Light sterile neutrinos with pseudoscalar interactions in cosmology

Based on [JCAP 08 (2016) 067]

5 September 2016 - NOW 2016 - Otranto (IT)
Neutrino Oscillations

Analogous to CKM mixing for quarks:

\[\nu_\alpha = \sum_{k=1}^{3} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau) \]

\(\nu_\alpha\) flavour eigenstates, \(U_{\alpha k}\) PMNS mixing matrix, \(\nu_k\) mass eigenstates.

Current knowledge of the 3 active \(\nu\) mixing: [PDG - Olive et al. (2015)]

\(\Delta m^2_{ji} = m^2_j - m^2_i\), \(\theta_{ij}\) mixing angles

NO: Normal Ordering, \(m_1 < m_2 < m_3\)

IO: Inverted Ordering, \(m_3 < m_1 < m_2\)

\[
\begin{align*}
\Delta m^2_{SOL} &= (7.53 \pm 0.18) \cdot 10^{-5} \text{ eV}^2 \\
\Delta m^2_{ATM} &= (2.44 \pm 0.06) \cdot 10^{-3} \text{ eV}^2 (\text{NO}) \\
&= (2.49 \pm 0.06) \cdot 10^{-3} \text{ eV}^2 (\text{IO}) \\
\sin^2(2\theta_{12}) &= 0.846 \pm 0.021 \\
\sin^2(2\theta_{23}) &= 0.999^{+0.001}_{-0.018} (\text{NO}) - 1.000^{+0.000}_{-0.017} (\text{IO}) \\
\sin^2(2\theta_{13}) &= 0.085 \pm 0.005
\end{align*}
\]

CP violating phase \(\delta_{\text{CP}}\) still unknown. Hint: \(\delta_{\text{CP}} = -\pi/2?\) [T2K Collaboration, 2015]

See various talks in next days
Short Baseline (SBL) anomaly

Problem: anomalies in SBL experiments ⇒ \{ errors in flux calculations? deviations from 3-ν description? \}

A short review:

LSND search for $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$, with $L/E = 0.4 \div 1.5$ m/MeV. Observed a 3.8σ excess of $\bar{\nu}_e$ events [Aguilar et al., 2001]

Reactor re-evaluation of the expected anti-neutrino flux ⇒ disappearance of $\bar{\nu}_e$ events compared to predictions ($\sim 3\sigma$) with $L < 100$ m [Azabajan et al, 2012]

Gallium calibration of GALLEX and SAGE Gallium solar neutrino experiments give a 2.7σ anomaly (disappearance of ν_e) [Giunti, Laveder, 2011]

MiniBooNE (inconclusive) search for $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$, with $L/E = 0.2 \div 2.6$ m/MeV. No ν_e excess detected, but $\bar{\nu}_e$ excess observed at 2.8σ [MiniBooNE Collaboration, 2013]

Possible explanation:

Additional squared mass difference

$$\Delta m^2_{SBL} \simeq 1 \text{ eV}^2$$

See various talks in next days
\section*{3+1 Neutrino Model}

SBL anomalies $\Rightarrow \Delta m_{SBL}^2 \simeq 1 \text{ eV}^2$

\Downarrow

Existence of an additional neutrino degree of freedom, mass around 1 eV, no weak interaction \Rightarrow light, sterile neutrino ($LS\nu$)

\Downarrow

3 active ($m_i \ll 1 \text{ eV}$) + 1 sterile ($m_s \simeq 1 \text{ eV}$) \(\nu\) scenario

We must update our mixing paradigm:

$$\nu_\alpha = \sum_{k=1}^{3+1} U_{\alpha k} \nu_k \quad (\alpha = e, \mu, \tau, s)$$

