Physics Reach at the LHC with Increasing Energy and Luminosity

Prometeo I, 3 March 2009 Dave Charlton (University of Birmingham) for ATLAS & CMS

Expectations for 2009/2010
Extension to 14 TeV

LHC & detector upgrades

There are substantial uncertainties

Twenty-five years...

- 1984: First LHC workshop (Lausanne)
 - Use LEP tunnel for protons
- 1992: First 'expressions of interest' for experiments
- 1996: First exp'ts approved
- 1998: First full-size magnet test
- 2003: End of civil engineering
- 2006: Last magnet produced
- 2008: First beam
- 2009: First collisions
- Some vital statistics
 - Tunnel circumference 27 km
 - 1232 main magnets, 8 T field
 - Another 7000 smaller magnets
 - Operating temperature 1.9K
 - Cost: ~4700 MCHF (incl. manpower)
 - Experiment cost: ~500 MCHF each for ATLAS & CMS (excl. manpower)

16 June 2008: Last piece of LHC ring being put in place

TED events (stop of Beam 2)

Muon tracks cross LHCb in the "wrong" direction

First Beam on 10 September

V0 hits on 10.9.2008, shortly after 9 am

On 10 September, collimators 140m upstream of each experiment closed, as first beam sent around: "beam splash" events

First Events: Collimators Closed

~2.10⁹ protons on collimator ~150 m upstream of CMS

ECAL- pink; HB,HE - light blue; HO,HF - dark blue; Muon DT - green; Tracker Off

ningham), 3 March 2009

Beam on Turns 1 and 2

Λ	lirnc
A	

- E- 🕮 🖏

📴 DP07254 Acg MR Time 4CH 🛛

File Edit View Project Operal

13pt Application Font

0

hingham), 3 March 2009

Mountain Range	CH1 IN Choose Char CH1 CH2 ON C File Index 201 Filename of First Trigge D ms Time betwee 1 Turn Multiply Da Scale Facto D Bunch Leng 2.14n Trace Separatio	INVERTED annels to acquire (H2) CH3 OFF OFF ex for next Save of actual data of actual data	DIII CH4 OFF Time: 22:43:36
	Choose Char CH1 CH2 ON C File Index 201 Filename of First Trigge Dms Time betwee 1 Turn Multiply Da Scale Factor 0 Bunch Leng 2.14n Trace Separatio	annels to acquire H2 CH3 OFF OFF ex for next Save of actual data ger ween Traces Data with	CH4 2008-09-11 OFF Time: 22:43:36
	CH1 CH1 ON C File Index 201 Filename of First Trigge D ms Time betwe 1 Turn Multiply Da Scale Facto D Bunch Leng 2.14n Trace Separatio	H2 CH3 OFF OFF ex for next Save of actual data ger ween Traces	CH4 2008-09-11 OFF Time: 22:43:36
	ON C File Index 201 Filename of First Trigge Oms Time betwee 1 Turn Multiply Da Scale Factor 0 Bunch Leng 2.14n Trace Separatio	OFF OFF ex for next Save of actual data ger ween Traces	OFF Time: 22:43:36
	File Index File Index File Index File Index File Index First Trigge D ms Time betwee I Turn Multiply Da Scale Factor D Bunch Leng 2.14n Trace Separatio Loop	of actual data ger ween Traces	22:43:36
	File Index 201 Filename of First Trigge 0 ms Time betwe 1 Turn Multiply Da Scale Facto 0 Bunch Leng 2.14n Trace Separatio	of actual data ger ween Traces Data with	
	Filename of Filename of D ms Time betwee 1 Turn Multiply Da Scale Factor D Bunch Leng 2.14n Trace Separatio	of actual data	
	Filename of First Trigge Oms Time betwee 1 Turn Multiply Da Scale Factor 0 Bunch Leng 2.14n Trace Separatio	of actual data ger ween Traces Data with	
	First Trigge D ms Time betwee 1 Turn Multiply Da Scale Factor D Bunch Leng 2.14n Trace Separatio	iger ween Traces	
	First Trigge Oms Time betwee 1 Turn Multiply Da Scale Factor 0 Bunch Leng 2.14n Trace Separatio	ger ween Traces	
	First Trigge Oms Time betwee 1 Turn Multiply Da Scale Facto 0 Bunch Leng 2.14n Trace Separatio	ween Traces	
	D ms Time betwee 1 Turn Multiply Da Scale Factor D Bunch Leng 2.14n Trace Separation Leng	ween Traces	
	Time betwee 1 Turn Multiply Da Scale Factor D Bunch Leng 2.14n Trace Separation Leng	ween Traces	
	Time betwee 1 Turn Multiply Da Scale Factor 0 Bunch Leng 2.14n Trace Separation	Data with	
	I Turn Multiply Da Scale Facto D Bunch Leng 2.14n Trace Separatic	Data with	
	Multiply Da Scale Factor Bunch Leng 2.14n Trace Separatio	Data with	
	Scale Factor D Bunch Leng 2.14n Trace Separatio		
	Bunch Leng 2.14n Trace Separatic	ctor (dB)	
	Bunch Leng 2.14n Trace Separatio		
	2.14n Trace Separatio	ngth at Position	Min Estimated Bunch Length
	Trace Separatio	13.45n	3n
	Separatio		
	≜1.000	tion	Correction:
			(select before acquisition)
	¥11.000		with cable
			without cable
	Scope	pe released	

