

LHC signals for SUSY discovery and measurements

Vasiliki A. Mitsou (for the ATLAS and CMS Collaborations)

IFIC Valencia

PROMETEO I: LHC physics and cosmology 2-6 March, 2009 Department of Theoretical Physics, University of Valencia, Spain

Outline

Introduction

- ATLAS & CMS detectors
- Supersymmetry: motivation, framework, final states ...
- LHC discovery potential
 - Background estimation from data
 - Inclusive signatures
 - Discovery reach
 - MSSM Higgs bosons
 - Long-lived particles
- SUSY measurements
 - End-point measurements
 - Spin determination
- Summary & outlook

Most studies presented here include:

- realistic detector geometry
- residual misalignments
- trigger efficiency

References

- CMS Collaboration, G.L. Bayatian et al, J. Phys. G, 34 (2007) 995
- ATLAS Collaboration, G. Aad et al, CERN-OPEN-2008-020 (2008) [arXiv:0901.0512]

The ATLAS detector

The CMS detector

Supersymmetry (SUSY)

- Supersymmetry := fundamental global symmetry between fermions-bosons
 - all SM particles have SUSY-partners with spin difference of ±1/2
- Theoretical motivation
 - Higgs mass stabilisation against loop corrections (fine-tuning problem)

- SUSY modifies running of SM gauge couplings 'just enough' to give Grand Unification at single scale
- May explain Dark Matter
- Masses of SM states &
 SUSY partners cannot be degenerate in mass
 - Not observed
 SUSY must be a broken symmetry at low energy
 - Various possible SUSY SB mechanisms proposed

SUSY particle spectrum

spin $\frac{1}{2}$	spin 0	spin 1	spin $\frac{1}{2}$	~ _ ~ _	charginos
quark q_L, q_R	squark $\widetilde{q}_{\rm L},~\widetilde{q}_{\rm R}$	W ₃ , B	\tilde{W}_3, \tilde{B}	W^{\pm}, H^{\pm}	$\iff \tilde{\chi}_1^{\pm}, \; \tilde{\chi}_2^{\pm}$
lepton $\ell_{\rm L}, \ \ell_{\rm R}$	slepton $\tilde{\ell}_{\rm L}, \ \tilde{\ell}_{\rm R}$	W^{\pm}	$ ilde{\mathrm{W}}^{\pm}$	B, W_3, H_1, H_2	$\iff \tilde{\chi}_1^0, \dots, \tilde{\chi}_4^0$
higgsino $\tilde{H}_1, \ \tilde{H}_2$	Higgs H_1, H_2	gluon g	gluino $\widetilde{\mathrm{g}}$		neutralinos
graviton (spin 2)	↔ gravitino (spi	n 3/2)		-	
			(± 1 for SM n	articles

■ *R*-parity: $R = (-1)^{3(B-L)+2s} \rightarrow R = \begin{cases} +1, \text{ for SM particles} \\ -1, \text{ for superpartners} \end{cases}$

- by *not required* by proton stability
- not a fundamental symmetry
- □ If *R*-parity is conserved:
 - SUSY-partners are always produced in pairs (*R* is a multiplicative quantum number)
 - Lightest SUSY-particle (LSP) is stable
 - should be colorless and neutral
 - \square weakly interacting \rightarrow escapes the detector undetectable
 - \rightarrow large missing energy
 - dark matter candidate

PART I

Discovering Supersymmetry

SUSY model framework

SUSY signature at LHC

Strategy for SUSY searches @ LHC

Model independent (as possible)

- theoretically complicated
 - MSSM has > 100 parameters
 - many scenarios: mSUGRA, GMSB, AMSB, ...
 - multi-dimensional parameter space:
 m₀, m_{1/2}, tanβ, ...
- experimentally rather simple
 - □ → search for multi-jets, large missing E_T and possibly high-p_T leptons
- Data-driven as possible
 - SUSY searches performed with early data at the LHC
 - poor understanding of detector (jet energy scale, fake missing E_T, ...)

Main SM background

- top-antitop pairs
- W+jets
- Z+jets
- QCD jets
- diboson processes (ZZ, WW, WZ)

Baseline SUSY cuts

- At least 2 high-p_T jets
- High missing E_T
 - typically > 100 GeV
 - also > 0.2 M_{eff}
- High transverse sphericity (> 0.2)
- Leptons
 - either lepton veto
 - or exactly 1 or 2 leptons
- large uncertainty of SM backgrounds, especially in signal region
- → try to estimate dominant background sources using real data wherever possible, instead of believing Monte Carlo estimates

Background estimation from data

General aim: estimate bkg in a `control' sample and propagate' this measurement to the `signal' sample

Replace method in no-lepton mode

- estimate E_T^{miss} distribution of $Z \rightarrow vv$ from $p_T(\ell^+\ell^-)$ distribution of $Z \rightarrow \ell^+\ell^-$
- apply corrections for lepton reconstruction efficiency and coverage, additional cuts, ...