\(\nu_s\) is mainly \(\nu_4\):

$$m_s \simeq m_4 \simeq \sqrt{\Delta m_{41}^2} \simeq \sqrt{\Delta m_{SBL}^2}$$

\textbf{Active \(\nu\):}

$$\sum m_{\nu,\text{active}} \simeq 0$$

\textbf{Sterile \(\nu\):}

$$0.82 \leq m_s^2 / \text{eV}^2 \leq 2.19 \quad (3\sigma)$$

[SG et al., 2016]
(Relativistic) $LS\nu$ in cosmology: ΔN_{eff}

Radiation energy density ρ_r in the early Universe:

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma = [1 + 0.2271N_{\text{eff}}] \rho_\gamma$$

ρ_γ photon energy density, $7/8$ is for fermions, $(4/11)^{4/3}$ due to photon reheating after neutrino decoupling

- $N_{\text{eff}} \rightarrow$ all the radiation contribution not given by photons
- $N_{\text{eff}} \simeq 1$ correspond to a single family of active neutrino, in equilibrium in the early Universe
- Active neutrinos: $N_{\text{eff}} = 3.046$ [Mangano et al., 2005] due to not instantaneous decoupling for the neutrinos
- $+ \text{ Non Standard Interactions: } 3.040 < N_{\text{eff}} < 3.059$ [de Salas et al., 2016]
- additional $LS\nu$ contributes with $\Delta N_{\text{eff}} = N_{\text{eff}} - 3.046$:

$$\Delta N_{\text{eff}} = \frac{\rho_{s}^{\text{rel}}}{\rho_\nu} = \left[\frac{7}{8} \frac{\pi^2}{15} T_\nu^4\right]^{-1} \frac{1}{\pi^2} \int dp \, p^3 f_s(p)$$

[Acero et al., 2009]

ρ_ν energy density for one active neutrino species, ρ_{s}^{rel} energy density of $LS\nu$ when relativistic, p neutrino momentum, $f_s(p)$ momentum distribution, $T_\nu = (4/11)^{1/3} T_\gamma$
LSν thermalization

Using SBL best-fit parameters for the LSν (Δm_{41}^2, θ_s):

[Hannestad et al., JCAP 1207 (2012) 025]
[Mirizzi et al., PRD 86 (2012) 053009]

(Colors coding ΔN_{eff})

(L: lepton asymmetry)

Unless $L \gtrsim O(10^{-3})$, $\Delta N_{\text{eff}} \approx 1$

See also: [Saviano et al., PRD 87 (2013) 073006], [Hannestad et al., JCAP 08 (2015) 019]
(Non-relativistic) LSν in cosmology: m^eff_s and m_s

$m_s \simeq 1 \text{ eV} \rightarrow \nu_s$ is non-relativistic today ($T_\nu \propto 10^{-4} \text{ eV}$)

LSν density parameter today:

$$\omega_s = \Omega_s h^2 = \frac{\rho_s}{\rho_c} h^2 = \frac{h^2 m_s}{\rho_c \pi^2} \int dp \ p^2 f_s(p)$$ [Acero et al., 2009]

ρ_s energy density of non-relativistic LSν, ρ_c critical density and h reduced Hubble parameter

Alternatively:

$$m^\text{eff}_s = 94.1 \text{ eV} \ \omega_s$$ [Planck 2013 Results, XVI]

The factor (94.1 eV) is the same for the active neutrinos:

$$\omega_{\nu, \text{active}} = \sum_{\text{active}} m_\nu / (94.1 \text{ eV})$$

If $f_s(p) = f_{\text{active}}(p)$, $m^\text{eff}_s \equiv m_s$

Thermal production $\Rightarrow f_s(p) = \frac{1}{ep/T_s + 1} \Rightarrow m^\text{eff}_s = \Delta N_{\text{eff}}^{3/4} m_s$
LSν constraints from cosmology

CMB+local: [Planck Collaboration, 2015]

\[
\begin{align*}
N_{\text{eff}} < 3.7 & \quad (\text{TT+lensing+BAO}) \\
m_s^{\text{eff}} < 0.52 \text{ eV} & \quad [m_s < 5 \text{ eV}]
\end{align*}
\]

BBN constraints: \(N_{\text{eff}} = 2.90 \pm 0.22 \) (BBN+\(Y_p\)) [Peimbert et al., 2016]

Summary: \(\Delta N_{\text{eff}} = 1\) from LS\(\nu\) incompatible with \(m_s \simeq 1\) eV!