11

Splash event in ATLAS

D Froidevaux

E (GeV)

Timing of all TRT readout channels could be performed with accuracy of ~ 1 ns per event! Differences in colour due to cosmic timing:

2D display in $\eta - \phi$ of energy deposited in LAr EM calorimeter per cell (layer 2):

- structures seen are due to material between collimators and calorimeter (mostly 8-fold structure of end-cap toroid coils)
- energy seen per event is huge!

Commissioning with 2008 Data

- Very much use of data that are available:
 - Cosmic rays
 - Splash events
 - Single beam

Many months of cosmic rays

- Detector alignment: especially muon and central tracking systems
- Detector timing & uniformity
- ..

13 10 milliseconds of cosmics through ATLAS

Cosmic-Ray Events

Atlantis

Example: CMS Electromagnetic Calorimeter

A "Dee" of endcap ECAL

Barrel ECAL clusters matching muon tracks

sometimes: huge energy deposition from cosmic muon in ECAL

Energy: 250 GeV

LHC Incident

Interconnect busbar between superconducting magnets developed a significant resistance at a splice

No quench protection system covering the busbar splices

Heating, followed by rapid loss of helium into vacuum

- Soot in the beam-pipe
- Collateral mechanical damage to more distant magnet interconnects
- Around 50 magnets being repaired/replaced

Dave Charlton(Birmingham), 3 March 2009

Next Beams in the LHC?

Chamonix 2009 LHC workshop 2-6 February

Ongoing work to protect against problems from small splice resistances

"Since the incident, enormous progress has been made in developing techniques to detect any small anomaly. These will be used in order to get a complete picture of the resistance in the splices of all magnets installed in the machine. This will allow improved early warning of any additional suspicious splices during operation. The early warning systems will be in place and fully tested before restarting the LHC." - Rolf Heuer

Full quench protection system will be installed before next LHC operation

Additional measures taken to vent He rapidly to avoid collateral damage in the case of an incident

• Two different levels of protection in different sectors of the machine, equip full machine before going to 14 TeV

Decided not to warm up the whole machine now - should ensure operation with beam in 2009 - but only from the autumn

A 2009/10 Shutdown?

Repair and protection work allows first beam injection at end of September according to current schedule

Baseline schedule if no running over the winter...

Year						200	9				٢						2	2010					
Month	F	М	А	М	J	J	Α	S	0	Ν	D	J	F	М	Α	М	J	J	Α	S	0	Ν	D
Baseline		Shutdown S						SU	P	H Shutdown (Relief V) SU								PH					
	24 weeks physics possible												_	_		_							

- Allows very limited physics in 2009/2010 (24 weeks)
- Any slip of >1 month in the repair will delay first LHC physics till August/September 2010!!
- Repair schedule has no contingency (some suggestion for 4 extra weeks)

Alternative plan developed now, to run through the winter months

The 2009/10 LHC Run

Year						200	9										20	010								
Month	F	М	А	М	J	J	А	S	0	Ν	Þ	J	F	м	А	М	J	J	А	S	0	N	D	J	F	М
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	H	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH
	24 weeks								ph	physics possible										>						
Base '	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH	SH	SH
									44 w	/eek	ph	ysics	; pos	sible	e							4	-	-		
	Gain 20 weeks of physics					n	20	10	by	ru	nn	ing	g di	uriı	ng	wir	nte	r n	noi	ntł	IS					
														~												
															HI	GH	pri	ce E	lec	tric	ity					
Delay (4W)	SH	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH	SH
Delay (8W)	SH	SH	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH

Further delays (eg 4 or even 8 weeks, above), would have a relatively minor impact

Annual maintenance (infrastructure, injectors), electricity cost

, 3 March 2009

The 2009/10 Data Sample

Energy:

- 10 TeV centre-of-mass energy for physics
- 8 TeV "on the way" to 10 TeV
- Small data samples at 0.9 TeV (injection energy) and perhaps 2 TeV (mainly for earlier timing-in/commissioning of detectors)

Luminosity:

- $5 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ to $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ peak
- With 200 days and 10% efficiency ~200-300 pb⁻¹
- Quite a large uncertainty...