 Control region should be as close as possible to signal region

 SUSY contamination should be as low as possible

 \rightarrow D = A × C/B

Athens, Nov 2008

SUSY mass scale versus M_{eff}

 SUSY mass scale, M_{SUSY} := average of squark and gluino masses

$$M_{\rm eff} \equiv \sum_{i=1}^{4} p_T^{\rm jet,i} + \sum_{i=1} p_T^{\rm lep,i} + E_{\rm T}^{\rm miss}$$

- M_{eff} peak strongly correlated to the SUSY mass scale
- Measurement of M_{SUSY} feasible with 10 fb⁻¹
 - 15% precision for mSUGRA
 - 40% precision for MSSM
 - also possible for GMSB with rapid decays to gravitino LSP
 - significantly increased statistics needed
 - or variables using photon or lepton p_T
- Total SUSY cross section, σ_{SUSY}, can be estimated in a similar way with 10 fb⁻¹ with a precision of 15% (50%) in mSUGRA (MSSM)

Inclusive search channels

- Lepton multiplicity exclusive (ATLAS) or inclusive (CMS)
- Inclusive in jet multiplicity
- High missing transverse momentum (> 80-200 GeV)

	No jets	1 jet	2 jets	3 jets	4 jets
lepton veto		split SUSY	~	~	~
1 lepton			✓	v	v
2 leptons	LFV	LFV	✓	v	v
3 leptons	✓	✓			
tau(s)			✓	v	✓
b-jets			✓	v	v
photons			✓	 ✓ 	✓

✓ : signatures studied by ATLAS and/or CMS

All-hadronic signature

Di-leptons plus jets

- Opposite-sign (OS) and same-sign (SS) leptons (e or μ)
- Same flavour and different flavour (lepton flavour violation)

Other modes: b-jets, taus, ...

□ CMS: h→bb in cascade decay

- Crucial: b-tagging performance
 - mean efficiency 50%
 - mis-tagging: 1.6% (12%) for u,d,s,g (c-quarks)
- Hemisphere technique applied to reduce combinatorial bkg
- Higgs mass measured: ±7.5 GeV

□ ATLAS: $\geq 1 \tau + 4 \text{ jets} + E_{\tau}^{\text{miss}}$

 τ reconstruction efficiency estimated from real data by replacing e or μ

Sample	S	В	S/B	S/\sqrt{B}	Z_n
SU3	259	51	5.1	36.3	12
SU6	119	51	2.3	16.7	6.8

Discovery reach @ 1fb⁻¹

- Search for: m jets + E_T^{miss} (+ n leptons)
- Sensitivity only weakly dependent on tanβ, A₀ & sgn(µ)
- Best reach achieved with 0-lepton mode
- Significance takes into account systematic uncertainties on bkg estimation
- 1-lepton mode more robust against QCD bkg
- SUSY @ 2 TeV is accessible with 1 fb⁻¹ (1 year of data taking)
 - result independent of chosen model (mSUGRA, AMSB, ...)
- Caveat: excess of events is not enough
 - possibly other physics beyond the Standard Model
 - further precision measurements required

Random mSUGRA points compatible with various constraints (dark matter, $(g-2)_{\mu}$, ...)

Long live the sparticle...

- Long-lived particles = they live long enough to pass through detector or decay in it
- Predicted in many SUSY scenarios (GMSB, RPV, ...) and not only!...
- Regardless of the model, categorised by event signature
 - Charge: electric? magnetic? colour?
 - Decay length?

