut
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er uT TT te
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3.05F 1
e.g. 3.04 - :
L L
Gie — 0.727 + €, , 3.03 T
G%r — —0.273 +’§T-,- ~1.00-0.75-0.500.25 0.00 0.95_0.50 0.75 1.00
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Gaoo — 0.233 + €4, current terrestrial
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https://doi.org/10.1016/j.physletb.2021.136508

B Reactions governing BBN

BBN abundances are determined by a complex

network of weak and nuclear reactions.

The lightest elements involved are:
e
Lithium (anomaly)
i
][

Deuterium bottleneck:
controls beginning of nucleosynthesis

n < p reactions (weak rates): noe pre T
(=) n+ve < p+te
depend on e momentum distribution ntet o piie

“He: most abundant element
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B NS| effects on BBN

[JCAP 08 (2025)]

NSI with electrons, such as £, o Z((L"{?(Dayl‘PLyﬁ)(éwPL,Re),

have secondary effect on BBN rates because there are no've interactions!

WR depend on n <> p processes, for which it is more relevant

cC udV
‘CNSIq o GFVig Z €ea
o

Effect of /7"

on BBN abundances

can be exploited .

to derive constraints:

Bounds are comparable and
complementary to the ones
from terrestrial experiments!

D/H [x1073]

S. Gariazzo

“Neutrino non-standard scenariosin cosmology"

(o Prd)(€v,PLRrVa)!

—— €44Y, NACRE Il rates
£49V, PRIMAT rates
=== g4, NACRE Il rates
£49V, PRIMAT rates
—— Observational measurements

TLi/H [x10710]

He/H [x107°]
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we learn about non-standard v scenarios?

Neutrino decoupling: precision calculations
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[Courtesy P. F. de Safas]

Combine"multiple probes in order to reduce degeneracies!

D

3

~—— RHO
— WR
25 026 —— Tot.
=20 =
= =
15 L] e ——
i
5 95% Planck 2018 )
02 I 95% Simons Obs. o2
Tiur [MeV] Tiar [MeV] T [MeV]
F Future probes will have better sensitivity!
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“ . \ =
Va e
0.8 08 — n=3
5 ¥ 3.5)
& 04 B 0.4 =
3. 0727222777777 777
0.2 02 Stage-Ill CMB experiment
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Ti [MeV] Nt 7. [Mev]
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B What do we learn about non-standard v scenarios?

P Neutrino decoupling: precision calculations
" (2018) o8
D Combine” Multiple probes in order to reduce degeneraaesI
3 ~—— RHO
3 — WR
25 —— Tot.
T
Tiur [MeV] Tt [MeV] T [MeV] =
F Future probes will have better sen5|t|V|ty'
10 —— n=1 —— n=4
T
08 — n=3
foo ] >
g‘“ ] b -
02 = :.m, ory 2 ; Stage-Ill CMB experiment
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