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Introduction

Conditions for baryogenesis were stated by
Sakharov in 1967 a

• B-violation

aA.D. Sakharov, JETPL 91B (1967) 24
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Introduction

Conditions for baryogenesis were stated by
Sakharov in 1967

• B-violation
• C and CP violation
• Departure from thermal equilibrium
• Kuzmin, Rubakov and Shaposhnikov

considered in 1985 the possibility of
baryogenesis at the electroweak phase
transition (EWPT)

A.D. Sakharov, JETPL 91B (1967) 24
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Introduction

The question that created lot of excitement in the
physics community

CAN THE SM PRODUCE BARYONS?
provided a POSITIVE ANSWER!

• Baryon number is non-perturbatively violated
in the SM: sphalerons at finite temperature
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Introduction

The question that created lot of excitement in the
physics community

CAN THE SM PRODUCE BARYONS?
provided a POSITIVE ANSWER!

• Baryon number is non-perturbatively violated
in the SM: sphalerons at finite temperature

• C and CP violating (CKM) phases are present
in the SM

• The out-of-equilibrium conditions are present
in the bubble wall in a FIRST ORDER PHASE
TRANSITION
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Introduction

A mechanism for the generation of the BAU was
suggested by Cohen, Kaplan and Nelson in 1993
using CP violating interactions of fermions with the
domain wall of a bubble. The reflection and
transmission coefficients of fermions and
anti-fermions scattering off the CP violating wall
are different
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Introduction

A mechanism for the generation of the BAU was
suggested by Cohen, Kaplan and Nelson in 1993
using CP violating interactions of fermions with the
domain wall of a bubble. The reflection and
transmission coefficients of fermions and
anti-fermions scattering off the CP violating wall
are different

If the phase transition is not strongly
enough first order any previ-
ously generated BAU is erased
by sphalerons in the symmetric

phase ⇒
φc

Tc
≥ 1
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Standard Model results
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Standard Model results

Although the SM contains all the ingredients for
EWBG it fails quantitatively because

• The CP violation provided by the CKM phase is
too small to generate the required BAU

• The phase transition is not strong enough.
Would a BAU be generated it would be erased by
weak sphalerons in the broken phase. In fact the
strength of the phase transition strongly depends
on the Higgs mass and for present experimental
limits it is extremely weak. A one-loop (improved
by hard thermal loops) result is plotted
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Standard Model results

Although the SM contains all the ingredients for
EWBG it fails quantitatively because

• The CP violation provided by the CKM phase is
too small to generate the required BAU
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Standard Model results

• New physics (extra particles) has to be added
to the SM. The obvious candidates are

BOSONS STRONGLY COUPLED
TO THE HIGGS SECTOR

• Bosons have n = 0 Matsubara modes and thus
they contribute to the cubic terms in the
finite-temperature potential and to create a first
order phase transition

• Bosons can be singlets (from some HIDDEN
sector) or appear in supersymmetric
extensions of the SM: in particular STOPS
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SM+singlets

• Many SM extensions, e.g. string theory,
contain hidden sectors with a matter content
transforming non-trivially under a hidden sector
gauge group, singlet under the SM

• The SM Higgs field H plays a very special role
with respect to such hidden sectors since it can
provide a window (a portal) into it through the
renormalizable interaction |H|2 . . .

• We will assume that the hidden sector is
“singlet” under the SM gauge group
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SM+singlets

• We will consider interactions between the
hidden sector fields Si and the SM Higgs as
|H|2S2

i

• The SM Lagrangian is extended minimally to

L = LSM − ζ2|H|2S2

i

• Such a simple term can dramatically change
the patterns of electroweak breaking and the
strength of the electroweak phase transition

J.R. Espinosa and M. Quiros, PRD 76 (2007) 076004
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Electroweak breaking
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Electroweak breaking
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In the region between the blue and the red line
(m2 > 0) there is a false electroweak minimum
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Electroweak breaking

0 0.5 1 1.5
-0.1

-0.05

0

0.05

0.1

ζ

λ

200100

M = 50 GeV
h

g

r

b

Between the red and green line [defined by
V ′′(0) = 0] the electroweak minimum is stable

ELECTROWEAK BARYOGENESIS – P.13/39



Electroweak breaking
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and there is a barrier separating the false minimum
at the origin from the electroweak minimum
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Electroweak breaking

This region is very interesting for two reasons
• The barrier between both minima (at zero

temperature) will produce an overcooling of the
Higgs field at the origin at finite temperature,
strengthening the first order phase transition
(see below).

• Electroweak symmetry breaking is not
associated with the presence of a tachyonic
mass at the origin, as in the SM. Instead it is
triggered by radiative corrections via the
mechanism of dimensional transmutation.
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Electroweak breaking
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where m2 = 0
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Electroweak breaking
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Electroweak breaking
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In the region above the green line the origin is a
maximum as in the SM, with m2 < 0
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Electroweak breaking
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Electroweak breaking
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Electroweak breaking
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Electroweak phase transition

In the presence of hidden sector fields Si coupled
to the SM Higgs the electroweak phase transition
is strengthened by:

• The thermal contribution from Si, if ζ is large
enough.“This fact was already known”

• The fact that, in part of the (ζ, λ)-plane, there is
a barrier separating the origin (energetically
favored at high temperature) and the
electroweak minimum at zero temperature.
“This effect is new”