Two general cases:

- A. Sleptons, R-hadrons (heavy slow particles)
 - large ionisation energy loss
 - > nuclear int. (R-hadron case)
 - delay (TOF) reconstructed in muon chambers
- B. Long-lived neutralino (non-pointing photon)
 - decay vertex is somewhere in the inner tracker volume

see e.g. Fairbairn et al, Phys Rept 438 (2007) 1 [hep-ph/0611040]

GMSB: sleptons & neutralinos

R-hadrons

- Massive exotic meta-stable hadrons, formed by gluinos or stops
- Split SUSY: if the gluino lifetime is long enough, it will hadronise forming an R-hadron
- Charge can change (`flip') in hadronic interactions with matter while crossing the detector
 - -> unique signature
- Main background: cosmic muons

	1
R-Gluino-ball:	ĝg
R-baryon:	<u></u> ĝqqq
R-meson:	₹₽

Valencia, March 2009

PART II

SUSY Measurements

Exclusive studies

	Related edge	Kinematic endpoint		
\tilde{g} \tilde{q}_{L} γ \tilde{l}_{L}	l^+l^- edge	$(m_{ll}^{\max})^2 = (\tilde{\xi} - \tilde{l})(\tilde{l} - \tilde{\chi})/\tilde{l}$		
q q q 1 1 q 1 1 1 1 1 1 1 1 1 1	l^+l^-q edge	$(m_{llq}^{\max})^2 = \begin{cases} \max\left[\frac{(\tilde{q}-\tilde{\xi})(\tilde{\xi}-\tilde{\chi})}{\tilde{\xi}}, \frac{(\tilde{q}-\tilde{l})(\tilde{l}-\tilde{\chi})}{\tilde{l}}, \frac{(\tilde{q}\tilde{l}-\tilde{\xi}\tilde{\chi})(\tilde{\xi}-\tilde{l})}{\tilde{\xi}\tilde{l}}\right] \\ \text{except for the special case in which } \tilde{l}^2 < \tilde{q}\tilde{\chi} < \tilde{\xi}^2 \\ \text{and } \tilde{\xi}^2\tilde{\chi} < \tilde{d}\tilde{l}^2 \text{ where one must use } (m_{\tilde{\chi}}-m_{\chi})^2 \end{cases}$		
which escape the detector		$\left(\operatorname{and} \zeta \ \chi < q_i \text{where one must use} \left(m_{\tilde{q}} - m_{\tilde{\chi}_1^0}\right) \right)$		
reconstruction of mass peaks	Xq edge	$(m_{Xq}^{\max})^2 = X + (\tilde{q} - \tilde{\xi}) \left \tilde{\xi} + X - \tilde{\chi} + \sqrt{(\tilde{\xi} - X - \tilde{\chi})^2 - 4X\tilde{\chi}} \right / (2\tilde{\xi}) \right $		
impossible		$ \int [2\tilde{l}(\tilde{q} - \tilde{\xi})(\tilde{\xi} - \tilde{\chi}) + (\tilde{q} + \tilde{\xi})(\tilde{\xi} - \tilde{l})(\tilde{l} - \tilde{\chi})] $		
Mass measurement strategy	l^+l^-q threshold	$(m_{llq}^{\rm min})^2 = \begin{cases} 1 & (\tilde{q} - \tilde{\xi}) \sqrt{(\tilde{\xi} + \tilde{l})^2 (\tilde{l} + \tilde{\chi})^2 - 16\tilde{\xi}\tilde{l}^2\tilde{\chi}]} / (4\tilde{l}\tilde{\xi}) \end{cases}$		
apply kinematics on long	$l_{\rm near}^\pm \; q \; {\rm edge}$	$(m^{ m max}_{l_{ m near} \ q})^2 = (ilde{q} - ilde{\xi})(ilde{\xi} - ilde{l})/ ilde{\xi}$		
decay chains to link endpoints with combinations of masses	$l_{\rm far}^\pm \; q \; {\rm edge}$	$(m_{l_{\mathrm{far}}\ q}^{\mathrm{max}})^2 = (\tilde{q} - \tilde{\xi})(\tilde{l} - \tilde{\chi})/\tilde{l}$		
measure endpoints (edges, throsholds) in invariant mass	$l^\pm q$ high-edge	$(m_{lq(\mathrm{high})}^{\mathrm{max}})^2 = \max\left[(m_{l_{\mathrm{near}}}^{\mathrm{max}} \ _{q})^2, (m_{l_{\mathrm{far}}}^{\mathrm{max}} \ _{q})^2\right]$		
distributions	$l^\pm q$ low-edge	$(m_{lq(\text{low})}^{\max})^2 = \min\left[(m_{l_{\text{near}}\ q}^{\max})^2, (\tilde{q} - \tilde{\xi})(\tilde{l} - \tilde{\chi})/(2\tilde{l} - \tilde{\chi})\right]$		
$\square \widetilde{g}, \widetilde{b_1}, \widetilde{b_2}$ masses: near	M_{T2} edge	$\Delta M = m_{ ilde{l}} - m_{ ilde{\chi}_1^0}$		
di-lepton endpoint	$ ilde{\chi}$	$=m_{\tilde{\iota}0}^2, \tilde{l}=m_{\tilde{\iota}}^2, \tilde{\xi}=m_{\tilde{\iota}0}^2, \tilde{q}=m_{\tilde{a}}^2$ and X is $m_{\tilde{\iota}}^2$ or m_Z^2		