In the range 100-500 pb^{-1} ?

LHC Commissioning

Note - pre-Chamonix plan (July 2008) - LHC-OP-ES-0011

Stage A	Pilot physics run	Physics aim 43x43 bunches; maximum 156x156 bunches; no crossing angle	\rightarrow 5 x 10 ³
Stage B	Intermediate physics run	Physics aim 75 ns bunch spacing; possible initial physics aim 96x96 bunches (bunch intensity 1×10^{10} protons); maximum aim 936x936 bunches (maximum 9 x 10^{10} protons per bunch). 250 µrad crossing angle.	→ 10 ³²
Stage C	25 ns run I	Intensity per bunch 5 x 10^{10} protons (initial 1 x 10^{10}); physics aim 2808 x 2808 bunches. 285 µrad crossing angle.	
Stage D	25 ns run II	Push towards nominal performance]

Chamonix favoured 50 ns operation in Stage B

Beyond 2010

Between 2010 and 2011 operation, there will be a need for a long shutdown

- Equip remaining sectors with full pressure relief system (warm up remaining sectors)
- Train magnets to higher energy, quenches expected:
 - To 6 TeV, estimate ~10 quenches
 - To 6.5 TeV, estimate ~80 quenches

For nominal luminosity of 10³⁴, additional collimators need to be installed around experiments - in 2011/12?

Not for 09/10, but...

200 days at 10^{32} cm⁻²s⁻¹ and a 60% efficiency ~ 1 fb⁻¹ 200 days at 10^{33} cm⁻²s⁻¹ and a 60% efficiency ~ 10 fb⁻¹ 200 days at 10^{34} cm⁻²s⁻¹ and a 60% efficiency ~ 100 fb⁻¹

In the "annual" running scheme, perhaps 120 days per year

Physics Commissioning

First collisions: work to establish detector and trigger performance, measure Standard Model processes

- Min bias timing in, tracking & calorimeter uniformity & performance
- Dijets calorimeter uniformity, jet uniformity and inter-calibration
- γ -jet photon ID, jet energy scale
- J/ ψ μ ID, tracking performance (e ID)
- bb lifetime-based b-tagging
- W/Z e/ μ ID, resolutions, efficiencies, τ ID (in time), missing E_t
- Z+jets jet energy scale
- Top many things, once we have statistics...

```
You will need to be patient - this will take
some time...
```


Recent Summaries

CMS "Physics TDR" 2006/7

Vol I : CERN-LHCC-2006-001 Vol II : JphysG 34 (2007) 995-1579 Vol II : JphysG 34 (2007) 2307-2455

Both cases:

Comprehensive reviews of physics capabilities, mainly for first years of LHC operation

ATLAS "CSC book" Dec 2008

Expected Performance of the ATLAS Experiment Detector, Trigger and Physics

CERN-OPEN-2008-020 arXiv 0901.0512

10 vs 14 TeV?

Calibration and Alignment

Much work to be done before physics, building on:

- test-beam
- calibration and alignment systems
- cosmics taken last year & this year

	Initial	Ultimate	Samples
e/γ E scale	~2%	0.1%	Z→ee, J/ψ, π^0
e/γ uniformity	1-4%	0.5%	Z→ee
jet E scale	5-10%	~1-2%	W→jj in tt, γ /Z+jets
tracking alignment	10-100 μm	<10 µm	tracks, Z→µµ
muon alignment	few 100 µm	30 µm	inclusive μ, Z→μμ

Early data very important:

- tracks for alignment
- azimuthal asymmetry for calo. uniformity
- conversions for material assay
- •

Missing-E_T

Minimum Bias

Early measurements - need tracker alignment, efficiency and material, to be understood

Challenge to extend tracking to low p_{τ} (high B-fields at LHC!)

<mark>J/ψ</mark>

Jets

Huge cross-sections

Very rapidly sensitive beyond Tevatron at 10 or 14 TeV

Main experimental challenge: jet energy scale uncertainty

- γ-jet, Z-jet events
- E_τ-balance in dijet and multijet events

Jets - p_T spectrum

Inclusive jet p_{T} spectrum - sensitivity e.g. to contact interactions

$$L_{contact} = \frac{2\pi}{\Lambda^2} (\overline{q}_L \gamma^{\mu} q_L) (\overline{q}_L \gamma_{\mu} q_L)$$

10 pb⁻¹ - sensitivity beyond Tevatron reach Λ^+ ~3 TeV (Tev. limit 2.7 TeV)

New Physics in Dijets

Other sensitive distributions, such as:

- dijet mass
- dijet ratios, e.g. N(|η|<0.7)/N(0.7<|η|<1.3)

W and Z

Clean selections anticipated: excellent lepton ID

Initial precision of W/Z cross sections 4-5%

M_{ii}(GeV)

Cross-section about half at 10 TeV

Simplest New Physics Signature?