We have studied the effective potential at finite tem-

perature for N = 12 and the bounce actionELECTROWEAK BARYOGENESIS – P.22/39



Electroweak phase transition
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Electroweak phase transition
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Electroweak phase transition
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with J.R. Espinosa, J. No and T. Konstandin, arXiv:0809.3215 [hep-ph]
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CP violation and BAU

• To generate enough CP violation we would
need to go beyond the present model

• An interesting possibility from the LE point of
view is the appearance of effective operators
as e.g.

g2

32π2Λ2
|H|2FF̃

that generates

nB/s ∼ 10−9(Tc/Λ)2

Dine-Huet-Singleton-Susskind, PLB 257 (1991) 351
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The MSSM

• In the MSSM there is the so-called a light stop
window where BAU is produced by fermions:
charginos and neutralinos

• BAU is barely consistent with WMAP results for
O(1) phases and light charginos and
neutralinos

• The lightest neutralino is a candidate to Dark
Matter

a M. Carena, M. Quiros, C.E.M. Wagner, PLB380 (1996) 81
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The MSSM

Diagrams contributing to the CPV currents from ϕ(At) and

ϕ(µ)
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MSSM
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MSSM

* References 21st century
- Carena-Moreno-Quiros-Seco-Wagner, NPB 599,
158 (2001)
- Carena-Quiros-Seco-Wagner, NPB 650, 24
(2003)
- Kainulainen-Prokopec-Schmidt-Weinstock, JHEP
0106, 031 (2001)
- Kainulainen-Prokopec-Schmidt-Weinstock, PRD
66, 043502 (2002)
- Prokopec-Schmidt-Weinstock, AP 314, 208
(2004)
- Konstandin-Prokopec-Schmidt-Seco, NPB 738, 1
(2006)

ELECTROWEAK BARYOGENESIS – P.28/39



MSSM

• Strong first order phase transition is triggered
by bosons: stops and Higgses
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MSSM

• Strong first order phase transition is triggered
by bosons: stops and Higgses

• In particular BAU is not erased in the broken
phase if
• Right-handed stops are light (∼ mt) not to

shield the phase transition
• The SM-like Higgs is light enough
• All other sfermions are much heavier with

(common) mass m̃ to avoid EDM bounds
(tan β < 10)
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MSSM

• Strong first order phase transition is triggered
by bosons: stops and Higgses

• In particular BAU is not erased in the broken
phase if
• Right-handed stops are light (∼ mt) not to

shield the phase transition
• The SM-like Higgs is light enough
• All other sfermions are much heavier with

(common) mass m̃ to avoid EDM bounds
(tan β < 10)

• Charginos and neutralinos are light to
generate BAU and DM
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MSSM

• The essential feature of the light stop scenario
is the cubic term generated by the
right-handed stop

[

m2

U + m2

t + ΠR(T )
]3/2
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U + m2

t + ΠR(T )
]3/2

• The phase transition is strenghened if m2

U is
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MSSM

• The essential feature of the light stop scenario
is the cubic term generated by the
right-handed stop

[

m2

U + m2

t + ΠR(T )
]3/2

• The phase transition is strenghened if m2

U is
moderately negative

m2

U ∼ −ΠR(T )

• Generating two minima (h, t̃) = (v, 0) and
(h, t̃) = (0, u)
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MSSM

There are four possible cosmological scenarios

INSTABILITY REGION

When T n
U > T n

H and 〈VH〉 > 〈VU〉 the transition to
the color breaking minimum happens first and
since the latter is deeper than the electroweak
minimum, the system will stay in the color
breaking minimum forever. This region, that we
call “instability region”, is of course non-realistic
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MSSM

There are four possible cosmological scenarios

TWO STEP PHASE TRANSITION

When T n
U > T n

H and 〈VH〉 < 〈VU〉 the transition to
the color breaking minimum also happens first but
since the electroweak vacuum is deeper than the
color breaking one the system becomes
metastable at a given temperature.
It was proven that the phase transition from the
color breaking to the electroweak minimum never
happens which makes this region non-realistic too.

J.M. Cline, G.D. Moore and G. Servant, hep-ph/9902220
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MSSM

There are four possible cosmological scenarios

STABILITY

When T n
U < T n

H and 〈VH〉 < 〈VU〉 the electroweak
phase transition happens first and since the
electroweak minimum is the true vacuum of the
theory this process gives rise to the usual
electroweak phase transition.
Present bounds on the Higgs mass imply that the
electroweak phase transition is too weak in this
region for the mechanism of electroweak
baryogenesis to take place.
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MSSM

There are four possible cosmological scenarios

METASTABILITY

When T n
U < T n

H and 〈VH〉 > 〈VU〉 the electroweak
phase transition happens first but the color
breaking minimum is deeper than the electroweak
minimum which makes the system to be in a
metastable situation.
This scenario is proven to be viable

M. Carena, G. Nardini, M. Quiros and C.E.M. Wagner, arXiv:0809.3760
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Baryogenesis window
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Baryogenesis window
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Baryogenesis window
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Baryogenesis window
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Baryogenesis window
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Analysis of metastability
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Analysis of metastability
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Analysis of metastability
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Analysis of metastability
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BAU
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M. Carena, G. Nardini, M. Quiros and C.E.M. Wagner, arXiv:0809.3760
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Conclusion

EWBG can be tested at LHC that can thus probe
the different models
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• If the Higgs mass was close to experimental
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• If the Higgs mass turns out to be ∼ 130 GeV
then probably some sort of split light stop
scenario can do the job

• If the Higgs mass is much heavier (≫ 300
GeV) then we should (most probably) abandon
the idea of low scale SUPERSYMMETRY!
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