 $\square \widetilde{\chi}_1^0, \widetilde{\chi}_2^0, I_R, \widetilde{q}_L, \widetilde{q}_R \text{ masses: kinematic}$ λ_1 endpoints and stransverse mass M_{T2} (variant of M_T for two-body decays)

Comments:

- cuts applied depend on the SUSY mass scale; has to be known from $\rm M_{eff}$ distribution
- method does not depend on underlying model (pure kinematics)

Vasiliki A. Mitsou

Dilepton endpoint $\tilde{\chi}_2^0 \rightarrow \tilde{l}^{\pm} l^{\mp} \rightarrow \tilde{\chi}_1^0 l^{\pm} l^{\mp}$ $M_{ll}^{\max} = \sqrt{\frac{(M_{\tilde{\chi}_{2}^{0}}^{2} - M_{\tilde{l}}^{2})(M_{\tilde{l}}^{2} - M_{\tilde{\chi}_{1}^{0}}^{2})}{M_{\tilde{l}}^{2}}} \frac{M_{\ell\ell}^{\max}}{M_{\ell\ell}^{2}} (TH) = 78.15 \ GeV/c^{2}$ Events / 3 GeV / 1 fb-1 Signal lavor asymmetric bko SY/W/Z/T -> avv flavor h.c. Event selection: 1 fb⁻¹ • 2 OS isolated leptons with $p_{T} > 10$ GeV, 10 |n| < 2.4µ⁺µ⁻ • at least 3 jets with $p_T > 30$ GeV, $|\eta| < 3$ ■ p_T^{j1} > 120 GeV, p_T^{j2} > 80 GeV 120 140 160 **m(**μ⁺μ⁻) E_τ^{miss} > 200 GeV B (uu) = 103 ± 17 Background vents / (3 **CMS** preliminary B (ee) = 76 ± 14 MII max = 78.74 ± 0.43 Flavour –symmetric: SF & DF e⁺e⁻, μ⁺μ⁻ $S(\mu\mu) = 190 \pm 18$ S (ee) = 155 ± 16 Flavour-asymmetric: SF dileptons only $Z(\mu\mu) = 11.0 \pm 5.5$ Fake leptons Z (ee) = 7.5 ± 4.3 tt + jets $m_{ee}^{max} = 77.90 \ GeV/c^2$ Z + iets $\Delta m_{ee}^{max} = \pm 1.07(stat.) \pm 0.36(syst.) GeV/c^2$ 10 $m_{uu}^{max} = 78.03 \ GeV/c^2$ 60 180 100 120 mll $\Delta m_{\mu\mu}^{max} = \pm 0.75(stat.) \pm 0.18(syst.)GeV/c^2$ CMS Coll, CMS-PAS-2008/038 (2008)

Valencia, March 2009

Adding the squarks

- Di-lepton edge starting point for reconstruction of decay chain
- Make invariant mass combinations of leptons and jets
- Gives multiple constraints on combinations of four masses
- Sensitivity to individual sparticle masses

ATURS

with 1 fb⁻¹

mSUGRA masses/parameters determination

For a more precise parameter determination, SLHC, ILC is needed

What about the (SUSY) Higgs bosons?

- Supersymmetry requires two Higgs doublets
 - \rightarrow five physical states
 - three neutral: two CP-even (h and H) and one CP-odd (A)
 - two charged: H⁺, H⁻
- The lightest Higgs, h, can be discovered in the whole (m_A, tanβ) plane
 - however, indistinguishable from a light SM Higgs
 - discovery of other (heavy) Higgs bosons
 (→SUSY) should be necessary
- Searches for MSSM Higgs boson
 - decay modes: $h/H/A \rightarrow \tau\tau$, $h/H/A \rightarrow \mu\mu$
 - charged Higgs: $H^{\pm} \rightarrow \tau v$, $H^{\pm} \rightarrow tb$

 Measurement of Higgs properties with 300 fb⁻¹:

- mass (~0.1%)
- width / tanβ (5–10%)
- couplings
 (~20%)
- spin / CP

Is it Supersymmetry?