- Z' mass peak on top of small Drell-Yan background
- with 100 pb⁻¹ large enough signal for discovery up to m ~ 1.5 TeV in sequential SM $\sigma(10 \text{ TeV}) \sim \frac{1}{2} \sigma(14 \text{ TeV})$
- current Tevatron 95% CL limit ~ 1 TeV
- ultimate calorimeter performance not needed
- ultimate reach (300 fb⁻¹) ~ 5 TeV

$W' \rightarrow \ell v$

 $W' \rightarrow ev$

- sequential SM-like couplings to fermions
- characteristic Jacobian shape in transverse mass distribution
- techniques to measure backgrounds from data being developed
- current Tevatron 95% CL limit ~ 1 TeV
- discovery sensitivity up to ~2.2 TeV for 100 pb⁻¹ at 14 TeV

Dave Charlton(Birmingham), 3 March 2009

TeV-Scale Gravity

Black hole production and evaporation (CHARYBDIS) in ED model Assumption: only SM particles from evaporation; valid only for $M_{BH} >> M_D$ (D-dim. Planck scale) \rightarrow High multiplicity of high E_r objects, e.g. 4 objects with p_r>400 GeV

SUSY - mSUGRA

SUSY - mSUGRA

Dave Charlton(Birmingham), 3 March 2009

SM Higgs Search

Decay - strongly dependent on m_{μ}

- low $m_{_{\rm H}}$ bb dominates
 - $\tau\tau$, $\gamma\gamma$ also important
- high $m_{_{\rm H}}$ WW/ZZ dominate

Wide mix of search topologies

Note that ttH→ttbb dropped in combinations - too 41 high uncertainties on backgrounds

Dave Charlton(Birmingham), 3 March 2009

SM Higgs with 200 pb⁻¹ / 10 TeV?

At 10 TeV, m_H=160 GeV (ℓ =e/µ):

- σ(gg→H) ~ 10 pb
- σ .BR(gg \rightarrow H \rightarrow WW \rightarrow {v{v}} ~ 0.5 pb
- σ .BR(gg \rightarrow H \rightarrow ZZ \rightarrow 4 ℓ) ~ 0.04 pb

Small luminosities - WW channel dominates (stats) Experimentally difficult - need to understand backgrounds from data (W+jets, tt, single-top)

Only 95% CL exclusion is accessible with such luminosities - similar sensitivity to the Tevatron in 2010?

Discovery sensitivity requires 1 fb⁻¹ or more...

SM Higgs with 200 pb⁻¹ / 10 TeV?

Tevatron Run II Preliminary, L=3 fb⁻¹

Bayesian vs CLs: assumed correlations between errors are not the same

Higgs Signals

 $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

SM Higgs Prospects

Discovery

backgrounds with data

45

SM Higgs: Low Mass Region

Exclusion: not what we want, but relevant at start...

ATLAS: 95% CL sensitivity from 115 GeV with 2 fb⁻¹ Low mass region remains difficult Dave Charlton(Birmingham), 3 March 2009

SM Higgs with 30 fb⁻¹

rmingham), 3 March 2009

SM Higgs Mass Precision

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ dominate

Statistical precision <1% over a large mass range for 30 fb⁻¹ - systematics should not dominate until integrated luminosities larger, ~100 fb⁻¹

LHC Upgrades

Nominal lumi 10³⁴ cm⁻²s⁻¹

Phase-1:

Machine:

- Injector upgrades
- New inner triplets (focussing magnets at experiments)

Experiments:

- Pixel det. upgrades
- Modest trigger & readout upgrades

Timescale is optimistic not adjusted for LHC incident delay

LHC Upgrades

Integrated luminosity profile Being re-assessed after LHC incident

Phase-2 (sLHC)

"Super-LHC" ~ 2017? Luminosity ~ 10³⁵ cm⁻² s⁻¹ 10 x pre-phase 1

300-400 evts / beam crossing

Machine:

• Various scenarios, mainly increasing current in each bunch

Experiments:

- Tracker replacement need
 > 1 year shutdown
- Many readout electronics and trigger changes

SLHC Physics

Depends what we find at "LHC-I" A couple of examples...

Higgs self-coupling...

Summary

Long programme over many years to explore the full physics potential of the LHC

Start to have better estimates of the energy and luminosity profile but this is still an almost completely unknown machine

The experiments are ready, and have had months of cosmics to understand and tune

The start-up will be cautious, and the performance in 2009/10 will have to be seen

This is the start of the >20-year operation of this new machine

Discovery sensitivity will start in 2010, and keep extending