TT=Planck 2015 TT + lowTEB

All the constraints are at 2\(\sigma\) CL
Hubble parameter today:
\[v = H_0 d, \text{ with } H_0 = H(z = 0) \]

Local measurements: \(H(z = 0) \), local and independent on evolution (model independent, but systematics?)

CMB measurements (probe \(z \simeq 1100 \)): \(H_0 \) from the cosmological evolution (model dependent, well controlled systematics)

Using HST Cepheids:
- [Efstathiou 2013]: \(H_0 = 72.5 \pm 2.5 \text{ Km s}^{-1} \text{ Mpc}^{-1} \)
- [Riess et al., 2016]: \(H_0 = 73.02 \pm 1.79 \text{ Km s}^{-1} \text{ Mpc}^{-1} \) (most recent)

(\(\Lambda \)CDM model - CMB data only)
- [Planck 2013]: \(H_0 = 67.3 \pm 1.2 \text{ Km s}^{-1} \text{ Mpc}^{-1} \)
- [Planck 2015]: \(H_0 = 67.27 \pm 0.66 \text{ Km s}^{-1} \text{ Mpc}^{-1} \)
Tensions on the matter perturbations at small scales

Assuming ΛCDM model:

- σ_8: rms fluctuation in total matter (baryons + CDM + neutrinos) in $8h^{-1}\text{ Mpc}$ spheres, today;
- Ω_m: total matter density today divided by the critical density

CFHTLenS weak lensing data alone

[Heymans et al., 2013] (68% CL):

$$\sigma_8(\Omega_m/0.27)^{0.46\pm0.02} = 0.774 \pm 0.04$$

CMB results

[Planck 2013] (68% CL):

$$2\sigma \text{ discrepancy!} = 0.89 \pm 0.03$$

Planck SZ Cluster Counts

[Planck 2013 Results XX] (68% CL):

$$\sigma_8(\Omega_m/0.27)^{0.3} = 0.764 \pm 0.025$$

CMB results

[Planck 2013] (68% CL):

$$3\sigma \text{ discrepancy!} = 0.87 \pm 0.02$$

Qualitatively similar results from SPT clusters, Chandra Cluster Cosmology Project.

Alert!

- is the nonlinear evolution well known?
 see e.g. [Planck 2015 Results, papers XIII and XIV]

- are we taking into account all the astrophysical systematics?
 [Joudaki et al., 2016] [Kitching et al., 2016]
Adding a new interaction

Prevent LSν thermalization?

new (hidden) interaction!

e.g.: new broken $U(1)$ symmetry

Coupling confined to sterile sector

pseudoscalar mediator ϕ

Lagrangian: $\mathcal{L} \sim g_s \phi \bar{\nu}_4 \gamma_5 \nu_4$

ν_4 annihilation into ϕ at late times (to avoid mass bounds)

coupling g_s large enough to prevent full ν_s thermalization

$10^{-6} \lesssim g_s \lesssim 10^{-5}$ is fine

ϕ must avoid mass bounds itself

$m_\phi \lesssim 0.1$ eV

matter effect induced by ϕ

no ν_s production until after ν_a decoupling

incomplete thermalization, $N_{\text{eff}} \lesssim 4$

[Archidiacono et al., PRD 91 (2015) 065021]

S. Gariazzo
"Light sterile neutrinos with pseudoscalar interactions in cosmology"
Constraints on the pseudoscalar interaction?

Particle physics constraints on the pseudoscalar?