- Angular distributions in sparticle decays → charge asymmetry in lepton-jet invariant mass distributions
- Charge asymmetry reflects the primary production asymmetry between squarks and anti-squarks (LHC: proton-proton collider)
- Consider usual two-body slepton decay chain
 - charge asymmetry of lq pairs sensitive to spin of χ_2^0
 - shape of dilepton invariant mass spectrum is an indication of slepton spin
 - results consistent with spin- $\frac{1}{2} \chi_2^0$ and spin-0 slepton

O: How do we know that a SUSY signal is really due to SUSY? Other models (e.a. UED with Kaluza-Klein parity) can mimic SUSY mass spectrum

A: Measure spin of new particles!

A J Barr, PLB 596 (2004) 205

Vasiliki A. Mitsou

Recap: What LHC can(not) tell us about SUSY?

- SUSY discovery potential
 - SUSY @ 1 TeV with 0.1 fb⁻¹ could be first discovery
 - SUSY @ 2 TeV with 1-10 fb⁻¹ within 1 year of data taking
 - SUSY @ 5 TeV may need SLHC
- Measurement of effective mass \rightarrow mass scale, total SUSY cross section
- **Endpoint measurements**
 - sparticle masses at 10% level
 - model parameters at 1 10% level (assuming specific model!)
- How can we distinguish various SUSY models?
 - E_T^{miss} spectrum $\rightarrow R$ -parity
 - hard photons, NLSPs, long-lived gluinos → GMSB, split SUSY
 - τ leptons \rightarrow large tan β
- Higgs sector
 - discovery of SM Higgs: observable for the whole allowed mass range
 - additional Higgs bosons from the MSSM can be discovered on a large fraction of the parameter space
 - measurement of Higgs bosons properties is possible with 300 fb⁻¹
 masses, total width, ratios of couplings, spin / CP properties
- And what it cannot tell us ...
 - observe and measure the full gaugino spectrum (in particular charginos)
 - constrain model parameters to < 1%
 - *define directly the nature of neutralino* & *chargino (higgsino / bino / wino -like?)*

Outlook: SUSY / Dark Matter @ LHC

- Discovery: search for deviation from SM in inclusive signatures like missing energy + jets (+leptons)
 - Inclusive studies: establish SUSY discovery
 - Exclusive studies: rough determination of model parameters
- Scheme developed for SUSY, but applicable to other BSM scenarios, e.g. UED, T-parity Little Higgs, ...
- LHC should discover general WIMP dark matter, but it is non-trivial to prove that it has the right properties
 SLHC, ILC: extend discovery potential of LHC
 - improve on LHC capability of identifying DM model
 - more precise determination of model parameters
- Complementarity between LHC and cosmo/astroparticle experiments
 - uncorrelated systematics
 - measure different parameters
- In the following years we expect a continuous interplay between particle physics experiments (LHC, SLHC, ILC) and astrophysical/cosmological observations
 - either for model exclusion or discovery of New Physics

SUSY&DM: the complete (?) picture

Missing transverse energy resolution

Missing ET calculation:

- Raw Missing ET
 - Default: Cell-based
 - Alternate: Cluster-based
- Noise suppression
 - Use only cells within topo clusters
- Refinement:
 - Cell associated with electrons, muons, taus and jets are calibrated according to the energy scale of the respective object
 - Correct for dead material

Ulla Blumenschein (IFAE), QCD Moriond, 18.03.2008

Resolution (GeV)

Fake missing energy

- \checkmark E_{T}^{miss} is a discriminating variable for SUSY discovery
 - Our searches rely on the excess in the $E_T^{miss}(M_{eff})$ distribution.
- However, controlling its energy scale and resolution is very difficult experimentally.
 - Fake muons
 - Dead material and crack
 - Industrial effects in the detector (hot, dead and noisy calorimeter cells)
- ✓ Large tail in E^{miss} due to the fake is serious for SUSY searches.
 - Especially for QCD-jet background (almost no truth E_T^{miss}, but large x-section)

In-situ measurements for E_T^{miss} scale/resolution determination and understanding of fake E_T^{miss} sources are our priorities straight.

Shimpei Yamamoto, SUSY07, Kalrsruhe, 06.07.2007

Valencia, March 2009

Vasiliki A. Mitsou

Discriminating variables

Models faking SUSY

- Universal Extra Dimensions
- Compactified extra dimensions (compactification scale 1/R)
 - Randall-Sundrum
- Kaluza Klein excitations