IceCube constraints on secret interactions?
[Ioka et al., 2014] [Cherry et al., 2014] [Ng et al., 2014] [Cherry et al., 2016]

ϕ coupled to ν_4 + IceCube flux made of active flavor neutrinos

very small mixing with ν_4 and interaction rate with ϕ
[cross section $\propto g_s^2 / s$]

SN energy loss
[Farzan, 2003]

$g_s \lesssim 10^{-4}$

don’t apply

don’t apply

fifth force constraints?
pseudoscalar is spin coupling, but unpolarized medium

don’t apply

IceCube constraints on secret interactions?

S. Gariazzo “Light sterile neutrinos with pseudoscalar interactions in cosmology” NOW 2016 - 5/9/16 11/16
Results - I

Standard LSν model:
ΛCDM$ + N_{\text{eff}} + m_s$
(ΛCDM params + free N_{eff} and m_s)

Pseudoscalar model (PSE):
$N_{\text{eff}} = 3.046 + N_{\text{fluid}}$
N_{fluid}: $\nu_s + \phi$ contributions

- Problems with $\Delta N_{\text{eff}} = 1$? solved (incomplete thermalization due to suppression of active-sterile oscillations in primordial plasma);
- mass bounds avoided
 \Rightarrow large m_s allowed and preference for $m_s \simeq 4$ eV;
- high values of H_0 predicted by cosmology
 \Rightarrow more compatible with local measurements.

S. Gariazzo “Light sterile neutrinos with pseudoscalar interactions in cosmology” NOW 2016 - 5/9/16
Results - II

- **PSE**: posterior on m_s wider
- preference for high **SBL** peaks? (agreement with recent results by [IceCube, 2016] and [MINOS, 2016])

- **PSE**: very close to **Riess2016** results (better than ΛCDM+$N_{\text{eff}}+m_s$)
- ΛCDM+$1\nu_s$: even higher H_0, but from $\Delta N_{\text{eff}}=1$ and $m_s \approx 0$.

[Archidiacono, SG et al., JCAP 08 (2016) 067]
What about the σ_8 tension (matter perturbations at small scales)?

ΛCDM model:

- smaller Ω_m today. Good?
- Also higher $\sigma_8 \Rightarrow$ no improvement! The tension remains.
- due to higher H_0, not to reduced matter fluctuations.

Pseudoscalar model:
Joint Results

Cosmological results as a prior in SBL analysis:

Cosmological constraints are too much permissive!

- Regions at $\Delta m_{41}^2 \simeq 6$ eV2 (slightly) enlarged
- (small) new region at $\Delta m_{41}^2 \simeq 8.5$ eV2 appears (3σ CL only)
- Towards [IceCube, 2016] and [MINOS, 2016] hints for $\Delta m_{41}^2 \gtrsim 1$ eV?

[Archidiacono, SG et al., JCAP 08 (2016) 067]
Conclusions

- light ν_s ($m_s \simeq 1$ eV) from SBL analysis?
- full thermalization incompatible with cosmological measurements \times (given mass and mixing angles from SBL oscillations)
- H_0 and σ_8 problems?
- New interaction mediated by a pseudoscalar ϕ:
 - hidden in the sterile sector, no fifth force constraints \checkmark
 - light pseudoscalar to avoid mass bounds after ν_s annihilation \checkmark
 - avoid full ν_s thermalization in the early Universe ($10^{-6} \lesssim g_s \lesssim 10^{-5}$) \checkmark
 - matter effect induced by ϕ allows $N_{\text{eff}} \lesssim 4$ \checkmark
- Results:
 - preference for large m_s \checkmark
 - Towards IceCube and MINOS recent results?
 - preference for H_0 compatible with local measurements \checkmark
 - no solution to matter fluctuations at small scales \times

Thank you for the attention
ΔN_{eff} and pseudoscalar interaction

[Archidiacono et al., PRD 91 (2015) 065021]

obtained with $\sin^2(2\theta_s) = 0.05$, $m_s = 1$ eV